• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// This file describes how to lower LLVM code to machine code.  This has two
12 /// main components:
13 ///
14 ///  1. Which ValueTypes are natively supported by the target.
15 ///  2. Which operations are supported for supported ValueTypes.
16 ///  3. Cost thresholds for alternative implementations of certain operations.
17 ///
18 /// In addition it has a few other components, like information about FP
19 /// immediates.
20 ///
21 //===----------------------------------------------------------------------===//
22 
23 #ifndef LLVM_TARGET_TARGETLOWERING_H
24 #define LLVM_TARGET_TARGETLOWERING_H
25 
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/CodeGen/DAGCombine.h"
28 #include "llvm/CodeGen/RuntimeLibcalls.h"
29 #include "llvm/CodeGen/SelectionDAGNodes.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/CallSite.h"
32 #include "llvm/IR/CallingConv.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/InlineAsm.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/MC/MCRegisterInfo.h"
37 #include "llvm/Target/TargetCallingConv.h"
38 #include "llvm/Target/TargetMachine.h"
39 #include <climits>
40 #include <map>
41 #include <vector>
42 
43 namespace llvm {
44   class BranchProbability;
45   class CallInst;
46   class CCState;
47   class CCValAssign;
48   class FastISel;
49   class FunctionLoweringInfo;
50   class ImmutableCallSite;
51   class IntrinsicInst;
52   class MachineBasicBlock;
53   class MachineFunction;
54   class MachineInstr;
55   class MachineJumpTableInfo;
56   class MachineLoop;
57   class MachineRegisterInfo;
58   class Mangler;
59   class MCContext;
60   class MCExpr;
61   class MCSymbol;
62   template<typename T> class SmallVectorImpl;
63   class DataLayout;
64   class TargetRegisterClass;
65   class TargetLibraryInfo;
66   class TargetLoweringObjectFile;
67   class Value;
68 
69   namespace Sched {
70     enum Preference {
71       None,             // No preference
72       Source,           // Follow source order.
73       RegPressure,      // Scheduling for lowest register pressure.
74       Hybrid,           // Scheduling for both latency and register pressure.
75       ILP,              // Scheduling for ILP in low register pressure mode.
76       VLIW              // Scheduling for VLIW targets.
77     };
78   }
79 
80 /// This base class for TargetLowering contains the SelectionDAG-independent
81 /// parts that can be used from the rest of CodeGen.
82 class TargetLoweringBase {
83   TargetLoweringBase(const TargetLoweringBase&) = delete;
84   void operator=(const TargetLoweringBase&) = delete;
85 
86 public:
87   /// This enum indicates whether operations are valid for a target, and if not,
88   /// what action should be used to make them valid.
89   enum LegalizeAction : uint8_t {
90     Legal,      // The target natively supports this operation.
91     Promote,    // This operation should be executed in a larger type.
92     Expand,     // Try to expand this to other ops, otherwise use a libcall.
93     LibCall,    // Don't try to expand this to other ops, always use a libcall.
94     Custom      // Use the LowerOperation hook to implement custom lowering.
95   };
96 
97   /// This enum indicates whether a types are legal for a target, and if not,
98   /// what action should be used to make them valid.
99   enum LegalizeTypeAction : uint8_t {
100     TypeLegal,           // The target natively supports this type.
101     TypePromoteInteger,  // Replace this integer with a larger one.
102     TypeExpandInteger,   // Split this integer into two of half the size.
103     TypeSoftenFloat,     // Convert this float to a same size integer type,
104                          // if an operation is not supported in target HW.
105     TypeExpandFloat,     // Split this float into two of half the size.
106     TypeScalarizeVector, // Replace this one-element vector with its element.
107     TypeSplitVector,     // Split this vector into two of half the size.
108     TypeWidenVector,     // This vector should be widened into a larger vector.
109     TypePromoteFloat     // Replace this float with a larger one.
110   };
111 
112   /// LegalizeKind holds the legalization kind that needs to happen to EVT
113   /// in order to type-legalize it.
114   typedef std::pair<LegalizeTypeAction, EVT> LegalizeKind;
115 
116   /// Enum that describes how the target represents true/false values.
117   enum BooleanContent {
118     UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
119     ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
120     ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
121   };
122 
123   /// Enum that describes what type of support for selects the target has.
124   enum SelectSupportKind {
125     ScalarValSelect,      // The target supports scalar selects (ex: cmov).
126     ScalarCondVectorVal,  // The target supports selects with a scalar condition
127                           // and vector values (ex: cmov).
128     VectorMaskSelect      // The target supports vector selects with a vector
129                           // mask (ex: x86 blends).
130   };
131 
132   /// Enum that specifies what an atomic load/AtomicRMWInst is expanded
133   /// to, if at all. Exists because different targets have different levels of
134   /// support for these atomic instructions, and also have different options
135   /// w.r.t. what they should expand to.
136   enum class AtomicExpansionKind {
137     None,    // Don't expand the instruction.
138     LLSC,    // Expand the instruction into loadlinked/storeconditional; used
139              // by ARM/AArch64.
140     LLOnly,  // Expand the (load) instruction into just a load-linked, which has
141              // greater atomic guarantees than a normal load.
142     CmpXChg, // Expand the instruction into cmpxchg; used by at least X86.
143   };
144 
getExtendForContent(BooleanContent Content)145   static ISD::NodeType getExtendForContent(BooleanContent Content) {
146     switch (Content) {
147     case UndefinedBooleanContent:
148       // Extend by adding rubbish bits.
149       return ISD::ANY_EXTEND;
150     case ZeroOrOneBooleanContent:
151       // Extend by adding zero bits.
152       return ISD::ZERO_EXTEND;
153     case ZeroOrNegativeOneBooleanContent:
154       // Extend by copying the sign bit.
155       return ISD::SIGN_EXTEND;
156     }
157     llvm_unreachable("Invalid content kind");
158   }
159 
160   /// NOTE: The TargetMachine owns TLOF.
161   explicit TargetLoweringBase(const TargetMachine &TM);
~TargetLoweringBase()162   virtual ~TargetLoweringBase() {}
163 
164 protected:
165   /// \brief Initialize all of the actions to default values.
166   void initActions();
167 
168 public:
getTargetMachine()169   const TargetMachine &getTargetMachine() const { return TM; }
170 
useSoftFloat()171   virtual bool useSoftFloat() const { return false; }
172 
173   /// Return the pointer type for the given address space, defaults to
174   /// the pointer type from the data layout.
175   /// FIXME: The default needs to be removed once all the code is updated.
176   MVT getPointerTy(const DataLayout &DL, uint32_t AS = 0) const {
177     return MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
178   }
179 
180   /// EVT is not used in-tree, but is used by out-of-tree target.
181   /// A documentation for this function would be nice...
182   virtual MVT getScalarShiftAmountTy(const DataLayout &, EVT) const;
183 
184   EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL) const;
185 
186   /// Returns the type to be used for the index operand of:
187   /// ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT,
188   /// ISD::INSERT_SUBVECTOR, and ISD::EXTRACT_SUBVECTOR
getVectorIdxTy(const DataLayout & DL)189   virtual MVT getVectorIdxTy(const DataLayout &DL) const {
190     return getPointerTy(DL);
191   }
192 
193   /// Return true if the select operation is expensive for this target.
isSelectExpensive()194   bool isSelectExpensive() const { return SelectIsExpensive; }
195 
isSelectSupported(SelectSupportKind)196   virtual bool isSelectSupported(SelectSupportKind /*kind*/) const {
197     return true;
198   }
199 
200   /// Return true if multiple condition registers are available.
hasMultipleConditionRegisters()201   bool hasMultipleConditionRegisters() const {
202     return HasMultipleConditionRegisters;
203   }
204 
205   /// Return true if the target has BitExtract instructions.
hasExtractBitsInsn()206   bool hasExtractBitsInsn() const { return HasExtractBitsInsn; }
207 
208   /// Return the preferred vector type legalization action.
209   virtual TargetLoweringBase::LegalizeTypeAction
getPreferredVectorAction(EVT VT)210   getPreferredVectorAction(EVT VT) const {
211     // The default action for one element vectors is to scalarize
212     if (VT.getVectorNumElements() == 1)
213       return TypeScalarizeVector;
214     // The default action for other vectors is to promote
215     return TypePromoteInteger;
216   }
217 
218   // There are two general methods for expanding a BUILD_VECTOR node:
219   //  1. Use SCALAR_TO_VECTOR on the defined scalar values and then shuffle
220   //     them together.
221   //  2. Build the vector on the stack and then load it.
222   // If this function returns true, then method (1) will be used, subject to
223   // the constraint that all of the necessary shuffles are legal (as determined
224   // by isShuffleMaskLegal). If this function returns false, then method (2) is
225   // always used. The vector type, and the number of defined values, are
226   // provided.
227   virtual bool
shouldExpandBuildVectorWithShuffles(EVT,unsigned DefinedValues)228   shouldExpandBuildVectorWithShuffles(EVT /* VT */,
229                                       unsigned DefinedValues) const {
230     return DefinedValues < 3;
231   }
232 
233   /// Return true if integer divide is usually cheaper than a sequence of
234   /// several shifts, adds, and multiplies for this target.
235   /// The definition of "cheaper" may depend on whether we're optimizing
236   /// for speed or for size.
isIntDivCheap(EVT VT,AttributeSet Attr)237   virtual bool isIntDivCheap(EVT VT, AttributeSet Attr) const {
238     return false;
239   }
240 
241   /// Return true if sqrt(x) is as cheap or cheaper than 1 / rsqrt(x)
isFsqrtCheap()242   bool isFsqrtCheap() const {
243     return FsqrtIsCheap;
244   }
245 
246   /// Returns true if target has indicated at least one type should be bypassed.
isSlowDivBypassed()247   bool isSlowDivBypassed() const { return !BypassSlowDivWidths.empty(); }
248 
249   /// Returns map of slow types for division or remainder with corresponding
250   /// fast types
getBypassSlowDivWidths()251   const DenseMap<unsigned int, unsigned int> &getBypassSlowDivWidths() const {
252     return BypassSlowDivWidths;
253   }
254 
255   /// Return true if Flow Control is an expensive operation that should be
256   /// avoided.
isJumpExpensive()257   bool isJumpExpensive() const { return JumpIsExpensive; }
258 
259   /// Return true if selects are only cheaper than branches if the branch is
260   /// unlikely to be predicted right.
isPredictableSelectExpensive()261   bool isPredictableSelectExpensive() const {
262     return PredictableSelectIsExpensive;
263   }
264 
265   /// If a branch or a select condition is skewed in one direction by more than
266   /// this factor, it is very likely to be predicted correctly.
267   virtual BranchProbability getPredictableBranchThreshold() const;
268 
269   /// Return true if the following transform is beneficial:
270   /// fold (conv (load x)) -> (load (conv*)x)
271   /// On architectures that don't natively support some vector loads
272   /// efficiently, casting the load to a smaller vector of larger types and
273   /// loading is more efficient, however, this can be undone by optimizations in
274   /// dag combiner.
isLoadBitCastBeneficial(EVT LoadVT,EVT BitcastVT)275   virtual bool isLoadBitCastBeneficial(EVT LoadVT,
276                                        EVT BitcastVT) const {
277     // Don't do if we could do an indexed load on the original type, but not on
278     // the new one.
279     if (!LoadVT.isSimple() || !BitcastVT.isSimple())
280       return true;
281 
282     MVT LoadMVT = LoadVT.getSimpleVT();
283 
284     // Don't bother doing this if it's just going to be promoted again later, as
285     // doing so might interfere with other combines.
286     if (getOperationAction(ISD::LOAD, LoadMVT) == Promote &&
287         getTypeToPromoteTo(ISD::LOAD, LoadMVT) == BitcastVT.getSimpleVT())
288       return false;
289 
290     return true;
291   }
292 
293   /// Return true if the following transform is beneficial:
294   /// (store (y (conv x)), y*)) -> (store x, (x*))
isStoreBitCastBeneficial(EVT StoreVT,EVT BitcastVT)295   virtual bool isStoreBitCastBeneficial(EVT StoreVT, EVT BitcastVT) const {
296     // Default to the same logic as loads.
297     return isLoadBitCastBeneficial(StoreVT, BitcastVT);
298   }
299 
300   /// Return true if it is expected to be cheaper to do a store of a non-zero
301   /// vector constant with the given size and type for the address space than to
302   /// store the individual scalar element constants.
storeOfVectorConstantIsCheap(EVT MemVT,unsigned NumElem,unsigned AddrSpace)303   virtual bool storeOfVectorConstantIsCheap(EVT MemVT,
304                                             unsigned NumElem,
305                                             unsigned AddrSpace) const {
306     return false;
307   }
308 
309   /// \brief Return true if it is cheap to speculate a call to intrinsic cttz.
isCheapToSpeculateCttz()310   virtual bool isCheapToSpeculateCttz() const {
311     return false;
312   }
313 
314   /// \brief Return true if it is cheap to speculate a call to intrinsic ctlz.
isCheapToSpeculateCtlz()315   virtual bool isCheapToSpeculateCtlz() const {
316     return false;
317   }
318 
319   /// Return true if it is safe to transform an integer-domain bitwise operation
320   /// into the equivalent floating-point operation. This should be set to true
321   /// if the target has IEEE-754-compliant fabs/fneg operations for the input
322   /// type.
hasBitPreservingFPLogic(EVT VT)323   virtual bool hasBitPreservingFPLogic(EVT VT) const {
324     return false;
325   }
326 
327   /// \brief Return if the target supports combining a
328   /// chain like:
329   /// \code
330   ///   %andResult = and %val1, #imm-with-one-bit-set;
331   ///   %icmpResult = icmp %andResult, 0
332   ///   br i1 %icmpResult, label %dest1, label %dest2
333   /// \endcode
334   /// into a single machine instruction of a form like:
335   /// \code
336   ///   brOnBitSet %register, #bitNumber, dest
337   /// \endcode
isMaskAndBranchFoldingLegal()338   bool isMaskAndBranchFoldingLegal() const {
339     return MaskAndBranchFoldingIsLegal;
340   }
341 
342   /// Return true if the target should transform:
343   /// (X & Y) == Y ---> (~X & Y) == 0
344   /// (X & Y) != Y ---> (~X & Y) != 0
345   ///
346   /// This may be profitable if the target has a bitwise and-not operation that
347   /// sets comparison flags. A target may want to limit the transformation based
348   /// on the type of Y or if Y is a constant.
349   ///
350   /// Note that the transform will not occur if Y is known to be a power-of-2
351   /// because a mask and compare of a single bit can be handled by inverting the
352   /// predicate, for example:
353   /// (X & 8) == 8 ---> (X & 8) != 0
hasAndNotCompare(SDValue Y)354   virtual bool hasAndNotCompare(SDValue Y) const {
355     return false;
356   }
357 
358   /// \brief Return true if the target wants to use the optimization that
359   /// turns ext(promotableInst1(...(promotableInstN(load)))) into
360   /// promotedInst1(...(promotedInstN(ext(load)))).
enableExtLdPromotion()361   bool enableExtLdPromotion() const { return EnableExtLdPromotion; }
362 
363   /// Return true if the target can combine store(extractelement VectorTy,
364   /// Idx).
365   /// \p Cost[out] gives the cost of that transformation when this is true.
canCombineStoreAndExtract(Type * VectorTy,Value * Idx,unsigned & Cost)366   virtual bool canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
367                                          unsigned &Cost) const {
368     return false;
369   }
370 
371   /// Return true if target supports floating point exceptions.
hasFloatingPointExceptions()372   bool hasFloatingPointExceptions() const {
373     return HasFloatingPointExceptions;
374   }
375 
376   /// Return true if target always beneficiates from combining into FMA for a
377   /// given value type. This must typically return false on targets where FMA
378   /// takes more cycles to execute than FADD.
enableAggressiveFMAFusion(EVT VT)379   virtual bool enableAggressiveFMAFusion(EVT VT) const {
380     return false;
381   }
382 
383   /// Return the ValueType of the result of SETCC operations.
384   virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
385                                  EVT VT) const;
386 
387   /// Return the ValueType for comparison libcalls. Comparions libcalls include
388   /// floating point comparion calls, and Ordered/Unordered check calls on
389   /// floating point numbers.
390   virtual
391   MVT::SimpleValueType getCmpLibcallReturnType() const;
392 
393   /// For targets without i1 registers, this gives the nature of the high-bits
394   /// of boolean values held in types wider than i1.
395   ///
396   /// "Boolean values" are special true/false values produced by nodes like
397   /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
398   /// Not to be confused with general values promoted from i1.  Some cpus
399   /// distinguish between vectors of boolean and scalars; the isVec parameter
400   /// selects between the two kinds.  For example on X86 a scalar boolean should
401   /// be zero extended from i1, while the elements of a vector of booleans
402   /// should be sign extended from i1.
403   ///
404   /// Some cpus also treat floating point types the same way as they treat
405   /// vectors instead of the way they treat scalars.
getBooleanContents(bool isVec,bool isFloat)406   BooleanContent getBooleanContents(bool isVec, bool isFloat) const {
407     if (isVec)
408       return BooleanVectorContents;
409     return isFloat ? BooleanFloatContents : BooleanContents;
410   }
411 
getBooleanContents(EVT Type)412   BooleanContent getBooleanContents(EVT Type) const {
413     return getBooleanContents(Type.isVector(), Type.isFloatingPoint());
414   }
415 
416   /// Return target scheduling preference.
getSchedulingPreference()417   Sched::Preference getSchedulingPreference() const {
418     return SchedPreferenceInfo;
419   }
420 
421   /// Some scheduler, e.g. hybrid, can switch to different scheduling heuristics
422   /// for different nodes. This function returns the preference (or none) for
423   /// the given node.
getSchedulingPreference(SDNode *)424   virtual Sched::Preference getSchedulingPreference(SDNode *) const {
425     return Sched::None;
426   }
427 
428   /// Return the register class that should be used for the specified value
429   /// type.
getRegClassFor(MVT VT)430   virtual const TargetRegisterClass *getRegClassFor(MVT VT) const {
431     const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
432     assert(RC && "This value type is not natively supported!");
433     return RC;
434   }
435 
436   /// Return the 'representative' register class for the specified value
437   /// type.
