• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- RuntimeDyldImpl.h - Run-time dynamic linker for MC-JIT --*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Interface for the implementations of runtime dynamic linker facilities.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_RUNTIMEDYLDIMPL_H
15 #define LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_RUNTIMEDYLDIMPL_H
16 
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/StringMap.h"
19 #include "llvm/ADT/Triple.h"
20 #include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
21 #include "llvm/ExecutionEngine/RuntimeDyld.h"
22 #include "llvm/ExecutionEngine/RuntimeDyldChecker.h"
23 #include "llvm/Object/ObjectFile.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/Format.h"
27 #include "llvm/Support/Host.h"
28 #include "llvm/Support/Mutex.h"
29 #include "llvm/Support/SwapByteOrder.h"
30 #include <map>
31 #include <unordered_map>
32 #include <system_error>
33 
34 using namespace llvm;
35 using namespace llvm::object;
36 
37 namespace llvm {
38 
39 class Twine;
40 
41 #define UNIMPLEMENTED_RELOC(RelType) \
42   case RelType: \
43     return make_error<RuntimeDyldError>("Unimplemented relocation: " #RelType)
44 
45 /// SectionEntry - represents a section emitted into memory by the dynamic
46 /// linker.
47 class SectionEntry {
48   /// Name - section name.
49   std::string Name;
50 
51   /// Address - address in the linker's memory where the section resides.
52   uint8_t *Address;
53 
54   /// Size - section size. Doesn't include the stubs.
55   size_t Size;
56 
57   /// LoadAddress - the address of the section in the target process's memory.
58   /// Used for situations in which JIT-ed code is being executed in the address
59   /// space of a separate process.  If the code executes in the same address
60   /// space where it was JIT-ed, this just equals Address.
61   uint64_t LoadAddress;
62 
63   /// StubOffset - used for architectures with stub functions for far
64   /// relocations (like ARM).
65   uintptr_t StubOffset;
66 
67   /// The total amount of space allocated for this section.  This includes the
68   /// section size and the maximum amount of space that the stubs can occupy.
69   size_t AllocationSize;
70 
71   /// ObjAddress - address of the section in the in-memory object file.  Used
72   /// for calculating relocations in some object formats (like MachO).
73   uintptr_t ObjAddress;
74 
75 public:
SectionEntry(StringRef name,uint8_t * address,size_t size,size_t allocationSize,uintptr_t objAddress)76   SectionEntry(StringRef name, uint8_t *address, size_t size,
77                size_t allocationSize, uintptr_t objAddress)
78       : Name(name), Address(address), Size(size),
79         LoadAddress(reinterpret_cast<uintptr_t>(address)), StubOffset(size),
80         AllocationSize(allocationSize), ObjAddress(objAddress) {
81     // AllocationSize is used only in asserts, prevent an "unused private field"
82     // warning:
83     (void)AllocationSize;
84   }
85 
getName()86   StringRef getName() const { return Name; }
87 
getAddress()88   uint8_t *getAddress() const { return Address; }
89 
90   /// \brief Return the address of this section with an offset.
getAddressWithOffset(unsigned OffsetBytes)91   uint8_t *getAddressWithOffset(unsigned OffsetBytes) const {
92     assert(OffsetBytes <= AllocationSize && "Offset out of bounds!");
93     return Address + OffsetBytes;
94   }
95 
getSize()96   size_t getSize() const { return Size; }
97 
getLoadAddress()98   uint64_t getLoadAddress() const { return LoadAddress; }
setLoadAddress(uint64_t LA)99   void setLoadAddress(uint64_t LA) { LoadAddress = LA; }
100 
101   /// \brief Return the load address of this section with an offset.
getLoadAddressWithOffset(unsigned OffsetBytes)102   uint64_t getLoadAddressWithOffset(unsigned OffsetBytes) const {
103     assert(OffsetBytes <= AllocationSize && "Offset out of bounds!");
104     return LoadAddress + OffsetBytes;
105   }
106 
getStubOffset()107   uintptr_t getStubOffset() const { return StubOffset; }
108 
advanceStubOffset(unsigned StubSize)109   void advanceStubOffset(unsigned StubSize) {
110     StubOffset += StubSize;
111     assert(StubOffset <= AllocationSize && "Not enough space allocated!");
112   }
113 
getObjAddress()114   uintptr_t getObjAddress() const { return ObjAddress; }
115 };
116 
117 /// RelocationEntry - used to represent relocations internally in the dynamic
118 /// linker.
119 class RelocationEntry {
120 public:
121   /// SectionID - the section this relocation points to.
