• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_UTILS_H_
6 #define V8_UTILS_H_
7 
8 #include <limits.h>
9 #include <stdlib.h>
10 #include <string.h>
11 #include <cmath>
12 
13 #include "include/v8.h"
14 #include "src/allocation.h"
15 #include "src/base/bits.h"
16 #include "src/base/compiler-specific.h"
17 #include "src/base/logging.h"
18 #include "src/base/macros.h"
19 #include "src/base/platform/platform.h"
20 #include "src/globals.h"
21 #include "src/list.h"
22 #include "src/vector.h"
23 #include "src/zone/zone.h"
24 
25 namespace v8 {
26 namespace internal {
27 
28 // ----------------------------------------------------------------------------
29 // General helper functions
30 
31 // Returns the value (0 .. 15) of a hexadecimal character c.
32 // If c is not a legal hexadecimal character, returns a value < 0.
HexValue(uc32 c)33 inline int HexValue(uc32 c) {
34   c -= '0';
35   if (static_cast<unsigned>(c) <= 9) return c;
36   c = (c | 0x20) - ('a' - '0');  // detect 0x11..0x16 and 0x31..0x36.
37   if (static_cast<unsigned>(c) <= 5) return c + 10;
38   return -1;
39 }
40 
HexCharOfValue(int value)41 inline char HexCharOfValue(int value) {
42   DCHECK(0 <= value && value <= 16);
43   if (value < 10) return value + '0';
44   return value - 10 + 'A';
45 }
46 
BoolToInt(bool b)47 inline int BoolToInt(bool b) { return b ? 1 : 0; }
48 
49 
50 // Same as strcmp, but can handle NULL arguments.
CStringEquals(const char * s1,const char * s2)51 inline bool CStringEquals(const char* s1, const char* s2) {
52   return (s1 == s2) || (s1 != NULL && s2 != NULL && strcmp(s1, s2) == 0);
53 }
54 
55 
56 // X must be a power of 2.  Returns the number of trailing zeros.
WhichPowerOf2(uint32_t x)57 inline int WhichPowerOf2(uint32_t x) {
58   DCHECK(base::bits::IsPowerOfTwo32(x));
59   int bits = 0;
60 #ifdef DEBUG
61   uint32_t original_x = x;
62 #endif
63   if (x >= 0x10000) {
64     bits += 16;
65     x >>= 16;
66   }
67   if (x >= 0x100) {
68     bits += 8;
69     x >>= 8;
70   }
71   if (x >= 0x10) {
72     bits += 4;
73     x >>= 4;
74   }
75   switch (x) {
76     default: UNREACHABLE();
77     case 8: bits++;  // Fall through.
78     case 4: bits++;  // Fall through.
79     case 2: bits++;  // Fall through.
80     case 1: break;
81   }
82   DCHECK_EQ(static_cast<uint32_t>(1) << bits, original_x);
83   return bits;
84 }
85 
86 
87 // X must be a power of 2.  Returns the number of trailing zeros.
WhichPowerOf2_64(uint64_t x)88 inline int WhichPowerOf2_64(uint64_t x) {
89   DCHECK(base::bits::IsPowerOfTwo64(x));
90   int bits = 0;
91 #ifdef DEBUG
92   uint64_t original_x = x;
93 #endif
94   if (x >= 0x100000000L) {
95     bits += 32;
96     x >>= 32;
97   }
98   if (x >= 0x10000) {
99     bits += 16;
100     x >>= 16;
101   }
102   if (x >= 0x100) {
103     bits += 8;
104     x >>= 8;
105   }
106   if (x >= 0x10) {
107     bits += 4;
108     x >>= 4;
109   }
110   switch (x) {
111     default: UNREACHABLE();
112     case 8: bits++;  // Fall through.
113     case 4: bits++;  // Fall through.
114     case 2: bits++;  // Fall through.
115     case 1: break;
116   }
117   DCHECK_EQ(static_cast<uint64_t>(1) << bits, original_x);
118   return bits;
119 }
120 
121 
MostSignificantBit(uint32_t x)122 inline int MostSignificantBit(uint32_t x) {
123   static const int msb4[] = {0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4};
124   int nibble = 0;
125   if (x & 0xffff0000) {
126     nibble += 16;
127     x >>= 16;
128   }
129   if (x & 0xff00) {
130     nibble += 8;
131     x >>= 8;
132   }
133   if (x & 0xf0) {
134     nibble += 4;
135     x >>= 4;
136   }
137   return nibble + msb4[x];
138 }
139 
140 template <typename T>
ArithmeticShiftRight(T x,int shift)141 static T ArithmeticShiftRight(T x, int shift) {
142   DCHECK_LE(0, shift);
143   if (x < 0) {
144     // Right shift of signed values is implementation defined. Simulate a
145     // true arithmetic right shift by adding leading sign bits.
146     using UnsignedT = typename std::make_unsigned<T>::type;
147     UnsignedT mask = ~(static_cast<UnsignedT>(~0) >> shift);
148     return (static_cast<UnsignedT>(x) >> shift) | mask;
149   } else {
150     return x >> shift;
151   }
152 }
153 
154 template <typename T>
Compare(const T & a,const T & b)155 int Compare(const T& a, const T& b) {
156   if (a == b)
157     return 0;
158   else if (a < b)
159     return -1;
160   else
161     return 1;
162 }
163 
164 
165 template <typename T>
PointerValueCompare(const T * a,const T * b)166 int PointerValueCompare(const T* a, const T* b) {
167   return Compare<T>(*a, *b);
168 }
169 
170 
171 // Compare function to compare the object pointer value of two
172 // handlified objects. The handles are passed as pointers to the
173 // handles.
174 template<typename T> class Handle;  // Forward declaration.
175 template <typename T>
HandleObjectPointerCompare(const Handle<T> * a,const Handle<T> * b)176 int HandleObjectPointerCompare(const Handle<T>* a, const Handle<T>* b) {
177   return Compare<T*>(*(*a), *(*b));
178 }
179 
180 
181 template <typename T, typename U>
IsAligned(T value,U alignment)182 inline bool IsAligned(T value, U alignment) {
183   return (value & (alignment - 1)) == 0;
184 }
185 
186 
187 // Returns true if (addr + offset) is aligned.
188 inline bool IsAddressAligned(Address addr,
189                              intptr_t alignment,
190                              int offset = 0) {
191   intptr_t offs = OffsetFrom(addr + offset);
192   return IsAligned(offs, alignment);
193 }
194 
195 template <typename T, typename U>
RoundUpToMultipleOfPowOf2(T value,U multiple)196 inline T RoundUpToMultipleOfPowOf2(T value, U multiple) {
197   DCHECK(multiple && ((multiple & (multiple - 1)) == 0));
198   return (value + multiple - 1) & ~(multiple - 1);
199 }
200 
201 // Returns the maximum of the two parameters.
202 template <typename T>
Max(T a,T b)203 T Max(T a, T b) {
204   return a < b ? b : a;
205 }
206 
207 
208 // Returns the minimum of the two parameters.
209 template <typename T>
Min(T a,T b)210 T Min(T a, T b) {
211   return a < b ? a : b;
212 }
213 
214 // Returns the maximum of the two parameters according to JavaScript semantics.
215 template <typename T>
JSMax(T x,T y)216 T JSMax(T x, T y) {
217   if (std::isnan(x)) return x;
218   if (std::isnan(y)) return y;
219   if (std::signbit(x) < std::signbit(y)) return x;
220   return x > y ? x : y;
221 }
222 
223 // Returns the maximum of the two parameters according to JavaScript semantics.
224 template <typename T>
JSMin(T x,T y)225 T JSMin(T x, T y) {
226   if (std::isnan(x)) return x;
227   if (std::isnan(y)) return y;
228   if (std::signbit(x) < std::signbit(y)) return y;
229   return x > y ? y : x;
230 }
231 
232 // Returns the absolute value of its argument.