438   ///
439   /// The 'representative' register class is the largest legal super-reg
440   /// register class for the register class of the value type.  For example, on
441   /// i386 the rep register class for i8, i16, and i32 are GR32; while the rep
442   /// register class is GR64 on x86_64.
getRepRegClassFor(MVT VT)443   virtual const TargetRegisterClass *getRepRegClassFor(MVT VT) const {
444     const TargetRegisterClass *RC = RepRegClassForVT[VT.SimpleTy];
445     return RC;
446   }
447 
448   /// Return the cost of the 'representative' register class for the specified
449   /// value type.
getRepRegClassCostFor(MVT VT)450   virtual uint8_t getRepRegClassCostFor(MVT VT) const {
451     return RepRegClassCostForVT[VT.SimpleTy];
452   }
453 
454   /// Return true if the target has native support for the specified value type.
455   /// This means that it has a register that directly holds it without
456   /// promotions or expansions.
isTypeLegal(EVT VT)457   bool isTypeLegal(EVT VT) const {
458     assert(!VT.isSimple() ||
459            (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
460     return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != nullptr;
461   }
462 
463   class ValueTypeActionImpl {
464     /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum
465     /// that indicates how instruction selection should deal with the type.
466     LegalizeTypeAction ValueTypeActions[MVT::LAST_VALUETYPE];
467 
468   public:
ValueTypeActionImpl()469     ValueTypeActionImpl() {
470       std::fill(std::begin(ValueTypeActions), std::end(ValueTypeActions),
471                 TypeLegal);
472     }
473 
getTypeAction(MVT VT)474     LegalizeTypeAction getTypeAction(MVT VT) const {
475       return ValueTypeActions[VT.SimpleTy];
476     }
477 
setTypeAction(MVT VT,LegalizeTypeAction Action)478     void setTypeAction(MVT VT, LegalizeTypeAction Action) {
479       ValueTypeActions[VT.SimpleTy] = Action;
480     }
481   };
482 
getValueTypeActions()483   const ValueTypeActionImpl &getValueTypeActions() const {
484     return ValueTypeActions;
485   }
486 
487   /// Return how we should legalize values of this type, either it is already
488   /// legal (return 'Legal') or we need to promote it to a larger type (return
489   /// 'Promote'), or we need to expand it into multiple registers of smaller
490   /// integer type (return 'Expand').  'Custom' is not an option.
getTypeAction(LLVMContext & Context,EVT VT)491   LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const {
492     return getTypeConversion(Context, VT).first;
493   }
getTypeAction(MVT VT)494   LegalizeTypeAction getTypeAction(MVT VT) const {
495     return ValueTypeActions.getTypeAction(VT);
496   }
497 
498   /// For types supported by the target, this is an identity function.  For
499   /// types that must be promoted to larger types, this returns the larger type
500   /// to promote to.  For integer types that are larger than the largest integer
501   /// register, this contains one step in the expansion to get to the smaller
502   /// register. For illegal floating point types, this returns the integer type
503   /// to transform to.
getTypeToTransformTo(LLVMContext & Context,EVT VT)504   EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
505     return getTypeConversion(Context, VT).second;
506   }
507 
508   /// For types supported by the target, this is an identity function.  For
509   /// types that must be expanded (i.e. integer types that are larger than the
510   /// largest integer register or illegal floating point types), this returns
511   /// the largest legal type it will be expanded to.
getTypeToExpandTo(LLVMContext & Context,EVT VT)512   EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
513     assert(!VT.isVector());
514     while (true) {
515       switch (getTypeAction(Context, VT)) {
516       case TypeLegal:
517         return VT;
518       case TypeExpandInteger:
519         VT = getTypeToTransformTo(Context, VT);
520         break;
521       default:
522         llvm_unreachable("Type is not legal nor is it to be expanded!");
523       }
524     }
525   }
526 
527   /// Vector types are broken down into some number of legal first class types.
528   /// For example, EVT::v8f32 maps to 2 EVT::v4f32 with Altivec or SSE1, or 8
529   /// promoted EVT::f64 values with the X86 FP stack.  Similarly, EVT::v2i64
530   /// turns into 4 EVT::i32 values with both PPC and X86.
531   ///
532   /// This method returns the number of registers needed, and the VT for each
533   /// register.  It also returns the VT and quantity of the intermediate values
534   /// before they are promoted/expanded.
535   unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
536                                   EVT &IntermediateVT,
537                                   unsigned &NumIntermediates,
538                                   MVT &RegisterVT) const;
539 
540   struct IntrinsicInfo {
541     unsigned     opc;         // target opcode
542     EVT          memVT;       // memory VT
543     const Value* ptrVal;      // value representing memory location
544     int          offset;      // offset off of ptrVal
545     unsigned     size;        // the size of the memory location
546                               // (taken from memVT if zero)
547     unsigned     align;       // alignment
548     bool         vol;         // is volatile?
549     bool         readMem;     // reads memory?
550     bool         writeMem;    // writes memory?
551 
IntrinsicInfoIntrinsicInfo552     IntrinsicInfo() : opc(0), ptrVal(nullptr), offset(0), size(0), align(1),
553                       vol(false), readMem(false), writeMem(false) {}
554   };
555 
556   /// Given an intrinsic, checks if on the target the intrinsic will need to map
557   /// to a MemIntrinsicNode (touches memory). If this is the case, it returns
558   /// true and store the intrinsic information into the IntrinsicInfo that was
559   /// passed to the function.
getTgtMemIntrinsic(IntrinsicInfo &,const CallInst &,unsigned)560   virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &,
561                                   unsigned /*Intrinsic*/) const {
562     return false;
563   }
564 
565   /// Returns true if the target can instruction select the specified FP
566   /// immediate natively. If false, the legalizer will materialize the FP
567   /// immediate as a load from a constant pool.
isFPImmLegal(const APFloat &,EVT)568   virtual bool isFPImmLegal(const APFloat &/*Imm*/, EVT /*VT*/) const {
569     return false;
570   }
571 
572   /// Targets can use this to indicate that they only support *some*
573   /// VECTOR_SHUFFLE operations, those with specific masks.  By default, if a
574   /// target supports the VECTOR_SHUFFLE node, all mask values are assumed to be
575   /// legal.
isShuffleMaskLegal(const SmallVectorImpl<int> &,EVT)576   virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
577                                   EVT /*VT*/) const {
578     return true;
579   }
580 
581   /// Returns true if the operation can trap for the value type.
582   ///
583   /// VT must be a legal type. By default, we optimistically assume most
584   /// operations don't trap except for divide and remainder.
585   virtual bool canOpTrap(unsigned Op, EVT VT) const;
586 
587   /// Similar to isShuffleMaskLegal. This is used by Targets can use this to
588   /// indicate if there is a suitable VECTOR_SHUFFLE that can be used to replace
589   /// a VAND with a constant pool entry.
isVectorClearMaskLegal(const SmallVectorImpl<int> &,EVT)590   virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
591                                       EVT /*VT*/) const {
592     return false;
593   }
594 
595   /// Return how this operation should be treated: either it is legal, needs to
596   /// be promoted to a larger size, needs to be expanded to some other code
597   /// sequence, or the target has a custom expander for it.
getOperationAction(unsigned Op,EVT VT)598   LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
599     if (VT.isExtended()) return Expand;
600     // If a target-specific SDNode requires legalization, require the target
601     // to provide custom legalization for it.
602     if (Op > array_lengthof(OpActions[0])) return Custom;
603     return OpActions[(unsigned)VT.getSimpleVT().SimpleTy][Op];
604   }
605 
606   /// Return true if the specified operation is legal on this target or can be
607   /// made legal with custom lowering. This is used to help guide high-level
608   /// lowering decisions.
isOperationLegalOrCustom(unsigned Op,EVT VT)609   bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
610     return (VT == MVT::Other || isTypeLegal(VT)) &&
611       (getOperationAction(Op, VT) == Legal ||
612        getOperationAction(Op, VT) == Custom);
613   }
614 
615   /// Return true if the specified operation is legal on this target or can be
616   /// made legal using promotion. This is used to help guide high-level lowering
617   /// decisions.
isOperationLegalOrPromote(unsigned Op,EVT VT)618   bool isOperationLegalOrPromote(unsigned Op, EVT VT) const {
619     return (VT == MVT::Other || isTypeLegal(VT)) &&
620       (getOperationAction(Op, VT) == Legal ||
621        getOperationAction(Op, VT) == Promote);
622   }
623 
624   /// Return true if the specified operation is legal on this target or can be
625   /// made legal with custom lowering or using promotion. This is used to help
626   /// guide high-level lowering decisions.
isOperationLegalOrCustomOrPromote(unsigned Op,EVT VT)627   bool isOperationLegalOrCustomOrPromote(unsigned Op, EVT VT) const {
628     return (VT == MVT::Other || isTypeLegal(VT)) &&
629       (getOperationAction(Op, VT) == Legal ||
630        getOperationAction(Op, VT) == Custom ||
631        getOperationAction(Op, VT) == Promote);
632   }
633 
634   /// Return true if the specified operation is illegal but has a custom lowering
635   /// on that type. This is used to help guide high-level lowering
636   /// decisions.
isOperationCustom(unsigned Op,EVT VT)637   bool isOperationCustom(unsigned Op, EVT VT) const {
638     return (!isTypeLegal(VT) && getOperationAction(Op, VT) == Custom);
639   }
640 
641   /// Return true if the specified operation is illegal on this target or
642   /// unlikely to be made legal with custom lowering. This is used to help guide
643   /// high-level lowering decisions.
isOperationExpand(unsigned Op,EVT VT)644   bool isOperationExpand(unsigned Op, EVT VT) const {
645     return (!isTypeLegal(VT) || getOperationAction(Op, VT) == Expand);
646   }
647 
648   /// Return true if the specified operation is legal on this target.
isOperationLegal(unsigned Op,EVT VT)649   bool isOperationLegal(unsigned Op, EVT VT) const {
650     return (VT == MVT::Other || isTypeLegal(VT)) &&
651            getOperationAction(Op, VT) == Legal;
652   }
653 
654   /// Return how this load with extension should be treated: either it is legal,
655   /// needs to be promoted to a larger size, needs to be expanded to some other
656   /// code sequence, or the target has a custom expander for it.
getLoadExtAction(unsigned ExtType,EVT ValVT,EVT MemVT)657   LegalizeAction getLoadExtAction(unsigned ExtType, EVT ValVT,
658                                   EVT MemVT) const {
659     if (ValVT.isExtended() || MemVT.isExtended()) return Expand;
660     unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy;
661     unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy;
662     assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValI < MVT::LAST_VALUETYPE &&
663            MemI < MVT::LAST_VALUETYPE && "Table isn't big enough!");
664     unsigned Shift = 4 * ExtType;
665     return (LegalizeAction)((LoadExtActions[ValI][MemI] >> Shift) & 0xf);
666   }
667 
668   /// Return true if the specified load with extension is legal on this target.
isLoadExtLegal(unsigned ExtType,EVT ValVT,EVT MemVT)669   bool isLoadExtLegal(unsigned ExtType, EVT ValVT, EVT MemVT) const {
670     return getLoadExtAction(ExtType, ValVT, MemVT) == Legal;
671   }
672 
673   /// Return true if the specified load with extension is legal or custom
674   /// on this target.
isLoadExtLegalOrCustom(unsigned ExtType,EVT ValVT,EVT MemVT)675   bool isLoadExtLegalOrCustom(unsigned ExtType, EVT ValVT, EVT MemVT) const {
676     return getLoadExtAction(ExtType, ValVT, MemVT) == Legal ||
677            getLoadExtAction(ExtType, ValVT, MemVT) == Custom;
678   }
679 
680   /// Return how this store with truncation should be treated: either it is
681   /// legal, needs to be promoted to a larger size, needs to be expanded to some
682   /// other code sequence, or the target has a custom expander for it.
getTruncStoreAction(EVT ValVT,EVT MemVT)683   LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const {
684     if (ValVT.isExtended() || MemVT.isExtended()) return Expand;
685     unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy;
686     unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy;
687     assert(ValI < MVT::LAST_VALUETYPE && MemI < MVT::LAST_VALUETYPE &&
688            "Table isn't big enough!");
689     return TruncStoreActions[ValI][MemI];
690   }
691 
692   /// Return true if the specified store with truncation is legal on this
693   /// target.
isTruncStoreLegal(EVT ValVT,EVT MemVT)694   bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
695     return isTypeLegal(ValVT) && getTruncStoreAction(ValVT, MemVT) == Legal;
696   }
697 
698   /// Return true if the specified store with truncation has solution on this
699   /// target.
isTruncStoreLegalOrCustom(EVT ValVT,EVT MemVT)700   bool isTruncStoreLegalOrCustom(EVT ValVT, EVT MemVT) const {
701     return isTypeLegal(ValVT) &&
702       (getTruncStoreAction(ValVT, MemVT) == Legal ||
703        getTruncStoreAction(ValVT, MemVT) == Custom);
704   }
705 
706   /// Return how the indexed load should be treated: either it is legal, needs
707   /// to be promoted to a larger size, needs to be expanded to some other code
708   /// sequence, or the target has a custom expander for it.
709   LegalizeAction
getIndexedLoadAction(unsigned IdxMode,MVT VT)710   getIndexedLoadAction(unsigned IdxMode, MVT VT) const {
711     assert(IdxMode < ISD::LAST_INDEXED_MODE && VT.isValid() &&
712            "Table isn't big enough!");
713     unsigned Ty = (unsigned)VT.SimpleTy;
714     return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] & 0xf0) >> 4);
715   }
716 
717   /// Return true if the specified indexed load is legal on this target.
isIndexedLoadLegal(unsigned IdxMode,EVT VT)718   bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
719     return VT.isSimple() &&
720       (getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Legal ||
721        getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Custom);
722   }
723 
724   /// Return how the indexed store should be treated: either it is legal, needs
725   /// to be promoted to a larger size, needs to be expanded to some other code
726   /// sequence, or the target has a custom expander for it.
727   LegalizeAction
getIndexedStoreAction(unsigned IdxMode,MVT VT)728   getIndexedStoreAction(unsigned IdxMode, MVT VT) const {
729     assert(IdxMode < ISD::LAST_INDEXED_MODE && VT.isValid() &&
730            "Table isn't big enough!");
731     unsigned Ty = (unsigned)VT.SimpleTy;
732     return (LegalizeAction)(IndexedModeActions[Ty][IdxMode] & 0x0f);
733   }
734 
735   /// Return true if the specified indexed load is legal on this target.
isIndexedStoreLegal(unsigned IdxMode,EVT VT)736   bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
737     return VT.isSimple() &&
738       (getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Legal ||
739        getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Custom);
740   }
741 
742   /// Return how the condition code should be treated: either it is legal, needs
743   /// to be expanded to some other code sequence, or the target has a custom
744   /// expander for it.
745   LegalizeAction
getCondCodeAction(ISD::CondCode CC,MVT VT)746   getCondCodeAction(ISD::CondCode CC, MVT VT) const {
747     assert((unsigned)CC < array_lengthof(CondCodeActions) &&
748            ((unsigned)VT.SimpleTy >> 3) < array_lengthof(CondCodeActions[0]) &&
749            "Table isn't big enough!");
750     // See setCondCodeAction for how this is encoded.
751     uint32_t Shift = 4 * (VT.SimpleTy & 0x7);
752     uint32_t Value = CondCodeActions[CC][VT.SimpleTy >> 3];
753     LegalizeAction Action = (LegalizeAction) ((Value >> Shift) & 0xF);
754     assert(Action != Promote && "Can't promote condition code!");
755     return Action;
756   }
757 
758   /// Return true if the specified condition code is legal on this target.
isCondCodeLegal(ISD::CondCode CC,MVT VT)759   bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const {
760     return
761       getCondCodeAction(CC, VT) == Legal ||
762       getCondCodeAction(CC, VT) == Custom;
763   }
764 
765 
766   /// If the action for this operation is to promote, this method returns the
767   /// ValueType to promote to.
getTypeToPromoteTo(unsigned Op,MVT VT)768   MVT getTypeToPromoteTo(unsigned Op, MVT VT) const {
769     assert(getOperationAction(Op, VT) == Promote &&
770            "This operation isn't promoted!");
771 
772     // See if this has an explicit type specified.
773     std::map<std::pair<unsigned, MVT::SimpleValueType>,
774              MVT::SimpleValueType>::const_iterator PTTI =
775       PromoteToType.find(std::make_pair(Op, VT.SimpleTy));
776     if (PTTI != PromoteToType.end()) return PTTI->second;
777 
778     assert((VT.isInteger() || VT.isFloatingPoint()) &&
779            "Cannot autopromote this type, add it with AddPromotedToType.");
780 
781     MVT NVT = VT;
782     do {
783       NVT = (MVT::SimpleValueType)(NVT.SimpleTy+1);
784       assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
785              "Didn't find type to promote to!");
786     } while (!isTypeLegal(NVT) ||
787               getOperationAction(Op, NVT) == Promote);
788     return NVT;
789   }
790 
791   /// Return the EVT corresponding to this LLVM type.  This is fixed by the LLVM
792   /// operations except for the pointer size.  If AllowUnknown is true, this
793   /// will return MVT::Other for types with no EVT counterpart (e.g. structs),
794   /// otherwise it will assert.
795   EVT getValueType(const DataLayout &DL, Type *Ty,
796                    bool AllowUnknown = false) const {
797     // Lower scalar pointers to native pointer types.
798     if (PointerType *PTy = dyn_cast<PointerType>(Ty))
799       return getPointerTy(DL, PTy->getAddressSpace());
800 
801     if (Ty->isVectorTy()) {
802       VectorType *VTy = cast<VectorType>(Ty);
803       Type *Elm = VTy->getElementType();
804       // Lower vectors of pointers to native pointer types.
805       if (PointerType *PT = dyn_cast<PointerType>(Elm)) {
806         EVT PointerTy(getPointerTy(DL, PT->getAddressSpace()));
807         Elm = PointerTy.getTypeForEVT(Ty->getContext());
808       }
809 
810       return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(Elm, false),
811                        VTy->getNumElements());
812     }
813     return EVT::getEVT(Ty, AllowUnknown);
814   }
815 
816   /// Return the MVT corresponding to this LLVM type. See getValueType.
