1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the PPCISelLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "PPCISelLowering.h"
15 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPCCallingConv.h"
17 #include "PPCCCState.h"
18 #include "PPCMachineFunctionInfo.h"
19 #include "PPCPerfectShuffle.h"
20 #include "PPCTargetMachine.h"
21 #include "PPCTargetObjectFile.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/ADT/StringSwitch.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/CodeGen/CallingConvLower.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineInstrBuilder.h"
30 #include "llvm/CodeGen/MachineLoopInfo.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/SelectionDAG.h"
33 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
34 #include "llvm/IR/CallingConv.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/Intrinsics.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/Format.h"
42 #include "llvm/Support/MathExtras.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include "llvm/Target/TargetOptions.h"
45 #include <list>
46
47 using namespace llvm;
48
49 #define DEBUG_TYPE "ppc-lowering"
50
51 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
52 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
53
54 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
55 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
56
57 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
58 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
59
60 static cl::opt<bool> DisableSCO("disable-ppc-sco",
61 cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
62
63 STATISTIC(NumTailCalls, "Number of tail calls");
64 STATISTIC(NumSiblingCalls, "Number of sibling calls");
65
66 // FIXME: Remove this once the bug has been fixed!
67 extern cl::opt<bool> ANDIGlueBug;
68
PPCTargetLowering(const PPCTargetMachine & TM,const PPCSubtarget & STI)69 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
70 const PPCSubtarget &STI)
71 : TargetLowering(TM), Subtarget(STI) {
72 // Use _setjmp/_longjmp instead of setjmp/longjmp.
73 setUseUnderscoreSetJmp(true);
74 setUseUnderscoreLongJmp(true);
75
76 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
77 // arguments are at least 4/8 bytes aligned.
78 bool isPPC64 = Subtarget.isPPC64();
79 setMinStackArgumentAlignment(isPPC64 ? 8:4);
80
81 // Set up the register classes.
82 addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
83 if (!useSoftFloat()) {
84 addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
85 addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
86 }
87
88 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
89 for (MVT VT : MVT::integer_valuetypes()) {
90 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
91 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
92 }
93
94 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
95
96 // PowerPC has pre-inc load and store's.
97 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
98 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
99 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
100 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
101 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
102 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
103 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
104 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
105 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
106 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
107 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
108 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
109 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
110 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
111
112 if (Subtarget.useCRBits()) {
113 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
114
115 if (isPPC64 || Subtarget.hasFPCVT()) {
116 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
117 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
118 isPPC64 ? MVT::i64 : MVT::i32);
119 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
120 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
121 isPPC64 ? MVT::i64 : MVT::i32);
122 } else {
123 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
124 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
125 }
126
127 // PowerPC does not support direct load / store of condition registers
128 setOperationAction(ISD::LOAD, MVT::i1, Custom);
129 setOperationAction(ISD::STORE, MVT::i1, Custom);
130
131 // FIXME: Remove this once the ANDI glue bug is fixed:
132 if (ANDIGlueBug)
133 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
134
135 for (MVT VT : MVT::integer_valuetypes()) {
136 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
137 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
138 setTruncStoreAction(VT, MVT::i1, Expand);
139 }
140
141 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
142 }
143
144 // This is used in the ppcf128->int sequence. Note it has different semantics
145 // from FP_ROUND: that rounds to nearest, this rounds to zero.
146 setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
147
148 // We do not currently implement these libm ops for PowerPC.
149 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
150 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand);
151 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
152 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand);
153 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
154 setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
155
156 // PowerPC has no SREM/UREM instructions
157 setOperationAction(ISD::SREM, MVT::i32, Expand);
158 setOperationAction(ISD::UREM, MVT::i32, Expand);
159 setOperationAction(ISD::SREM, MVT::i64, Expand);
160 setOperationAction(ISD::UREM, MVT::i64, Expand);
161
162 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
163 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
164 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
165 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
166 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
167 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
168 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
169 setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
170 setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
171
172 // We don't support sin/cos/sqrt/fmod/pow
173 setOperationAction(ISD::FSIN , MVT::f64, Expand);
174 setOperationAction(ISD::FCOS , MVT::f64, Expand);
175 setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
176 setOperationAction(ISD::FREM , MVT::f64, Expand);
177 setOperationAction(ISD::FPOW , MVT::f64, Expand);
178 setOperationAction(ISD::FMA , MVT::f64, Legal);
179 setOperationAction(ISD::FSIN , MVT::f32, Expand);
180 setOperationAction(ISD::FCOS , MVT::f32, Expand);
181 setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
182 setOperationAction(ISD::FREM , MVT::f32, Expand);
183 setOperationAction(ISD::FPOW , MVT::f32, Expand);
184 setOperationAction(ISD::FMA , MVT::f32, Legal);
185
186 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
187
188 // If we're enabling GP optimizations, use hardware square root
189 if (!Subtarget.hasFSQRT() &&
190 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
191 Subtarget.hasFRE()))
192 setOperationAction(ISD::FSQRT, MVT::f64, Expand);
193
194 if (!Subtarget.hasFSQRT() &&
195 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
196 Subtarget.hasFRES()))
197 setOperationAction(ISD::FSQRT, MVT::f32, Expand);
198
199 if (Subtarget.hasFCPSGN()) {
200 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
201 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
202 } else {
203 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
204 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
205 }
206
207 if (Subtarget.hasFPRND()) {
208 setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
209 setOperationAction(ISD::FCEIL, MVT::f64, Legal);
210 setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
211 setOperationAction(ISD::FROUND, MVT::f64, Legal);
212
213 setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
214 setOperationAction(ISD::FCEIL, MVT::f32, Legal);
215 setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
216 setOperationAction(ISD::FROUND, MVT::f32, Legal);
217 }
218
219 // PowerPC does not have BSWAP, CTPOP or CTTZ
220 setOperationAction(ISD::BSWAP, MVT::i32 , Expand);
221 setOperationAction(ISD::CTTZ , MVT::i32 , Expand);
222 setOperationAction(ISD::BSWAP, MVT::i64 , Expand);
223 setOperationAction(ISD::CTTZ , MVT::i64 , Expand);
224
225 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
226 setOperationAction(ISD::CTPOP, MVT::i32 , Legal);
227 setOperationAction(ISD::CTPOP, MVT::i64 , Legal);
228 } else {
229 setOperationAction(ISD::CTPOP, MVT::i32 , Expand);
230 setOperationAction(ISD::CTPOP, MVT::i64 , Expand);
231 }
232
233 // PowerPC does not have ROTR
234 setOperationAction(ISD::ROTR, MVT::i32 , Expand);
235 setOperationAction(ISD::ROTR, MVT::i64 , Expand);
236
237 if (!Subtarget.useCRBits()) {
238 // PowerPC does not have Select
239 setOperationAction(ISD::SELECT, MVT::i32, Expand);
240 setOperationAction(ISD::SELECT, MVT::i64, Expand);
241 setOperationAction(ISD::SELECT, MVT::f32, Expand);
242 setOperationAction(ISD::SELECT, MVT::f64, Expand);
243 }
244
245 // PowerPC wants to turn select_cc of FP into fsel when possible.
246 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
247 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
248
249 // PowerPC wants to optimize integer setcc a bit
250 if (!Subtarget.useCRBits())
251 setOperationAction(ISD::SETCC, MVT::i32, Custom);
252
253 // PowerPC does not have BRCOND which requires SetCC
254 if (!Subtarget.useCRBits())
255 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
256
257 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
258
259 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
260 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
261
262 // PowerPC does not have [U|S]INT_TO_FP
263 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
264 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
265
266 if (Subtarget.hasDirectMove() && isPPC64) {
267 setOperationAction(ISD::BITCAST, MVT::f32, Legal);
268 setOperationAction(ISD::BITCAST, MVT::i32, Legal);
269 setOperationAction(ISD::BITCAST, MVT::i64, Legal);
270 setOperationAction(ISD::BITCAST, MVT::f64, Legal);
271 } else {
272 setOperationAction(ISD::BITCAST, MVT::f32, Expand);
273 setOperationAction(ISD::BITCAST, MVT::i32, Expand);
274 setOperationAction(ISD::BITCAST, MVT::i64, Expand);
275 setOperationAction(ISD::BITCAST, MVT::f64, Expand);
276 }
277
278 // We cannot sextinreg(i1). Expand to shifts.
279 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
280
281 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
282 // SjLj exception handling but a light-weight setjmp/longjmp replacement to
283 // support continuation, user-level threading, and etc.. As a result, no
284 // other SjLj exception interfaces are implemented and please don't build
285 // your own exception handling based on them.
286 // LLVM/Clang supports zero-cost DWARF exception handling.
287 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
288 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
289
290 // We want to legalize GlobalAddress and ConstantPool nodes into the
291 // appropriate instructions to materialize the address.
292 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
293 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
294 setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
295 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
296 setOperationAction(ISD::JumpTable, MVT::i32, Custom);
297 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
298 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
299 setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
300 setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
301 setOperationAction(ISD::JumpTable, MVT::i64, Custom);
302
303 // TRAP is legal.
304 setOperationAction(ISD::TRAP, MVT::Other, Legal);
305
306 // TRAMPOLINE is custom lowered.
307 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
308 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
309
310 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
311 setOperationAction(ISD::VASTART , MVT::Other, Custom);
312
313 if (Subtarget.isSVR4ABI()) {
314 if (isPPC64) {
315 // VAARG always uses double-word chunks, so promote anything smaller.
316 setOperationAction(ISD::VAARG, MVT::i1, Promote);
317 AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
318 setOperationAction(ISD::VAARG, MVT::i8, Promote);
319 AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
320 setOperationAction(ISD::VAARG, MVT::i16, Promote);
321 AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
322 setOperationAction(ISD::VAARG, MVT::i32, Promote);
323 AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
324 setOperationAction(ISD::VAARG, MVT::Other, Expand);
325 } else {
326 // VAARG is custom lowered with the 32-bit SVR4 ABI.
327 setOperationAction(ISD::VAARG, MVT::Other, Custom);
328 setOperationAction(ISD::VAARG, MVT::i64, Custom);
329 }
330 } else
331 setOperationAction(ISD::VAARG, MVT::Other, Expand);
332
333 if (Subtarget.isSVR4ABI() && !isPPC64)
334 // VACOPY is custom lowered with the 32-bit SVR4 ABI.