233 template <typename T>
Abs(T a)234 T Abs(T a) {
235   return a < 0 ? -a : a;
236 }
237 
238 
239 // Floor(-0.0) == 0.0
Floor(double x)240 inline double Floor(double x) {
241 #if V8_CC_MSVC
242   if (x == 0) return x;  // Fix for issue 3477.
243 #endif
244   return std::floor(x);
245 }
246 
Pow(double x,double y)247 inline double Pow(double x, double y) {
248   if (y == 0.0) return 1.0;
249   if (std::isnan(y) || ((x == 1 || x == -1) && std::isinf(y))) {
250     return std::numeric_limits<double>::quiet_NaN();
251   }
252 #if (defined(__MINGW64_VERSION_MAJOR) &&                              \
253      (!defined(__MINGW64_VERSION_RC) || __MINGW64_VERSION_RC < 1)) || \
254     defined(V8_OS_AIX)
255   // MinGW64 and AIX have a custom implementation for pow.  This handles certain
256   // special cases that are different.
257   if ((x == 0.0 || std::isinf(x)) && y != 0.0 && std::isfinite(y)) {
258     double f;
259     double result = ((x == 0.0) ^ (y > 0)) ? V8_INFINITY : 0;
260     /* retain sign if odd integer exponent */
261     return ((std::modf(y, &f) == 0.0) && (static_cast<int64_t>(y) & 1))
262                ? copysign(result, x)
263                : result;
264   }
265 
266   if (x == 2.0) {
267     int y_int = static_cast<int>(y);
268     if (y == y_int) {
269       return std::ldexp(1.0, y_int);
270     }
271   }
272 #endif
273   return std::pow(x, y);
274 }
275 
276 // TODO(svenpanne) Clean up the whole power-of-2 mess.
WhichPowerOf2Abs(int32_t x)277 inline int32_t WhichPowerOf2Abs(int32_t x) {
278   return (x == kMinInt) ? 31 : WhichPowerOf2(Abs(x));
279 }
280 
281 
282 // Obtains the unsigned type corresponding to T
283 // available in C++11 as std::make_unsigned
284 template<typename T>
285 struct make_unsigned {
286   typedef T type;
287 };
288 
289 
290 // Template specializations necessary to have make_unsigned work
291 template<> struct make_unsigned<int32_t> {
292   typedef uint32_t type;
293 };
294 
295 
296 template<> struct make_unsigned<int64_t> {
297   typedef uint64_t type;
298 };
299 
300 
301 // ----------------------------------------------------------------------------
302 // BitField is a help template for encoding and decode bitfield with
303 // unsigned content.
304 
305 template<class T, int shift, int size, class U>
306 class BitFieldBase {
307  public:
308   // A type U mask of bit field.  To use all bits of a type U of x bits
309   // in a bitfield without compiler warnings we have to compute 2^x
310   // without using a shift count of x in the computation.
311   static const U kOne = static_cast<U>(1U);
312   static const U kMask = ((kOne << shift) << size) - (kOne << shift);
313   static const U kShift = shift;
314   static const U kSize = size;
315   static const U kNext = kShift + kSize;
316 
317   // Value for the field with all bits set.
318   static const T kMax = static_cast<T>((kOne << size) - 1);
319 
320   // Tells whether the provided value fits into the bit field.
321   static bool is_valid(T value) {
322     return (static_cast<U>(value) & ~static_cast<U>(kMax)) == 0;
323   }
324 
325   // Returns a type U with the bit field value encoded.
326   static U encode(T value) {
327     DCHECK(is_valid(value));
328     return static_cast<U>(value) << shift;
329   }
330 
331   // Returns a type U with the bit field value updated.
332   static U update(U previous, T value) {
333     return (previous & ~kMask) | encode(value);
334   }
335 
336   // Extracts the bit field from the value.
337   static T decode(U value) {
338     return static_cast<T>((value & kMask) >> shift);
339   }
340 
341   STATIC_ASSERT((kNext - 1) / 8 < sizeof(U));
342 };
343 
344 template <class T, int shift, int size>
345 class BitField8 : public BitFieldBase<T, shift, size, uint8_t> {};
346 
347 
348 template <class T, int shift, int size>
349 class BitField16 : public BitFieldBase<T, shift, size, uint16_t> {};
350 
351 
352 template<class T, int shift, int size>
353 class BitField : public BitFieldBase<T, shift, size, uint32_t> { };
354 
355 
356 template<class T, int shift, int size>
357 class BitField64 : public BitFieldBase<T, shift, size, uint64_t> { };
358 
359 
360 // ----------------------------------------------------------------------------
361 // BitSetComputer is a help template for encoding and decoding information for
362 // a variable number of items in an array.
363 //
364 // To encode boolean data in a smi array you would use:
365 // typedef BitSetComputer<bool, 1, kSmiValueSize, uint32_t> BoolComputer;
366 //
367 template <class T, int kBitsPerItem, int kBitsPerWord, class U>
368 class BitSetComputer {
369  public:
370   static const int kItemsPerWord = kBitsPerWord / kBitsPerItem;
371   static const int kMask = (1 << kBitsPerItem) - 1;
372 
373   // The number of array elements required to embed T information for each item.
374   static int word_count(int items) {
375     if (items == 0) return 0;
376     return (items - 1) / kItemsPerWord + 1;
377   }
378 
379   // The array index to look at for item.
380   static int index(int base_index, int item) {
381     return base_index + item / kItemsPerWord;
382   }
383 
384   // Extract T data for a given item from data.
385   static T decode(U data, int item) {
386     return static_cast<T>((data >> shift(item)) & kMask);
387   }
388 
389   // Return the encoding for a store of value for item in previous.
390   static U encode(U previous, int item, T value) {
391     int shift_value = shift(item);
392     int set_bits = (static_cast<int>(value) << shift_value);
393     return (previous & ~(kMask << shift_value)) | set_bits;
394   }
395 
396   static int shift(int item) { return (item % kItemsPerWord) * kBitsPerItem; }
397 };
398 
399 
400 // ----------------------------------------------------------------------------
401 // Hash function.
402 
403 static const uint32_t kZeroHashSeed = 0;
404 
405 // Thomas Wang, Integer Hash Functions.
406 // http://www.concentric.net/~Ttwang/tech/inthash.htm
407 inline uint32_t ComputeIntegerHash(uint32_t key, uint32_t seed) {
408   uint32_t hash = key;
409   hash = hash ^ seed;
410   hash = ~hash + (hash << 15);  // hash = (hash << 15) - hash - 1;
411   hash = hash ^ (hash >> 12);
412   hash = hash + (hash << 2);
413   hash = hash ^ (hash >> 4);
414   hash = hash * 2057;  // hash = (hash + (hash << 3)) + (hash << 11);
415   hash = hash ^ (hash >> 16);
416   return hash & 0x3fffffff;
417 }
418 
419 
420 inline uint32_t ComputeLongHash(uint64_t key) {
421   uint64_t hash = key;
422   hash = ~hash + (hash << 18);  // hash = (hash << 18) - hash - 1;
423   hash = hash ^ (hash >> 31);
424   hash = hash * 21;  // hash = (hash + (hash << 2)) + (hash << 4);
425   hash = hash ^ (hash >> 11);
426   hash = hash + (hash << 6);
427   hash = hash ^ (hash >> 22);
428   return static_cast<uint32_t>(hash);
429 }
430 
431 
432 inline uint32_t ComputePointerHash(void* ptr) {
433   return ComputeIntegerHash(
434       static_cast<uint32_t>(reinterpret_cast<intptr_t>(ptr)),
435       v8::internal::kZeroHashSeed);
436 }
437 
438 
439 // ----------------------------------------------------------------------------
440 // Generated memcpy/memmove
441 
442 // Initializes the codegen support that depends on CPU features.
443 void init_memcopy_functions(Isolate* isolate);
444 
445 #if defined(V8_TARGET_ARCH_IA32) || defined(V8_TARGET_ARCH_X87)
446 // Limit below which the extra overhead of the MemCopy function is likely
447 // to outweigh the benefits of faster copying.
448 const int kMinComplexMemCopy = 64;
449 
450 // Copy memory area. No restrictions.