817   MVT getSimpleValueType(const DataLayout &DL, Type *Ty,
818                          bool AllowUnknown = false) const {
819     return getValueType(DL, Ty, AllowUnknown).getSimpleVT();
820   }
821 
822   /// Return the desired alignment for ByVal or InAlloca aggregate function
823   /// arguments in the caller parameter area.  This is the actual alignment, not
824   /// its logarithm.
825   virtual unsigned getByValTypeAlignment(Type *Ty, const DataLayout &DL) const;
826 
827   /// Return the type of registers that this ValueType will eventually require.
getRegisterType(MVT VT)828   MVT getRegisterType(MVT VT) const {
829     assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
830     return RegisterTypeForVT[VT.SimpleTy];
831   }
832 
833   /// Return the type of registers that this ValueType will eventually require.
getRegisterType(LLVMContext & Context,EVT VT)834   MVT getRegisterType(LLVMContext &Context, EVT VT) const {
835     if (VT.isSimple()) {
836       assert((unsigned)VT.getSimpleVT().SimpleTy <
837                 array_lengthof(RegisterTypeForVT));
838       return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
839     }
840     if (VT.isVector()) {
841       EVT VT1;
842       MVT RegisterVT;
843       unsigned NumIntermediates;
844       (void)getVectorTypeBreakdown(Context, VT, VT1,
845                                    NumIntermediates, RegisterVT);
846       return RegisterVT;
847     }
848     if (VT.isInteger()) {
849       return getRegisterType(Context, getTypeToTransformTo(Context, VT));
850     }
851     llvm_unreachable("Unsupported extended type!");
852   }
853 
854   /// Return the number of registers that this ValueType will eventually
855   /// require.
856   ///
857   /// This is one for any types promoted to live in larger registers, but may be
858   /// more than one for types (like i64) that are split into pieces.  For types
859   /// like i140, which are first promoted then expanded, it is the number of
860   /// registers needed to hold all the bits of the original type.  For an i140
861   /// on a 32 bit machine this means 5 registers.
getNumRegisters(LLVMContext & Context,EVT VT)862   unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
863     if (VT.isSimple()) {
864       assert((unsigned)VT.getSimpleVT().SimpleTy <
865                 array_lengthof(NumRegistersForVT));
866       return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
867     }
868     if (VT.isVector()) {
869       EVT VT1;
870       MVT VT2;
871       unsigned NumIntermediates;
872       return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
873     }
874     if (VT.isInteger()) {
875       unsigned BitWidth = VT.getSizeInBits();
876       unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
877       return (BitWidth + RegWidth - 1) / RegWidth;
878     }
879     llvm_unreachable("Unsupported extended type!");
880   }
881 
882   /// If true, then instruction selection should seek to shrink the FP constant
883   /// of the specified type to a smaller type in order to save space and / or
884   /// reduce runtime.
ShouldShrinkFPConstant(EVT)885   virtual bool ShouldShrinkFPConstant(EVT) const { return true; }
886 
887   // Return true if it is profitable to reduce the given load node to a smaller
888   // type.
889   //
890   // e.g. (i16 (trunc (i32 (load x))) -> i16 load x should be performed
shouldReduceLoadWidth(SDNode * Load,ISD::LoadExtType ExtTy,EVT NewVT)891   virtual bool shouldReduceLoadWidth(SDNode *Load,
892                                      ISD::LoadExtType ExtTy,
893                                      EVT NewVT) const {
894     return true;
895   }
896 
897   /// When splitting a value of the specified type into parts, does the Lo
898   /// or Hi part come first?  This usually follows the endianness, except
899   /// for ppcf128, where the Hi part always comes first.
hasBigEndianPartOrdering(EVT VT,const DataLayout & DL)900   bool hasBigEndianPartOrdering(EVT VT, const DataLayout &DL) const {
901     return DL.isBigEndian() || VT == MVT::ppcf128;
902   }
903 
904   /// If true, the target has custom DAG combine transformations that it can
905   /// perform for the specified node.
hasTargetDAGCombine(ISD::NodeType NT)906   bool hasTargetDAGCombine(ISD::NodeType NT) const {
907     assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
908     return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
909   }
910 
getGatherAllAliasesMaxDepth()911   unsigned getGatherAllAliasesMaxDepth() const {
912     return GatherAllAliasesMaxDepth;
913   }
914 
915   /// \brief Get maximum # of store operations permitted for llvm.memset
916   ///
917   /// This function returns the maximum number of store operations permitted
918   /// to replace a call to llvm.memset. The value is set by the target at the
919   /// performance threshold for such a replacement. If OptSize is true,
920   /// return the limit for functions that have OptSize attribute.
getMaxStoresPerMemset(bool OptSize)921   unsigned getMaxStoresPerMemset(bool OptSize) const {
922     return OptSize ? MaxStoresPerMemsetOptSize : MaxStoresPerMemset;
923   }
924 
925   /// \brief Get maximum # of store operations permitted for llvm.memcpy
926   ///
927   /// This function returns the maximum number of store operations permitted
928   /// to replace a call to llvm.memcpy. The value is set by the target at the
929   /// performance threshold for such a replacement. If OptSize is true,
930   /// return the limit for functions that have OptSize attribute.
getMaxStoresPerMemcpy(bool OptSize)931   unsigned getMaxStoresPerMemcpy(bool OptSize) const {
932     return OptSize ? MaxStoresPerMemcpyOptSize : MaxStoresPerMemcpy;
933   }
934 
935   /// \brief Get maximum # of store operations permitted for llvm.memmove
936   ///
937   /// This function returns the maximum number of store operations permitted
938   /// to replace a call to llvm.memmove. The value is set by the target at the
939   /// performance threshold for such a replacement. If OptSize is true,
940   /// return the limit for functions that have OptSize attribute.
getMaxStoresPerMemmove(bool OptSize)941   unsigned getMaxStoresPerMemmove(bool OptSize) const {
942     return OptSize ? MaxStoresPerMemmoveOptSize : MaxStoresPerMemmove;
943   }
944 
945   /// \brief Determine if the target supports unaligned memory accesses.
946   ///
947   /// This function returns true if the target allows unaligned memory accesses
948   /// of the specified type in the given address space. If true, it also returns
949   /// whether the unaligned memory access is "fast" in the last argument by
950   /// reference. This is used, for example, in situations where an array
951   /// copy/move/set is converted to a sequence of store operations. Its use
952   /// helps to ensure that such replacements don't generate code that causes an
953   /// alignment error (trap) on the target machine.
954   virtual bool allowsMisalignedMemoryAccesses(EVT,
955                                               unsigned AddrSpace = 0,
956                                               unsigned Align = 1,
957                                               bool * /*Fast*/ = nullptr) const {
958     return false;
959   }
960 
961   /// Return true if the target supports a memory access of this type for the
962   /// given address space and alignment. If the access is allowed, the optional
963   /// final parameter returns if the access is also fast (as defined by the
964   /// target).
965   bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT,
966                           unsigned AddrSpace = 0, unsigned Alignment = 1,
967                           bool *Fast = nullptr) const;
968 
969   /// Returns the target specific optimal type for load and store operations as
970   /// a result of memset, memcpy, and memmove lowering.
971   ///
972   /// If DstAlign is zero that means it's safe to destination alignment can
973   /// satisfy any constraint. Similarly if SrcAlign is zero it means there isn't
974   /// a need to check it against alignment requirement, probably because the
975   /// source does not need to be loaded. If 'IsMemset' is true, that means it's
976   /// expanding a memset. If 'ZeroMemset' is true, that means it's a memset of
977   /// zero. 'MemcpyStrSrc' indicates whether the memcpy source is constant so it
978   /// does not need to be loaded.  It returns EVT::Other if the type should be
979   /// determined using generic target-independent logic.
getOptimalMemOpType(uint64_t,unsigned,unsigned,bool,bool,bool,MachineFunction &)980   virtual EVT getOptimalMemOpType(uint64_t /*Size*/,
981                                   unsigned /*DstAlign*/, unsigned /*SrcAlign*/,
982                                   bool /*IsMemset*/,
983                                   bool /*ZeroMemset*/,
984                                   bool /*MemcpyStrSrc*/,
985                                   MachineFunction &/*MF*/) const {
986     return MVT::Other;
987   }
988 
989   /// Returns true if it's safe to use load / store of the specified type to
990   /// expand memcpy / memset inline.
991   ///
992   /// This is mostly true for all types except for some special cases. For
993   /// example, on X86 targets without SSE2 f64 load / store are done with fldl /
994   /// fstpl which also does type conversion. Note the specified type doesn't
995   /// have to be legal as the hook is used before type legalization.
isSafeMemOpType(MVT)996   virtual bool isSafeMemOpType(MVT /*VT*/) const { return true; }
997 
998   /// Determine if we should use _setjmp or setjmp to implement llvm.setjmp.
usesUnderscoreSetJmp()999   bool usesUnderscoreSetJmp() const {
1000     return UseUnderscoreSetJmp;
1001   }
1002 
1003   /// Determine if we should use _longjmp or longjmp to implement llvm.longjmp.
usesUnderscoreLongJmp()1004   bool usesUnderscoreLongJmp() const {
1005     return UseUnderscoreLongJmp;
1006   }
1007 
1008   /// Return integer threshold on number of blocks to use jump tables rather
1009   /// than if sequence.
getMinimumJumpTableEntries()1010   int getMinimumJumpTableEntries() const {
1011     return MinimumJumpTableEntries;
1012   }
1013 
1014   /// If a physical register, this specifies the register that
1015   /// llvm.savestack/llvm.restorestack should save and restore.
getStackPointerRegisterToSaveRestore()1016   unsigned getStackPointerRegisterToSaveRestore() const {
1017     return StackPointerRegisterToSaveRestore;
1018   }
1019 
1020   /// If a physical register, this returns the register that receives the
1021   /// exception address on entry to an EH pad.
1022   virtual unsigned
getExceptionPointerRegister(const Constant * PersonalityFn)1023   getExceptionPointerRegister(const Constant *PersonalityFn) const {
1024     // 0 is guaranteed to be the NoRegister value on all targets
1025     return 0;
1026   }
1027 
1028   /// If a physical register, this returns the register that receives the
1029   /// exception typeid on entry to a landing pad.
1030   virtual unsigned
getExceptionSelectorRegister(const Constant * PersonalityFn)1031   getExceptionSelectorRegister(const Constant *PersonalityFn) const {
1032     // 0 is guaranteed to be the NoRegister value on all targets
1033     return 0;
1034   }
1035 
needsFixedCatchObjects()1036   virtual bool needsFixedCatchObjects() const {
1037     report_fatal_error("Funclet EH is not implemented for this target");
1038   }
1039 
1040   /// Returns the target's jmp_buf size in bytes (if never set, the default is
1041   /// 200)
getJumpBufSize()1042   unsigned getJumpBufSize() const {
1043     return JumpBufSize;
1044   }
1045 
1046   /// Returns the target's jmp_buf alignment in bytes (if never set, the default
1047   /// is 0)
getJumpBufAlignment()1048   unsigned getJumpBufAlignment() const {
1049     return JumpBufAlignment;
1050   }
1051 
1052   /// Return the minimum stack alignment of an argument.
getMinStackArgumentAlignment()1053   unsigned getMinStackArgumentAlignment() const {
1054     return MinStackArgumentAlignment;
1055   }
1056 
1057   /// Return the minimum function alignment.
getMinFunctionAlignment()1058   unsigned getMinFunctionAlignment() const {
1059     return MinFunctionAlignment;
1060   }
1061 
1062   /// Return the preferred function alignment.
getPrefFunctionAlignment()1063   unsigned getPrefFunctionAlignment() const {
1064     return PrefFunctionAlignment;
1065   }
1066 
1067   /// Return the preferred loop alignment.
1068   virtual unsigned getPrefLoopAlignment(MachineLoop *ML = nullptr) const {
1069     return PrefLoopAlignment;
1070   }
1071 
1072   /// If the target has a standard location for the stack protector guard,
1073   /// returns the address of that location. Otherwise, returns nullptr.
1074   /// DEPRECATED: please override useLoadStackGuardNode and customize
1075   ///             LOAD_STACK_GUARD, or customize @llvm.stackguard().
1076   virtual Value *getIRStackGuard(IRBuilder<> &IRB) const;
1077 
1078   /// Inserts necessary declarations for SSP (stack protection) purpose.
1079   /// Should be used only when getIRStackGuard returns nullptr.
1080   virtual void insertSSPDeclarations(Module &M) const;
1081 
1082   /// Return the variable that's previously inserted by insertSSPDeclarations,
1083   /// if any, otherwise return nullptr. Should be used only when
1084   /// getIRStackGuard returns nullptr.
1085   virtual Value *getSDagStackGuard(const Module &M) const;
1086 
1087   /// If the target has a standard stack protection check function that
1088   /// performs validation and error handling, returns the function. Otherwise,
1089   /// returns nullptr. Must be previously inserted by insertSSPDeclarations.
1090   /// Should be used only when getIRStackGuard returns nullptr.
1091   virtual Value *getSSPStackGuardCheck(const Module &M) const;
1092 
1093   /// If the target has a standard location for the unsafe stack pointer,
1094   /// returns the address of that location. Otherwise, returns nullptr.
1095   virtual Value *getSafeStackPointerLocation(IRBuilder<> &IRB) const;
1096 
1097   /// Returns true if a cast between SrcAS and DestAS is a noop.
isNoopAddrSpaceCast(unsigned SrcAS,unsigned DestAS)1098   virtual bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const {
1099     return false;
1100   }
1101 
1102   /// Return true if the pointer arguments to CI should be aligned by aligning
1103   /// the object whose address is being passed. If so then MinSize is set to the
1104   /// minimum size the object must be to be aligned and PrefAlign is set to the
1105   /// preferred alignment.
shouldAlignPointerArgs(CallInst *,unsigned &,unsigned &)1106   virtual bool shouldAlignPointerArgs(CallInst * /*CI*/, unsigned & /*MinSize*/,
1107                                       unsigned & /*PrefAlign*/) const {
1108     return false;
1109   }
1110 
1111   //===--------------------------------------------------------------------===//
1112   /// \name Helpers for TargetTransformInfo implementations
1113   /// @{
1114 
1115   /// Get the ISD node that corresponds to the Instruction class opcode.
1116   int InstructionOpcodeToISD(unsigned Opcode) const;
1117 
1118   /// Estimate the cost of type-legalization and the legalized type.
1119   std::pair<int, MVT> getTypeLegalizationCost(const DataLayout &DL,
1120                                               Type *Ty) const;
1121 
1122   /// @}
1123 
1124   //===--------------------------------------------------------------------===//
1125   /// \name Helpers for atomic expansion.
1126   /// @{
1127 
1128   /// Returns the maximum atomic operation size (in bits) supported by
1129   /// the backend. Atomic operations greater than this size (as well
1130   /// as ones that are not naturally aligned), will be expanded by
1131   /// AtomicExpandPass into an __atomic_* library call.
getMaxAtomicSizeInBitsSupported()1132   unsigned getMaxAtomicSizeInBitsSupported() const {
1133     return MaxAtomicSizeInBitsSupported;
1134   }
1135 
1136   /// Returns the size of the smallest cmpxchg or ll/sc instruction
1137   /// the backend supports.  Any smaller operations are widened in
1138   /// AtomicExpandPass.
1139   ///
1140   /// Note that *unlike* operations above the maximum size, atomic ops
1141   /// are still natively supported below the minimum; they just
1142   /// require a more complex expansion.
getMinCmpXchgSizeInBits()1143   unsigned getMinCmpXchgSizeInBits() const { return MinCmpXchgSizeInBits; }
1144 
1145   /// Whether AtomicExpandPass should automatically insert fences and reduce
1146   /// ordering for this atomic. This should be true for most architectures with
1147   /// weak memory ordering. Defaults to false.
shouldInsertFencesForAtomic(const Instruction * I)1148   virtual bool shouldInsertFencesForAtomic(const Instruction *I) const {
1149     return false;
1150   }
1151 
1152   /// Perform a load-linked operation on Addr, returning a "Value *" with the
1153   /// corresponding pointee type. This may entail some non-trivial operations to
1154   /// truncate or reconstruct types that will be illegal in the backend. See
1155   /// ARMISelLowering for an example implementation.
emitLoadLinked(IRBuilder<> & Builder,Value * Addr,AtomicOrdering Ord)1156   virtual Value *emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
1157                                 AtomicOrdering Ord) const {
1158     llvm_unreachable("Load linked unimplemented on this target");
1159   }
1160 
1161   /// Perform a store-conditional operation to Addr. Return the status of the
1162   /// store. This should be 0 if the store succeeded, non-zero otherwise.
emitStoreConditional(IRBuilder<> & Builder,Value * Val,Value * Addr,AtomicOrdering Ord)1163   virtual Value *emitStoreConditional(IRBuilder<> &Builder, Value *Val,
1164                                       Value *Addr, AtomicOrdering Ord) const {
1165     llvm_unreachable("Store conditional unimplemented on this target");
1166   }
1167 
1168   /// Inserts in the IR a target-specific intrinsic specifying a fence.
1169   /// It is called by AtomicExpandPass before expanding an
1170   ///   AtomicRMW/AtomicCmpXchg/AtomicStore/AtomicLoad
1171   ///   if shouldInsertFencesForAtomic returns true.
1172   /// RMW and CmpXchg set both IsStore and IsLoad to true.
1173   /// This function should either return a nullptr, or a pointer to an IR-level
1174   ///   Instruction*. Even complex fence sequences can be represented by a
1175   ///   single Instruction* through an intrinsic to be lowered later.
1176   /// Backends should override this method to produce target-specific intrinsic
1177   ///   for their fences.