122   unsigned SectionID;
123 
124   /// Offset - offset into the section.
125   uint64_t Offset;
126 
127   /// RelType - relocation type.
128   uint32_t RelType;
129 
130   /// Addend - the relocation addend encoded in the instruction itself.  Also
131   /// used to make a relocation section relative instead of symbol relative.
132   int64_t Addend;
133 
134   struct SectionPair {
135       uint32_t SectionA;
136       uint32_t SectionB;
137   };
138 
139   /// SymOffset - Section offset of the relocation entry's symbol (used for GOT
140   /// lookup).
141   union {
142     uint64_t SymOffset;
143     SectionPair Sections;
144   };
145 
146   /// True if this is a PCRel relocation (MachO specific).
147   bool IsPCRel;
148 
149   /// The size of this relocation (MachO specific).
150   unsigned Size;
151 
RelocationEntry(unsigned id,uint64_t offset,uint32_t type,int64_t addend)152   RelocationEntry(unsigned id, uint64_t offset, uint32_t type, int64_t addend)
153       : SectionID(id), Offset(offset), RelType(type), Addend(addend),
154         SymOffset(0), IsPCRel(false), Size(0) {}
155 
RelocationEntry(unsigned id,uint64_t offset,uint32_t type,int64_t addend,uint64_t symoffset)156   RelocationEntry(unsigned id, uint64_t offset, uint32_t type, int64_t addend,
157                   uint64_t symoffset)
158       : SectionID(id), Offset(offset), RelType(type), Addend(addend),
159         SymOffset(symoffset), IsPCRel(false), Size(0) {}
160 
RelocationEntry(unsigned id,uint64_t offset,uint32_t type,int64_t addend,bool IsPCRel,unsigned Size)161   RelocationEntry(unsigned id, uint64_t offset, uint32_t type, int64_t addend,
162                   bool IsPCRel, unsigned Size)
163       : SectionID(id), Offset(offset), RelType(type), Addend(addend),
164         SymOffset(0), IsPCRel(IsPCRel), Size(Size) {}
165 
RelocationEntry(unsigned id,uint64_t offset,uint32_t type,int64_t addend,unsigned SectionA,uint64_t SectionAOffset,unsigned SectionB,uint64_t SectionBOffset,bool IsPCRel,unsigned Size)166   RelocationEntry(unsigned id, uint64_t offset, uint32_t type, int64_t addend,
167                   unsigned SectionA, uint64_t SectionAOffset, unsigned SectionB,
168                   uint64_t SectionBOffset, bool IsPCRel, unsigned Size)
169       : SectionID(id), Offset(offset), RelType(type),
170         Addend(SectionAOffset - SectionBOffset + addend), IsPCRel(IsPCRel),
171         Size(Size) {
172     Sections.SectionA = SectionA;
173     Sections.SectionB = SectionB;
174   }
175 };
176 
177 class RelocationValueRef {
178 public:
179   unsigned SectionID;
180   uint64_t Offset;
181   int64_t Addend;
182   const char *SymbolName;
RelocationValueRef()183   RelocationValueRef() : SectionID(0), Offset(0), Addend(0),
184                          SymbolName(nullptr) {}
185 
186   inline bool operator==(const RelocationValueRef &Other) const {
187     return SectionID == Other.SectionID && Offset == Other.Offset &&
188            Addend == Other.Addend && SymbolName == Other.SymbolName;
189   }
190   inline bool operator<(const RelocationValueRef &Other) const {
191     if (SectionID != Other.SectionID)
192       return SectionID < Other.SectionID;
193     if (Offset != Other.Offset)
194       return Offset < Other.Offset;
195     if (Addend != Other.Addend)
196       return Addend < Other.Addend;
197     return SymbolName < Other.SymbolName;
198   }
199 };
200 
201 /// @brief Symbol info for RuntimeDyld.
202 class SymbolTableEntry : public JITSymbolBase {
203 public:
SymbolTableEntry()204   SymbolTableEntry()
205     : JITSymbolBase(JITSymbolFlags::None), Offset(0), SectionID(0) {}
206 
SymbolTableEntry(unsigned SectionID,uint64_t Offset,JITSymbolFlags Flags)207   SymbolTableEntry(unsigned SectionID, uint64_t Offset, JITSymbolFlags Flags)
208     : JITSymbolBase(Flags), Offset(Offset), SectionID(SectionID) {}
209 
getSectionID()210   unsigned getSectionID() const { return SectionID; }
getOffset()211   uint64_t getOffset() const { return Offset; }
212 
213 private:
214   uint64_t Offset;
215   unsigned SectionID;
216 };
217 
218 typedef StringMap<SymbolTableEntry> RTDyldSymbolTable;
219 
220 class RuntimeDyldImpl {
221   friend class RuntimeDyld::LoadedObjectInfo;
222   friend class RuntimeDyldCheckerImpl;
223 protected:
224   static const unsigned AbsoluteSymbolSection = ~0U;
225 
226   // The MemoryManager to load objects into.