451 V8_EXPORT_PRIVATE void MemMove(void* dest, const void* src, size_t size);
452 typedef void (*MemMoveFunction)(void* dest, const void* src, size_t size);
453 
454 // Keep the distinction of "move" vs. "copy" for the benefit of other
455 // architectures.
456 V8_INLINE void MemCopy(void* dest, const void* src, size_t size) {
457   MemMove(dest, src, size);
458 }
459 #elif defined(V8_HOST_ARCH_ARM)
460 typedef void (*MemCopyUint8Function)(uint8_t* dest, const uint8_t* src,
461                                      size_t size);
462 V8_EXPORT_PRIVATE extern MemCopyUint8Function memcopy_uint8_function;
463 V8_INLINE void MemCopyUint8Wrapper(uint8_t* dest, const uint8_t* src,
464                                    size_t chars) {
465   memcpy(dest, src, chars);
466 }
467 // For values < 16, the assembler function is slower than the inlined C code.
468 const int kMinComplexMemCopy = 16;
469 V8_INLINE void MemCopy(void* dest, const void* src, size_t size) {
470   (*memcopy_uint8_function)(reinterpret_cast<uint8_t*>(dest),
471                             reinterpret_cast<const uint8_t*>(src), size);
472 }
473 V8_EXPORT_PRIVATE V8_INLINE void MemMove(void* dest, const void* src,
474                                          size_t size) {
475   memmove(dest, src, size);
476 }
477 
478 typedef void (*MemCopyUint16Uint8Function)(uint16_t* dest, const uint8_t* src,
479                                            size_t size);
480 extern MemCopyUint16Uint8Function memcopy_uint16_uint8_function;
481 void MemCopyUint16Uint8Wrapper(uint16_t* dest, const uint8_t* src,
482                                size_t chars);
483 // For values < 12, the assembler function is slower than the inlined C code.
484 const int kMinComplexConvertMemCopy = 12;
485 V8_INLINE void MemCopyUint16Uint8(uint16_t* dest, const uint8_t* src,
486                                   size_t size) {
487   (*memcopy_uint16_uint8_function)(dest, src, size);
488 }
489 #elif defined(V8_HOST_ARCH_MIPS)
490 typedef void (*MemCopyUint8Function)(uint8_t* dest, const uint8_t* src,
491                                      size_t size);
492 V8_EXPORT_PRIVATE extern MemCopyUint8Function memcopy_uint8_function;
493 V8_INLINE void MemCopyUint8Wrapper(uint8_t* dest, const uint8_t* src,
494                                    size_t chars) {
495   memcpy(dest, src, chars);
496 }
497 // For values < 16, the assembler function is slower than the inlined C code.
498 const int kMinComplexMemCopy = 16;
499 V8_INLINE void MemCopy(void* dest, const void* src, size_t size) {
500   (*memcopy_uint8_function)(reinterpret_cast<uint8_t*>(dest),
501                             reinterpret_cast<const uint8_t*>(src), size);
502 }
503 V8_EXPORT_PRIVATE V8_INLINE void MemMove(void* dest, const void* src,
504                                          size_t size) {
505   memmove(dest, src, size);
506 }
507 #else
508 // Copy memory area to disjoint memory area.
509 V8_INLINE void MemCopy(void* dest, const void* src, size_t size) {
510   memcpy(dest, src, size);
511 }
512 V8_EXPORT_PRIVATE V8_INLINE void MemMove(void* dest, const void* src,
513                                          size_t size) {
514   memmove(dest, src, size);
515 }
516 const int kMinComplexMemCopy = 8;
517 #endif  // V8_TARGET_ARCH_IA32
518 
519 
520 // ----------------------------------------------------------------------------
521 // Miscellaneous
522 
523 // Memory offset for lower and higher bits in a 64 bit integer.
524 #if defined(V8_TARGET_LITTLE_ENDIAN)
525 static const int kInt64LowerHalfMemoryOffset = 0;
526 static const int kInt64UpperHalfMemoryOffset = 4;
527 #elif defined(V8_TARGET_BIG_ENDIAN)
528 static const int kInt64LowerHalfMemoryOffset = 4;
529 static const int kInt64UpperHalfMemoryOffset = 0;
530 #endif  // V8_TARGET_LITTLE_ENDIAN
531 
532 // A static resource holds a static instance that can be reserved in
533 // a local scope using an instance of Access.  Attempts to re-reserve
534 // the instance will cause an error.
535 template <typename T>
536 class StaticResource {
537  public:
538   StaticResource() : is_reserved_(false)  {}
539 
540  private:
541   template <typename S> friend class Access;
542   T instance_;
543   bool is_reserved_;
544 };
545 
546 
547 // Locally scoped access to a static resource.
548 template <typename T>
549 class Access {
550  public:
551   explicit Access(StaticResource<T>* resource)
552     : resource_(resource)
553     , instance_(&resource->instance_) {
554     DCHECK(!resource->is_reserved_);
555     resource->is_reserved_ = true;
556   }
557 
558   ~Access() {
559     resource_->is_reserved_ = false;
560     resource_ = NULL;
561     instance_ = NULL;
562   }
563 
564   T* value()  { return instance_; }
565   T* operator -> ()  { return instance_; }
566 
567  private:
568   StaticResource<T>* resource_;
569   T* instance_;
570 };
571 
572 
573 // A pointer that can only be set once and doesn't allow NULL values.
574 template<typename T>
575 class SetOncePointer {
576  public:
577   SetOncePointer() : pointer_(NULL) { }
578 
579   bool is_set() const { return pointer_ != NULL; }
580 
581   T* get() const {
582     DCHECK(pointer_ != NULL);
583     return pointer_;
584   }
585 
586   void set(T* value) {
587     DCHECK(pointer_ == NULL && value != NULL);
588     pointer_ = value;
589   }
590 
591  private:
592   T* pointer_;
593 };
594 
595 
596 template <typename T, int kSize>
597 class EmbeddedVector : public Vector<T> {
598  public:
599   EmbeddedVector() : Vector<T>(buffer_, kSize) { }
600 
601   explicit EmbeddedVector(T initial_value) : Vector<T>(buffer_, kSize) {
602     for (int i = 0; i < kSize; ++i) {
603       buffer_[i] = initial_value;
604     }
605   }
606 
607   // When copying, make underlying Vector to reference our buffer.
608   EmbeddedVector(const EmbeddedVector& rhs)
609       : Vector<T>(rhs) {
610     MemCopy(buffer_, rhs.buffer_, sizeof(T) * kSize);
611     this->set_start(buffer_);
612   }
613 
614   EmbeddedVector& operator=(const EmbeddedVector& rhs) {
615     if (this == &rhs) return *this;
616     Vector<T>::operator=(rhs);
617     MemCopy(buffer_, rhs.buffer_, sizeof(T) * kSize);
618     this->set_start(buffer_);
619     return *this;
620   }
621 
622  private:
623   T buffer_[kSize];
624 };
625 
626 // Compare 8bit/16bit chars to 8bit/16bit chars.
627 template <typename lchar, typename rchar>
628 inline int CompareCharsUnsigned(const lchar* lhs, const rchar* rhs,
629                                 size_t chars) {
630   const lchar* limit = lhs + chars;
631   if (sizeof(*lhs) == sizeof(char) && sizeof(*rhs) == sizeof(char)) {
632     // memcmp compares byte-by-byte, yielding wrong results for two-byte
633     // strings on little-endian systems.