1178   /// FIXME: Please note that the default implementation here in terms of
1179   ///   IR-level fences exists for historical/compatibility reasons and is
1180   ///   *unsound* ! Fences cannot, in general, be used to restore sequential
1181   ///   consistency. For example, consider the following example:
1182   /// atomic<int> x = y = 0;
1183   /// int r1, r2, r3, r4;
1184   /// Thread 0:
1185   ///   x.store(1);
1186   /// Thread 1:
1187   ///   y.store(1);
1188   /// Thread 2:
1189   ///   r1 = x.load();
1190   ///   r2 = y.load();
1191   /// Thread 3:
1192   ///   r3 = y.load();
1193   ///   r4 = x.load();
1194   ///  r1 = r3 = 1 and r2 = r4 = 0 is impossible as long as the accesses are all
1195   ///  seq_cst. But if they are lowered to monotonic accesses, no amount of
1196   ///  IR-level fences can prevent it.
1197   /// @{
emitLeadingFence(IRBuilder<> & Builder,AtomicOrdering Ord,bool IsStore,bool IsLoad)1198   virtual Instruction *emitLeadingFence(IRBuilder<> &Builder,
1199                                         AtomicOrdering Ord, bool IsStore,
1200                                         bool IsLoad) const {
1201     if (isReleaseOrStronger(Ord) && IsStore)
1202       return Builder.CreateFence(Ord);
1203     else
1204       return nullptr;
1205   }
1206 
emitTrailingFence(IRBuilder<> & Builder,AtomicOrdering Ord,bool IsStore,bool IsLoad)1207   virtual Instruction *emitTrailingFence(IRBuilder<> &Builder,
1208                                          AtomicOrdering Ord, bool IsStore,
1209                                          bool IsLoad) const {
1210     if (isAcquireOrStronger(Ord))
1211       return Builder.CreateFence(Ord);
1212     else
1213       return nullptr;
1214   }
1215   /// @}
1216 
1217   // Emits code that executes when the comparison result in the ll/sc
1218   // expansion of a cmpxchg instruction is such that the store-conditional will
1219   // not execute.  This makes it possible to balance out the load-linked with
1220   // a dedicated instruction, if desired.
1221   // E.g., on ARM, if ldrex isn't followed by strex, the exclusive monitor would
1222   // be unnecessarily held, except if clrex, inserted by this hook, is executed.
emitAtomicCmpXchgNoStoreLLBalance(IRBuilder<> & Builder)1223   virtual void emitAtomicCmpXchgNoStoreLLBalance(IRBuilder<> &Builder) const {}
1224 
1225   /// Returns true if the given (atomic) store should be expanded by the
1226   /// IR-level AtomicExpand pass into an "atomic xchg" which ignores its input.
shouldExpandAtomicStoreInIR(StoreInst * SI)1227   virtual bool shouldExpandAtomicStoreInIR(StoreInst *SI) const {
1228     return false;
1229   }
1230 
1231   /// Returns true if arguments should be sign-extended in lib calls.
shouldSignExtendTypeInLibCall(EVT Type,bool IsSigned)1232   virtual bool shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
1233     return IsSigned;
1234   }
1235 
1236   /// Returns how the given (atomic) load should be expanded by the
1237   /// IR-level AtomicExpand pass.
shouldExpandAtomicLoadInIR(LoadInst * LI)1238   virtual AtomicExpansionKind shouldExpandAtomicLoadInIR(LoadInst *LI) const {
1239     return AtomicExpansionKind::None;
1240   }
1241 
1242   /// Returns true if the given atomic cmpxchg should be expanded by the
1243   /// IR-level AtomicExpand pass into a load-linked/store-conditional sequence
1244   /// (through emitLoadLinked() and emitStoreConditional()).
shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst * AI)1245   virtual bool shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const {
1246     return false;
1247   }
1248 
1249   /// Returns how the IR-level AtomicExpand pass should expand the given
1250   /// AtomicRMW, if at all. Default is to never expand.
shouldExpandAtomicRMWInIR(AtomicRMWInst *)1251   virtual AtomicExpansionKind shouldExpandAtomicRMWInIR(AtomicRMWInst *) const {
1252     return AtomicExpansionKind::None;
1253   }
1254 
1255   /// On some platforms, an AtomicRMW that never actually modifies the value
1256   /// (such as fetch_add of 0) can be turned into a fence followed by an
1257   /// atomic load. This may sound useless, but it makes it possible for the
1258   /// processor to keep the cacheline shared, dramatically improving
1259   /// performance. And such idempotent RMWs are useful for implementing some
1260   /// kinds of locks, see for example (justification + benchmarks):
1261   /// http://www.hpl.hp.com/techreports/2012/HPL-2012-68.pdf
1262   /// This method tries doing that transformation, returning the atomic load if
1263   /// it succeeds, and nullptr otherwise.
1264   /// If shouldExpandAtomicLoadInIR returns true on that load, it will undergo
1265   /// another round of expansion.
1266   virtual LoadInst *
lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst * RMWI)1267   lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *RMWI) const {
1268     return nullptr;
1269   }
1270 
1271   /// Returns how the platform's atomic operations are extended (ZERO_EXTEND,
1272   /// SIGN_EXTEND, or ANY_EXTEND).
getExtendForAtomicOps()1273   virtual ISD::NodeType getExtendForAtomicOps() const {
1274     return ISD::ZERO_EXTEND;
1275   }
1276 
1277   /// @}
1278 
1279   /// Returns true if we should normalize
1280   /// select(N0&N1, X, Y) => select(N0, select(N1, X, Y), Y) and
1281   /// select(N0|N1, X, Y) => select(N0, select(N1, X, Y, Y)) if it is likely
1282   /// that it saves us from materializing N0 and N1 in an integer register.
1283   /// Targets that are able to perform and/or on flags should return false here.
shouldNormalizeToSelectSequence(LLVMContext & Context,EVT VT)1284   virtual bool shouldNormalizeToSelectSequence(LLVMContext &Context,
1285                                                EVT VT) const {
1286     // If a target has multiple condition registers, then it likely has logical
1287     // operations on those registers.
1288     if (hasMultipleConditionRegisters())
1289       return false;
1290     // Only do the transform if the value won't be split into multiple
1291     // registers.
1292     LegalizeTypeAction Action = getTypeAction(Context, VT);
1293     return Action != TypeExpandInteger && Action != TypeExpandFloat &&
1294       Action != TypeSplitVector;
1295   }
1296 
1297   //===--------------------------------------------------------------------===//
1298   // TargetLowering Configuration Methods - These methods should be invoked by
1299   // the derived class constructor to configure this object for the target.
1300   //
1301 protected:
1302   /// Specify how the target extends the result of integer and floating point
1303   /// boolean values from i1 to a wider type.  See getBooleanContents.
setBooleanContents(BooleanContent Ty)1304   void setBooleanContents(BooleanContent Ty) {
1305     BooleanContents = Ty;
1306     BooleanFloatContents = Ty;
1307   }
1308 
1309   /// Specify how the target extends the result of integer and floating point
1310   /// boolean values from i1 to a wider type.  See getBooleanContents.
setBooleanContents(BooleanContent IntTy,BooleanContent FloatTy)1311   void setBooleanContents(BooleanContent IntTy, BooleanContent FloatTy) {
1312     BooleanContents = IntTy;
1313     BooleanFloatContents = FloatTy;
1314   }
1315 
1316   /// Specify how the target extends the result of a vector boolean value from a
1317   /// vector of i1 to a wider type.  See getBooleanContents.
setBooleanVectorContents(BooleanContent Ty)1318   void setBooleanVectorContents(BooleanContent Ty) {
1319     BooleanVectorContents = Ty;
1320   }
1321 
1322   /// Specify the target scheduling preference.
setSchedulingPreference(Sched::Preference Pref)1323   void setSchedulingPreference(Sched::Preference Pref) {
1324     SchedPreferenceInfo = Pref;
1325   }
1326 
1327   /// Indicate whether this target prefers to use _setjmp to implement
1328   /// llvm.setjmp or the version without _.  Defaults to false.
setUseUnderscoreSetJmp(bool Val)1329   void setUseUnderscoreSetJmp(bool Val) {
1330     UseUnderscoreSetJmp = Val;
1331   }
1332 
1333   /// Indicate whether this target prefers to use _longjmp to implement
1334   /// llvm.longjmp or the version without _.  Defaults to false.
setUseUnderscoreLongJmp(bool Val)1335   void setUseUnderscoreLongJmp(bool Val) {
1336     UseUnderscoreLongJmp = Val;
1337   }
1338 
1339   /// Indicate the number of blocks to generate jump tables rather than if
1340   /// sequence.
setMinimumJumpTableEntries(int Val)1341   void setMinimumJumpTableEntries(int Val) {
1342     MinimumJumpTableEntries = Val;
1343   }
1344 
1345   /// If set to a physical register, this specifies the register that
1346   /// llvm.savestack/llvm.restorestack should save and restore.
setStackPointerRegisterToSaveRestore(unsigned R)1347   void setStackPointerRegisterToSaveRestore(unsigned R) {
1348     StackPointerRegisterToSaveRestore = R;
1349   }
1350 
1351   /// Tells the code generator not to expand operations into sequences that use
1352   /// the select operations if possible.
1353   void setSelectIsExpensive(bool isExpensive = true) {
1354     SelectIsExpensive = isExpensive;
1355   }
1356 
1357   /// Tells the code generator that the target has multiple (allocatable)
1358   /// condition registers that can be used to store the results of comparisons
1359   /// for use by selects and conditional branches. With multiple condition
1360   /// registers, the code generator will not aggressively sink comparisons into
1361   /// the blocks of their users.
1362   void setHasMultipleConditionRegisters(bool hasManyRegs = true) {
1363     HasMultipleConditionRegisters = hasManyRegs;
1364   }
1365 
1366   /// Tells the code generator that the target has BitExtract instructions.
1367   /// The code generator will aggressively sink "shift"s into the blocks of
1368   /// their users if the users will generate "and" instructions which can be
1369   /// combined with "shift" to BitExtract instructions.
1370   void setHasExtractBitsInsn(bool hasExtractInsn = true) {
1371     HasExtractBitsInsn = hasExtractInsn;
1372   }
1373 
1374   /// Tells the code generator not to expand logic operations on comparison
1375   /// predicates into separate sequences that increase the amount of flow
1376   /// control.
1377   void setJumpIsExpensive(bool isExpensive = true);
1378 
1379   /// Tells the code generator that fsqrt is cheap, and should not be replaced
1380   /// with an alternative sequence of instructions.
1381   void setFsqrtIsCheap(bool isCheap = true) { FsqrtIsCheap = isCheap; }
1382 
1383   /// Tells the code generator that this target supports floating point
1384   /// exceptions and cares about preserving floating point exception behavior.
1385   void setHasFloatingPointExceptions(bool FPExceptions = true) {
1386     HasFloatingPointExceptions = FPExceptions;
1387   }
1388 
1389   /// Tells the code generator which bitwidths to bypass.
addBypassSlowDiv(unsigned int SlowBitWidth,unsigned int FastBitWidth)1390   void addBypassSlowDiv(unsigned int SlowBitWidth, unsigned int FastBitWidth) {
1391     BypassSlowDivWidths[SlowBitWidth] = FastBitWidth;
1392   }
1393 
1394   /// Add the specified register class as an available regclass for the
1395   /// specified value type. This indicates the selector can handle values of
1396   /// that class natively.
addRegisterClass(MVT VT,const TargetRegisterClass * RC)1397   void addRegisterClass(MVT VT, const TargetRegisterClass *RC) {
1398     assert((unsigned)VT.SimpleTy < array_lengthof(RegClassForVT));
1399     AvailableRegClasses.push_back(std::make_pair(VT, RC));
1400     RegClassForVT[VT.SimpleTy] = RC;
1401   }
1402 
1403   /// Remove all register classes.
clearRegisterClasses()1404   void clearRegisterClasses() {
1405     std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr);
1406 
1407     AvailableRegClasses.clear();
1408   }
1409 
1410   /// \brief Remove all operation actions.
clearOperationActions()1411   void clearOperationActions() {
1412   }
1413 
1414   /// Return the largest legal super-reg register class of the register class
1415   /// for the specified type and its associated "cost".
1416   virtual std::pair<const TargetRegisterClass *, uint8_t>
1417   findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const;
1418 
1419   /// Once all of the register classes are added, this allows us to compute
1420   /// derived properties we expose.
1421   void computeRegisterProperties(const TargetRegisterInfo *TRI);
1422 
1423   /// Indicate that the specified operation does not work with the specified
1424   /// type and indicate what to do about it.
setOperationAction(unsigned Op,MVT VT,LegalizeAction Action)1425   void setOperationAction(unsigned Op, MVT VT,
1426                           LegalizeAction Action) {
1427     assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
1428     OpActions[(unsigned)VT.SimpleTy][Op] = Action;
1429   }
1430 
1431   /// Indicate that the specified load with extension does not work with the
1432   /// specified type and indicate what to do about it.
setLoadExtAction(unsigned ExtType,MVT ValVT,MVT MemVT,LegalizeAction Action)1433   void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT,
1434                         LegalizeAction Action) {
1435     assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValVT.isValid() &&
1436            MemVT.isValid() && "Table isn't big enough!");
1437     assert((unsigned)Action < 0x10 && "too many bits for bitfield array");
1438     unsigned Shift = 4 * ExtType;
1439     LoadExtActions[ValVT.SimpleTy][MemVT.SimpleTy] &= ~((uint16_t)0xF << Shift);
1440     LoadExtActions[ValVT.SimpleTy][MemVT.SimpleTy] |= (uint16_t)Action << Shift;
1441   }
1442 
1443   /// Indicate that the specified truncating store does not work with the
1444   /// specified type and indicate what to do about it.
setTruncStoreAction(MVT ValVT,MVT MemVT,LegalizeAction Action)1445   void setTruncStoreAction(MVT ValVT, MVT MemVT,
1446                            LegalizeAction Action) {
1447     assert(ValVT.isValid() && MemVT.isValid() && "Table isn't big enough!");
1448     TruncStoreActions[(unsigned)ValVT.SimpleTy][MemVT.SimpleTy] = Action;
1449   }
1450 
1451   /// Indicate that the specified indexed load does or does not work with the
1452   /// specified type and indicate what to do abort it.
1453   ///
1454   /// NOTE: All indexed mode loads are initialized to Expand in
1455   /// TargetLowering.cpp
setIndexedLoadAction(unsigned IdxMode,MVT VT,LegalizeAction Action)1456   void setIndexedLoadAction(unsigned IdxMode, MVT VT,
1457                             LegalizeAction Action) {
1458     assert(VT.isValid() && IdxMode < ISD::LAST_INDEXED_MODE &&
1459            (unsigned)Action < 0xf && "Table isn't big enough!");
1460     // Load action are kept in the upper half.
1461     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0xf0;
1462     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action) <<4;
1463   }
1464 
1465   /// Indicate that the specified indexed store does or does not work with the
1466   /// specified type and indicate what to do about it.
1467   ///
1468   /// NOTE: All indexed mode stores are initialized to Expand in
1469   /// TargetLowering.cpp
setIndexedStoreAction(unsigned IdxMode,MVT VT,LegalizeAction Action)1470   void setIndexedStoreAction(unsigned IdxMode, MVT VT,
1471                              LegalizeAction Action) {
1472     assert(VT.isValid() && IdxMode < ISD::LAST_INDEXED_MODE &&
1473            (unsigned)Action < 0xf && "Table isn't big enough!");
1474     // Store action are kept in the lower half.
1475     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0x0f;
1476     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action);
1477   }
1478 
1479   /// Indicate that the specified condition code is or isn't supported on the
1480   /// target and indicate what to do about it.
setCondCodeAction(ISD::CondCode CC,MVT VT,LegalizeAction Action)1481   void setCondCodeAction(ISD::CondCode CC, MVT VT,
1482                          LegalizeAction Action) {
1483     assert(VT.isValid() && (unsigned)CC < array_lengthof(CondCodeActions) &&
1484            "Table isn't big enough!");
1485     assert((unsigned)Action < 0x10 && "too many bits for bitfield array");
1486     /// The lower 3 bits of the SimpleTy index into Nth 4bit set from the 32-bit
1487     /// value and the upper 29 bits index into the second dimension of the array
1488     /// to select what 32-bit value to use.
1489     uint32_t Shift = 4 * (VT.SimpleTy & 0x7);
1490     CondCodeActions[CC][VT.SimpleTy >> 3] &= ~((uint32_t)0xF << Shift);
1491     CondCodeActions[CC][VT.SimpleTy >> 3] |= (uint32_t)Action << Shift;
1492   }
1493 
1494   /// If Opc/OrigVT is specified as being promoted, the promotion code defaults
1495   /// to trying a larger integer/fp until it can find one that works. If that
1496   /// default is insufficient, this method can be used by the target to override
1497   /// the default.