335 setOperationAction(ISD::VACOPY , MVT::Other, Custom);
336 else
337 setOperationAction(ISD::VACOPY , MVT::Other, Expand);
338
339 // Use the default implementation.
340 setOperationAction(ISD::VAEND , MVT::Other, Expand);
341 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand);
342 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom);
343 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom);
344 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom);
345 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
346 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
347
348 // We want to custom lower some of our intrinsics.
349 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
350
351 // To handle counter-based loop conditions.
352 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
353
354 // Comparisons that require checking two conditions.
355 setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
356 setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
357 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
358 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
359 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
360 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
361 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
362 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
363 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
364 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
365 setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
366 setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
367
368 if (Subtarget.has64BitSupport()) {
369 // They also have instructions for converting between i64 and fp.
370 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
371 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
372 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
373 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
374 // This is just the low 32 bits of a (signed) fp->i64 conversion.
375 // We cannot do this with Promote because i64 is not a legal type.
376 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
377
378 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64())
379 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
380 } else {
381 // PowerPC does not have FP_TO_UINT on 32-bit implementations.
382 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
383 }
384
385 // With the instructions enabled under FPCVT, we can do everything.
386 if (Subtarget.hasFPCVT()) {
387 if (Subtarget.has64BitSupport()) {
388 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
389 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
390 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
391 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
392 }
393
394 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
395 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
396 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
397 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
398 }
399
400 if (Subtarget.use64BitRegs()) {
401 // 64-bit PowerPC implementations can support i64 types directly
402 addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
403 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
404 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
405 // 64-bit PowerPC wants to expand i128 shifts itself.
406 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
407 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
408 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
409 } else {
410 // 32-bit PowerPC wants to expand i64 shifts itself.
411 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
412 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
413 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
414 }
415
416 if (Subtarget.hasAltivec()) {
417 // First set operation action for all vector types to expand. Then we
418 // will selectively turn on ones that can be effectively codegen'd.
419 for (MVT VT : MVT::vector_valuetypes()) {
420 // add/sub are legal for all supported vector VT's.
421 setOperationAction(ISD::ADD, VT, Legal);
422 setOperationAction(ISD::SUB, VT, Legal);
423
424 // Vector instructions introduced in P8
425 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
426 setOperationAction(ISD::CTPOP, VT, Legal);
427 setOperationAction(ISD::CTLZ, VT, Legal);
428 }
429 else {
430 setOperationAction(ISD::CTPOP, VT, Expand);
431 setOperationAction(ISD::CTLZ, VT, Expand);
432 }
433
434 // We promote all shuffles to v16i8.
435 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
436 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
437
438 // We promote all non-typed operations to v4i32.
439 setOperationAction(ISD::AND , VT, Promote);
440 AddPromotedToType (ISD::AND , VT, MVT::v4i32);
441 setOperationAction(ISD::OR , VT, Promote);
442 AddPromotedToType (ISD::OR , VT, MVT::v4i32);
443 setOperationAction(ISD::XOR , VT, Promote);
444 AddPromotedToType (ISD::XOR , VT, MVT::v4i32);
445 setOperationAction(ISD::LOAD , VT, Promote);
446 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32);
447 setOperationAction(ISD::SELECT, VT, Promote);
448 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
449 setOperationAction(ISD::SELECT_CC, VT, Promote);
450 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
451 setOperationAction(ISD::STORE, VT, Promote);
452 AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
453
454 // No other operations are legal.
455 setOperationAction(ISD::MUL , VT, Expand);
456 setOperationAction(ISD::SDIV, VT, Expand);
457 setOperationAction(ISD::SREM, VT, Expand);
458 setOperationAction(ISD::UDIV, VT, Expand);
459 setOperationAction(ISD::UREM, VT, Expand);
460 setOperationAction(ISD::FDIV, VT, Expand);
461 setOperationAction(ISD::FREM, VT, Expand);
462 setOperationAction(ISD::FNEG, VT, Expand);
463 setOperationAction(ISD::FSQRT, VT, Expand);
464 setOperationAction(ISD::FLOG, VT, Expand);
465 setOperationAction(ISD::FLOG10, VT, Expand);
466 setOperationAction(ISD::FLOG2, VT, Expand);
467 setOperationAction(ISD::FEXP, VT, Expand);
468 setOperationAction(ISD::FEXP2, VT, Expand);
469 setOperationAction(ISD::FSIN, VT, Expand);
470 setOperationAction(ISD::FCOS, VT, Expand);
471 setOperationAction(ISD::FABS, VT, Expand);
472 setOperationAction(ISD::FPOWI, VT, Expand);
473 setOperationAction(ISD::FFLOOR, VT, Expand);
474 setOperationAction(ISD::FCEIL, VT, Expand);
475 setOperationAction(ISD::FTRUNC, VT, Expand);
476 setOperationAction(ISD::FRINT, VT, Expand);
477 setOperationAction(ISD::FNEARBYINT, VT, Expand);
478 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
479 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
480 setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
481 setOperationAction(ISD::MULHU, VT, Expand);
482 setOperationAction(ISD::MULHS, VT, Expand);
483 setOperationAction(ISD::UMUL_LOHI, VT, Expand);
484 setOperationAction(ISD::SMUL_LOHI, VT, Expand);
485 setOperationAction(ISD::UDIVREM, VT, Expand);
486 setOperationAction(ISD::SDIVREM, VT, Expand);
487 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
488 setOperationAction(ISD::FPOW, VT, Expand);
489 setOperationAction(ISD::BSWAP, VT, Expand);
490 setOperationAction(ISD::CTTZ, VT, Expand);
491 setOperationAction(ISD::VSELECT, VT, Expand);
492 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
493 setOperationAction(ISD::ROTL, VT, Expand);
494 setOperationAction(ISD::ROTR, VT, Expand);
495
496 for (MVT InnerVT : MVT::vector_valuetypes()) {
497 setTruncStoreAction(VT, InnerVT, Expand);
498 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
499 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
500 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
501 }
502 }
503
504 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
505 // with merges, splats, etc.
506 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
507
508 setOperationAction(ISD::AND , MVT::v4i32, Legal);
509 setOperationAction(ISD::OR , MVT::v4i32, Legal);
510 setOperationAction(ISD::XOR , MVT::v4i32, Legal);
511 setOperationAction(ISD::LOAD , MVT::v4i32, Legal);
512 setOperationAction(ISD::SELECT, MVT::v4i32,
513 Subtarget.useCRBits() ? Legal : Expand);
514 setOperationAction(ISD::STORE , MVT::v4i32, Legal);
515 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
516 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
517 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
518 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
519 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
520 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
521 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
522 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
523
524 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
525 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
526 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
527 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
528
529 setOperationAction(ISD::MUL, MVT::v4f32, Legal);
530 setOperationAction(ISD::FMA, MVT::v4f32, Legal);
531
532 if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) {
533 setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
534 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
535 }
536
537 if (Subtarget.hasP8Altivec())
538 setOperationAction(ISD::MUL, MVT::v4i32, Legal);
539 else
540 setOperationAction(ISD::MUL, MVT::v4i32, Custom);
541
542 setOperationAction(ISD::MUL, MVT::v8i16, Custom);
543 setOperationAction(ISD::MUL, MVT::v16i8, Custom);
544
545 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
546 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
547
548 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
549 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
550 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
551 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
552
553 // Altivec does not contain unordered floating-point compare instructions
554 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
555 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
556 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand);
557 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
558
559 if (Subtarget.hasVSX()) {
560 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
561 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
562 if (Subtarget.hasP8Vector()) {
563 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
564 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
565 }
566 if (Subtarget.hasDirectMove() && isPPC64) {
567 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
568 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
569 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
570 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
571 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
572 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
573 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
574 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
575 }
576 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
577
578 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
579 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
580 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
581 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
582 setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
583
584 setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
585
586 setOperationAction(ISD::MUL, MVT::v2f64, Legal);
587 setOperationAction(ISD::FMA, MVT::v2f64, Legal);
588
589 setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
590 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
591
592 setOperationAction(ISD::VSELECT, MVT::v16i8, Legal);
593 setOperationAction(ISD::VSELECT, MVT::v8i16, Legal);
594 setOperationAction(ISD::VSELECT, MVT::v4i32, Legal);
595 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
596 setOperationAction(ISD::VSELECT, MVT::v2f64, Legal);
597
598 // Share the Altivec comparison restrictions.
599 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
600 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
601 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand);
602 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
603
604 setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
605 setOperationAction(ISD::STORE, MVT::v2f64, Legal);
606
607 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
608
609 if (Subtarget.hasP8Vector())
610 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
611
612 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
613
614 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
615 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
616 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
617
618 if (Subtarget.hasP8Altivec()) {
619 setOperationAction(ISD::SHL, MVT::v2i64, Legal);
620 setOperationAction(ISD::SRA, MVT::v2i64, Legal);
621 setOperationAction(ISD::SRL, MVT::v2i64, Legal);
622
623 setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
624 }
625 else {
626 setOperationAction(ISD::SHL, MVT::v2i64, Expand);
627 setOperationAction(ISD::SRA, MVT::v2i64, Expand);
628 setOperationAction(ISD::SRL, MVT::v2i64, Expand);
629
630 setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
631
632 // VSX v2i64 only supports non-arithmetic operations.
633 setOperationAction(ISD::ADD, MVT::v2i64, Expand);
634 setOperationAction(ISD::SUB, MVT::v2i64, Expand);
635 }
636
637 setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
638 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
639 setOperationAction(ISD::STORE, MVT::v2i64, Promote);
640 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
641
642 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
643
644 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
645 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
646 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
647 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
648
649 // Vector operation legalization checks the result type of
650 // SIGN_EXTEND_INREG, overall legalization checks the inner type.