634     return memcmp(lhs, rhs, chars);
635   }
636   while (lhs < limit) {
637     int r = static_cast<int>(*lhs) - static_cast<int>(*rhs);
638     if (r != 0) return r;
639     ++lhs;
640     ++rhs;
641   }
642   return 0;
643 }
644 
645 template <typename lchar, typename rchar>
646 inline int CompareChars(const lchar* lhs, const rchar* rhs, size_t chars) {
647   DCHECK(sizeof(lchar) <= 2);
648   DCHECK(sizeof(rchar) <= 2);
649   if (sizeof(lchar) == 1) {
650     if (sizeof(rchar) == 1) {
651       return CompareCharsUnsigned(reinterpret_cast<const uint8_t*>(lhs),
652                                   reinterpret_cast<const uint8_t*>(rhs),
653                                   chars);
654     } else {
655       return CompareCharsUnsigned(reinterpret_cast<const uint8_t*>(lhs),
656                                   reinterpret_cast<const uint16_t*>(rhs),
657                                   chars);
658     }
659   } else {
660     if (sizeof(rchar) == 1) {
661       return CompareCharsUnsigned(reinterpret_cast<const uint16_t*>(lhs),
662                                   reinterpret_cast<const uint8_t*>(rhs),
663                                   chars);
664     } else {
665       return CompareCharsUnsigned(reinterpret_cast<const uint16_t*>(lhs),
666                                   reinterpret_cast<const uint16_t*>(rhs),
667                                   chars);
668     }
669   }
670 }
671 
672 
673 // Calculate 10^exponent.
674 inline int TenToThe(int exponent) {
675   DCHECK(exponent <= 9);
676   DCHECK(exponent >= 1);
677   int answer = 10;
678   for (int i = 1; i < exponent; i++) answer *= 10;
679   return answer;
680 }
681 
682 
683 template<typename ElementType, int NumElements>
684 class EmbeddedContainer {
685  public:
686   EmbeddedContainer() : elems_() { }
687 
688   int length() const { return NumElements; }
689   const ElementType& operator[](int i) const {
690     DCHECK(i < length());
691     return elems_[i];
692   }
693   ElementType& operator[](int i) {
694     DCHECK(i < length());
695     return elems_[i];
696   }
697 
698  private:
699   ElementType elems_[NumElements];
700 };
701 
702 
703 template<typename ElementType>
704 class EmbeddedContainer<ElementType, 0> {
705  public:
706   int length() const { return 0; }
707   const ElementType& operator[](int i) const {
708     UNREACHABLE();
709     static ElementType t = 0;
710     return t;
711   }
712   ElementType& operator[](int i) {
713     UNREACHABLE();
714     static ElementType t = 0;
715     return t;
716   }
717 };
718 
719 
720 // Helper class for building result strings in a character buffer. The
721 // purpose of the class is to use safe operations that checks the
722 // buffer bounds on all operations in debug mode.
723 // This simple base class does not allow formatted output.
724 class SimpleStringBuilder {
725  public:
726   // Create a string builder with a buffer of the given size. The
727   // buffer is allocated through NewArray<char> and must be
728   // deallocated by the caller of Finalize().
729   explicit SimpleStringBuilder(int size);
730 
731   SimpleStringBuilder(char* buffer, int size)
732       : buffer_(buffer, size), position_(0) { }
733 
734   ~SimpleStringBuilder() { if (!is_finalized()) Finalize(); }
735 
736   int size() const { return buffer_.length(); }
737 
738   // Get the current position in the builder.
739   int position() const {
740     DCHECK(!is_finalized());
741     return position_;
742   }
743 
744   // Reset the position.
745   void Reset() { position_ = 0; }
746 
747   // Add a single character to the builder. It is not allowed to add
748   // 0-characters; use the Finalize() method to terminate the string
749   // instead.
750   void AddCharacter(char c) {
751     DCHECK(c != '\0');
752     DCHECK(!is_finalized() && position_ < buffer_.length());
753     buffer_[position_++] = c;
754   }
755 
756   // Add an entire string to the builder. Uses strlen() internally to
757   // compute the length of the input string.
758   void AddString(const char* s);
759 
760   // Add the first 'n' characters of the given 0-terminated string 's' to the
761   // builder. The input string must have enough characters.
762   void AddSubstring(const char* s, int n);
763 
764   // Add character padding to the builder. If count is non-positive,
765   // nothing is added to the builder.
766   void AddPadding(char c, int count);
767 
768   // Add the decimal representation of the value.
769   void AddDecimalInteger(int value);
770 
771   // Finalize the string by 0-terminating it and returning the buffer.
772   char* Finalize();
773 
774  protected:
775   Vector<char> buffer_;
776   int position_;
777 
778   bool is_finalized() const { return position_ < 0; }
779 
780  private:
781   DISALLOW_IMPLICIT_CONSTRUCTORS(SimpleStringBuilder);
782 };
783 
784 
785 // A poor man's version of STL's bitset: A bit set of enums E (without explicit
786 // values), fitting into an integral type T.
787 template <class E, class T = int>
788 class EnumSet {
789  public:
790   explicit EnumSet(T bits = 0) : bits_(bits) {}
791   bool IsEmpty() const { return bits_ == 0; }
792   bool Contains(E element) const { return (bits_ & Mask(element)) != 0; }
793   bool ContainsAnyOf(const EnumSet& set) const {
794     return (bits_ & set.bits_) != 0;
795   }
796   void Add(E element) { bits_ |= Mask(element); }
797   void Add(const EnumSet& set) { bits_ |= set.bits_; }
798   void Remove(E element) { bits_ &= ~Mask(element); }
799   void Remove(const EnumSet& set) { bits_ &= ~set.bits_; }
800   void RemoveAll() { bits_ = 0; }
801   void Intersect(const EnumSet& set) { bits_ &= set.bits_; }
802   T ToIntegral() const { return bits_; }
803   bool operator==(const EnumSet& set) { return bits_ == set.bits_; }
804   bool operator!=(const EnumSet& set) { return bits_ != set.bits_; }
805   EnumSet<E, T> operator|(const EnumSet& set) const {
806     return EnumSet<E, T>(bits_ | set.bits_);
807   }
808 
809  private:
810   T Mask(E element) const {
811     // The strange typing in DCHECK is necessary to avoid stupid warnings, see:
812     // http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43680
813     DCHECK(static_cast<int>(element) < static_cast<int>(sizeof(T) * CHAR_BIT));
814     return static_cast<T>(1) << element;
815   }
816 
817   T bits_;
818 };
819 
820 // Bit field extraction.
821 inline uint32_t unsigned_bitextract_32(int msb, int lsb, uint32_t x) {
822   return (x >> lsb) & ((1 << (1 + msb - lsb)) - 1);
823 }
824 
825 inline uint64_t unsigned_bitextract_64(int msb, int lsb, uint64_t x) {
826   return (x >> lsb) & ((static_cast<uint64_t>(1) << (1 + msb - lsb)) - 1);
827 }
828 
829 inline int32_t signed_bitextract_32(int msb, int lsb, int32_t x) {
830   return (x << (31 - msb)) >> (lsb + 31 - msb);
831 }
832 
833 inline int signed_bitextract_64(int msb, int lsb, int x) {
834   // TODO(jbramley): This is broken for big bitfields.
835   return (x << (63 - msb)) >> (lsb + 63 - msb);
836 }
837 
838 // Check number width.