227   RuntimeDyld::MemoryManager &MemMgr;
228 
229   // The symbol resolver to use for external symbols.
230   RuntimeDyld::SymbolResolver &Resolver;
231 
232   // Attached RuntimeDyldChecker instance. Null if no instance attached.
233   RuntimeDyldCheckerImpl *Checker;
234 
235   // A list of all sections emitted by the dynamic linker.  These sections are
236   // referenced in the code by means of their index in this list - SectionID.
237   typedef SmallVector<SectionEntry, 64> SectionList;
238   SectionList Sections;
239 
240   typedef unsigned SID; // Type for SectionIDs
241 #define RTDYLD_INVALID_SECTION_ID ((RuntimeDyldImpl::SID)(-1))
242 
243   // Keep a map of sections from object file to the SectionID which
244   // references it.
245   typedef std::map<SectionRef, unsigned> ObjSectionToIDMap;
246 
247   // A global symbol table for symbols from all loaded modules.
248   RTDyldSymbolTable GlobalSymbolTable;
249 
250   // Keep a map of common symbols to their info pairs
251   typedef std::vector<SymbolRef> CommonSymbolList;
252 
253   // For each symbol, keep a list of relocations based on it. Anytime
254   // its address is reassigned (the JIT re-compiled the function, e.g.),
255   // the relocations get re-resolved.
256   // The symbol (or section) the relocation is sourced from is the Key
257   // in the relocation list where it's stored.
258   typedef SmallVector<RelocationEntry, 64> RelocationList;
259   // Relocations to sections already loaded. Indexed by SectionID which is the
260   // source of the address. The target where the address will be written is
261   // SectionID/Offset in the relocation itself.
262   std::unordered_map<unsigned, RelocationList> Relocations;
263 
264   // Relocations to external symbols that are not yet resolved.  Symbols are
265   // external when they aren't found in the global symbol table of all loaded
266   // modules.  This map is indexed by symbol name.
267   StringMap<RelocationList> ExternalSymbolRelocations;
268 
269 
270   typedef std::map<RelocationValueRef, uintptr_t> StubMap;
271 
272   Triple::ArchType Arch;
273   bool IsTargetLittleEndian;
274   bool IsMipsO32ABI;
275   bool IsMipsN64ABI;
276 
277   // True if all sections should be passed to the memory manager, false if only
278   // sections containing relocations should be. Defaults to 'false'.
279   bool ProcessAllSections;
280 
281   // This mutex prevents simultaneously loading objects from two different
282   // threads.  This keeps us from having to protect individual data structures
283   // and guarantees that section allocation requests to the memory manager
284   // won't be interleaved between modules.  It is also used in mapSectionAddress
285   // and resolveRelocations to protect write access to internal data structures.
286   //
287   // loadObject may be called on the same thread during the handling of of
288   // processRelocations, and that's OK.  The handling of the relocation lists
289   // is written in such a way as to work correctly if new elements are added to
290   // the end of the list while the list is being processed.