651 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
652 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
653 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
654 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
655
656 setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
657 setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
658 setOperationAction(ISD::FABS, MVT::v4f32, Legal);
659 setOperationAction(ISD::FABS, MVT::v2f64, Legal);
660
661 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
662 }
663
664 if (Subtarget.hasP8Altivec()) {
665 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
666 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
667 }
668 if (Subtarget.hasP9Vector()) {
669 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Legal);
670 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Legal);
671 }
672 }
673
674 if (Subtarget.hasQPX()) {
675 setOperationAction(ISD::FADD, MVT::v4f64, Legal);
676 setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
677 setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
678 setOperationAction(ISD::FREM, MVT::v4f64, Expand);
679
680 setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal);
681 setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand);
682
683 setOperationAction(ISD::LOAD , MVT::v4f64, Custom);
684 setOperationAction(ISD::STORE , MVT::v4f64, Custom);
685
686 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom);
687 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom);
688
689 if (!Subtarget.useCRBits())
690 setOperationAction(ISD::SELECT, MVT::v4f64, Expand);
691 setOperationAction(ISD::VSELECT, MVT::v4f64, Legal);
692
693 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal);
694 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand);
695 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand);
696 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand);
697 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom);
698 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal);
699 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom);
700
701 setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal);
702 setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand);
703
704 setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal);
705 setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand);
706 setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal);
707
708 setOperationAction(ISD::FNEG , MVT::v4f64, Legal);
709 setOperationAction(ISD::FABS , MVT::v4f64, Legal);
710 setOperationAction(ISD::FSIN , MVT::v4f64, Expand);
711 setOperationAction(ISD::FCOS , MVT::v4f64, Expand);
712 setOperationAction(ISD::FPOWI , MVT::v4f64, Expand);
713 setOperationAction(ISD::FPOW , MVT::v4f64, Expand);
714 setOperationAction(ISD::FLOG , MVT::v4f64, Expand);
715 setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand);
716 setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand);
717 setOperationAction(ISD::FEXP , MVT::v4f64, Expand);
718 setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand);
719
720 setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal);
721 setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal);
722
723 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal);
724 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal);
725
726 addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass);
727
728 setOperationAction(ISD::FADD, MVT::v4f32, Legal);
729 setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
730 setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
731 setOperationAction(ISD::FREM, MVT::v4f32, Expand);
732
733 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
734 setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand);
735
736 setOperationAction(ISD::LOAD , MVT::v4f32, Custom);
737 setOperationAction(ISD::STORE , MVT::v4f32, Custom);
738
739 if (!Subtarget.useCRBits())
740 setOperationAction(ISD::SELECT, MVT::v4f32, Expand);
741 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
742
743 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal);
744 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand);
745 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand);
746 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand);
747 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom);
748 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
749 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
750
751 setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal);
752 setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand);
753
754 setOperationAction(ISD::FNEG , MVT::v4f32, Legal);
755 setOperationAction(ISD::FABS , MVT::v4f32, Legal);
756 setOperationAction(ISD::FSIN , MVT::v4f32, Expand);
757 setOperationAction(ISD::FCOS , MVT::v4f32, Expand);
758 setOperationAction(ISD::FPOWI , MVT::v4f32, Expand);
759 setOperationAction(ISD::FPOW , MVT::v4f32, Expand);
760 setOperationAction(ISD::FLOG , MVT::v4f32, Expand);
761 setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand);
762 setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand);
763 setOperationAction(ISD::FEXP , MVT::v4f32, Expand);
764 setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand);
765
766 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
767 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
768
769 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal);
770 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal);
771
772 addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass);
773
774 setOperationAction(ISD::AND , MVT::v4i1, Legal);
775 setOperationAction(ISD::OR , MVT::v4i1, Legal);
776 setOperationAction(ISD::XOR , MVT::v4i1, Legal);
777
778 if (!Subtarget.useCRBits())
779 setOperationAction(ISD::SELECT, MVT::v4i1, Expand);
780 setOperationAction(ISD::VSELECT, MVT::v4i1, Legal);
781
782 setOperationAction(ISD::LOAD , MVT::v4i1, Custom);
783 setOperationAction(ISD::STORE , MVT::v4i1, Custom);
784
785 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom);
786 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand);
787 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand);
788 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand);
789 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom);
790 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand);
791 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom);
792
793 setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom);
794 setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom);
795
796 addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass);
797
798 setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal);
799 setOperationAction(ISD::FCEIL, MVT::v4f64, Legal);
800 setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal);
801 setOperationAction(ISD::FROUND, MVT::v4f64, Legal);
802
803 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
804 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
805 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
806 setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
807
808 setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand);
809 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
810
811 // These need to set FE_INEXACT, and so cannot be vectorized here.
812 setOperationAction(ISD::FRINT, MVT::v4f64, Expand);
813 setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
814
815 if (TM.Options.UnsafeFPMath) {
816 setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
817 setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
818
819 setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
820 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
821 } else {
822 setOperationAction(ISD::FDIV, MVT::v4f64, Expand);
823 setOperationAction(ISD::FSQRT, MVT::v4f64, Expand);
824
825 setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
826 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
827 }
828 }
829
830 if (Subtarget.has64BitSupport())
831 setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
832
833 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
834
835 if (!isPPC64) {
836 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand);
837 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
838 }
839
840 setBooleanContents(ZeroOrOneBooleanContent);
841
842 if (Subtarget.hasAltivec()) {
843 // Altivec instructions set fields to all zeros or all ones.
844 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
845 }
846
847 if (!isPPC64) {
848 // These libcalls are not available in 32-bit.
849 setLibcallName(RTLIB::SHL_I128, nullptr);
850 setLibcallName(RTLIB::SRL_I128, nullptr);
851 setLibcallName(RTLIB::SRA_I128, nullptr);
852 }
853
854 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
855
856 // We have target-specific dag combine patterns for the following nodes:
857 setTargetDAGCombine(ISD::SINT_TO_FP);
858 setTargetDAGCombine(ISD::BUILD_VECTOR);
859 if (Subtarget.hasFPCVT())
860 setTargetDAGCombine(ISD::UINT_TO_FP);
861 setTargetDAGCombine(ISD::LOAD);
862 setTargetDAGCombine(ISD::STORE);
863 setTargetDAGCombine(ISD::BR_CC);
864 if (Subtarget.useCRBits())
865 setTargetDAGCombine(ISD::BRCOND);
866 setTargetDAGCombine(ISD::BSWAP);
867 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
868 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
869 setTargetDAGCombine(ISD::INTRINSIC_VOID);
870
871 setTargetDAGCombine(ISD::SIGN_EXTEND);
872 setTargetDAGCombine(ISD::ZERO_EXTEND);
873 setTargetDAGCombine(ISD::ANY_EXTEND);
874
875 if (Subtarget.useCRBits()) {
876 setTargetDAGCombine(ISD::TRUNCATE);
877 setTargetDAGCombine(ISD::SETCC);
878 setTargetDAGCombine(ISD::SELECT_CC);
879 }
880
881 // Use reciprocal estimates.
882 if (TM.Options.UnsafeFPMath) {
883 setTargetDAGCombine(ISD::FDIV);
884 setTargetDAGCombine(ISD::FSQRT);
885 }
886
887 // Darwin long double math library functions have $LDBL128 appended.
888 if (Subtarget.isDarwin()) {
889 setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
890 setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
891 setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
892 setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
893 setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
894 setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
895 setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
896 setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
897 setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
898 setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
899 }
900
901 // With 32 condition bits, we don't need to sink (and duplicate) compares
902 // aggressively in CodeGenPrep.
903 if (Subtarget.useCRBits()) {
904 setHasMultipleConditionRegisters();
905 setJumpIsExpensive();
906 }
907
908 setMinFunctionAlignment(2);
909 if (Subtarget.isDarwin())
910 setPrefFunctionAlignment(4);
911
912 switch (Subtarget.getDarwinDirective()) {
913 default: break;
914 case PPC::DIR_970:
915 case PPC::DIR_A2:
916 case PPC::DIR_E500mc:
917 case PPC::DIR_E5500:
918 case PPC::DIR_PWR4:
919 case PPC::DIR_PWR5:
920 case PPC::DIR_PWR5X:
921 case PPC::DIR_PWR6:
922 case PPC::DIR_PWR6X:
923 case PPC::DIR_PWR7:
924 case PPC::DIR_PWR8:
925 case PPC::DIR_PWR9:
926 setPrefFunctionAlignment(4);
927 setPrefLoopAlignment(4);
928 break;
929 }
930
931 if (Subtarget.enableMachineScheduler())
932 setSchedulingPreference(Sched::Source);
933 else
934 setSchedulingPreference(Sched::Hybrid);
935
936 computeRegisterProperties(STI.getRegisterInfo());
937
938 // The Freescale cores do better with aggressive inlining of memcpy and
939 // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
940 if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc ||
941 Subtarget.getDarwinDirective() == PPC::DIR_E5500) {
942 MaxStoresPerMemset = 32;
943 MaxStoresPerMemsetOptSize = 16;
944 MaxStoresPerMemcpy = 32;
945 MaxStoresPerMemcpyOptSize = 8;
946 MaxStoresPerMemmove = 32;
947 MaxStoresPerMemmoveOptSize = 8;
948 } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) {
949 // The A2 also benefits from (very) aggressive inlining of memcpy and
950 // friends. The overhead of a the function call, even when warm, can be
951 // over one hundred cycles.
952 MaxStoresPerMemset = 128;
953 MaxStoresPerMemcpy = 128;
954 MaxStoresPerMemmove = 128;
955 }
956 }
957
958 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
959 /// the desired ByVal argument alignment.
getMaxByValAlign(Type * Ty,unsigned & MaxAlign,unsigned MaxMaxAlign)960 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign,
961 unsigned MaxMaxAlign) {
962 if (MaxAlign == MaxMaxAlign)
963 return;
964 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
965 if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256)
966 MaxAlign = 32;
967 else if (VTy->getBitWidth() >= 128 && MaxAlign < 16)
968 MaxAlign = 16;
969 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
970 unsigned EltAlign = 0;
971 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
972 if (EltAlign > MaxAlign)
973 MaxAlign = EltAlign;
974 } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
975 for (auto *EltTy : STy->elements()) {
976 unsigned EltAlign = 0;
977 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
978 if (EltAlign > MaxAlign)
979 MaxAlign = EltAlign;
980 if (MaxAlign == MaxMaxAlign)
981 break;
982 }
983 }
984 }
985
986 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
987 /// function arguments in the caller parameter area.
getByValTypeAlignment(Type * Ty,const DataLayout & DL) const988 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
989 const DataLayout &DL) const {
990 // Darwin passes everything on 4 byte boundary.
991 if (Subtarget.isDarwin())
992 return 4;
993
994 // 16byte and wider vectors are passed on 16byte boundary.