839 inline bool is_intn(int64_t x, unsigned n) {
840   DCHECK((0 < n) && (n < 64));
841   int64_t limit = static_cast<int64_t>(1) << (n - 1);
842   return (-limit <= x) && (x < limit);
843 }
844 
845 inline bool is_uintn(int64_t x, unsigned n) {
846   DCHECK((0 < n) && (n < (sizeof(x) * kBitsPerByte)));
847   return !(x >> n);
848 }
849 
850 template <class T>
851 inline T truncate_to_intn(T x, unsigned n) {
852   DCHECK((0 < n) && (n < (sizeof(x) * kBitsPerByte)));
853   return (x & ((static_cast<T>(1) << n) - 1));
854 }
855 
856 #define INT_1_TO_63_LIST(V)                                                    \
857 V(1)  V(2)  V(3)  V(4)  V(5)  V(6)  V(7)  V(8)                                 \
858 V(9)  V(10) V(11) V(12) V(13) V(14) V(15) V(16)                                \
859 V(17) V(18) V(19) V(20) V(21) V(22) V(23) V(24)                                \
860 V(25) V(26) V(27) V(28) V(29) V(30) V(31) V(32)                                \
861 V(33) V(34) V(35) V(36) V(37) V(38) V(39) V(40)                                \
862 V(41) V(42) V(43) V(44) V(45) V(46) V(47) V(48)                                \
863 V(49) V(50) V(51) V(52) V(53) V(54) V(55) V(56)                                \
864 V(57) V(58) V(59) V(60) V(61) V(62) V(63)
865 
866 #define DECLARE_IS_INT_N(N)                                                    \
867 inline bool is_int##N(int64_t x) { return is_intn(x, N); }
868 #define DECLARE_IS_UINT_N(N)                                                   \
869 template <class T>                                                             \
870 inline bool is_uint##N(T x) { return is_uintn(x, N); }
871 #define DECLARE_TRUNCATE_TO_INT_N(N)                                           \
872 template <class T>                                                             \
873 inline T truncate_to_int##N(T x) { return truncate_to_intn(x, N); }
874 INT_1_TO_63_LIST(DECLARE_IS_INT_N)
875 INT_1_TO_63_LIST(DECLARE_IS_UINT_N)
876 INT_1_TO_63_LIST(DECLARE_TRUNCATE_TO_INT_N)
877 #undef DECLARE_IS_INT_N
878 #undef DECLARE_IS_UINT_N
879 #undef DECLARE_TRUNCATE_TO_INT_N
880 
881 class TypeFeedbackId {
882  public:
883   explicit TypeFeedbackId(int id) : id_(id) { }
884   int ToInt() const { return id_; }
885 
886   static TypeFeedbackId None() { return TypeFeedbackId(kNoneId); }
887   bool IsNone() const { return id_ == kNoneId; }
888 
889  private:
890   static const int kNoneId = -1;
891 
892   int id_;
893 };
894 
895 inline bool operator<(TypeFeedbackId lhs, TypeFeedbackId rhs) {
896   return lhs.ToInt() < rhs.ToInt();
897 }
898 inline bool operator>(TypeFeedbackId lhs, TypeFeedbackId rhs) {
899   return lhs.ToInt() > rhs.ToInt();
900 }
901 
902 class FeedbackSlot {
903  public:
904   FeedbackSlot() : id_(kInvalidSlot) {}
905   explicit FeedbackSlot(int id) : id_(id) {}
906 
907   int ToInt() const { return id_; }
908 
909   static FeedbackSlot Invalid() { return FeedbackSlot(); }
910   bool IsInvalid() const { return id_ == kInvalidSlot; }
911 
912   bool operator==(FeedbackSlot that) const { return this->id_ == that.id_; }
913   bool operator!=(FeedbackSlot that) const { return !(*this == that); }
914 
915   friend size_t hash_value(FeedbackSlot slot) { return slot.ToInt(); }
916   friend std::ostream& operator<<(std::ostream& os, FeedbackSlot);
917 
918  private:
919   static const int kInvalidSlot = -1;
920 
921   int id_;
922 };
923 
924 
925 class BailoutId {
926  public:
927   explicit BailoutId(int id) : id_(id) { }
928   int ToInt() const { return id_; }
929 
930   static BailoutId None() { return BailoutId(kNoneId); }
931   static BailoutId ScriptContext() { return BailoutId(kScriptContextId); }
932   static BailoutId FunctionContext() { return BailoutId(kFunctionContextId); }
933   static BailoutId FunctionEntry() { return BailoutId(kFunctionEntryId); }
934   static BailoutId Declarations() { return BailoutId(kDeclarationsId); }
935   static BailoutId FirstUsable() { return BailoutId(kFirstUsableId); }
936   static BailoutId StubEntry() { return BailoutId(kStubEntryId); }
937 
938   // Special bailout id support for deopting into the {JSConstructStub} stub.
939   // The following hard-coded deoptimization points are supported by the stub:
940   //  - {ConstructStubCreate} maps to {construct_stub_create_deopt_pc_offset}.
941   //  - {ConstructStubInvoke} maps to {construct_stub_invoke_deopt_pc_offset}.
942   static BailoutId ConstructStubCreate() { return BailoutId(1); }
943   static BailoutId ConstructStubInvoke() { return BailoutId(2); }
944   bool IsValidForConstructStub() const {
945     return id_ == ConstructStubCreate().ToInt() ||
946            id_ == ConstructStubInvoke().ToInt();
947   }
948 
949   bool IsNone() const { return id_ == kNoneId; }
950   bool operator==(const BailoutId& other) const { return id_ == other.id_; }
951   bool operator!=(const BailoutId& other) const { return id_ != other.id_; }
952   friend size_t hash_value(BailoutId);
953   V8_EXPORT_PRIVATE friend std::ostream& operator<<(std::ostream&, BailoutId);
954 
955  private:
956   static const int kNoneId = -1;
957 
958   // Using 0 could disguise errors.
959   static const int kScriptContextId = 1;
960   static const int kFunctionContextId = 2;
961   static const int kFunctionEntryId = 3;
962 
963   // This AST id identifies the point after the declarations have been visited.
964   // We need it to capture the environment effects of declarations that emit
965   // code (function declarations).
966   static const int kDeclarationsId = 4;
967 
968   // Every FunctionState starts with this id.
969   static const int kFirstUsableId = 5;
970 
971   // Every compiled stub starts with this id.
972   static const int kStubEntryId = 6;
973 
974   int id_;
975 };
976 
977 
978 // ----------------------------------------------------------------------------
979 // I/O support.
980 
981 // Our version of printf().
982 V8_EXPORT_PRIVATE void PRINTF_FORMAT(1, 2) PrintF(const char* format, ...);
983 void PRINTF_FORMAT(2, 3) PrintF(FILE* out, const char* format, ...);
984 
985 // Prepends the current process ID to the output.
986 void PRINTF_FORMAT(1, 2) PrintPID(const char* format, ...);
987 
988 // Prepends the current process ID and given isolate pointer to the output.
989 void PRINTF_FORMAT(2, 3) PrintIsolate(void* isolate, const char* format, ...);
990 
991 // Safe formatting print. Ensures that str is always null-terminated.
992 // Returns the number of chars written, or -1 if output was truncated.
993 int PRINTF_FORMAT(2, 3) SNPrintF(Vector<char> str, const char* format, ...);
994 int PRINTF_FORMAT(2, 0)
995     VSNPrintF(Vector<char> str, const char* format, va_list args);
996 
997 void StrNCpy(Vector<char> dest, const char* src, size_t n);
998 
999 // Our version of fflush.
1000 void Flush(FILE* out);
1001 
1002 inline void Flush() {
1003   Flush(stdout);
1004 }
1005 
1006 
1007 // Read a line of characters after printing the prompt to stdout. The resulting
1008 // char* needs to be disposed off with DeleteArray by the caller.
1009 char* ReadLine(const char* prompt);
1010 
1011 
1012 // Read and return the raw bytes in a file. the size of the buffer is returned
1013 // in size.
1014 // The returned buffer must be freed by the caller.
1015 byte* ReadBytes(const char* filename, int* size, bool verbose = true);
1016 
1017 
1018 // Append size chars from str to the file given by filename.
1019 // The file is overwritten. Returns the number of chars written.
1020 int AppendChars(const char* filename,
1021                 const char* str,
1022                 int size,
1023                 bool verbose = true);
1024 
1025 
1026 // Write size chars from str to the file given by filename.
1027 // The file is overwritten. Returns the number of chars written.
1028 int WriteChars(const char* filename,
1029                const char* str,
1030                int size,
1031                bool verbose = true);
1032 
1033 
1034 // Write size bytes to the file given by filename.
1035 // The file is overwritten. Returns the number of bytes written.
1036 int WriteBytes(const char* filename,
1037                const byte* bytes,
1038                int size,
1039                bool verbose = true);
1040 
1041 
1042 // Write the C code
1043 // const char* <varname> = "<str>";
1044 // const int <varname>_len = <len>;
1045 // to the file given by filename. Only the first len chars are written.
1046 int WriteAsCFile(const char* filename, const char* varname,
1047                  const char* str, int size, bool verbose = true);
1048 
1049 
1050 // ----------------------------------------------------------------------------
1051 // Memory
1052 
1053 // Copies words from |src| to |dst|. The data spans must not overlap.