AddPromotedToType(unsigned Opc,MVT OrigVT,MVT DestVT)1498   void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
1499     PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
1500   }
1501 
1502   /// Convenience method to set an operation to Promote and specify the type
1503   /// in a single call.
setOperationPromotedToType(unsigned Opc,MVT OrigVT,MVT DestVT)1504   void setOperationPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
1505     setOperationAction(Opc, OrigVT, Promote);
1506     AddPromotedToType(Opc, OrigVT, DestVT);
1507   }
1508 
1509   /// Targets should invoke this method for each target independent node that
1510   /// they want to provide a custom DAG combiner for by implementing the
1511   /// PerformDAGCombine virtual method.
setTargetDAGCombine(ISD::NodeType NT)1512   void setTargetDAGCombine(ISD::NodeType NT) {
1513     assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1514     TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
1515   }
1516 
1517   /// Set the target's required jmp_buf buffer size (in bytes); default is 200
setJumpBufSize(unsigned Size)1518   void setJumpBufSize(unsigned Size) {
1519     JumpBufSize = Size;
1520   }
1521 
1522   /// Set the target's required jmp_buf buffer alignment (in bytes); default is
1523   /// 0
setJumpBufAlignment(unsigned Align)1524   void setJumpBufAlignment(unsigned Align) {
1525     JumpBufAlignment = Align;
1526   }
1527 
1528   /// Set the target's minimum function alignment (in log2(bytes))
setMinFunctionAlignment(unsigned Align)1529   void setMinFunctionAlignment(unsigned Align) {
1530     MinFunctionAlignment = Align;
1531   }
1532 
1533   /// Set the target's preferred function alignment.  This should be set if
1534   /// there is a performance benefit to higher-than-minimum alignment (in
1535   /// log2(bytes))
setPrefFunctionAlignment(unsigned Align)1536   void setPrefFunctionAlignment(unsigned Align) {
1537     PrefFunctionAlignment = Align;
1538   }
1539 
1540   /// Set the target's preferred loop alignment. Default alignment is zero, it
1541   /// means the target does not care about loop alignment.  The alignment is
1542   /// specified in log2(bytes). The target may also override
1543   /// getPrefLoopAlignment to provide per-loop values.
setPrefLoopAlignment(unsigned Align)1544   void setPrefLoopAlignment(unsigned Align) {
1545     PrefLoopAlignment = Align;
1546   }
1547 
1548   /// Set the minimum stack alignment of an argument (in log2(bytes)).
setMinStackArgumentAlignment(unsigned Align)1549   void setMinStackArgumentAlignment(unsigned Align) {
1550     MinStackArgumentAlignment = Align;
1551   }
1552 
1553   /// Set the maximum atomic operation size supported by the
1554   /// backend. Atomic operations greater than this size (as well as
1555   /// ones that are not naturally aligned), will be expanded by
1556   /// AtomicExpandPass into an __atomic_* library call.
setMaxAtomicSizeInBitsSupported(unsigned SizeInBits)1557   void setMaxAtomicSizeInBitsSupported(unsigned SizeInBits) {
1558     MaxAtomicSizeInBitsSupported = SizeInBits;
1559   }
1560 
1561   // Sets the minimum cmpxchg or ll/sc size supported by the backend.
setMinCmpXchgSizeInBits(unsigned SizeInBits)1562   void setMinCmpXchgSizeInBits(unsigned SizeInBits) {
1563     MinCmpXchgSizeInBits = SizeInBits;
1564   }
1565 
1566 public:
1567   //===--------------------------------------------------------------------===//
1568   // Addressing mode description hooks (used by LSR etc).
1569   //
1570 
1571   /// CodeGenPrepare sinks address calculations into the same BB as Load/Store
1572   /// instructions reading the address. This allows as much computation as
1573   /// possible to be done in the address mode for that operand. This hook lets
1574   /// targets also pass back when this should be done on intrinsics which
1575   /// load/store.
1576   virtual bool GetAddrModeArguments(IntrinsicInst * /*I*/,
1577                                     SmallVectorImpl<Value*> &/*Ops*/,
1578                                     Type *&/*AccessTy*/,
1579                                     unsigned AddrSpace = 0) const {
1580     return false;
1581   }
1582 
1583   /// This represents an addressing mode of:
1584   ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
1585   /// If BaseGV is null,  there is no BaseGV.
1586   /// If BaseOffs is zero, there is no base offset.
1587   /// If HasBaseReg is false, there is no base register.
1588   /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
1589   /// no scale.
1590   struct AddrMode {
1591     GlobalValue *BaseGV;
1592     int64_t      BaseOffs;
1593     bool         HasBaseReg;
1594     int64_t      Scale;
AddrModeAddrMode1595     AddrMode() : BaseGV(nullptr), BaseOffs(0), HasBaseReg(false), Scale(0) {}
1596   };
1597 
1598   /// Return true if the addressing mode represented by AM is legal for this
1599   /// target, for a load/store of the specified type.
1600   ///
1601   /// The type may be VoidTy, in which case only return true if the addressing
1602   /// mode is legal for a load/store of any legal type.  TODO: Handle
1603   /// pre/postinc as well.
1604   ///
1605   /// If the address space cannot be determined, it will be -1.
1606   ///
1607   /// TODO: Remove default argument
1608   virtual bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
1609                                      Type *Ty, unsigned AddrSpace) const;
1610 
1611   /// \brief Return the cost of the scaling factor used in the addressing mode
1612   /// represented by AM for this target, for a load/store of the specified type.
1613   ///
1614   /// If the AM is supported, the return value must be >= 0.
1615   /// If the AM is not supported, it returns a negative value.
1616   /// TODO: Handle pre/postinc as well.
1617   /// TODO: Remove default argument
1618   virtual int getScalingFactorCost(const DataLayout &DL, const AddrMode &AM,
1619                                    Type *Ty, unsigned AS = 0) const {
1620     // Default: assume that any scaling factor used in a legal AM is free.
1621     if (isLegalAddressingMode(DL, AM, Ty, AS))
1622       return 0;
1623     return -1;
1624   }
1625 
1626   /// Return true if the specified immediate is legal icmp immediate, that is
1627   /// the target has icmp instructions which can compare a register against the
1628   /// immediate without having to materialize the immediate into a register.
isLegalICmpImmediate(int64_t)1629   virtual bool isLegalICmpImmediate(int64_t) const {
1630     return true;
1631   }
1632 
1633   /// Return true if the specified immediate is legal add immediate, that is the
1634   /// target has add instructions which can add a register with the immediate
1635   /// without having to materialize the immediate into a register.
isLegalAddImmediate(int64_t)1636   virtual bool isLegalAddImmediate(int64_t) const {
1637     return true;
1638   }
1639 
1640   /// Return true if it's significantly cheaper to shift a vector by a uniform
1641   /// scalar than by an amount which will vary across each lane. On x86, for
1642   /// example, there is a "psllw" instruction for the former case, but no simple
1643   /// instruction for a general "a << b" operation on vectors.
isVectorShiftByScalarCheap(Type * Ty)1644   virtual bool isVectorShiftByScalarCheap(Type *Ty) const {
1645     return false;
1646   }
1647 
1648   /// Return true if it's free to truncate a value of type FromTy to type
1649   /// ToTy. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
1650   /// by referencing its sub-register AX.
1651   /// Targets must return false when FromTy <= ToTy.
isTruncateFree(Type * FromTy,Type * ToTy)1652   virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const {
1653     return false;
1654   }
1655 
1656   /// Return true if a truncation from FromTy to ToTy is permitted when deciding
1657   /// whether a call is in tail position. Typically this means that both results
1658   /// would be assigned to the same register or stack slot, but it could mean
1659   /// the target performs adequate checks of its own before proceeding with the
1660   /// tail call.  Targets must return false when FromTy <= ToTy.
allowTruncateForTailCall(Type * FromTy,Type * ToTy)1661   virtual bool allowTruncateForTailCall(Type *FromTy, Type *ToTy) const {
1662     return false;
1663   }
1664 
isTruncateFree(EVT FromVT,EVT ToVT)1665   virtual bool isTruncateFree(EVT FromVT, EVT ToVT) const {
1666     return false;
1667   }
1668 
isProfitableToHoist(Instruction * I)1669   virtual bool isProfitableToHoist(Instruction *I) const { return true; }
1670 
1671   /// Return true if the extension represented by \p I is free.
1672   /// Unlikely the is[Z|FP]ExtFree family which is based on types,
1673   /// this method can use the context provided by \p I to decide
1674   /// whether or not \p I is free.
1675   /// This method extends the behavior of the is[Z|FP]ExtFree family.
1676   /// In other words, if is[Z|FP]Free returns true, then this method
1677   /// returns true as well. The converse is not true.
1678   /// The target can perform the adequate checks by overriding isExtFreeImpl.
1679   /// \pre \p I must be a sign, zero, or fp extension.
isExtFree(const Instruction * I)1680   bool isExtFree(const Instruction *I) const {
1681     switch (I->getOpcode()) {
1682     case Instruction::FPExt:
1683       if (isFPExtFree(EVT::getEVT(I->getType())))
1684         return true;
1685       break;
1686     case Instruction::ZExt:
1687       if (isZExtFree(I->getOperand(0)->getType(), I->getType()))
1688         return true;
1689       break;
1690     case Instruction::SExt:
1691       break;
1692     default:
1693       llvm_unreachable("Instruction is not an extension");
1694     }
1695     return isExtFreeImpl(I);
1696   }
1697 
1698   /// Return true if any actual instruction that defines a value of type FromTy
1699   /// implicitly zero-extends the value to ToTy in the result register.
1700   ///
1701   /// The function should return true when it is likely that the truncate can
1702   /// be freely folded with an instruction defining a value of FromTy. If
1703   /// the defining instruction is unknown (because you're looking at a
1704   /// function argument, PHI, etc.) then the target may require an
1705   /// explicit truncate, which is not necessarily free, but this function
1706   /// does not deal with those cases.
1707   /// Targets must return false when FromTy >= ToTy.
isZExtFree(Type * FromTy,Type * ToTy)1708   virtual bool isZExtFree(Type *FromTy, Type *ToTy) const {
1709     return false;
1710   }
1711 
isZExtFree(EVT FromTy,EVT ToTy)1712   virtual bool isZExtFree(EVT FromTy, EVT ToTy) const {
1713     return false;
1714   }
1715 
1716   /// Return true if the target supplies and combines to a paired load
1717   /// two loaded values of type LoadedType next to each other in memory.
1718   /// RequiredAlignment gives the minimal alignment constraints that must be met
1719   /// to be able to select this paired load.
1720   ///
1721   /// This information is *not* used to generate actual paired loads, but it is
1722   /// used to generate a sequence of loads that is easier to combine into a
1723   /// paired load.
1724   /// For instance, something like this:
1725   /// a = load i64* addr
1726   /// b = trunc i64 a to i32
1727   /// c = lshr i64 a, 32
1728   /// d = trunc i64 c to i32
1729   /// will be optimized into:
1730   /// b = load i32* addr1
1731   /// d = load i32* addr2
1732   /// Where addr1 = addr2 +/- sizeof(i32).
1733   ///
1734   /// In other words, unless the target performs a post-isel load combining,
1735   /// this information should not be provided because it will generate more
1736   /// loads.
hasPairedLoad(Type *,unsigned &)1737   virtual bool hasPairedLoad(Type * /*LoadedType*/,
1738                              unsigned & /*RequiredAligment*/) const {
1739     return false;
1740   }
1741 
hasPairedLoad(EVT,unsigned &)1742   virtual bool hasPairedLoad(EVT /*LoadedType*/,
1743                              unsigned & /*RequiredAligment*/) const {
1744     return false;
1745   }
1746 
1747   /// \brief Get the maximum supported factor for interleaved memory accesses.
1748   /// Default to be the minimum interleave factor: 2.
getMaxSupportedInterleaveFactor()1749   virtual unsigned getMaxSupportedInterleaveFactor() const { return 2; }
1750 
1751   /// \brief Lower an interleaved load to target specific intrinsics. Return
1752   /// true on success.
1753   ///
1754   /// \p LI is the vector load instruction.
1755   /// \p Shuffles is the shufflevector list to DE-interleave the loaded vector.
1756   /// \p Indices is the corresponding indices for each shufflevector.
1757   /// \p Factor is the interleave factor.
lowerInterleavedLoad(LoadInst * LI,ArrayRef<ShuffleVectorInst * > Shuffles,ArrayRef<unsigned> Indices,unsigned Factor)1758   virtual bool lowerInterleavedLoad(LoadInst *LI,
1759                                     ArrayRef<ShuffleVectorInst *> Shuffles,
1760                                     ArrayRef<unsigned> Indices,
1761                                     unsigned Factor) const {
1762     return false;
1763   }
1764 
1765   /// \brief Lower an interleaved store to target specific intrinsics. Return
1766   /// true on success.
1767   ///
1768   /// \p SI is the vector store instruction.
1769   /// \p SVI is the shufflevector to RE-interleave the stored vector.
1770   /// \p Factor is the interleave factor.
lowerInterleavedStore(StoreInst * SI,ShuffleVectorInst * SVI,unsigned Factor)1771   virtual bool lowerInterleavedStore(StoreInst *SI, ShuffleVectorInst *SVI,
1772                                      unsigned Factor) const {
1773     return false;
1774   }
1775 
1776   /// Return true if zero-extending the specific node Val to type VT2 is free
1777   /// (either because it's implicitly zero-extended such as ARM ldrb / ldrh or
1778   /// because it's folded such as X86 zero-extending loads).
isZExtFree(SDValue Val,EVT VT2)1779   virtual bool isZExtFree(SDValue Val, EVT VT2) const {
1780     return isZExtFree(Val.getValueType(), VT2);
1781   }
1782 
1783   /// Return true if an fpext operation is free (for instance, because
1784   /// single-precision floating-point numbers are implicitly extended to
1785   /// double-precision).
isFPExtFree(EVT VT)1786   virtual bool isFPExtFree(EVT VT) const {
1787     assert(VT.isFloatingPoint());
1788     return false;
1789   }
1790 
1791   /// Return true if folding a vector load into ExtVal (a sign, zero, or any
1792   /// extend node) is profitable.
isVectorLoadExtDesirable(SDValue ExtVal)1793   virtual bool isVectorLoadExtDesirable(SDValue ExtVal) const { return false; }
1794 
1795   /// Return true if an fneg operation is free to the point where it is never
1796   /// worthwhile to replace it with a bitwise operation.
isFNegFree(EVT VT)1797   virtual bool isFNegFree(EVT VT) const {
1798     assert(VT.isFloatingPoint());
1799     return false;
1800   }
1801 
1802   /// Return true if an fabs operation is free to the point where it is never
1803   /// worthwhile to replace it with a bitwise operation.
isFAbsFree(EVT VT)1804   virtual bool isFAbsFree(EVT VT) const {
1805     assert(VT.isFloatingPoint());
1806     return false;
1807   }
1808 
1809   /// Return true if an FMA operation is faster than a pair of fmul and fadd
1810   /// instructions. fmuladd intrinsics will be expanded to FMAs when this method
1811   /// returns true, otherwise fmuladd is expanded to fmul + fadd.
1812   ///
1813   /// NOTE: This may be called before legalization on types for which FMAs are
1814   /// not legal, but should return true if those types will eventually legalize
1815   /// to types that support FMAs. After legalization, it will only be called on
1816   /// types that support FMAs (via Legal or Custom actions)
isFMAFasterThanFMulAndFAdd(EVT)1817   virtual bool isFMAFasterThanFMulAndFAdd(EVT) const {
1818     return false;
1819   }
1820 
1821   /// Return true if it's profitable to narrow operations of type VT1 to
1822   /// VT2. e.g. on x86, it's profitable to narrow from i32 to i8 but not from
1823   /// i32 to i16.
isNarrowingProfitable(EVT,EVT)1824   virtual bool isNarrowingProfitable(EVT /*VT1*/, EVT /*VT2*/) const {
1825     return false;
1826   }
1827 
1828   /// \brief Return true if it is beneficial to convert a load of a constant to
1829   /// just the constant itself.
1830   /// On some targets it might be more efficient to use a combination of
1831   /// arithmetic instructions to materialize the constant instead of loading it
1832   /// from a constant pool.
shouldConvertConstantLoadToIntImm(const APInt & Imm,Type * Ty)1833   virtual bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
1834                                                  Type *Ty) const {
1835     return false;
1836   }
1837 
1838   /// Return true if EXTRACT_SUBVECTOR is cheap for this result type
1839   /// with this index. This is needed because EXTRACT_SUBVECTOR usually
1840   /// has custom lowering that depends on the index of the first element,
1841   /// and only the target knows which lowering is cheap.
isExtractSubvectorCheap(EVT ResVT,unsigned Index)1842   virtual bool isExtractSubvectorCheap(EVT ResVT, unsigned Index) const {
1843     return false;
1844   }
1845 
1846   // Return true if it is profitable to use a scalar input to a BUILD_VECTOR
1847   // even if the vector itself has multiple uses.
aggressivelyPreferBuildVectorSources(EVT VecVT)1848   virtual bool aggressivelyPreferBuildVectorSources(EVT VecVT) const {
1849     return false;
1850   }
1851 
1852   //===--------------------------------------------------------------------===//
1853   // Runtime Library hooks
1854   //
1855 
1856   /// Rename the default libcall routine name for the specified libcall.
setLibcallName(RTLIB::Libcall Call,const char * Name)1857   void setLibcallName(RTLIB::Libcall Call, const char *Name) {
1858     LibcallRoutineNames[Call] = Name;
1859   }
1860 
1861   /// Get the libcall routine name for the specified libcall.
getLibcallName(RTLIB::Libcall Call)1862   const char *getLibcallName(RTLIB::Libcall Call) const {
1863     return LibcallRoutineNames[Call];
1864   }
1865 
1866   /// Override the default CondCode to be used to test the result of the
1867   /// comparison libcall against zero.
setCmpLibcallCC(RTLIB::Libcall Call,ISD::CondCode CC)1868   void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
1869     CmpLibcallCCs[Call] = CC;
1870   }
1871 
1872   /// Get the CondCode that's to be used to test the result of the comparison
1873   /// libcall against zero.
getCmpLibcallCC(RTLIB::Libcall Call)1874   ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
1875     return CmpLibcallCCs[Call];
1876   }
1877 
1878   /// Set the CallingConv that should be used for the specified libcall.
setLibcallCallingConv(RTLIB::Libcall Call,CallingConv::ID CC)1879   void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
1880     LibcallCallingConvs[Call] = CC;
1881   }
1882 
1883   /// Get the CallingConv that should be used for the specified libcall.
getLibcallCallingConv(RTLIB::Libcall Call)1884   CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
1885     return LibcallCallingConvs[Call];
1886   }
1887 
1888 private:
1889   const TargetMachine &TM;
1890 
1891   /// Tells the code generator not to expand operations into sequences that use
1892   /// the select operations if possible.
1893   bool SelectIsExpensive;
1894 
1895   /// Tells the code generator that the target has multiple (allocatable)
1896   /// condition registers that can be used to store the results of comparisons
1897   /// for use by selects and conditional branches. With multiple condition
1898   /// registers, the code generator will not aggressively sink comparisons into
1899   /// the blocks of their users.
1900   bool HasMultipleConditionRegisters;
1901 
1902   /// Tells the code generator that the target has BitExtract instructions.
1903   /// The code generator will aggressively sink "shift"s into the blocks of
1904   /// their users if the users will generate "and" instructions which can be
1905   /// combined with "shift" to BitExtract instructions.
1906   bool HasExtractBitsInsn;
1907 
1908   // Don't expand fsqrt with an approximation based on the inverse sqrt.