995 // The rest is 8 on PPC64 and 4 on PPC32 boundary.
996 unsigned Align = Subtarget.isPPC64() ? 8 : 4;
997 if (Subtarget.hasAltivec() || Subtarget.hasQPX())
998 getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16);
999 return Align;
1000 }
1001
useSoftFloat() const1002 bool PPCTargetLowering::useSoftFloat() const {
1003 return Subtarget.useSoftFloat();
1004 }
1005
getTargetNodeName(unsigned Opcode) const1006 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
1007 switch ((PPCISD::NodeType)Opcode) {
1008 case PPCISD::FIRST_NUMBER: break;
1009 case PPCISD::FSEL: return "PPCISD::FSEL";
1010 case PPCISD::FCFID: return "PPCISD::FCFID";
1011 case PPCISD::FCFIDU: return "PPCISD::FCFIDU";
1012 case PPCISD::FCFIDS: return "PPCISD::FCFIDS";
1013 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS";
1014 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ";
1015 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ";
1016 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ";
1017 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ";
1018 case PPCISD::FRE: return "PPCISD::FRE";
1019 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE";
1020 case PPCISD::STFIWX: return "PPCISD::STFIWX";
1021 case PPCISD::VMADDFP: return "PPCISD::VMADDFP";
1022 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP";
1023 case PPCISD::VPERM: return "PPCISD::VPERM";
1024 case PPCISD::XXSPLT: return "PPCISD::XXSPLT";
1025 case PPCISD::XXINSERT: return "PPCISD::XXINSERT";
1026 case PPCISD::VECSHL: return "PPCISD::VECSHL";
1027 case PPCISD::CMPB: return "PPCISD::CMPB";
1028 case PPCISD::Hi: return "PPCISD::Hi";
1029 case PPCISD::Lo: return "PPCISD::Lo";
1030 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY";
1031 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC";
1032 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET";
1033 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
1034 case PPCISD::SRL: return "PPCISD::SRL";
1035 case PPCISD::SRA: return "PPCISD::SRA";
1036 case PPCISD::SHL: return "PPCISD::SHL";
1037 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE";
1038 case PPCISD::CALL: return "PPCISD::CALL";
1039 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP";
1040 case PPCISD::MTCTR: return "PPCISD::MTCTR";
1041 case PPCISD::BCTRL: return "PPCISD::BCTRL";
1042 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC";
1043 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG";
1044 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE";
1045 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP";
1046 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1047 case PPCISD::MFOCRF: return "PPCISD::MFOCRF";
1048 case PPCISD::MFVSR: return "PPCISD::MFVSR";
1049 case PPCISD::MTVSRA: return "PPCISD::MTVSRA";
1050 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ";
1051 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP";
1052 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP";
1053 case PPCISD::ANDIo_1_EQ_BIT: return "PPCISD::ANDIo_1_EQ_BIT";
1054 case PPCISD::ANDIo_1_GT_BIT: return "PPCISD::ANDIo_1_GT_BIT";
1055 case PPCISD::VCMP: return "PPCISD::VCMP";
1056 case PPCISD::VCMPo: return "PPCISD::VCMPo";
1057 case PPCISD::LBRX: return "PPCISD::LBRX";
1058 case PPCISD::STBRX: return "PPCISD::STBRX";
1059 case PPCISD::LFIWAX: return "PPCISD::LFIWAX";
1060 case PPCISD::LFIWZX: return "PPCISD::LFIWZX";
1061 case PPCISD::LXVD2X: return "PPCISD::LXVD2X";
1062 case PPCISD::STXVD2X: return "PPCISD::STXVD2X";
1063 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH";
1064 case PPCISD::BDNZ: return "PPCISD::BDNZ";
1065 case PPCISD::BDZ: return "PPCISD::BDZ";
1066 case PPCISD::MFFS: return "PPCISD::MFFS";
1067 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ";
1068 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN";
1069 case PPCISD::CR6SET: return "PPCISD::CR6SET";
1070 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET";
1071 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT";
1072 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT";
1073 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1074 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L";
1075 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS";
1076 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA";
1077 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L";
1078 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR";
1079 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1080 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA";
1081 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L";
1082 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR";
1083 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1084 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1085 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L";
1086 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT";
1087 case PPCISD::SC: return "PPCISD::SC";
1088 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB";
1089 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE";
1090 case PPCISD::RFEBB: return "PPCISD::RFEBB";
1091 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD";
1092 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN";
1093 case PPCISD::QVFPERM: return "PPCISD::QVFPERM";
1094 case PPCISD::QVGPCI: return "PPCISD::QVGPCI";
1095 case PPCISD::QVALIGNI: return "PPCISD::QVALIGNI";
1096 case PPCISD::QVESPLATI: return "PPCISD::QVESPLATI";
1097 case PPCISD::QBFLT: return "PPCISD::QBFLT";
1098 case PPCISD::QVLFSb: return "PPCISD::QVLFSb";
1099 }
1100 return nullptr;
1101 }
1102
getSetCCResultType(const DataLayout & DL,LLVMContext & C,EVT VT) const1103 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1104 EVT VT) const {
1105 if (!VT.isVector())
1106 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1107
1108 if (Subtarget.hasQPX())
1109 return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements());
1110
1111 return VT.changeVectorElementTypeToInteger();
1112 }
1113
enableAggressiveFMAFusion(EVT VT) const1114 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1115 assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1116 return true;
1117 }
1118
1119 //===----------------------------------------------------------------------===//
1120 // Node matching predicates, for use by the tblgen matching code.
1121 //===----------------------------------------------------------------------===//
1122
1123 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
isFloatingPointZero(SDValue Op)1124 static bool isFloatingPointZero(SDValue Op) {
1125 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1126 return CFP->getValueAPF().isZero();
1127 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1128 // Maybe this has already been legalized into the constant pool?
1129 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1130 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1131 return CFP->getValueAPF().isZero();
1132 }
1133 return false;
1134 }
1135
1136 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return
1137 /// true if Op is undef or if it matches the specified value.
isConstantOrUndef(int Op,int Val)1138 static bool isConstantOrUndef(int Op, int Val) {
1139 return Op < 0 || Op == Val;
1140 }
1141
1142 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1143 /// VPKUHUM instruction.
1144 /// The ShuffleKind distinguishes between big-endian operations with
1145 /// two different inputs (0), either-endian operations with two identical
1146 /// inputs (1), and little-endian operations with two different inputs (2).
1147 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
isVPKUHUMShuffleMask(ShuffleVectorSDNode * N,unsigned ShuffleKind,SelectionDAG & DAG)1148 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1149 SelectionDAG &DAG) {
1150 bool IsLE = DAG.getDataLayout().isLittleEndian();
1151 if (ShuffleKind == 0) {
1152 if (IsLE)
1153 return false;
1154 for (unsigned i = 0; i != 16; ++i)
1155 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1156 return false;
1157 } else if (ShuffleKind == 2) {
1158 if (!IsLE)
1159 return false;
1160 for (unsigned i = 0; i != 16; ++i)
1161 if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1162 return false;
1163 } else if (ShuffleKind == 1) {
1164 unsigned j = IsLE ? 0 : 1;
1165 for (unsigned i = 0; i != 8; ++i)
1166 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) ||
1167 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j))
1168 return false;
1169 }
1170 return true;
1171 }
1172
1173 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1174 /// VPKUWUM instruction.
1175 /// The ShuffleKind distinguishes between big-endian operations with
1176 /// two different inputs (0), either-endian operations with two identical
1177 /// inputs (1), and little-endian operations with two different inputs (2).
1178 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
isVPKUWUMShuffleMask(ShuffleVectorSDNode * N,unsigned ShuffleKind,SelectionDAG & DAG)1179 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1180 SelectionDAG &DAG) {
1181 bool IsLE = DAG.getDataLayout().isLittleEndian();
1182 if (ShuffleKind == 0) {
1183 if (IsLE)
1184 return false;
1185 for (unsigned i = 0; i != 16; i += 2)
1186 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) ||
1187 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3))
1188 return false;
1189 } else if (ShuffleKind == 2) {
1190 if (!IsLE)
1191 return false;
1192 for (unsigned i = 0; i != 16; i += 2)
1193 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) ||
1194 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1))
1195 return false;
1196 } else if (ShuffleKind == 1) {
1197 unsigned j = IsLE ? 0 : 2;
1198 for (unsigned i = 0; i != 8; i += 2)
1199 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) ||
1200 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) ||
1201 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) ||
1202 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1))
1203 return false;
1204 }
1205 return true;
1206 }
1207
1208 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1209 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1210 /// current subtarget.
1211 ///
1212 /// The ShuffleKind distinguishes between big-endian operations with
1213 /// two different inputs (0), either-endian operations with two identical
1214 /// inputs (1), and little-endian operations with two different inputs (2).
1215 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
isVPKUDUMShuffleMask(ShuffleVectorSDNode * N,unsigned ShuffleKind,SelectionDAG & DAG)1216 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1217 SelectionDAG &DAG) {
1218 const PPCSubtarget& Subtarget =
1219 static_cast<const PPCSubtarget&>(DAG.getSubtarget());
1220 if (!Subtarget.hasP8Vector())
1221 return false;
1222
1223 bool IsLE = DAG.getDataLayout().isLittleEndian();
1224 if (ShuffleKind == 0) {
1225 if (IsLE)
1226 return false;
1227 for (unsigned i = 0; i != 16; i += 4)
1228 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) ||
1229 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) ||
1230 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) ||
1231 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7))
1232 return false;
1233 } else if (ShuffleKind == 2) {
1234 if (!IsLE)
1235 return false;
1236 for (unsigned i = 0; i != 16; i += 4)
1237 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) ||
1238 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) ||
1239 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) ||
1240 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3))
1241 return false;
1242 } else if (ShuffleKind == 1) {
1243 unsigned j = IsLE ? 0 : 4;
1244 for (unsigned i = 0; i != 8; i += 4)
1245 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) ||
1246 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) ||
1247 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) ||
1248 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) ||
1249 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) ||
1250 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) ||
1251 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1252 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1253 return false;
1254 }
1255 return true;
1256 }
1257
1258 /// isVMerge - Common function, used to match vmrg* shuffles.