1054 template <typename T>
1055 inline void CopyWords(T* dst, const T* src, size_t num_words) {
1056   STATIC_ASSERT(sizeof(T) == kPointerSize);
1057   // TODO(mvstanton): disabled because mac builds are bogus failing on this
1058   // assert. They are doing a signed comparison. Investigate in
1059   // the morning.
1060   // DCHECK(Min(dst, const_cast<T*>(src)) + num_words <=
1061   //       Max(dst, const_cast<T*>(src)));
1062   DCHECK(num_words > 0);
1063 
1064   // Use block copying MemCopy if the segment we're copying is
1065   // enough to justify the extra call/setup overhead.
1066   static const size_t kBlockCopyLimit = 16;
1067 
1068   if (num_words < kBlockCopyLimit) {
1069     do {
1070       num_words--;
1071       *dst++ = *src++;
1072     } while (num_words > 0);
1073   } else {
1074     MemCopy(dst, src, num_words * kPointerSize);
1075   }
1076 }
1077 
1078 
1079 // Copies words from |src| to |dst|. No restrictions.
1080 template <typename T>
1081 inline void MoveWords(T* dst, const T* src, size_t num_words) {
1082   STATIC_ASSERT(sizeof(T) == kPointerSize);
1083   DCHECK(num_words > 0);
1084 
1085   // Use block copying MemCopy if the segment we're copying is
1086   // enough to justify the extra call/setup overhead.
1087   static const size_t kBlockCopyLimit = 16;
1088 
1089   if (num_words < kBlockCopyLimit &&
1090       ((dst < src) || (dst >= (src + num_words * kPointerSize)))) {
1091     T* end = dst + num_words;
1092     do {
1093       num_words--;
1094       *dst++ = *src++;
1095     } while (num_words > 0);
1096   } else {
1097     MemMove(dst, src, num_words * kPointerSize);
1098   }
1099 }
1100 
1101 
1102 // Copies data from |src| to |dst|.  The data spans must not overlap.
1103 template <typename T>
1104 inline void CopyBytes(T* dst, const T* src, size_t num_bytes) {
1105   STATIC_ASSERT(sizeof(T) == 1);
1106   DCHECK(Min(dst, const_cast<T*>(src)) + num_bytes <=
1107          Max(dst, const_cast<T*>(src)));
1108   if (num_bytes == 0) return;
1109 
1110   // Use block copying MemCopy if the segment we're copying is
1111   // enough to justify the extra call/setup overhead.
1112   static const int kBlockCopyLimit = kMinComplexMemCopy;
1113 
1114   if (num_bytes < static_cast<size_t>(kBlockCopyLimit)) {
1115     do {
1116       num_bytes--;
1117       *dst++ = *src++;
1118     } while (num_bytes > 0);
1119   } else {
1120     MemCopy(dst, src, num_bytes);
1121   }
1122 }
1123 
1124 
1125 template <typename T, typename U>
1126 inline void MemsetPointer(T** dest, U* value, int counter) {
1127 #ifdef DEBUG
1128   T* a = NULL;
1129   U* b = NULL;
1130   a = b;  // Fake assignment to check assignability.
1131   USE(a);
1132 #endif  // DEBUG
1133 #if V8_HOST_ARCH_IA32
1134 #define STOS "stosl"
1135 #elif V8_HOST_ARCH_X64
1136 #if V8_HOST_ARCH_32_BIT
1137 #define STOS "addr32 stosl"
1138 #else
1139 #define STOS "stosq"
1140 #endif
1141 #endif
1142 
1143 #if defined(MEMORY_SANITIZER)
1144   // MemorySanitizer does not understand inline assembly.
1145 #undef STOS
1146 #endif
1147 
1148 #if defined(__GNUC__) && defined(STOS)
1149   asm volatile(
1150       "cld;"
1151       "rep ; " STOS
1152       : "+&c" (counter), "+&D" (dest)
1153       : "a" (value)
1154       : "memory", "cc");
1155 #else
1156   for (int i = 0; i < counter; i++) {
1157     dest[i] = value;
1158   }
1159 #endif
1160 
1161 #undef STOS
1162 }
1163 
1164 
1165 // Simple support to read a file into a 0-terminated C-string.
1166 // The returned buffer must be freed by the caller.
1167 // On return, *exits tells whether the file existed.
1168 V8_EXPORT_PRIVATE Vector<const char> ReadFile(const char* filename,
1169                                               bool* exists,
1170                                               bool verbose = true);
1171 Vector<const char> ReadFile(FILE* file,
1172                             bool* exists,
1173                             bool verbose = true);
1174 
1175 
1176 template <typename sourcechar, typename sinkchar>
1177 INLINE(static void CopyCharsUnsigned(sinkchar* dest, const sourcechar* src,
1178                                      size_t chars));
1179 #if defined(V8_HOST_ARCH_ARM)
1180 INLINE(void CopyCharsUnsigned(uint8_t* dest, const uint8_t* src, size_t chars));
1181 INLINE(void CopyCharsUnsigned(uint16_t* dest, const uint8_t* src,
1182                               size_t chars));
1183 INLINE(void CopyCharsUnsigned(uint16_t* dest, const uint16_t* src,
1184                               size_t chars));
1185 #elif defined(V8_HOST_ARCH_MIPS)
1186 INLINE(void CopyCharsUnsigned(uint8_t* dest, const uint8_t* src, size_t chars));
1187 INLINE(void CopyCharsUnsigned(uint16_t* dest, const uint16_t* src,
1188                               size_t chars));
1189 #elif defined(V8_HOST_ARCH_PPC) || defined(V8_HOST_ARCH_S390)
1190 INLINE(void CopyCharsUnsigned(uint8_t* dest, const uint8_t* src, size_t chars));
1191 INLINE(void CopyCharsUnsigned(uint16_t* dest, const uint16_t* src,
1192                               size_t chars));
1193 #endif
1194 
1195 // Copy from 8bit/16bit chars to 8bit/16bit chars.