1909   bool FsqrtIsCheap;
1910 
1911   /// Tells the code generator to bypass slow divide or remainder
1912   /// instructions. For example, BypassSlowDivWidths[32,8] tells the code
1913   /// generator to bypass 32-bit integer div/rem with an 8-bit unsigned integer
1914   /// div/rem when the operands are positive and less than 256.
1915   DenseMap <unsigned int, unsigned int> BypassSlowDivWidths;
1916 
1917   /// Tells the code generator that it shouldn't generate extra flow control
1918   /// instructions and should attempt to combine flow control instructions via
1919   /// predication.
1920   bool JumpIsExpensive;
1921 
1922   /// Whether the target supports or cares about preserving floating point
1923   /// exception behavior.
1924   bool HasFloatingPointExceptions;
1925 
1926   /// This target prefers to use _setjmp to implement llvm.setjmp.
1927   ///
1928   /// Defaults to false.
1929   bool UseUnderscoreSetJmp;
1930 
1931   /// This target prefers to use _longjmp to implement llvm.longjmp.
1932   ///
1933   /// Defaults to false.
1934   bool UseUnderscoreLongJmp;
1935 
1936   /// Number of blocks threshold to use jump tables.
1937   int MinimumJumpTableEntries;
1938 
1939   /// Information about the contents of the high-bits in boolean values held in
1940   /// a type wider than i1. See getBooleanContents.
1941   BooleanContent BooleanContents;
1942 
1943   /// Information about the contents of the high-bits in boolean values held in
1944   /// a type wider than i1. See getBooleanContents.
1945   BooleanContent BooleanFloatContents;
1946 
1947   /// Information about the contents of the high-bits in boolean vector values
1948   /// when the element type is wider than i1. See getBooleanContents.
1949   BooleanContent BooleanVectorContents;
1950 
1951   /// The target scheduling preference: shortest possible total cycles or lowest
1952   /// register usage.
1953   Sched::Preference SchedPreferenceInfo;
1954 
1955   /// The size, in bytes, of the target's jmp_buf buffers
1956   unsigned JumpBufSize;
1957 
1958   /// The alignment, in bytes, of the target's jmp_buf buffers
1959   unsigned JumpBufAlignment;
1960 
1961   /// The minimum alignment that any argument on the stack needs to have.
1962   unsigned MinStackArgumentAlignment;
1963 
1964   /// The minimum function alignment (used when optimizing for size, and to
1965   /// prevent explicitly provided alignment from leading to incorrect code).
1966   unsigned MinFunctionAlignment;
1967 
1968   /// The preferred function alignment (used when alignment unspecified and
1969   /// optimizing for speed).
1970   unsigned PrefFunctionAlignment;
1971 
1972   /// The preferred loop alignment.
1973   unsigned PrefLoopAlignment;
1974 
1975   /// Size in bits of the maximum atomics size the backend supports.
1976   /// Accesses larger than this will be expanded by AtomicExpandPass.
1977   unsigned MaxAtomicSizeInBitsSupported;
1978 
1979   /// Size in bits of the minimum cmpxchg or ll/sc operation the
1980   /// backend supports.
1981   unsigned MinCmpXchgSizeInBits;
1982 
1983   /// If set to a physical register, this specifies the register that
1984   /// llvm.savestack/llvm.restorestack should save and restore.
1985   unsigned StackPointerRegisterToSaveRestore;
1986 
1987   /// This indicates the default register class to use for each ValueType the
1988   /// target supports natively.
1989   const TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1990   unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1991   MVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
1992 
1993   /// This indicates the "representative" register class to use for each
1994   /// ValueType the target supports natively. This information is used by the
1995   /// scheduler to track register pressure. By default, the representative
1996   /// register class is the largest legal super-reg register class of the
1997   /// register class of the specified type. e.g. On x86, i8, i16, and i32's
1998   /// representative class would be GR32.
1999   const TargetRegisterClass *RepRegClassForVT[MVT::LAST_VALUETYPE];
2000 
2001   /// This indicates the "cost" of the "representative" register class for each
2002   /// ValueType. The cost is used by the scheduler to approximate register
2003   /// pressure.
2004   uint8_t RepRegClassCostForVT[MVT::LAST_VALUETYPE];
2005 
2006   /// For any value types we are promoting or expanding, this contains the value
2007   /// type that we are changing to.  For Expanded types, this contains one step
2008   /// of the expand (e.g. i64 -> i32), even if there are multiple steps required
2009   /// (e.g. i64 -> i16).  For types natively supported by the system, this holds
2010   /// the same type (e.g. i32 -> i32).
2011   MVT TransformToType[MVT::LAST_VALUETYPE];
2012 
2013   /// For each operation and each value type, keep a LegalizeAction that
2014   /// indicates how instruction selection should deal with the operation.  Most
2015   /// operations are Legal (aka, supported natively by the target), but
2016   /// operations that are not should be described.  Note that operations on
2017   /// non-legal value types are not described here.
2018   LegalizeAction OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END];
2019 
2020   /// For each load extension type and each value type, keep a LegalizeAction
2021   /// that indicates how instruction selection should deal with a load of a
2022   /// specific value type and extension type. Uses 4-bits to store the action
2023   /// for each of the 4 load ext types.
2024   uint16_t LoadExtActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
2025 
2026   /// For each value type pair keep a LegalizeAction that indicates whether a
2027   /// truncating store of a specific value type and truncating type is legal.
2028   LegalizeAction TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
2029 
2030   /// For each indexed mode and each value type, keep a pair of LegalizeAction
2031   /// that indicates how instruction selection should deal with the load /
2032   /// store.
2033   ///
2034   /// The first dimension is the value_type for the reference. The second
2035   /// dimension represents the various modes for load store.
2036   uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE];
2037 
2038   /// For each condition code (ISD::CondCode) keep a LegalizeAction that
2039   /// indicates how instruction selection should deal with the condition code.
2040   ///
2041   /// Because each CC action takes up 4 bits, we need to have the array size be
2042   /// large enough to fit all of the value types. This can be done by rounding
2043   /// up the MVT::LAST_VALUETYPE value to the next multiple of 8.
2044   uint32_t CondCodeActions[ISD::SETCC_INVALID][(MVT::LAST_VALUETYPE + 7) / 8];
2045 
2046 protected:
2047   ValueTypeActionImpl ValueTypeActions;
2048 
2049 private:
2050   LegalizeKind getTypeConversion(LLVMContext &Context, EVT VT) const;
2051 
2052 private:
2053   std::vector<std::pair<MVT, const TargetRegisterClass*> > AvailableRegClasses;
2054 
2055   /// Targets can specify ISD nodes that they would like PerformDAGCombine
2056   /// callbacks for by calling setTargetDAGCombine(), which sets a bit in this
2057   /// array.
2058   unsigned char
2059   TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
2060 
2061   /// For operations that must be promoted to a specific type, this holds the
2062   /// destination type.  This map should be sparse, so don't hold it as an
2063   /// array.
2064   ///
2065   /// Targets add entries to this map with AddPromotedToType(..), clients access
2066   /// this with getTypeToPromoteTo(..).
2067   std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
2068     PromoteToType;
2069 
2070   /// Stores the name each libcall.
2071   const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
2072 
2073   /// The ISD::CondCode that should be used to test the result of each of the
2074   /// comparison libcall against zero.
2075   ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
2076 
2077   /// Stores the CallingConv that should be used for each libcall.
2078   CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
2079 
2080 protected:
2081   /// Return true if the extension represented by \p I is free.
2082   /// \pre \p I is a sign, zero, or fp extension and
2083   ///      is[Z|FP]ExtFree of the related types is not true.
isExtFreeImpl(const Instruction * I)2084   virtual bool isExtFreeImpl(const Instruction *I) const { return false; }
2085 
2086   /// Depth that GatherAllAliases should should continue looking for chain
2087   /// dependencies when trying to find a more preferrable chain. As an
2088   /// approximation, this should be more than the number of consecutive stores
2089   /// expected to be merged.
2090   unsigned GatherAllAliasesMaxDepth;
2091 
2092   /// \brief Specify maximum number of store instructions per memset call.
2093   ///
2094   /// When lowering \@llvm.memset this field specifies the maximum number of
2095   /// store operations that may be substituted for the call to memset. Targets
2096   /// must set this value based on the cost threshold for that target. Targets
2097   /// should assume that the memset will be done using as many of the largest
2098   /// store operations first, followed by smaller ones, if necessary, per
2099   /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
2100   /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
2101   /// store.  This only applies to setting a constant array of a constant size.
2102   unsigned MaxStoresPerMemset;
2103 
2104   /// Maximum number of stores operations that may be substituted for the call
2105   /// to memset, used for functions with OptSize attribute.
2106   unsigned MaxStoresPerMemsetOptSize;
2107 
2108   /// \brief Specify maximum bytes of store instructions per memcpy call.
2109   ///
2110   /// When lowering \@llvm.memcpy this field specifies the maximum number of
2111   /// store operations that may be substituted for a call to memcpy. Targets
2112   /// must set this value based on the cost threshold for that target. Targets
2113   /// should assume that the memcpy will be done using as many of the largest
2114   /// store operations first, followed by smaller ones, if necessary, per
2115   /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
2116   /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
2117   /// and one 1-byte store. This only applies to copying a constant array of
2118   /// constant size.
2119   unsigned MaxStoresPerMemcpy;
2120 
2121   /// Maximum number of store operations that may be substituted for a call to
2122   /// memcpy, used for functions with OptSize attribute.
2123   unsigned MaxStoresPerMemcpyOptSize;
2124 
2125   /// \brief Specify maximum bytes of store instructions per memmove call.
2126   ///
2127   /// When lowering \@llvm.memmove this field specifies the maximum number of
2128   /// store instructions that may be substituted for a call to memmove. Targets
2129   /// must set this value based on the cost threshold for that target. Targets
2130   /// should assume that the memmove will be done using as many of the largest
2131   /// store operations first, followed by smaller ones, if necessary, per
2132   /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
2133   /// with 8-bit alignment would result in nine 1-byte stores.  This only
2134   /// applies to copying a constant array of constant size.
2135   unsigned MaxStoresPerMemmove;
2136 
2137   /// Maximum number of store instructions that may be substituted for a call to
2138   /// memmove, used for functions with OptSize attribute.
2139   unsigned MaxStoresPerMemmoveOptSize;
2140 
2141   /// Tells the code generator that select is more expensive than a branch if
2142   /// the branch is usually predicted right.
2143   bool PredictableSelectIsExpensive;
2144 
2145   /// MaskAndBranchFoldingIsLegal - Indicates if the target supports folding
2146   /// a mask of a single bit, a compare, and a branch into a single instruction.
2147   bool MaskAndBranchFoldingIsLegal;
2148 
2149   /// \see enableExtLdPromotion.
2150   bool EnableExtLdPromotion;
2151 
2152 protected:
2153   /// Return true if the value types that can be represented by the specified
2154   /// register class are all legal.
2155   bool isLegalRC(const TargetRegisterClass *RC) const;
2156 
2157   /// Replace/modify any TargetFrameIndex operands with a targte-dependent
2158   /// sequence of memory operands that is recognized by PrologEpilogInserter.
2159   MachineBasicBlock *emitPatchPoint(MachineInstr &MI,
2160                                     MachineBasicBlock *MBB) const;
2161 };
2162 
2163 /// This class defines information used to lower LLVM code to legal SelectionDAG
2164 /// operators that the target instruction selector can accept natively.
2165 ///
2166 /// This class also defines callbacks that targets must implement to lower
2167 /// target-specific constructs to SelectionDAG operators.
2168 class TargetLowering : public TargetLoweringBase {
2169   TargetLowering(const TargetLowering&) = delete;
2170   void operator=(const TargetLowering&) = delete;
2171 
2172 public:
2173   /// NOTE: The TargetMachine owns TLOF.
2174   explicit TargetLowering(const TargetMachine &TM);
2175 
2176   bool isPositionIndependent() const;
2177 
2178   /// Returns true by value, base pointer and offset pointer and addressing mode
2179   /// by reference if the node's address can be legally represented as
2180   /// pre-indexed load / store address.
getPreIndexedAddressParts(SDNode *,SDValue &,SDValue &,ISD::MemIndexedMode &,SelectionDAG &)2181   virtual bool getPreIndexedAddressParts(SDNode * /*N*/, SDValue &/*Base*/,
2182                                          SDValue &/*Offset*/,
2183                                          ISD::MemIndexedMode &/*AM*/,
2184                                          SelectionDAG &/*DAG*/) const {
2185     return false;
2186   }
2187 
2188   /// Returns true by value, base pointer and offset pointer and addressing mode
2189   /// by reference if this node can be combined with a load / store to form a
2190   /// post-indexed load / store.
getPostIndexedAddressParts(SDNode *,SDNode *,SDValue &,SDValue &,ISD::MemIndexedMode &,SelectionDAG &)2191   virtual bool getPostIndexedAddressParts(SDNode * /*N*/, SDNode * /*Op*/,
2192                                           SDValue &/*Base*/,
2193                                           SDValue &/*Offset*/,
2194                                           ISD::MemIndexedMode &/*AM*/,
2195                                           SelectionDAG &/*DAG*/) const {
2196     return false;
2197   }
2198 
2199   /// Return the entry encoding for a jump table in the current function.  The
2200   /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
2201   virtual unsigned getJumpTableEncoding() const;
2202 
2203   virtual const MCExpr *
LowerCustomJumpTableEntry(const MachineJumpTableInfo *,const MachineBasicBlock *,unsigned,MCContext &)2204   LowerCustomJumpTableEntry(const MachineJumpTableInfo * /*MJTI*/,
2205                             const MachineBasicBlock * /*MBB*/, unsigned /*uid*/,
2206                             MCContext &/*Ctx*/) const {
2207     llvm_unreachable("Need to implement this hook if target has custom JTIs");
2208   }
2209 
2210   /// Returns relocation base for the given PIC jumptable.
2211   virtual SDValue getPICJumpTableRelocBase(SDValue Table,
2212                                            SelectionDAG &DAG) const;
2213 
2214   /// This returns the relocation base for the given PIC jumptable, the same as
2215   /// getPICJumpTableRelocBase, but as an MCExpr.
2216   virtual const MCExpr *
2217   getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
2218                                unsigned JTI, MCContext &Ctx) const;
2219 
2220   /// Return true if folding a constant offset with the given GlobalAddress is
2221   /// legal.  It is frequently not legal in PIC relocation models.
2222   virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
2223 
2224   bool isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
2225                             SDValue &Chain) const;
2226 
2227   void softenSetCCOperands(SelectionDAG &DAG, EVT VT, SDValue &NewLHS,
2228                            SDValue &NewRHS, ISD::CondCode &CCCode,
2229                            const SDLoc &DL) const;
2230 
2231   /// Returns a pair of (return value, chain).
2232   /// It is an error to pass RTLIB::UNKNOWN_LIBCALL as \p LC.
2233   std::pair<SDValue, SDValue> makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC,
2234                                           EVT RetVT, ArrayRef<SDValue> Ops,
2235                                           bool isSigned, const SDLoc &dl,
2236                                           bool doesNotReturn = false,
2237                                           bool isReturnValueUsed = true) const;
2238 
2239   /// Check whether parameters to a call that are passed in callee saved
2240   /// registers are the same as from the calling function.  This needs to be
2241   /// checked for tail call eligibility.
2242   bool parametersInCSRMatch(const MachineRegisterInfo &MRI,
2243       const uint32_t *CallerPreservedMask,
2244       const SmallVectorImpl<CCValAssign> &ArgLocs,
2245       const SmallVectorImpl<SDValue> &OutVals) const;
2246 
2247   //===--------------------------------------------------------------------===//
2248   // TargetLowering Optimization Methods
2249   //
2250 
2251   /// A convenience struct that encapsulates a DAG, and two SDValues for
2252   /// returning information from TargetLowering to its clients that want to
2253   /// combine.
2254   struct TargetLoweringOpt {
2255     SelectionDAG &DAG;
2256     bool LegalTys;
2257     bool LegalOps;
2258     SDValue Old;
2259     SDValue New;
2260 
TargetLoweringOptTargetLoweringOpt2261     explicit TargetLoweringOpt(SelectionDAG &InDAG,
2262                                bool LT, bool LO) :
2263       DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
2264 
LegalTypesTargetLoweringOpt2265     bool LegalTypes() const { return LegalTys; }
LegalOperationsTargetLoweringOpt2266     bool LegalOperations() const { return LegalOps; }
2267 
CombineToTargetLoweringOpt2268     bool CombineTo(SDValue O, SDValue N) {
2269       Old = O;
2270       New = N;
2271       return true;
2272     }
2273 
2274     /// Check to see if the specified operand of the specified instruction is a
2275     /// constant integer.  If so, check to see if there are any bits set in the
2276     /// constant that are not demanded.  If so, shrink the constant and return
2277     /// true.
2278     bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
2279 
2280     /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.  This
2281     /// uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
2282     /// generalized for targets with other types of implicit widening casts.
2283     bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
2284                           const SDLoc &dl);
2285   };
2286 
2287   /// Look at Op.  At this point, we know that only the DemandedMask bits of the
2288   /// result of Op are ever used downstream.  If we can use this information to
2289   /// simplify Op, create a new simplified DAG node and return true, returning
2290   /// the original and new nodes in Old and New.  Otherwise, analyze the
2291   /// expression and return a mask of KnownOne and KnownZero bits for the
2292   /// expression (used to simplify the caller).  The KnownZero/One bits may only
2293   /// be accurate for those bits in the DemandedMask.
2294   bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
2295                             APInt &KnownZero, APInt &KnownOne,
2296                             TargetLoweringOpt &TLO, unsigned Depth = 0) const;
2297 
2298   /// Determine which of the bits specified in Mask are known to be either zero
2299   /// or one and return them in the KnownZero/KnownOne bitsets.
2300   virtual void computeKnownBitsForTargetNode(const SDValue Op,
2301                                              APInt &KnownZero,
2302                                              APInt &KnownOne,
2303                                              const SelectionDAG &DAG,
2304                                              unsigned Depth = 0) const;
2305 
2306   /// This method can be implemented by targets that want to expose additional
2307   /// information about sign bits to the DAG Combiner.