1259 ///
isVMerge(ShuffleVectorSDNode * N,unsigned UnitSize,unsigned LHSStart,unsigned RHSStart)1260 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1261 unsigned LHSStart, unsigned RHSStart) {
1262 if (N->getValueType(0) != MVT::v16i8)
1263 return false;
1264 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1265 "Unsupported merge size!");
1266
1267 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units
1268 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit
1269 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1270 LHSStart+j+i*UnitSize) ||
1271 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1272 RHSStart+j+i*UnitSize))
1273 return false;
1274 }
1275 return true;
1276 }
1277
1278 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1279 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1280 /// The ShuffleKind distinguishes between big-endian merges with two
1281 /// different inputs (0), either-endian merges with two identical inputs (1),
1282 /// and little-endian merges with two different inputs (2). For the latter,
1283 /// the input operands are swapped (see PPCInstrAltivec.td).
isVMRGLShuffleMask(ShuffleVectorSDNode * N,unsigned UnitSize,unsigned ShuffleKind,SelectionDAG & DAG)1284 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1285 unsigned ShuffleKind, SelectionDAG &DAG) {
1286 if (DAG.getDataLayout().isLittleEndian()) {
1287 if (ShuffleKind == 1) // unary
1288 return isVMerge(N, UnitSize, 0, 0);
1289 else if (ShuffleKind == 2) // swapped
1290 return isVMerge(N, UnitSize, 0, 16);
1291 else
1292 return false;
1293 } else {
1294 if (ShuffleKind == 1) // unary
1295 return isVMerge(N, UnitSize, 8, 8);
1296 else if (ShuffleKind == 0) // normal
1297 return isVMerge(N, UnitSize, 8, 24);
1298 else
1299 return false;
1300 }
1301 }
1302
1303 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1304 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1305 /// The ShuffleKind distinguishes between big-endian merges with two
1306 /// different inputs (0), either-endian merges with two identical inputs (1),
1307 /// and little-endian merges with two different inputs (2). For the latter,
1308 /// the input operands are swapped (see PPCInstrAltivec.td).
isVMRGHShuffleMask(ShuffleVectorSDNode * N,unsigned UnitSize,unsigned ShuffleKind,SelectionDAG & DAG)1309 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1310 unsigned ShuffleKind, SelectionDAG &DAG) {
1311 if (DAG.getDataLayout().isLittleEndian()) {
1312 if (ShuffleKind == 1) // unary
1313 return isVMerge(N, UnitSize, 8, 8);
1314 else if (ShuffleKind == 2) // swapped
1315 return isVMerge(N, UnitSize, 8, 24);
1316 else
1317 return false;
1318 } else {
1319 if (ShuffleKind == 1) // unary
1320 return isVMerge(N, UnitSize, 0, 0);
1321 else if (ShuffleKind == 0) // normal
1322 return isVMerge(N, UnitSize, 0, 16);
1323 else
1324 return false;
1325 }
1326 }
1327
1328 /**
1329 * \brief Common function used to match vmrgew and vmrgow shuffles
1330 *
1331 * The indexOffset determines whether to look for even or odd words in
1332 * the shuffle mask. This is based on the of the endianness of the target
1333 * machine.
1334 * - Little Endian:
1335 * - Use offset of 0 to check for odd elements
1336 * - Use offset of 4 to check for even elements
1337 * - Big Endian:
1338 * - Use offset of 0 to check for even elements
1339 * - Use offset of 4 to check for odd elements
1340 * A detailed description of the vector element ordering for little endian and
1341 * big endian can be found at
1342 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
1343 * Targeting your applications - what little endian and big endian IBM XL C/C++
1344 * compiler differences mean to you
1345 *
1346 * The mask to the shuffle vector instruction specifies the indices of the
1347 * elements from the two input vectors to place in the result. The elements are
1348 * numbered in array-access order, starting with the first vector. These vectors
1349 * are always of type v16i8, thus each vector will contain 16 elements of size
1350 * 8. More info on the shuffle vector can be found in the
1351 * http://llvm.org/docs/LangRef.html#shufflevector-instruction
1352 * Language Reference.
1353 *
1354 * The RHSStartValue indicates whether the same input vectors are used (unary)
1355 * or two different input vectors are used, based on the following:
1356 * - If the instruction uses the same vector for both inputs, the range of the
1357 * indices will be 0 to 15. In this case, the RHSStart value passed should
1358 * be 0.
1359 * - If the instruction has two different vectors then the range of the
1360 * indices will be 0 to 31. In this case, the RHSStart value passed should
1361 * be 16 (indices 0-15 specify elements in the first vector while indices 16
1362 * to 31 specify elements in the second vector).
1363 *
1364 * \param[in] N The shuffle vector SD Node to analyze
1365 * \param[in] IndexOffset Specifies whether to look for even or odd elements
1366 * \param[in] RHSStartValue Specifies the starting index for the righthand input
1367 * vector to the shuffle_vector instruction
1368 * \return true iff this shuffle vector represents an even or odd word merge
1369 */
isVMerge(ShuffleVectorSDNode * N,unsigned IndexOffset,unsigned RHSStartValue)1370 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
1371 unsigned RHSStartValue) {
1372 if (N->getValueType(0) != MVT::v16i8)
1373 return false;
1374
1375 for (unsigned i = 0; i < 2; ++i)
1376 for (unsigned j = 0; j < 4; ++j)
1377 if (!isConstantOrUndef(N->getMaskElt(i*4+j),
1378 i*RHSStartValue+j+IndexOffset) ||
1379 !isConstantOrUndef(N->getMaskElt(i*4+j+8),
1380 i*RHSStartValue+j+IndexOffset+8))
1381 return false;
1382 return true;
1383 }
1384
1385 /**
1386 * \brief Determine if the specified shuffle mask is suitable for the vmrgew or
1387 * vmrgow instructions.
1388 *
1389 * \param[in] N The shuffle vector SD Node to analyze
1390 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
1391 * \param[in] ShuffleKind Identify the type of merge:
1392 * - 0 = big-endian merge with two different inputs;
1393 * - 1 = either-endian merge with two identical inputs;
1394 * - 2 = little-endian merge with two different inputs (inputs are swapped for
1395 * little-endian merges).
1396 * \param[in] DAG The current SelectionDAG
1397 * \return true iff this shuffle mask
1398 */
isVMRGEOShuffleMask(ShuffleVectorSDNode * N,bool CheckEven,unsigned ShuffleKind,SelectionDAG & DAG)1399 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
1400 unsigned ShuffleKind, SelectionDAG &DAG) {
1401 if (DAG.getDataLayout().isLittleEndian()) {
1402 unsigned indexOffset = CheckEven ? 4 : 0;
1403 if (ShuffleKind == 1) // Unary
1404 return isVMerge(N, indexOffset, 0);
1405 else if (ShuffleKind == 2) // swapped
1406 return isVMerge(N, indexOffset, 16);
1407 else
1408 return false;
1409 }
1410 else {
1411 unsigned indexOffset = CheckEven ? 0 : 4;
1412 if (ShuffleKind == 1) // Unary
1413 return isVMerge(N, indexOffset, 0);
1414 else if (ShuffleKind == 0) // Normal
1415 return isVMerge(N, indexOffset, 16);
1416 else
1417 return false;
1418 }
1419 return false;
1420 }
1421
1422 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
1423 /// amount, otherwise return -1.
1424 /// The ShuffleKind distinguishes between big-endian operations with two
1425 /// different inputs (0), either-endian operations with two identical inputs
1426 /// (1), and little-endian operations with two different inputs (2). For the
1427 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
isVSLDOIShuffleMask(SDNode * N,unsigned ShuffleKind,SelectionDAG & DAG)1428 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
1429 SelectionDAG &DAG) {
1430 if (N->getValueType(0) != MVT::v16i8)
1431 return -1;
1432
1433 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1434
1435 // Find the first non-undef value in the shuffle mask.
1436 unsigned i;
1437 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
1438 /*search*/;
1439
1440 if (i == 16) return -1; // all undef.
1441
1442 // Otherwise, check to see if the rest of the elements are consecutively
1443 // numbered from this value.
1444 unsigned ShiftAmt = SVOp->getMaskElt(i);
1445 if (ShiftAmt < i) return -1;
1446
1447 ShiftAmt -= i;
1448 bool isLE = DAG.getDataLayout().isLittleEndian();
1449
1450 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
1451 // Check the rest of the elements to see if they are consecutive.
1452 for (++i; i != 16; ++i)
1453 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1454 return -1;
1455 } else if (ShuffleKind == 1) {
1456 // Check the rest of the elements to see if they are consecutive.
1457 for (++i; i != 16; ++i)
1458 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
1459 return -1;
1460 } else
1461 return -1;
1462
1463 if (isLE)
1464 ShiftAmt = 16 - ShiftAmt;
1465
1466 return ShiftAmt;
1467 }
1468
1469 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
1470 /// specifies a splat of a single element that is suitable for input to
1471 /// VSPLTB/VSPLTH/VSPLTW.
isSplatShuffleMask(ShuffleVectorSDNode * N,unsigned EltSize)1472 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
1473 assert(N->getValueType(0) == MVT::v16i8 &&
1474 (EltSize == 1 || EltSize == 2 || EltSize == 4));
1475
1476 // The consecutive indices need to specify an element, not part of two
1477 // different elements. So abandon ship early if this isn't the case.
1478 if (N->getMaskElt(0) % EltSize != 0)
1479 return false;
1480
1481 // This is a splat operation if each element of the permute is the same, and
1482 // if the value doesn't reference the second vector.
1483 unsigned ElementBase = N->getMaskElt(0);
1484
1485 // FIXME: Handle UNDEF elements too!
1486 if (ElementBase >= 16)
1487 return false;
1488
1489 // Check that the indices are consecutive, in the case of a multi-byte element
1490 // splatted with a v16i8 mask.