1196 template <typename sourcechar, typename sinkchar>
1197 INLINE(void CopyChars(sinkchar* dest, const sourcechar* src, size_t chars));
1198 
1199 template <typename sourcechar, typename sinkchar>
1200 void CopyChars(sinkchar* dest, const sourcechar* src, size_t chars) {
1201   DCHECK(sizeof(sourcechar) <= 2);
1202   DCHECK(sizeof(sinkchar) <= 2);
1203   if (sizeof(sinkchar) == 1) {
1204     if (sizeof(sourcechar) == 1) {
1205       CopyCharsUnsigned(reinterpret_cast<uint8_t*>(dest),
1206                         reinterpret_cast<const uint8_t*>(src),
1207                         chars);
1208     } else {
1209       CopyCharsUnsigned(reinterpret_cast<uint8_t*>(dest),
1210                         reinterpret_cast<const uint16_t*>(src),
1211                         chars);
1212     }
1213   } else {
1214     if (sizeof(sourcechar) == 1) {
1215       CopyCharsUnsigned(reinterpret_cast<uint16_t*>(dest),
1216                         reinterpret_cast<const uint8_t*>(src),
1217                         chars);
1218     } else {
1219       CopyCharsUnsigned(reinterpret_cast<uint16_t*>(dest),
1220                         reinterpret_cast<const uint16_t*>(src),
1221                         chars);
1222     }
1223   }
1224 }
1225 
1226 template <typename sourcechar, typename sinkchar>
1227 void CopyCharsUnsigned(sinkchar* dest, const sourcechar* src, size_t chars) {
1228   sinkchar* limit = dest + chars;
1229   if ((sizeof(*dest) == sizeof(*src)) &&
1230       (chars >= static_cast<int>(kMinComplexMemCopy / sizeof(*dest)))) {
1231     MemCopy(dest, src, chars * sizeof(*dest));
1232   } else {
1233     while (dest < limit) *dest++ = static_cast<sinkchar>(*src++);
1234   }
1235 }
1236 
1237 
1238 #if defined(V8_HOST_ARCH_ARM)
1239 void CopyCharsUnsigned(uint8_t* dest, const uint8_t* src, size_t chars) {
1240   switch (static_cast<unsigned>(chars)) {
1241     case 0:
1242       break;
1243     case 1:
1244       *dest = *src;
1245       break;
1246     case 2:
1247       memcpy(dest, src, 2);
1248       break;
1249     case 3:
1250       memcpy(dest, src, 3);
1251       break;
1252     case 4:
1253       memcpy(dest, src, 4);
1254       break;
1255     case 5:
1256       memcpy(dest, src, 5);
1257       break;
1258     case 6:
1259       memcpy(dest, src, 6);
1260       break;
1261     case 7:
1262       memcpy(dest, src, 7);
1263       break;
1264     case 8:
1265       memcpy(dest, src, 8);
1266       break;
1267     case 9:
1268       memcpy(dest, src, 9);
1269       break;
1270     case 10:
1271       memcpy(dest, src, 10);
1272       break;
1273     case 11:
1274       memcpy(dest, src, 11);
1275       break;
1276     case 12:
1277       memcpy(dest, src, 12);
1278       break;
1279     case 13:
1280       memcpy(dest, src, 13);
1281       break;
1282     case 14:
1283       memcpy(dest, src, 14);
1284       break;
1285     case 15:
1286       memcpy(dest, src, 15);
1287       break;
1288     default:
1289       MemCopy(dest, src, chars);
1290       break;
1291   }
1292 }
1293 
1294 
1295 void CopyCharsUnsigned(uint16_t* dest, const uint8_t* src, size_t chars) {
1296   if (chars >= static_cast<size_t>(kMinComplexConvertMemCopy)) {
1297     MemCopyUint16Uint8(dest, src, chars);
1298   } else {
1299     MemCopyUint16Uint8Wrapper(dest, src, chars);
1300   }
1301 }
1302 
1303 
1304 void CopyCharsUnsigned(uint16_t* dest, const uint16_t* src, size_t chars) {
1305   switch (static_cast<unsigned>(chars)) {
1306     case 0:
1307       break;
1308     case 1:
1309       *dest = *src;
1310       break;
1311     case 2:
1312       memcpy(dest, src, 4);
1313       break;
1314     case 3:
1315       memcpy(dest, src, 6);
1316       break;
1317     case 4:
1318       memcpy(dest, src, 8);
1319       break;
1320     case 5:
1321       memcpy(dest, src, 10);
1322       break;
1323     case 6:
1324       memcpy(dest, src, 12);
1325       break;
1326     case 7:
1327       memcpy(dest, src, 14);
1328       break;
1329     default:
1330       MemCopy(dest, src, chars * sizeof(*dest));
1331       break;
1332   }
1333 }
1334 
1335 
1336 #elif defined(V8_HOST_ARCH_MIPS)
1337 void CopyCharsUnsigned(uint8_t* dest, const uint8_t* src, size_t chars) {
1338   if (chars < kMinComplexMemCopy) {
1339     memcpy(dest, src, chars);
1340   } else {
1341     MemCopy(dest, src, chars);
1342   }
1343 }
1344 
1345 void CopyCharsUnsigned(uint16_t* dest, const uint16_t* src, size_t chars) {
1346   if (chars < kMinComplexMemCopy) {
1347     memcpy(dest, src, chars * sizeof(*dest));
1348   } else {
1349     MemCopy(dest, src, chars * sizeof(*dest));
1350   }
1351 }
1352 #elif defined(V8_HOST_ARCH_PPC) || defined(V8_HOST_ARCH_S390)
1353 #define CASE(n)           \
1354   case n:                 \
1355     memcpy(dest, src, n); \
1356     break
1357 void CopyCharsUnsigned(uint8_t* dest, const uint8_t* src, size_t chars) {
1358   switch (static_cast<unsigned>(chars)) {
1359     case 0:
1360       break;
1361     case 1:
1362       *dest = *src;
1363       break;
1364       CASE(2);
1365       CASE(3);
1366       CASE(4);
1367       CASE(5);
1368       CASE(6);
1369       CASE(7);
1370       CASE(8);
1371       CASE(9);
1372       CASE(10);
1373       CASE(11);
1374       CASE(12);
1375       CASE(13);
1376       CASE(14);
1377       CASE(15);
1378       CASE(16);
1379       CASE(17);
1380       CASE(18);
1381       CASE(19);
1382       CASE(20);
1383       CASE(21);
1384       CASE(22);
1385       CASE(23);
1386       CASE(24);
1387       CASE(25);
1388       CASE(26);
1389       CASE(27);
1390       CASE(28);
1391       CASE(29);
1392       CASE(30);
1393       CASE(31);
1394       CASE(32);
1395       CASE(33);
1396       CASE(34);
1397       CASE(35);
1398       CASE(36);
1399       CASE(37);
1400       CASE(38);
1401       CASE(39);
1402       CASE(40);
1403       CASE(41);
1404       CASE(42);
1405       CASE(43);
1406       CASE(44);
1407       CASE(45);
1408       CASE(46);
1409       CASE(47);
1410       CASE(48);
1411       CASE(49);
1412       CASE(50);
1413       CASE(51);
1414       CASE(52);
1415       CASE(53);
1416       CASE(54);
1417       CASE(55);
1418       CASE(56);
1419       CASE(57);
1420       CASE(58);
1421       CASE(59);
1422       CASE(60);
1423       CASE(61);
1424       CASE(62);
1425       CASE(63);
1426       CASE(64);
1427     default:
1428       memcpy(dest, src, chars);
1429       break;
1430   }
1431 }
1432 #undef CASE
1433 
1434 #define CASE(n)               \
1435   case n:                     \
1436     memcpy(dest, src, n * 2); \
1437     break
1438 void CopyCharsUnsigned(uint16_t* dest, const uint16_t* src, size_t chars) {
1439   switch (static_cast<unsigned>(chars)) {
1440     case 0:
1441       break;
1442     case 1:
1443       *dest = *src;
1444       break;
1445       CASE(2);
1446       CASE(3);
1447       CASE(4);
1448       CASE(5);
1449       CASE(6);
1450       CASE(7);
1451       CASE(8);
1452       CASE(9);
1453       CASE(10);
1454       CASE(11);
1455       CASE(12);
1456       CASE(13);
1457       CASE(14);
1458       CASE(15);
1459       CASE(16);
1460       CASE(17);
1461       CASE(18);
1462       CASE(19);
1463       CASE(20);
1464       CASE(21);
1465       CASE(22);
1466       CASE(23);
1467       CASE(24);
1468       CASE(25);
1469       CASE(26);
1470       CASE(27);
1471       CASE(28);
1472       CASE(29);
1473       CASE(30);
1474       CASE(31);
1475       CASE(32);
1476     default:
1477       memcpy(dest, src, chars * 2);
1478       break;
1479   }
1480 }
1481 #undef CASE
1482 #endif
1483 
1484 
1485 class StringBuilder : public SimpleStringBuilder {
1486  public:
1487   explicit StringBuilder(int size) : SimpleStringBuilder(size) { }
1488   StringBuilder(char* buffer, int size) : SimpleStringBuilder(buffer, size) { }
1489 
1490   // Add formatted contents to the builder just like printf().
1491   void PRINTF_FORMAT(2, 3) AddFormatted(const char* format, ...);
1492 
1493   // Add formatted contents like printf based on a va_list.
1494   void PRINTF_FORMAT(2, 0) AddFormattedList(const char* format, va_list list);
1495 
1496  private:
1497   DISALLOW_IMPLICIT_CONSTRUCTORS(StringBuilder);
1498 };
1499 
1500 
1501 bool DoubleToBoolean(double d);
1502 
1503 template <typename Stream>
1504 bool StringToArrayIndex(Stream* stream, uint32_t* index) {
1505   uint16_t ch = stream->GetNext();
1506 
1507   // If the string begins with a '0' character, it must only consist
1508   // of it to be a legal array index.