291   sys::Mutex lock;
292 
293   virtual unsigned getMaxStubSize() = 0;
294   virtual unsigned getStubAlignment() = 0;
295 
296   bool HasError;
297   std::string ErrorStr;
298 
getSectionLoadAddress(unsigned SectionID)299   uint64_t getSectionLoadAddress(unsigned SectionID) const {
300     return Sections[SectionID].getLoadAddress();
301   }
302 
getSectionAddress(unsigned SectionID)303   uint8_t *getSectionAddress(unsigned SectionID) const {
304     return Sections[SectionID].getAddress();
305   }
306 
writeInt16BE(uint8_t * Addr,uint16_t Value)307   void writeInt16BE(uint8_t *Addr, uint16_t Value) {
308     if (IsTargetLittleEndian)
309       sys::swapByteOrder(Value);
310     *Addr       = (Value >> 8) & 0xFF;
311     *(Addr + 1) = Value & 0xFF;
312   }
313 
writeInt32BE(uint8_t * Addr,uint32_t Value)314   void writeInt32BE(uint8_t *Addr, uint32_t Value) {
315     if (IsTargetLittleEndian)
316       sys::swapByteOrder(Value);
317     *Addr       = (Value >> 24) & 0xFF;
318     *(Addr + 1) = (Value >> 16) & 0xFF;
319     *(Addr + 2) = (Value >> 8) & 0xFF;
320     *(Addr + 3) = Value & 0xFF;
321   }
322 
writeInt64BE(uint8_t * Addr,uint64_t Value)323   void writeInt64BE(uint8_t *Addr, uint64_t Value) {
324     if (IsTargetLittleEndian)
325       sys::swapByteOrder(Value);
326     *Addr       = (Value >> 56) & 0xFF;
327     *(Addr + 1) = (Value >> 48) & 0xFF;
328     *(Addr + 2) = (Value >> 40) & 0xFF;
329     *(Addr + 3) = (Value >> 32) & 0xFF;
330     *(Addr + 4) = (Value >> 24) & 0xFF;
331     *(Addr + 5) = (Value >> 16) & 0xFF;
332     *(Addr + 6) = (Value >> 8) & 0xFF;
333     *(Addr + 7) = Value & 0xFF;
334   }
335 
setMipsABI(const ObjectFile & Obj)336   virtual void setMipsABI(const ObjectFile &Obj) {
337     IsMipsO32ABI = false;
338     IsMipsN64ABI = false;
339   }
340 
341   /// Endian-aware read Read the least significant Size bytes from Src.
342   uint64_t readBytesUnaligned(uint8_t *Src, unsigned Size) const;
343 
344   /// Endian-aware write. Write the least significant Size bytes from Value to
345   /// Dst.
346   void writeBytesUnaligned(uint64_t Value, uint8_t *Dst, unsigned Size) const;
347 
348   /// \brief Given the common symbols discovered in the object file, emit a
349   /// new section for them and update the symbol mappings in the object and
350   /// symbol table.
351   Error emitCommonSymbols(const ObjectFile &Obj,
352                           CommonSymbolList &CommonSymbols);
353 
354   /// \brief Emits section data from the object file to the MemoryManager.
355   /// \param IsCode if it's true then allocateCodeSection() will be
356   ///        used for emits, else allocateDataSection() will be used.
357   /// \return SectionID.
358   Expected<unsigned> emitSection(const ObjectFile &Obj,
359                                  const SectionRef &Section,
360                                  bool IsCode);
361 
362   /// \brief Find Section in LocalSections. If the secton is not found - emit
363   ///        it and store in LocalSections.
364   /// \param IsCode if it's true then allocateCodeSection() will be
365   ///        used for emmits, else allocateDataSection() will be used.
366   /// \return SectionID.
367   Expected<unsigned> findOrEmitSection(const ObjectFile &Obj,
368                                        const SectionRef &Section, bool IsCode,
369                                        ObjSectionToIDMap &LocalSections);
370 
371   // \brief Add a relocation entry that uses the given section.
372   void addRelocationForSection(const RelocationEntry &RE, unsigned SectionID);
373 
374   // \brief Add a relocation entry that uses the given symbol.  This symbol may
375   // be found in the global symbol table, or it may be external.
376   void addRelocationForSymbol(const RelocationEntry &RE, StringRef SymbolName);
377 
378   /// \brief Emits long jump instruction to Addr.
379   /// \return Pointer to the memory area for emitting target address.
380   uint8_t *createStubFunction(uint8_t *Addr, unsigned AbiVariant = 0);
381 
382   /// \brief Resolves relocations from Relocs list with address from Value.
383   void resolveRelocationList(const RelocationList &Relocs, uint64_t Value);
384 
385   /// \brief A object file specific relocation resolver
386   /// \param RE The relocation to be resolved
387   /// \param Value Target symbol address to apply the relocation action
388   virtual void resolveRelocation(const RelocationEntry &RE, uint64_t Value) = 0;
389 
390   /// \brief Parses one or more object file relocations (some object files use
391   ///        relocation pairs) and stores it to Relocations or SymbolRelocations
392   ///        (this depends on the object file type).
393   /// \return Iterator to the next relocation that needs to be parsed.
394   virtual Expected<relocation_iterator>
395   processRelocationRef(unsigned SectionID, relocation_iterator RelI,
396                        const ObjectFile &Obj, ObjSectionToIDMap &ObjSectionToID,
397                        StubMap &Stubs) = 0;
398 
399   /// \brief Resolve relocations to external symbols.