2308   virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
2309                                                    const SelectionDAG &DAG,
2310                                                    unsigned Depth = 0) const;
2311 
2312   struct DAGCombinerInfo {
2313     void *DC;  // The DAG Combiner object.
2314     CombineLevel Level;
2315     bool CalledByLegalizer;
2316   public:
2317     SelectionDAG &DAG;
2318 
DAGCombinerInfoDAGCombinerInfo2319     DAGCombinerInfo(SelectionDAG &dag, CombineLevel level,  bool cl, void *dc)
2320       : DC(dc), Level(level), CalledByLegalizer(cl), DAG(dag) {}
2321 
isBeforeLegalizeDAGCombinerInfo2322     bool isBeforeLegalize() const { return Level == BeforeLegalizeTypes; }
isBeforeLegalizeOpsDAGCombinerInfo2323     bool isBeforeLegalizeOps() const { return Level < AfterLegalizeVectorOps; }
isAfterLegalizeVectorOpsDAGCombinerInfo2324     bool isAfterLegalizeVectorOps() const {
2325       return Level == AfterLegalizeDAG;
2326     }
getDAGCombineLevelDAGCombinerInfo2327     CombineLevel getDAGCombineLevel() { return Level; }
isCalledByLegalizerDAGCombinerInfo2328     bool isCalledByLegalizer() const { return CalledByLegalizer; }
2329 
2330     void AddToWorklist(SDNode *N);
2331     void RemoveFromWorklist(SDNode *N);
2332     SDValue CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo = true);
2333     SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
2334     SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
2335 
2336     void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
2337   };
2338 
2339   /// Return if the N is a constant or constant vector equal to the true value
2340   /// from getBooleanContents().
2341   bool isConstTrueVal(const SDNode *N) const;
2342 
2343   /// Return if the N is a constant or constant vector equal to the false value
2344   /// from getBooleanContents().
2345   bool isConstFalseVal(const SDNode *N) const;
2346 
2347   /// Return if \p N is a True value when extended to \p VT.
2348   bool isExtendedTrueVal(const ConstantSDNode *N, EVT VT, bool Signed) const;
2349 
2350   /// Try to simplify a setcc built with the specified operands and cc. If it is
2351   /// unable to simplify it, return a null SDValue.
2352   SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
2353                         bool foldBooleans, DAGCombinerInfo &DCI,
2354                         const SDLoc &dl) const;
2355 
2356   /// Returns true (and the GlobalValue and the offset) if the node is a
2357   /// GlobalAddress + offset.
2358   virtual bool
2359   isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
2360 
2361   /// This method will be invoked for all target nodes and for any
2362   /// target-independent nodes that the target has registered with invoke it
2363   /// for.
2364   ///
2365   /// The semantics are as follows:
2366   /// Return Value:
2367   ///   SDValue.Val == 0   - No change was made
2368   ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
2369   ///   otherwise          - N should be replaced by the returned Operand.
2370   ///
2371   /// In addition, methods provided by DAGCombinerInfo may be used to perform
2372   /// more complex transformations.
2373   ///
2374   virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
2375 
2376   /// Return true if it is profitable to move a following shift through this
2377   //  node, adjusting any immediate operands as necessary to preserve semantics.
2378   //  This transformation may not be desirable if it disrupts a particularly
2379   //  auspicious target-specific tree (e.g. bitfield extraction in AArch64).
2380   //  By default, it returns true.
isDesirableToCommuteWithShift(const SDNode * N)2381   virtual bool isDesirableToCommuteWithShift(const SDNode *N /*Op*/) const {
2382     return true;
2383   }
2384 
2385   /// Return true if the target has native support for the specified value type
2386   /// and it is 'desirable' to use the type for the given node type. e.g. On x86
2387   /// i16 is legal, but undesirable since i16 instruction encodings are longer
2388   /// and some i16 instructions are slow.
isTypeDesirableForOp(unsigned,EVT VT)2389   virtual bool isTypeDesirableForOp(unsigned /*Opc*/, EVT VT) const {
2390     // By default, assume all legal types are desirable.
2391     return isTypeLegal(VT);
2392   }
2393 
2394   /// Return true if it is profitable for dag combiner to transform a floating
2395   /// point op of specified opcode to a equivalent op of an integer
2396   /// type. e.g. f32 load -> i32 load can be profitable on ARM.
isDesirableToTransformToIntegerOp(unsigned,EVT)2397   virtual bool isDesirableToTransformToIntegerOp(unsigned /*Opc*/,
2398                                                  EVT /*VT*/) const {
2399     return false;
2400   }
2401 
2402   /// This method query the target whether it is beneficial for dag combiner to
2403   /// promote the specified node. If true, it should return the desired
2404   /// promotion type by reference.
IsDesirableToPromoteOp(SDValue,EVT &)2405   virtual bool IsDesirableToPromoteOp(SDValue /*Op*/, EVT &/*PVT*/) const {
2406     return false;
2407   }
2408 
2409   /// Return true if the target supports swifterror attribute. It optimizes
2410   /// loads and stores to reading and writing a specific register.
supportSwiftError()2411   virtual bool supportSwiftError() const {
2412     return false;
2413   }
2414 
2415   /// Return true if the target supports that a subset of CSRs for the given
2416   /// machine function is handled explicitly via copies.
supportSplitCSR(MachineFunction * MF)2417   virtual bool supportSplitCSR(MachineFunction *MF) const {
2418     return false;
2419   }
2420 
2421   /// Return true if the MachineFunction contains a COPY which would imply
2422   /// HasCopyImplyingStackAdjustment.
hasCopyImplyingStackAdjustment(MachineFunction * MF)2423   virtual bool hasCopyImplyingStackAdjustment(MachineFunction *MF) const {
2424     return false;
2425   }
2426 
2427   /// Perform necessary initialization to handle a subset of CSRs explicitly
2428   /// via copies. This function is called at the beginning of instruction
2429   /// selection.
initializeSplitCSR(MachineBasicBlock * Entry)2430   virtual void initializeSplitCSR(MachineBasicBlock *Entry) const {
2431     llvm_unreachable("Not Implemented");
2432   }
2433 
2434   /// Insert explicit copies in entry and exit blocks. We copy a subset of
2435   /// CSRs to virtual registers in the entry block, and copy them back to
2436   /// physical registers in the exit blocks. This function is called at the end
2437   /// of instruction selection.
insertCopiesSplitCSR(MachineBasicBlock * Entry,const SmallVectorImpl<MachineBasicBlock * > & Exits)2438   virtual void insertCopiesSplitCSR(
2439       MachineBasicBlock *Entry,
2440       const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
2441     llvm_unreachable("Not Implemented");
2442   }
2443 
2444   //===--------------------------------------------------------------------===//
2445   // Lowering methods - These methods must be implemented by targets so that
2446   // the SelectionDAGBuilder code knows how to lower these.
2447   //
2448 
2449   /// This hook must be implemented to lower the incoming (formal) arguments,
2450   /// described by the Ins array, into the specified DAG. The implementation
2451   /// should fill in the InVals array with legal-type argument values, and
2452   /// return the resulting token chain value.
2453   ///
LowerFormalArguments(SDValue,CallingConv::ID,bool,const SmallVectorImpl<ISD::InputArg> &,const SDLoc &,SelectionDAG &,SmallVectorImpl<SDValue> &)2454   virtual SDValue LowerFormalArguments(
2455       SDValue /*Chain*/, CallingConv::ID /*CallConv*/, bool /*isVarArg*/,
2456       const SmallVectorImpl<ISD::InputArg> & /*Ins*/, const SDLoc & /*dl*/,
2457       SelectionDAG & /*DAG*/, SmallVectorImpl<SDValue> & /*InVals*/) const {
2458     llvm_unreachable("Not Implemented");
2459   }
2460 
2461   struct ArgListEntry {
2462     SDValue Node;
2463     Type* Ty;
2464     bool isSExt     : 1;
2465     bool isZExt     : 1;
2466     bool isInReg    : 1;
2467     bool isSRet     : 1;
2468     bool isNest     : 1;
2469     bool isByVal    : 1;
2470     bool isInAlloca : 1;
2471     bool isReturned : 1;
2472     bool isSwiftSelf : 1;
2473     bool isSwiftError : 1;
2474     uint16_t Alignment;
2475 
ArgListEntryArgListEntry2476     ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
2477       isSRet(false), isNest(false), isByVal(false), isInAlloca(false),
2478       isReturned(false), isSwiftSelf(false), isSwiftError(false),
2479       Alignment(0) { }
2480 
2481     void setAttributes(ImmutableCallSite *CS, unsigned AttrIdx);
2482   };
2483   typedef std::vector<ArgListEntry> ArgListTy;
2484 
2485   /// This structure contains all information that is necessary for lowering
2486   /// calls. It is passed to TLI::LowerCallTo when the SelectionDAG builder
2487   /// needs to lower a call, and targets will see this struct in their LowerCall
2488   /// implementation.
2489   struct CallLoweringInfo {
2490     SDValue Chain;
2491     Type *RetTy;
2492     bool RetSExt           : 1;
2493     bool RetZExt           : 1;
2494     bool IsVarArg          : 1;
2495     bool IsInReg           : 1;
2496     bool DoesNotReturn     : 1;
2497     bool IsReturnValueUsed : 1;
2498     bool IsConvergent      : 1;
2499 
2500     // IsTailCall should be modified by implementations of
2501     // TargetLowering::LowerCall that perform tail call conversions.
2502     bool IsTailCall;
2503 
2504     unsigned NumFixedArgs;
2505     CallingConv::ID CallConv;
2506     SDValue Callee;
2507     ArgListTy Args;
2508     SelectionDAG &DAG;
2509     SDLoc DL;
2510     ImmutableCallSite *CS;
2511     bool IsPatchPoint;
2512     SmallVector<ISD::OutputArg, 32> Outs;
2513     SmallVector<SDValue, 32> OutVals;
2514     SmallVector<ISD::InputArg, 32> Ins;
2515     SmallVector<SDValue, 4> InVals;
2516 
CallLoweringInfoCallLoweringInfo2517     CallLoweringInfo(SelectionDAG &DAG)
2518         : RetTy(nullptr), RetSExt(false), RetZExt(false), IsVarArg(false),
2519           IsInReg(false), DoesNotReturn(false), IsReturnValueUsed(true),
2520           IsConvergent(false), IsTailCall(false), NumFixedArgs(-1),
2521           CallConv(CallingConv::C), DAG(DAG), CS(nullptr), IsPatchPoint(false) {
2522     }
2523 
setDebugLocCallLoweringInfo2524     CallLoweringInfo &setDebugLoc(const SDLoc &dl) {
2525       DL = dl;
2526       return *this;
2527     }
2528 
setChainCallLoweringInfo2529     CallLoweringInfo &setChain(SDValue InChain) {
2530       Chain = InChain;
2531       return *this;
2532     }
2533 
setCalleeCallLoweringInfo2534     CallLoweringInfo &setCallee(CallingConv::ID CC, Type *ResultType,
2535                                 SDValue Target, ArgListTy &&ArgsList) {
2536       RetTy = ResultType;
2537       Callee = Target;
2538       CallConv = CC;
2539       NumFixedArgs = Args.size();
2540       Args = std::move(ArgsList);
2541       return *this;
2542     }
2543 
setCalleeCallLoweringInfo2544     CallLoweringInfo &setCallee(Type *ResultType, FunctionType *FTy,
2545                                 SDValue Target, ArgListTy &&ArgsList,
2546                                 ImmutableCallSite &Call) {
2547       RetTy = ResultType;
2548 
2549       IsInReg = Call.paramHasAttr(0, Attribute::InReg);
2550       DoesNotReturn =
2551           Call.doesNotReturn() ||
2552           (!Call.isInvoke() &&
2553            isa<UnreachableInst>(Call.getInstruction()->getNextNode()));
2554       IsVarArg = FTy->isVarArg();
2555       IsReturnValueUsed = !Call.getInstruction()->use_empty();
2556       RetSExt = Call.paramHasAttr(0, Attribute::SExt);
2557       RetZExt = Call.paramHasAttr(0, Attribute::ZExt);
2558 
2559       Callee = Target;
2560 
2561       CallConv = Call.getCallingConv();
2562       NumFixedArgs = FTy->getNumParams();
2563       Args = std::move(ArgsList);
2564 
2565       CS = &Call;
2566 
2567       return *this;
2568     }
2569 
2570     CallLoweringInfo &setInRegister(bool Value = true) {
2571       IsInReg = Value;
2572       return *this;
2573     }
2574 
2575     CallLoweringInfo &setNoReturn(bool Value = true) {
2576       DoesNotReturn = Value;
2577       return *this;
2578     }
2579 
2580     CallLoweringInfo &setVarArg(bool Value = true) {
2581       IsVarArg = Value;
2582       return *this;
2583     }
2584 
2585     CallLoweringInfo &setTailCall(bool Value = true) {
2586       IsTailCall = Value;
2587       return *this;
2588     }
2589 
2590     CallLoweringInfo &setDiscardResult(bool Value = true) {
2591       IsReturnValueUsed = !Value;
2592       return *this;
2593     }
2594 
2595     CallLoweringInfo &setConvergent(bool Value = true) {
2596       IsConvergent = Value;
2597       return *this;
2598     }
2599 
2600     CallLoweringInfo &setSExtResult(bool Value = true) {
2601       RetSExt = Value;
2602       return *this;
2603     }
2604 
2605     CallLoweringInfo &setZExtResult(bool Value = true) {
2606       RetZExt = Value;
2607       return *this;
2608     }
2609 
2610     CallLoweringInfo &setIsPatchPoint(bool Value = true) {
2611       IsPatchPoint = Value;
2612       return *this;
2613     }
2614 
getArgsCallLoweringInfo2615     ArgListTy &getArgs() {
2616       return Args;
2617     }
2618 
2619   };
2620 
2621   /// This function lowers an abstract call to a function into an actual call.
2622   /// This returns a pair of operands.  The first element is the return value
2623   /// for the function (if RetTy is not VoidTy).  The second element is the
2624   /// outgoing token chain. It calls LowerCall to do the actual lowering.
2625   std::pair<SDValue, SDValue> LowerCallTo(CallLoweringInfo &CLI) const;
2626 
2627   /// This hook must be implemented to lower calls into the specified
2628   /// DAG. The outgoing arguments to the call are described by the Outs array,
2629   /// and the values to be returned by the call are described by the Ins
2630   /// array. The implementation should fill in the InVals array with legal-type
2631   /// return values from the call, and return the resulting token chain value.
2632   virtual SDValue
LowerCall(CallLoweringInfo &,SmallVectorImpl<SDValue> &)2633     LowerCall(CallLoweringInfo &/*CLI*/,
2634               SmallVectorImpl<SDValue> &/*InVals*/) const {
2635     llvm_unreachable("Not Implemented");
2636   }
2637 
2638   /// Target-specific cleanup for formal ByVal parameters.
HandleByVal(CCState *,unsigned &,unsigned)2639   virtual void HandleByVal(CCState *, unsigned &, unsigned) const {}
2640 
2641   /// This hook should be implemented to check whether the return values
2642   /// described by the Outs array can fit into the return registers.  If false
2643   /// is returned, an sret-demotion is performed.
CanLowerReturn(CallingConv::ID,MachineFunction &,bool,const SmallVectorImpl<ISD::OutputArg> &,LLVMContext &)2644   virtual bool CanLowerReturn(CallingConv::ID /*CallConv*/,
2645                               MachineFunction &/*MF*/, bool /*isVarArg*/,
2646                const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
2647                LLVMContext &/*Context*/) const
2648   {
2649     // Return true by default to get preexisting behavior.
2650     return true;
2651   }
2652 
2653   /// This hook must be implemented to lower outgoing return values, described
2654   /// by the Outs array, into the specified DAG. The implementation should
2655   /// return the resulting token chain value.
LowerReturn(SDValue,CallingConv::ID,bool,const SmallVectorImpl<ISD::OutputArg> &,const SmallVectorImpl<SDValue> &,const SDLoc &,SelectionDAG &)2656   virtual SDValue LowerReturn(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
2657                               bool /*isVarArg*/,
2658                               const SmallVectorImpl<ISD::OutputArg> & /*Outs*/,
2659                               const SmallVectorImpl<SDValue> & /*OutVals*/,
2660                               const SDLoc & /*dl*/,
2661                               SelectionDAG & /*DAG*/) const {
2662     llvm_unreachable("Not Implemented");
2663   }
2664 
2665   /// Return true if result of the specified node is used by a return node
2666   /// only. It also compute and return the input chain for the tail call.
2667   ///
2668   /// This is used to determine whether it is possible to codegen a libcall as
2669   /// tail call at legalization time.
isUsedByReturnOnly(SDNode *,SDValue &)2670   virtual bool isUsedByReturnOnly(SDNode *, SDValue &/*Chain*/) const {
2671     return false;
2672   }
2673 
2674   /// Return true if the target may be able emit the call instruction as a tail
2675   /// call. This is used by optimization passes to determine if it's profitable
2676   /// to duplicate return instructions to enable tailcall optimization.
mayBeEmittedAsTailCall(CallInst *)2677   virtual bool mayBeEmittedAsTailCall(CallInst *) const {
2678     return false;
2679   }
2680 
2681   /// Return the builtin name for the __builtin___clear_cache intrinsic
2682   /// Default is to invoke the clear cache library call
getClearCacheBuiltinName()2683   virtual const char * getClearCacheBuiltinName() const {
2684     return "__clear_cache";
2685   }
2686 
2687   /// Return the register ID of the name passed in. Used by named register
2688   /// global variables extension. There is no target-independent behaviour
2689   /// so the default action is to bail.
getRegisterByName(const char * RegName,EVT VT,SelectionDAG & DAG)2690   virtual unsigned getRegisterByName(const char* RegName, EVT VT,
2691                                      SelectionDAG &DAG) const {
2692     report_fatal_error("Named registers not implemented for this target");
2693   }
2694 
2695   /// Return the type that should be used to zero or sign extend a
2696   /// zeroext/signext integer return value.  FIXME: Some C calling conventions
2697   /// require the return type to be promoted, but this is not true all the time,
2698   /// e.g. i1/i8/i16 on x86/x86_64. It is also not necessary for non-C calling
2699   /// conventions. The frontend should handle this and include all of the
2700   /// necessary information.
getTypeForExtReturn(LLVMContext & Context,EVT VT,ISD::NodeType)2701   virtual EVT getTypeForExtReturn(LLVMContext &Context, EVT VT,
2702                                        ISD::NodeType /*ExtendKind*/) const {
2703     EVT MinVT = getRegisterType(Context, MVT::i32);
2704     return VT.bitsLT(MinVT) ? MinVT : VT;
2705   }
2706 
2707   /// For some targets, an LLVM struct type must be broken down into multiple
2708   /// simple types, but the calling convention specifies that the entire struct
2709   /// must be passed in a block of consecutive registers.