1491 for (unsigned i = 1; i != EltSize; ++i)
1492 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
1493 return false;
1494
1495 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
1496 if (N->getMaskElt(i) < 0) continue;
1497 for (unsigned j = 0; j != EltSize; ++j)
1498 if (N->getMaskElt(i+j) != N->getMaskElt(j))
1499 return false;
1500 }
1501 return true;
1502 }
1503
isXXINSERTWMask(ShuffleVectorSDNode * N,unsigned & ShiftElts,unsigned & InsertAtByte,bool & Swap,bool IsLE)1504 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1505 unsigned &InsertAtByte, bool &Swap, bool IsLE) {
1506
1507 // Check that the mask is shuffling words
1508 for (unsigned i = 0; i < 4; ++i) {
1509 unsigned B0 = N->getMaskElt(i*4);
1510 unsigned B1 = N->getMaskElt(i*4+1);
1511 unsigned B2 = N->getMaskElt(i*4+2);
1512 unsigned B3 = N->getMaskElt(i*4+3);
1513 if (B0 % 4)
1514 return false;
1515 if (B1 != B0+1 || B2 != B1+1 || B3 != B2+1)
1516 return false;
1517 }
1518
1519 // Now we look at mask elements 0,4,8,12
1520 unsigned M0 = N->getMaskElt(0) / 4;
1521 unsigned M1 = N->getMaskElt(4) / 4;
1522 unsigned M2 = N->getMaskElt(8) / 4;
1523 unsigned M3 = N->getMaskElt(12) / 4;
1524 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
1525 unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
1526
1527 // Below, let H and L be arbitrary elements of the shuffle mask
1528 // where H is in the range [4,7] and L is in the range [0,3].
1529 // H, 1, 2, 3 or L, 5, 6, 7
1530 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
1531 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
1532 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
1533 InsertAtByte = IsLE ? 12 : 0;
1534 Swap = M0 < 4;
1535 return true;
1536 }
1537 // 0, H, 2, 3 or 4, L, 6, 7
1538 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
1539 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
1540 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
1541 InsertAtByte = IsLE ? 8 : 4;
1542 Swap = M1 < 4;
1543 return true;
1544 }
1545 // 0, 1, H, 3 or 4, 5, L, 7
1546 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
1547 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
1548 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
1549 InsertAtByte = IsLE ? 4 : 8;
1550 Swap = M2 < 4;
1551 return true;
1552 }
1553 // 0, 1, 2, H or 4, 5, 6, L
1554 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
1555 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
1556 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
1557 InsertAtByte = IsLE ? 0 : 12;
1558 Swap = M3 < 4;
1559 return true;
1560 }
1561
1562 // If both vector operands for the shuffle are the same vector, the mask will
1563 // contain only elements from the first one and the second one will be undef.
1564 if (N->getOperand(1).isUndef()) {
1565 ShiftElts = 0;
1566 Swap = true;
1567 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
1568 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
1569 InsertAtByte = IsLE ? 12 : 0;
1570 return true;
1571 }
1572 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
1573 InsertAtByte = IsLE ? 8 : 4;
1574 return true;
1575 }
1576 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
1577 InsertAtByte = IsLE ? 4 : 8;
1578 return true;
1579 }
1580 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
1581 InsertAtByte = IsLE ? 0 : 12;
1582 return true;
1583 }
1584 }
1585
1586 return false;
1587 }
1588
1589 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
1590 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
getVSPLTImmediate(SDNode * N,unsigned EltSize,SelectionDAG & DAG)1591 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize,
1592 SelectionDAG &DAG) {
1593 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1594 assert(isSplatShuffleMask(SVOp, EltSize));
1595 if (DAG.getDataLayout().isLittleEndian())
1596 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
1597 else
1598 return SVOp->getMaskElt(0) / EltSize;
1599 }
1600
1601 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
1602 /// by using a vspltis[bhw] instruction of the specified element size, return
1603 /// the constant being splatted. The ByteSize field indicates the number of
1604 /// bytes of each element [124] -> [bhw].
get_VSPLTI_elt(SDNode * N,unsigned ByteSize,SelectionDAG & DAG)1605 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
1606 SDValue OpVal(nullptr, 0);
1607
1608 // If ByteSize of the splat is bigger than the element size of the
1609 // build_vector, then we have a case where we are checking for a splat where
1610 // multiple elements of the buildvector are folded together into a single
1611 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
1612 unsigned EltSize = 16/N->getNumOperands();
1613 if (EltSize < ByteSize) {
1614 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval.
1615 SDValue UniquedVals[4];
1616 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
1617
1618 // See if all of the elements in the buildvector agree across.
1619 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1620 if (N->getOperand(i).isUndef()) continue;
1621 // If the element isn't a constant, bail fully out.
1622 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
1623
1624
1625 if (!UniquedVals[i&(Multiple-1)].getNode())
1626 UniquedVals[i&(Multiple-1)] = N->getOperand(i);
1627 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
1628 return SDValue(); // no match.
1629 }
1630
1631 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
1632 // either constant or undef values that are identical for each chunk. See
1633 // if these chunks can form into a larger vspltis*.
1634
1635 // Check to see if all of the leading entries are either 0 or -1. If
1636 // neither, then this won't fit into the immediate field.
1637 bool LeadingZero = true;
1638 bool LeadingOnes = true;
1639 for (unsigned i = 0; i != Multiple-1; ++i) {
1640 if (!UniquedVals[i].getNode()) continue; // Must have been undefs.
1641
1642 LeadingZero &= isNullConstant(UniquedVals[i]);
1643 LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
1644 }
1645 // Finally, check the least significant entry.
1646 if (LeadingZero) {
1647 if (!UniquedVals[Multiple-1].getNode())
1648 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef
1649 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
1650 if (Val < 16) // 0,0,0,4 -> vspltisw(4)
1651 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
1652 }
1653 if (LeadingOnes) {
1654 if (!UniquedVals[Multiple-1].getNode())
1655 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
1656 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
1657 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2)
1658 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
1659 }
1660
1661 return SDValue();
1662 }
1663
1664 // Check to see if this buildvec has a single non-undef value in its elements.
1665 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1666 if (N->getOperand(i).isUndef()) continue;
1667 if (!OpVal.getNode())
1668 OpVal = N->getOperand(i);
1669 else if (OpVal != N->getOperand(i))
1670 return SDValue();
1671 }
1672
1673 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def.
1674
1675 unsigned ValSizeInBytes = EltSize;
1676 uint64_t Value = 0;
1677 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
1678 Value = CN->getZExtValue();
1679 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
1680 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
1681 Value = FloatToBits(CN->getValueAPF().convertToFloat());
1682 }
1683
1684 // If the splat value is larger than the element value, then we can never do
1685 // this splat. The only case that we could fit the replicated bits into our
1686 // immediate field for would be zero, and we prefer to use vxor for it.
1687 if (ValSizeInBytes < ByteSize) return SDValue();
1688
1689 // If the element value is larger than the splat value, check if it consists
1690 // of a repeated bit pattern of size ByteSize.
1691 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
1692 return SDValue();
1693
1694 // Properly sign extend the value.
1695 int MaskVal = SignExtend32(Value, ByteSize * 8);
1696
1697 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
1698 if (MaskVal == 0) return SDValue();
1699
1700 // Finally, if this value fits in a 5 bit sext field, return it
1701 if (SignExtend32<5>(MaskVal) == MaskVal)
1702 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
1703 return SDValue();
1704 }
1705
1706 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift
1707 /// amount, otherwise return -1.
isQVALIGNIShuffleMask(SDNode * N)1708 int PPC::isQVALIGNIShuffleMask(SDNode *N) {
1709 EVT VT = N->getValueType(0);
1710 if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1)
1711 return -1;
1712
1713 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1714
1715 // Find the first non-undef value in the shuffle mask.
1716 unsigned i;
1717 for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i)
1718 /*search*/;
1719
1720 if (i == 4) return -1; // all undef.
1721
1722 // Otherwise, check to see if the rest of the elements are consecutively
1723 // numbered from this value.
1724 unsigned ShiftAmt = SVOp->getMaskElt(i);
1725 if (ShiftAmt < i) return -1;
1726 ShiftAmt -= i;
1727
1728 // Check the rest of the elements to see if they are consecutive.
1729 for (++i; i != 4; ++i)
1730 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1731 return -1;
1732
1733 return ShiftAmt;
1734 }
1735
1736 //===----------------------------------------------------------------------===//
1737 // Addressing Mode Selection
1738 //===----------------------------------------------------------------------===//
1739
1740 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
1741 /// or 64-bit immediate, and if the value can be accurately represented as a
1742 /// sign extension from a 16-bit value. If so, this returns true and the
1743 /// immediate.
isIntS16Immediate(SDNode * N,short & Imm)1744 static bool isIntS16Immediate(SDNode *N, short &Imm) {
1745 if (!isa<ConstantSDNode>(N))
1746 return false;
1747
1748 Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
1749 if (N->getValueType(0) == MVT::i32)
1750 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
1751 else
1752 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
1753 }
isIntS16Immediate(SDValue Op,short & Imm)1754 static bool isIntS16Immediate(SDValue Op, short &Imm) {
1755 return isIntS16Immediate(Op.getNode(), Imm);
1756 }
1757
1758 /// SelectAddressRegReg - Given the specified addressed, check to see if it
1759 /// can be represented as an indexed [r+r] operation. Returns false if it
1760 /// can be more efficiently represented with [r+imm].
SelectAddressRegReg(SDValue N,SDValue & Base,SDValue & Index,SelectionDAG & DAG) const1761 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
1762 SDValue &Index,
1763 SelectionDAG &DAG) const {
1764 short imm = 0;
1765 if (N.getOpcode() == ISD::ADD) {
1766 if (isIntS16Immediate(N.getOperand(1), imm))
1767 return false; // r+i
1768 if (N.getOperand(1).getOpcode() == PPCISD::Lo)
1769 return false; // r+i
1770
1771 Base = N.getOperand(0);
1772 Index = N.getOperand(1);
1773 return true;
1774 } else if (N.getOpcode() == ISD::OR) {
1775 if (isIntS16Immediate(N.getOperand(1), imm))
1776 return false; // r+i can fold it if we can.
1777
1778 // If this is an or of disjoint bitfields, we can codegen this as an add
1779 // (for better address arithmetic) if the LHS and RHS of the OR are provably
1780 // disjoint.
1781 APInt LHSKnownZero, LHSKnownOne;
1782 APInt RHSKnownZero, RHSKnownOne;
1783 DAG.computeKnownBits(N.getOperand(0),
1784 LHSKnownZero, LHSKnownOne);
1785
1786 if (LHSKnownZero.getBoolValue()) {
1787 DAG.computeKnownBits(N.getOperand(1),
1788 RHSKnownZero, RHSKnownOne);
1789 // If all of the bits are known zero on the LHS or RHS, the add won't
1790 // carry.