400   void resolveExternalSymbols();
401 
402   // \brief Compute an upper bound of the memory that is required to load all
403   // sections
404   Error computeTotalAllocSize(const ObjectFile &Obj,
405                               uint64_t &CodeSize, uint32_t &CodeAlign,
406                               uint64_t &RODataSize, uint32_t &RODataAlign,
407                               uint64_t &RWDataSize, uint32_t &RWDataAlign);
408 
409   // \brief Compute the stub buffer size required for a section
410   unsigned computeSectionStubBufSize(const ObjectFile &Obj,
411                                      const SectionRef &Section);
412 
413   // \brief Implementation of the generic part of the loadObject algorithm.
414   Expected<ObjSectionToIDMap> loadObjectImpl(const object::ObjectFile &Obj);
415 
416   // \brief Return true if the relocation R may require allocating a stub.
relocationNeedsStub(const RelocationRef & R)417   virtual bool relocationNeedsStub(const RelocationRef &R) const {
418     return true;    // Conservative answer
419   }
420 
421 public:
RuntimeDyldImpl(RuntimeDyld::MemoryManager & MemMgr,RuntimeDyld::SymbolResolver & Resolver)422   RuntimeDyldImpl(RuntimeDyld::MemoryManager &MemMgr,
423                   RuntimeDyld::SymbolResolver &Resolver)
424     : MemMgr(MemMgr), Resolver(Resolver), Checker(nullptr),
425       ProcessAllSections(false), HasError(false) {
426   }
427 
428   virtual ~RuntimeDyldImpl();
429 
setProcessAllSections(bool ProcessAllSections)430   void setProcessAllSections(bool ProcessAllSections) {
431     this->ProcessAllSections = ProcessAllSections;
432   }
433 
setRuntimeDyldChecker(RuntimeDyldCheckerImpl * Checker)434   void setRuntimeDyldChecker(RuntimeDyldCheckerImpl *Checker) {
435     this->Checker = Checker;
436   }
437 
438   virtual std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
439   loadObject(const object::ObjectFile &Obj) = 0;
440 
getSymbolLocalAddress(StringRef Name)441   uint8_t* getSymbolLocalAddress(StringRef Name) const {
442     // FIXME: Just look up as a function for now. Overly simple of course.
443     // Work in progress.
444     RTDyldSymbolTable::const_iterator pos = GlobalSymbolTable.find(Name);
445     if (pos == GlobalSymbolTable.end())
446       return nullptr;
447     const auto &SymInfo = pos->second;
448     // Absolute symbols do not have a local address.
449     if (SymInfo.getSectionID() == AbsoluteSymbolSection)
450       return nullptr;
451     return getSectionAddress(SymInfo.getSectionID()) + SymInfo.getOffset();
452   }
453 
getSymbol(StringRef Name)454   RuntimeDyld::SymbolInfo getSymbol(StringRef Name) const {
455     // FIXME: Just look up as a function for now. Overly simple of course.
456     // Work in progress.
457     RTDyldSymbolTable::const_iterator pos = GlobalSymbolTable.find(Name);
458     if (pos == GlobalSymbolTable.end())
459       return nullptr;
460     const auto &SymEntry = pos->second;
461     uint64_t SectionAddr = 0;
462     if (SymEntry.getSectionID() != AbsoluteSymbolSection)
463       SectionAddr = getSectionLoadAddress(SymEntry.getSectionID());
464     uint64_t TargetAddr = SectionAddr + SymEntry.getOffset();
465     return RuntimeDyld::SymbolInfo(TargetAddr, SymEntry.getFlags());
466   }
467 
468   void resolveRelocations();
469 
470   void reassignSectionAddress(unsigned SectionID, uint64_t Addr);
471 
472   void mapSectionAddress(const void *LocalAddress, uint64_t TargetAddress);
473 
474   // Is the linker in an error state?
hasError()475   bool hasError() { return HasError; }
476 
477   // Mark the error condition as handled and continue.
clearError()478   void clearError() { HasError = false; }
479 
480   // Get the error message.
getErrorString()481   StringRef getErrorString() { return ErrorStr; }
482 
483   virtual bool isCompatibleFile(const ObjectFile &Obj) const = 0;
484 
485   virtual void registerEHFrames();
486 
487   virtual void deregisterEHFrames();
488 
finalizeLoad(const ObjectFile & ObjImg,ObjSectionToIDMap & SectionMap)489   virtual Error finalizeLoad(const ObjectFile &ObjImg,
490                              ObjSectionToIDMap &SectionMap) {
491     return Error::success();
492   }
493 };
494 
495 } // end namespace llvm
496 
497 #endif
498