1509   if (ch == '0') {
1510     *index = 0;
1511     return !stream->HasMore();
1512   }
1513 
1514   // Convert string to uint32 array index; character by character.
1515   int d = ch - '0';
1516   if (d < 0 || d > 9) return false;
1517   uint32_t result = d;
1518   while (stream->HasMore()) {
1519     d = stream->GetNext() - '0';
1520     if (d < 0 || d > 9) return false;
1521     // Check that the new result is below the 32 bit limit.
1522     if (result > 429496729U - ((d + 3) >> 3)) return false;
1523     result = (result * 10) + d;
1524   }
1525 
1526   *index = result;
1527   return true;
1528 }
1529 
1530 
1531 // Returns current value of top of the stack. Works correctly with ASAN.
1532 DISABLE_ASAN
1533 inline uintptr_t GetCurrentStackPosition() {
1534   // Takes the address of the limit variable in order to find out where
1535   // the top of stack is right now.
1536   uintptr_t limit = reinterpret_cast<uintptr_t>(&limit);
1537   return limit;
1538 }
1539 
1540 template <typename V>
1541 static inline V ReadUnalignedValue(const void* p) {
1542 #if !(V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_ARM)
1543   return *reinterpret_cast<const V*>(p);
1544 #else   // V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_ARM
1545   V r;
1546   memmove(&r, p, sizeof(V));
1547   return r;
1548 #endif  // V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_ARM
1549 }
1550 
1551 template <typename V>
1552 static inline void WriteUnalignedValue(void* p, V value) {
1553 #if !(V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_ARM)
1554   *(reinterpret_cast<V*>(p)) = value;
1555 #else   // V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_ARM
1556   memmove(p, &value, sizeof(V));
1557 #endif  // V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_ARM
1558 }
1559 
1560 static inline double ReadFloatValue(const void* p) {
1561   return ReadUnalignedValue<float>(p);
1562 }
1563 
1564 static inline double ReadDoubleValue(const void* p) {
1565   return ReadUnalignedValue<double>(p);
1566 }
1567 
1568 static inline void WriteDoubleValue(void* p, double value) {
1569   WriteUnalignedValue(p, value);
1570 }
1571 
1572 static inline uint16_t ReadUnalignedUInt16(const void* p) {
1573   return ReadUnalignedValue<uint16_t>(p);
1574 }
1575 
1576 static inline void WriteUnalignedUInt16(void* p, uint16_t value) {
1577   WriteUnalignedValue(p, value);
1578 }
1579 
1580 static inline uint32_t ReadUnalignedUInt32(const void* p) {
1581   return ReadUnalignedValue<uint32_t>(p);
1582 }
1583 
1584 static inline void WriteUnalignedUInt32(void* p, uint32_t value) {
1585   WriteUnalignedValue(p, value);
1586 }
1587 
1588 template <typename V>
1589 static inline V ReadLittleEndianValue(const void* p) {
1590 #if defined(V8_TARGET_LITTLE_ENDIAN)
1591   return ReadUnalignedValue<V>(p);
1592 #elif defined(V8_TARGET_BIG_ENDIAN)
1593   V ret = 0;
1594   const byte* src = reinterpret_cast<const byte*>(p);
1595   byte* dst = reinterpret_cast<byte*>(&ret);
1596   for (size_t i = 0; i < sizeof(V); i++) {
1597     dst[i] = src[sizeof(V) - i - 1];
1598   }
1599   return ret;
1600 #endif  // V8_TARGET_LITTLE_ENDIAN
1601 }
1602 
1603 template <typename V>
1604 static inline void WriteLittleEndianValue(void* p, V value) {
1605 #if defined(V8_TARGET_LITTLE_ENDIAN)
1606   WriteUnalignedValue<V>(p, value);
1607 #elif defined(V8_TARGET_BIG_ENDIAN)
1608   byte* src = reinterpret_cast<byte*>(&value);
1609   byte* dst = reinterpret_cast<byte*>(p);
1610   for (size_t i = 0; i < sizeof(V); i++) {
1611     dst[i] = src[sizeof(V) - i - 1];
1612   }
1613 #endif  // V8_TARGET_LITTLE_ENDIAN
1614 }
1615 
1616 // Represents a linked list that threads through the nodes in the linked list.
1617 // Entries in the list are pointers to nodes. The nodes need to have a T**
1618 // next() method that returns the location where the next value is stored.
1619 template <typename T>
1620 class ThreadedList final {
1621  public:
1622   ThreadedList() : head_(nullptr), tail_(&head_) {}
1623   void Add(T* v) {
1624     DCHECK_NULL(*tail_);
1625     DCHECK_NULL(*v->next());
1626     *tail_ = v;
1627     tail_ = v->next();
1628   }
1629 
1630   void Clear() {
1631     head_ = nullptr;
1632     tail_ = &head_;
1633   }
1634 
1635   class Iterator final {
1636    public:
1637     Iterator& operator++() {
1638       entry_ = (*entry_)->next();
1639       return *this;
1640     }
1641     bool operator!=(const Iterator& other) { return entry_ != other.entry_; }
1642     T* operator*() { return *entry_; }
1643     Iterator& operator=(T* entry) {
1644       T* next = *(*entry_)->next();
1645       *entry->next() = next;
1646       *entry_ = entry;
1647       return *this;
1648     }
1649 
1650    private:
1651     explicit Iterator(T** entry) : entry_(entry) {}
1652 
1653     T** entry_;
1654 
1655     friend class ThreadedList;
1656   };
1657 
1658   class ConstIterator final {
1659    public:
1660     ConstIterator& operator++() {
1661       entry_ = (*entry_)->next();
1662       return *this;
1663     }
1664     bool operator!=(const ConstIterator& other) {
1665       return entry_ != other.entry_;
1666     }
1667     const T* operator*() const { return *entry_; }
1668 
1669    private:
1670     explicit ConstIterator(T* const* entry) : entry_(entry) {}
1671 
1672     T* const* entry_;
1673 
1674     friend class ThreadedList;
1675   };
1676 
1677   Iterator begin() { return Iterator(&head_); }
1678   Iterator end() { return Iterator(tail_); }
1679 
1680   ConstIterator begin() const { return ConstIterator(&head_); }
1681   ConstIterator end() const { return ConstIterator(tail_); }
1682 
1683   void Rewind(Iterator reset_point) {
1684     tail_ = reset_point.entry_;
1685     *tail_ = nullptr;
1686   }
1687 
1688   void MoveTail(ThreadedList<T>* parent, Iterator location) {
1689     if (parent->end() != location) {
1690       DCHECK_NULL(*tail_);
1691       *tail_ = *location;
1692       tail_ = parent->tail_;
1693       parent->Rewind(location);
1694     }
1695   }
1696 
1697   bool is_empty() const { return head_ == nullptr; }
1698 
1699   // Slow. For testing purposes.
1700   int LengthForTest() {
1701     int result = 0;
1702     for (Iterator t = begin(); t != end(); ++t) ++result;
1703     return result;
1704   }
1705   T* AtForTest(int i) {
1706     Iterator t = begin();
1707     while (i-- > 0) ++t;
1708     return *t;
1709   }
1710 
1711  private:
1712   T* head_;
1713   T** tail_;
1714   DISALLOW_COPY_AND_ASSIGN(ThreadedList);
1715 };
1716 
1717 // Can be used to create a threaded list of |T|.
1718 template <typename T>
1719 class ThreadedListZoneEntry final : public ZoneObject {
1720  public:
1721   explicit ThreadedListZoneEntry(T value) : value_(value), next_(nullptr) {}
1722 
1723   T value() { return value_; }
1724   ThreadedListZoneEntry<T>** next() { return &next_; }
1725 
1726  private:
1727   T value_;
1728   ThreadedListZoneEntry<T>* next_;
1729   DISALLOW_COPY_AND_ASSIGN(ThreadedListZoneEntry);
1730 };
1731 
1732 }  // namespace internal
1733 }  // namespace v8
1734 
1735 #endif  // V8_UTILS_H_
1736