1791 if (~(LHSKnownZero | RHSKnownZero) == 0) {
1792 Base = N.getOperand(0);
1793 Index = N.getOperand(1);
1794 return true;
1795 }
1796 }
1797 }
1798
1799 return false;
1800 }
1801
1802 // If we happen to be doing an i64 load or store into a stack slot that has
1803 // less than a 4-byte alignment, then the frame-index elimination may need to
1804 // use an indexed load or store instruction (because the offset may not be a
1805 // multiple of 4). The extra register needed to hold the offset comes from the
1806 // register scavenger, and it is possible that the scavenger will need to use
1807 // an emergency spill slot. As a result, we need to make sure that a spill slot
1808 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
1809 // stack slot.
fixupFuncForFI(SelectionDAG & DAG,int FrameIdx,EVT VT)1810 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
1811 // FIXME: This does not handle the LWA case.
1812 if (VT != MVT::i64)
1813 return;
1814
1815 // NOTE: We'll exclude negative FIs here, which come from argument
1816 // lowering, because there are no known test cases triggering this problem
1817 // using packed structures (or similar). We can remove this exclusion if
1818 // we find such a test case. The reason why this is so test-case driven is
1819 // because this entire 'fixup' is only to prevent crashes (from the
1820 // register scavenger) on not-really-valid inputs. For example, if we have:
1821 // %a = alloca i1
1822 // %b = bitcast i1* %a to i64*
1823 // store i64* a, i64 b
1824 // then the store should really be marked as 'align 1', but is not. If it
1825 // were marked as 'align 1' then the indexed form would have been
1826 // instruction-selected initially, and the problem this 'fixup' is preventing
1827 // won't happen regardless.
1828 if (FrameIdx < 0)
1829 return;
1830
1831 MachineFunction &MF = DAG.getMachineFunction();
1832 MachineFrameInfo *MFI = MF.getFrameInfo();
1833
1834 unsigned Align = MFI->getObjectAlignment(FrameIdx);
1835 if (Align >= 4)
1836 return;
1837
1838 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1839 FuncInfo->setHasNonRISpills();
1840 }
1841
1842 /// Returns true if the address N can be represented by a base register plus
1843 /// a signed 16-bit displacement [r+imm], and if it is not better
1844 /// represented as reg+reg. If Aligned is true, only accept displacements
1845 /// suitable for STD and friends, i.e. multiples of 4.
SelectAddressRegImm(SDValue N,SDValue & Disp,SDValue & Base,SelectionDAG & DAG,bool Aligned) const1846 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
1847 SDValue &Base,
1848 SelectionDAG &DAG,
1849 bool Aligned) const {
1850 // FIXME dl should come from parent load or store, not from address
1851 SDLoc dl(N);
1852 // If this can be more profitably realized as r+r, fail.
1853 if (SelectAddressRegReg(N, Disp, Base, DAG))
1854 return false;
1855
1856 if (N.getOpcode() == ISD::ADD) {
1857 short imm = 0;
1858 if (isIntS16Immediate(N.getOperand(1), imm) &&
1859 (!Aligned || (imm & 3) == 0)) {
1860 Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
1861 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
1862 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1863 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
1864 } else {
1865 Base = N.getOperand(0);
1866 }
1867 return true; // [r+i]
1868 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
1869 // Match LOAD (ADD (X, Lo(G))).
1870 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
1871 && "Cannot handle constant offsets yet!");
1872 Disp = N.getOperand(1).getOperand(0); // The global address.
1873 assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
1874 Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
1875 Disp.getOpcode() == ISD::TargetConstantPool ||
1876 Disp.getOpcode() == ISD::TargetJumpTable);
1877 Base = N.getOperand(0);
1878 return true; // [&g+r]
1879 }
1880 } else if (N.getOpcode() == ISD::OR) {
1881 short imm = 0;
1882 if (isIntS16Immediate(N.getOperand(1), imm) &&
1883 (!Aligned || (imm & 3) == 0)) {
1884 // If this is an or of disjoint bitfields, we can codegen this as an add
1885 // (for better address arithmetic) if the LHS and RHS of the OR are
1886 // provably disjoint.
1887 APInt LHSKnownZero, LHSKnownOne;
1888 DAG.computeKnownBits(N.getOperand(0), LHSKnownZero, LHSKnownOne);
1889
1890 if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
1891 // If all of the bits are known zero on the LHS or RHS, the add won't
1892 // carry.
1893 if (FrameIndexSDNode *FI =
1894 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
1895 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1896 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
1897 } else {
1898 Base = N.getOperand(0);
1899 }
1900 Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
1901 return true;
1902 }
1903 }
1904 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1905 // Loading from a constant address.
1906
1907 // If this address fits entirely in a 16-bit sext immediate field, codegen
1908 // this as "d, 0"
1909 short Imm;
1910 if (isIntS16Immediate(CN, Imm) && (!Aligned || (Imm & 3) == 0)) {
1911 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
1912 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
1913 CN->getValueType(0));
1914 return true;
1915 }
1916
1917 // Handle 32-bit sext immediates with LIS + addr mode.
1918 if ((CN->getValueType(0) == MVT::i32 ||
1919 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
1920 (!Aligned || (CN->getZExtValue() & 3) == 0)) {
1921 int Addr = (int)CN->getZExtValue();
1922
1923 // Otherwise, break this down into an LIS + disp.
1924 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
1925
1926 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
1927 MVT::i32);
1928 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1929 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
1930 return true;
1931 }
1932 }
1933
1934 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
1935 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
1936 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1937 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
1938 } else
1939 Base = N;
1940 return true; // [r+0]
1941 }
1942
1943 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
1944 /// represented as an indexed [r+r] operation.
SelectAddressRegRegOnly(SDValue N,SDValue & Base,SDValue & Index,SelectionDAG & DAG) const1945 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
1946 SDValue &Index,
1947 SelectionDAG &DAG) const {
1948 // Check to see if we can easily represent this as an [r+r] address. This
1949 // will fail if it thinks that the address is more profitably represented as
1950 // reg+imm, e.g. where imm = 0.
1951 if (SelectAddressRegReg(N, Base, Index, DAG))
1952 return true;
1953
1954 // If the operand is an addition, always emit this as [r+r], since this is
1955 // better (for code size, and execution, as the memop does the add for free)
1956 // than emitting an explicit add.
1957 if (N.getOpcode() == ISD::ADD) {
1958 Base = N.getOperand(0);
1959 Index = N.getOperand(1);
1960 return true;
1961 }
1962
1963 // Otherwise, do it the hard way, using R0 as the base register.
1964 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
1965 N.getValueType());
1966 Index = N;
1967 return true;
1968 }
1969
1970 /// getPreIndexedAddressParts - returns true by value, base pointer and
1971 /// offset pointer and addressing mode by reference if the node's address
1972 /// can be legally represented as pre-indexed load / store address.
getPreIndexedAddressParts(SDNode * N,SDValue & Base,SDValue & Offset,ISD::MemIndexedMode & AM,SelectionDAG & DAG) const1973 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1974 SDValue &Offset,
1975 ISD::MemIndexedMode &AM,
1976 SelectionDAG &DAG) const {
1977 if (DisablePPCPreinc) return false;
1978
1979 bool isLoad = true;
1980 SDValue Ptr;
1981 EVT VT;
1982 unsigned Alignment;
1983 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1984 Ptr = LD->getBasePtr();
1985 VT = LD->getMemoryVT();
1986 Alignment = LD->getAlignment();
1987 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1988 Ptr = ST->getBasePtr();
1989 VT = ST->getMemoryVT();
1990 Alignment = ST->getAlignment();
1991 isLoad = false;
1992 } else
1993 return false;
1994
1995 // PowerPC doesn't have preinc load/store instructions for vectors (except
1996 // for QPX, which does have preinc r+r forms).
1997 if (VT.isVector()) {
1998 if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) {
1999 return false;
2000 } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) {
2001 AM = ISD::PRE_INC;
2002 return true;
2003 }
2004 }
2005
2006 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
2007
2008 // Common code will reject creating a pre-inc form if the base pointer
2009 // is a frame index, or if N is a store and the base pointer is either
2010 // the same as or a predecessor of the value being stored. Check for
2011 // those situations here, and try with swapped Base/Offset instead.
2012 bool Swap = false;
2013
2014 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
2015 Swap = true;
2016 else if (!isLoad) {
2017 SDValue Val = cast<StoreSDNode>(N)->getValue();
2018 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
2019 Swap = true;
2020 }
2021
2022 if (Swap)
2023 std::swap(Base, Offset);
2024
2025 AM = ISD::PRE_INC;
2026 return true;
2027 }
2028
2029 // LDU/STU can only handle immediates that are a multiple of 4.
2030 if (VT != MVT::i64) {
2031 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, false))
2032 return false;
2033 } else {
2034 // LDU/STU need an address with at least 4-byte alignment.
2035 if (Alignment < 4)
2036 return false;
2037
2038 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, true))
2039 return false;
2040 }
2041
2042 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2043 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of
2044 // sext i32 to i64 when addr mode is r+i.
2045 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
2046 LD->getExtensionType() == ISD::SEXTLOAD &&
2047 isa<ConstantSDNode>(Offset))
2048 return false;
2049 }
2050
2051 AM = ISD::PRE_INC;
2052 return true;
2053 }
2054
2055 //===----------------------------------------------------------------------===//
2056 // LowerOperation implementation
2057 //===----------------------------------------------------------------------===//
2058
2059 /// Return true if we should reference labels using a PICBase, set the HiOpFlags
2060 /// and LoOpFlags to the target MO flags.
getLabelAccessInfo(bool IsPIC,const PPCSubtarget & Subtarget,unsigned & HiOpFlags,unsigned & LoOpFlags,const GlobalValue * GV=nullptr)2061 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
2062 unsigned &HiOpFlags, unsigned &LoOpFlags,
2063 const GlobalValue *GV = nullptr) {
2064 HiOpFlags = PPCII::MO_HA;
2065 LoOpFlags = PPCII::MO_LO;
2066
2067 // Don't use the pic base if not in PIC relocation model.