2710   virtual bool
functionArgumentNeedsConsecutiveRegisters(Type * Ty,CallingConv::ID CallConv,bool isVarArg)2711   functionArgumentNeedsConsecutiveRegisters(Type *Ty, CallingConv::ID CallConv,
2712                                             bool isVarArg) const {
2713     return false;
2714   }
2715 
2716   /// Returns a 0 terminated array of registers that can be safely used as
2717   /// scratch registers.
getScratchRegisters(CallingConv::ID CC)2718   virtual const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const {
2719     return nullptr;
2720   }
2721 
2722   /// This callback is used to prepare for a volatile or atomic load.
2723   /// It takes a chain node as input and returns the chain for the load itself.
2724   ///
2725   /// Having a callback like this is necessary for targets like SystemZ,
2726   /// which allows a CPU to reuse the result of a previous load indefinitely,
2727   /// even if a cache-coherent store is performed by another CPU.  The default
2728   /// implementation does nothing.
prepareVolatileOrAtomicLoad(SDValue Chain,const SDLoc & DL,SelectionDAG & DAG)2729   virtual SDValue prepareVolatileOrAtomicLoad(SDValue Chain, const SDLoc &DL,
2730                                               SelectionDAG &DAG) const {
2731     return Chain;
2732   }
2733 
2734   /// This callback is invoked by the type legalizer to legalize nodes with an
2735   /// illegal operand type but legal result types.  It replaces the
2736   /// LowerOperation callback in the type Legalizer.  The reason we can not do
2737   /// away with LowerOperation entirely is that LegalizeDAG isn't yet ready to
2738   /// use this callback.
2739   ///
2740   /// TODO: Consider merging with ReplaceNodeResults.
2741   ///
2742   /// The target places new result values for the node in Results (their number
2743   /// and types must exactly match those of the original return values of
2744   /// the node), or leaves Results empty, which indicates that the node is not
2745   /// to be custom lowered after all.
2746   /// The default implementation calls LowerOperation.
2747   virtual void LowerOperationWrapper(SDNode *N,
2748                                      SmallVectorImpl<SDValue> &Results,
2749                                      SelectionDAG &DAG) const;
2750 
2751   /// This callback is invoked for operations that are unsupported by the
2752   /// target, which are registered to use 'custom' lowering, and whose defined
2753   /// values are all legal.  If the target has no operations that require custom
2754   /// lowering, it need not implement this.  The default implementation of this
2755   /// aborts.
2756   virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
2757 
2758   /// This callback is invoked when a node result type is illegal for the
2759   /// target, and the operation was registered to use 'custom' lowering for that
2760   /// result type.  The target places new result values for the node in Results
2761   /// (their number and types must exactly match those of the original return
2762   /// values of the node), or leaves Results empty, which indicates that the
2763   /// node is not to be custom lowered after all.
2764   ///
2765   /// If the target has no operations that require custom lowering, it need not
2766   /// implement this.  The default implementation aborts.
ReplaceNodeResults(SDNode *,SmallVectorImpl<SDValue> &,SelectionDAG &)2767   virtual void ReplaceNodeResults(SDNode * /*N*/,
2768                                   SmallVectorImpl<SDValue> &/*Results*/,
2769                                   SelectionDAG &/*DAG*/) const {
2770     llvm_unreachable("ReplaceNodeResults not implemented for this target!");
2771   }
2772 
2773   /// This method returns the name of a target specific DAG node.
2774   virtual const char *getTargetNodeName(unsigned Opcode) const;
2775 
2776   /// This method returns a target specific FastISel object, or null if the
2777   /// target does not support "fast" ISel.
createFastISel(FunctionLoweringInfo &,const TargetLibraryInfo *)2778   virtual FastISel *createFastISel(FunctionLoweringInfo &,
2779                                    const TargetLibraryInfo *) const {
2780     return nullptr;
2781   }
2782 
2783 
2784   bool verifyReturnAddressArgumentIsConstant(SDValue Op,
2785                                              SelectionDAG &DAG) const;
2786 
2787   //===--------------------------------------------------------------------===//
2788   // Inline Asm Support hooks
2789   //
2790 
2791   /// This hook allows the target to expand an inline asm call to be explicit
2792   /// llvm code if it wants to.  This is useful for turning simple inline asms
2793   /// into LLVM intrinsics, which gives the compiler more information about the
2794   /// behavior of the code.
ExpandInlineAsm(CallInst *)2795   virtual bool ExpandInlineAsm(CallInst *) const {
2796     return false;
2797   }
2798 
2799   enum ConstraintType {
2800     C_Register,            // Constraint represents specific register(s).
2801     C_RegisterClass,       // Constraint represents any of register(s) in class.
2802     C_Memory,              // Memory constraint.
2803     C_Other,               // Something else.
2804     C_Unknown              // Unsupported constraint.
2805   };
2806 
2807   enum ConstraintWeight {
2808     // Generic weights.
2809     CW_Invalid  = -1,     // No match.
2810     CW_Okay     = 0,      // Acceptable.
2811     CW_Good     = 1,      // Good weight.
2812     CW_Better   = 2,      // Better weight.
2813     CW_Best     = 3,      // Best weight.
2814 
2815     // Well-known weights.
2816     CW_SpecificReg  = CW_Okay,    // Specific register operands.
2817     CW_Register     = CW_Good,    // Register operands.
2818     CW_Memory       = CW_Better,  // Memory operands.
2819     CW_Constant     = CW_Best,    // Constant operand.
2820     CW_Default      = CW_Okay     // Default or don't know type.
2821   };
2822 
2823   /// This contains information for each constraint that we are lowering.
2824   struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
2825     /// This contains the actual string for the code, like "m".  TargetLowering
2826     /// picks the 'best' code from ConstraintInfo::Codes that most closely
2827     /// matches the operand.
2828     std::string ConstraintCode;
2829 
2830     /// Information about the constraint code, e.g. Register, RegisterClass,
2831     /// Memory, Other, Unknown.
2832     TargetLowering::ConstraintType ConstraintType;
2833 
2834     /// If this is the result output operand or a clobber, this is null,
2835     /// otherwise it is the incoming operand to the CallInst.  This gets
2836     /// modified as the asm is processed.
2837     Value *CallOperandVal;
2838 
2839     /// The ValueType for the operand value.
2840     MVT ConstraintVT;
2841 
2842     /// Return true of this is an input operand that is a matching constraint
2843     /// like "4".
2844     bool isMatchingInputConstraint() const;
2845 
2846     /// If this is an input matching constraint, this method returns the output
2847     /// operand it matches.
2848     unsigned getMatchedOperand() const;
2849 
2850     /// Copy constructor for copying from a ConstraintInfo.
AsmOperandInfoAsmOperandInfo2851     AsmOperandInfo(InlineAsm::ConstraintInfo Info)
2852         : InlineAsm::ConstraintInfo(std::move(Info)),
2853           ConstraintType(TargetLowering::C_Unknown), CallOperandVal(nullptr),
2854           ConstraintVT(MVT::Other) {}
2855   };
2856 
2857   typedef std::vector<AsmOperandInfo> AsmOperandInfoVector;
2858 
2859   /// Split up the constraint string from the inline assembly value into the
2860   /// specific constraints and their prefixes, and also tie in the associated
2861   /// operand values.  If this returns an empty vector, and if the constraint
2862   /// string itself isn't empty, there was an error parsing.
2863   virtual AsmOperandInfoVector ParseConstraints(const DataLayout &DL,
2864                                                 const TargetRegisterInfo *TRI,
2865                                                 ImmutableCallSite CS) const;
2866 
2867   /// Examine constraint type and operand type and determine a weight value.
2868   /// The operand object must already have been set up with the operand type.
2869   virtual ConstraintWeight getMultipleConstraintMatchWeight(
2870       AsmOperandInfo &info, int maIndex) const;
2871 
2872   /// Examine constraint string and operand type and determine a weight value.
2873   /// The operand object must already have been set up with the operand type.
2874   virtual ConstraintWeight getSingleConstraintMatchWeight(
2875       AsmOperandInfo &info, const char *constraint) const;
2876 
2877   /// Determines the constraint code and constraint type to use for the specific
2878   /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
2879   /// If the actual operand being passed in is available, it can be passed in as
2880   /// Op, otherwise an empty SDValue can be passed.
2881   virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2882                                       SDValue Op,
2883                                       SelectionDAG *DAG = nullptr) const;
2884 
2885   /// Given a constraint, return the type of constraint it is for this target.
2886   virtual ConstraintType getConstraintType(StringRef Constraint) const;
2887 
2888   /// Given a physical register constraint (e.g.  {edx}), return the register
2889   /// number and the register class for the register.
2890   ///
2891   /// Given a register class constraint, like 'r', if this corresponds directly
2892   /// to an LLVM register class, return a register of 0 and the register class
2893   /// pointer.
2894   ///
2895   /// This should only be used for C_Register constraints.  On error, this
2896   /// returns a register number of 0 and a null register class pointer.
2897   virtual std::pair<unsigned, const TargetRegisterClass *>
2898   getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
2899                                StringRef Constraint, MVT VT) const;
2900 
getInlineAsmMemConstraint(StringRef ConstraintCode)2901   virtual unsigned getInlineAsmMemConstraint(StringRef ConstraintCode) const {
2902     if (ConstraintCode == "i")
2903       return InlineAsm::Constraint_i;
2904     else if (ConstraintCode == "m")
2905       return InlineAsm::Constraint_m;
2906     return InlineAsm::Constraint_Unknown;
2907   }
2908 
2909   /// Try to replace an X constraint, which matches anything, with another that
2910   /// has more specific requirements based on the type of the corresponding
2911   /// operand.  This returns null if there is no replacement to make.
2912   virtual const char *LowerXConstraint(EVT ConstraintVT) const;
2913 
2914   /// Lower the specified operand into the Ops vector.  If it is invalid, don't
2915   /// add anything to Ops.
2916   virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
2917                                             std::vector<SDValue> &Ops,
2918                                             SelectionDAG &DAG) const;
2919 
2920   //===--------------------------------------------------------------------===//
2921   // Div utility functions
2922   //
2923   SDValue BuildSDIV(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
2924                     bool IsAfterLegalization,
2925                     std::vector<SDNode *> *Created) const;
2926   SDValue BuildUDIV(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
2927                     bool IsAfterLegalization,
2928                     std::vector<SDNode *> *Created) const;
2929 
2930   /// Targets may override this function to provide custom SDIV lowering for
2931   /// power-of-2 denominators.  If the target returns an empty SDValue, LLVM
2932   /// assumes SDIV is expensive and replaces it with a series of other integer
2933   /// operations.
2934   virtual SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor,
2935                                 SelectionDAG &DAG,
2936                                 std::vector<SDNode *> *Created) const;
2937 
2938   /// Indicate whether this target prefers to combine FDIVs with the same
2939   /// divisor. If the transform should never be done, return zero. If the
2940   /// transform should be done, return the minimum number of divisor uses
2941   /// that must exist.
combineRepeatedFPDivisors()2942   virtual unsigned combineRepeatedFPDivisors() const {
2943     return 0;
2944   }
2945 
2946   /// Hooks for building estimates in place of slower divisions and square
2947   /// roots.
2948 
2949   /// Return a reciprocal square root estimate value for the input operand.
2950   /// The RefinementSteps output is the number of Newton-Raphson refinement
2951   /// iterations required to generate a sufficient (though not necessarily
2952   /// IEEE-754 compliant) estimate for the value type.
2953   /// The boolean UseOneConstNR output is used to select a Newton-Raphson
2954   /// algorithm implementation that uses one constant or two constants.
2955   /// A target may choose to implement its own refinement within this function.
2956   /// If that's true, then return '0' as the number of RefinementSteps to avoid
2957   /// any further refinement of the estimate.
2958   /// An empty SDValue return means no estimate sequence can be created.
getRsqrtEstimate(SDValue Operand,DAGCombinerInfo & DCI,unsigned & RefinementSteps,bool & UseOneConstNR)2959   virtual SDValue getRsqrtEstimate(SDValue Operand, DAGCombinerInfo &DCI,
2960                                    unsigned &RefinementSteps,
2961                                    bool &UseOneConstNR) const {
2962     return SDValue();
2963   }
2964 
2965   /// Return a reciprocal estimate value for the input operand.
2966   /// The RefinementSteps output is the number of Newton-Raphson refinement
2967   /// iterations required to generate a sufficient (though not necessarily
2968   /// IEEE-754 compliant) estimate for the value type.
2969   /// A target may choose to implement its own refinement within this function.
2970   /// If that's true, then return '0' as the number of RefinementSteps to avoid
2971   /// any further refinement of the estimate.
2972   /// An empty SDValue return means no estimate sequence can be created.
getRecipEstimate(SDValue Operand,DAGCombinerInfo & DCI,unsigned & RefinementSteps)2973   virtual SDValue getRecipEstimate(SDValue Operand, DAGCombinerInfo &DCI,
2974                                    unsigned &RefinementSteps) const {
2975     return SDValue();
2976   }
2977 
2978   //===--------------------------------------------------------------------===//
2979   // Legalization utility functions
2980   //
2981 
2982   /// Expand a MUL into two nodes.  One that computes the high bits of
2983   /// the result and one that computes the low bits.
2984   /// \param HiLoVT The value type to use for the Lo and Hi nodes.
2985   /// \param LL Low bits of the LHS of the MUL.  You can use this parameter
2986   ///        if you want to control how low bits are extracted from the LHS.
2987   /// \param LH High bits of the LHS of the MUL.  See LL for meaning.
2988   /// \param RL Low bits of the RHS of the MUL.  See LL for meaning
2989   /// \param RH High bits of the RHS of the MUL.  See LL for meaning.
2990   /// \returns true if the node has been expanded. false if it has not
2991   bool expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
2992                  SelectionDAG &DAG, SDValue LL = SDValue(),
2993                  SDValue LH = SDValue(), SDValue RL = SDValue(),
2994                  SDValue RH = SDValue()) const;
2995 
2996   /// Expand float(f32) to SINT(i64) conversion
2997   /// \param N Node to expand
2998   /// \param Result output after conversion
2999   /// \returns True, if the expansion was successful, false otherwise
3000   bool expandFP_TO_SINT(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
3001 
3002   /// Turn load of vector type into a load of the individual elements.
3003   /// \param LD load to expand
3004   /// \returns MERGE_VALUEs of the scalar loads with their chains.
3005   SDValue scalarizeVectorLoad(LoadSDNode *LD, SelectionDAG &DAG) const;
3006 
3007   // Turn a store of a vector type into stores of the individual elements.
3008   /// \param ST Store with a vector value type
3009   /// \returns MERGE_VALUs of the individual store chains.
3010   SDValue scalarizeVectorStore(StoreSDNode *ST, SelectionDAG &DAG) const;
3011 
3012   /// Expands an unaligned load to 2 half-size loads for an integer, and
3013   /// possibly more for vectors.
3014   std::pair<SDValue, SDValue> expandUnalignedLoad(LoadSDNode *LD,
3015                                                   SelectionDAG &DAG) const;
3016 
3017   /// Expands an unaligned store to 2 half-size stores for integer values, and
3018   /// possibly more for vectors.
3019   SDValue expandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG) const;
3020 
3021   //===--------------------------------------------------------------------===//
3022   // Instruction Emitting Hooks
3023   //
3024 
3025   /// This method should be implemented by targets that mark instructions with
3026   /// the 'usesCustomInserter' flag.  These instructions are special in various
3027   /// ways, which require special support to insert.  The specified MachineInstr
3028   /// is created but not inserted into any basic blocks, and this method is
3029   /// called to expand it into a sequence of instructions, potentially also
3030   /// creating new basic blocks and control flow.
3031   /// As long as the returned basic block is different (i.e., we created a new
3032   /// one), the custom inserter is free to modify the rest of \p MBB.
3033   virtual MachineBasicBlock *
3034   EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *MBB) const;
3035 
3036   /// This method should be implemented by targets that mark instructions with
3037   /// the 'hasPostISelHook' flag. These instructions must be adjusted after
3038   /// instruction selection by target hooks.  e.g. To fill in optional defs for
3039   /// ARM 's' setting instructions.
3040   virtual void AdjustInstrPostInstrSelection(MachineInstr &MI,
3041                                              SDNode *Node) const;
3042 
3043   /// If this function returns true, SelectionDAGBuilder emits a
3044   /// LOAD_STACK_GUARD node when it is lowering Intrinsic::stackprotector.
useLoadStackGuardNode()3045   virtual bool useLoadStackGuardNode() const {
3046     return false;
3047   }
3048 
3049   /// Lower TLS global address SDNode for target independent emulated TLS model.
3050   virtual SDValue LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
3051                                           SelectionDAG &DAG) const;
3052 
3053 private:
3054   SDValue simplifySetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
3055                                ISD::CondCode Cond, DAGCombinerInfo &DCI,
3056                                const SDLoc &DL) const;
3057 };
3058 
3059 /// Given an LLVM IR type and return type attributes, compute the return value
3060 /// EVTs and flags, and optionally also the offsets, if the return value is
3061 /// being lowered to memory.
3062 void GetReturnInfo(Type *ReturnType, AttributeSet attr,
3063                    SmallVectorImpl<ISD::OutputArg> &Outs,
3064                    const TargetLowering &TLI, const DataLayout &DL);
3065 
3066 } // end llvm namespace
3067 
3068 #endif
3069