2068 if (IsPIC) {
2069 HiOpFlags |= PPCII::MO_PIC_FLAG;
2070 LoOpFlags |= PPCII::MO_PIC_FLAG;
2071 }
2072
2073 // If this is a reference to a global value that requires a non-lazy-ptr, make
2074 // sure that instruction lowering adds it.
2075 if (GV && Subtarget.hasLazyResolverStub(GV)) {
2076 HiOpFlags |= PPCII::MO_NLP_FLAG;
2077 LoOpFlags |= PPCII::MO_NLP_FLAG;
2078
2079 if (GV->hasHiddenVisibility()) {
2080 HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
2081 LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
2082 }
2083 }
2084 }
2085
LowerLabelRef(SDValue HiPart,SDValue LoPart,bool isPIC,SelectionDAG & DAG)2086 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
2087 SelectionDAG &DAG) {
2088 SDLoc DL(HiPart);
2089 EVT PtrVT = HiPart.getValueType();
2090 SDValue Zero = DAG.getConstant(0, DL, PtrVT);
2091
2092 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
2093 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
2094
2095 // With PIC, the first instruction is actually "GR+hi(&G)".
2096 if (isPIC)
2097 Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
2098 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
2099
2100 // Generate non-pic code that has direct accesses to the constant pool.
2101 // The address of the global is just (hi(&g)+lo(&g)).
2102 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
2103 }
2104
setUsesTOCBasePtr(MachineFunction & MF)2105 static void setUsesTOCBasePtr(MachineFunction &MF) {
2106 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2107 FuncInfo->setUsesTOCBasePtr();
2108 }
2109
setUsesTOCBasePtr(SelectionDAG & DAG)2110 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
2111 setUsesTOCBasePtr(DAG.getMachineFunction());
2112 }
2113
getTOCEntry(SelectionDAG & DAG,const SDLoc & dl,bool Is64Bit,SDValue GA)2114 static SDValue getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, bool Is64Bit,
2115 SDValue GA) {
2116 EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2117 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) :
2118 DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
2119
2120 SDValue Ops[] = { GA, Reg };
2121 return DAG.getMemIntrinsicNode(
2122 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
2123 MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0, false, true,
2124 false, 0);
2125 }
2126
LowerConstantPool(SDValue Op,SelectionDAG & DAG) const2127 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
2128 SelectionDAG &DAG) const {
2129 EVT PtrVT = Op.getValueType();
2130 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2131 const Constant *C = CP->getConstVal();
2132
2133 // 64-bit SVR4 ABI code is always position-independent.
2134 // The actual address of the GlobalValue is stored in the TOC.
2135 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2136 setUsesTOCBasePtr(DAG);
2137 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
2138 return getTOCEntry(DAG, SDLoc(CP), true, GA);
2139 }
2140
2141 unsigned MOHiFlag, MOLoFlag;
2142 bool IsPIC = isPositionIndependent();
2143 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2144
2145 if (IsPIC && Subtarget.isSVR4ABI()) {
2146 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(),
2147 PPCII::MO_PIC_FLAG);
2148 return getTOCEntry(DAG, SDLoc(CP), false, GA);
2149 }
2150
2151 SDValue CPIHi =
2152 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
2153 SDValue CPILo =
2154 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
2155 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
2156 }
2157
LowerJumpTable(SDValue Op,SelectionDAG & DAG) const2158 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
2159 EVT PtrVT = Op.getValueType();
2160 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2161
2162 // 64-bit SVR4 ABI code is always position-independent.
2163 // The actual address of the GlobalValue is stored in the TOC.
2164 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2165 setUsesTOCBasePtr(DAG);
2166 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2167 return getTOCEntry(DAG, SDLoc(JT), true, GA);
2168 }
2169
2170 unsigned MOHiFlag, MOLoFlag;
2171 bool IsPIC = isPositionIndependent();
2172 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2173
2174 if (IsPIC && Subtarget.isSVR4ABI()) {
2175 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
2176 PPCII::MO_PIC_FLAG);
2177 return getTOCEntry(DAG, SDLoc(GA), false, GA);
2178 }
2179
2180 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
2181 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
2182 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
2183 }
2184
LowerBlockAddress(SDValue Op,SelectionDAG & DAG) const2185 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
2186 SelectionDAG &DAG) const {
2187 EVT PtrVT = Op.getValueType();
2188 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
2189 const BlockAddress *BA = BASDN->getBlockAddress();
2190
2191 // 64-bit SVR4 ABI code is always position-independent.
2192 // The actual BlockAddress is stored in the TOC.
2193 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2194 setUsesTOCBasePtr(DAG);
2195 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
2196 return getTOCEntry(DAG, SDLoc(BASDN), true, GA);
2197 }
2198
2199 unsigned MOHiFlag, MOLoFlag;
2200 bool IsPIC = isPositionIndependent();
2201 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2202 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
2203 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
2204 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
2205 }
2206
LowerGlobalTLSAddress(SDValue Op,SelectionDAG & DAG) const2207 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
2208 SelectionDAG &DAG) const {
2209
2210 // FIXME: TLS addresses currently use medium model code sequences,
2211 // which is the most useful form. Eventually support for small and
2212 // large models could be added if users need it, at the cost of
2213 // additional complexity.
2214 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2215 if (DAG.getTarget().Options.EmulatedTLS)
2216 return LowerToTLSEmulatedModel(GA, DAG);
2217
2218 SDLoc dl(GA);
2219 const GlobalValue *GV = GA->getGlobal();
2220 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2221 bool is64bit = Subtarget.isPPC64();
2222 const Module *M = DAG.getMachineFunction().getFunction()->getParent();
2223 PICLevel::Level picLevel = M->getPICLevel();
2224
2225 TLSModel::Model Model = getTargetMachine().getTLSModel(GV);
2226
2227 if (Model == TLSModel::LocalExec) {
2228 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2229 PPCII::MO_TPREL_HA);
2230 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2231 PPCII::MO_TPREL_LO);
2232 SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2,
2233 is64bit ? MVT::i64 : MVT::i32);
2234 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
2235 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
2236 }
2237
2238 if (Model == TLSModel::InitialExec) {
2239 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2240 SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2241 PPCII::MO_TLS);
2242 SDValue GOTPtr;
2243 if (is64bit) {
2244 setUsesTOCBasePtr(DAG);
2245 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2246 GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
2247 PtrVT, GOTReg, TGA);
2248 } else
2249 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
2250 SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
2251 PtrVT, TGA, GOTPtr);
2252 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
2253 }
2254
2255 if (Model == TLSModel::GeneralDynamic) {
2256 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2257 SDValue GOTPtr;
2258 if (is64bit) {
2259 setUsesTOCBasePtr(DAG);
2260 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2261 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
2262 GOTReg, TGA);
2263 } else {
2264 if (picLevel == PICLevel::SmallPIC)
2265 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2266 else
2267 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2268 }
2269 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
2270 GOTPtr, TGA, TGA);
2271 }
2272
2273 if (Model == TLSModel::LocalDynamic) {
2274 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2275 SDValue GOTPtr;
2276 if (is64bit) {
2277 setUsesTOCBasePtr(DAG);
2278 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2279 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
2280 GOTReg, TGA);
2281 } else {
2282 if (picLevel == PICLevel::SmallPIC)
2283 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2284 else
2285 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2286 }
2287 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
2288 PtrVT, GOTPtr, TGA, TGA);
2289 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
2290 PtrVT, TLSAddr, TGA);
2291 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
2292 }
2293
2294 llvm_unreachable("Unknown TLS model!");
2295 }
2296
LowerGlobalAddress(SDValue Op,SelectionDAG & DAG) const2297 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
2298 SelectionDAG &DAG) const {
2299 EVT PtrVT = Op.getValueType();
2300 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
2301 SDLoc DL(GSDN);
2302 const GlobalValue *GV = GSDN->getGlobal();
2303
2304 // 64-bit SVR4 ABI code is always position-independent.
2305 // The actual address of the GlobalValue is stored in the TOC.
2306 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2307 setUsesTOCBasePtr(DAG);
2308 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
2309 return getTOCEntry(DAG, DL, true, GA);
2310 }
2311
2312 unsigned MOHiFlag, MOLoFlag;
2313 bool IsPIC = isPositionIndependent();
2314 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
2315
2316 if (IsPIC && Subtarget.isSVR4ABI()) {
2317 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
2318 GSDN->getOffset(),
2319 PPCII::MO_PIC_FLAG);
2320 return getTOCEntry(DAG, DL, false, GA);
2321 }
2322
2323 SDValue GAHi =
2324 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
2325 SDValue GALo =
2326 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
2327
2328 SDValue Ptr = LowerLabelRef(GAHi, GALo, IsPIC, DAG);
2329
2330 // If the global reference is actually to a non-lazy-pointer, we have to do an
2331 // extra load to get the address of the global.
2332 if (MOHiFlag & PPCII::MO_NLP_FLAG)
2333 Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(),
2334 false, false, false, 0);
2335 return Ptr;
2336 }
2337
LowerSETCC(SDValue Op,SelectionDAG & DAG) const2338 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
2339 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2340 SDLoc dl(Op);
2341
2342 if (Op.getValueType() == MVT::v2i64) {
2343 // When the operands themselves are v2i64 values, we need to do something
2344 // special because VSX has no underlying comparison operations for these.
2345 if (Op.getOperand(0).getValueType() == MVT::v2i64) {
2346 // Equality can be handled by casting to the legal type for Altivec
2347 // comparisons, everything else needs to be expanded.
2348 if (CC == ISD::SETEQ || CC == ISD::SETNE) {
2349 return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
2350 DAG.getSetCC(dl, MVT::v4i32,
2351 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
2352 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
2353 CC));
2354 }
2355
2356 return SDValue();
2357 }
2358
2359 // We handle most of these in the usual way.
2360 return Op;
2361 }
2362
2363 // If we're comparing for equality to zero, expose the fact that this is
2364 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
2365 // fold the new nodes.
2366 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2367 if (C->isNullValue() && CC == ISD::SETEQ) {
2368 EVT VT = Op.getOperand(0).getValueType();
2369 SDValue Zext = Op.getOperand(0);
2370 if (VT.bitsLT(MVT::i32)) {
2371 VT = MVT::i32;
2372 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
2373 }
2374 unsigned Log2b = Log2_32(VT.getSizeInBits());
2375 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
2376 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
2377 DAG.getConstant(Log2b, dl, MVT::i32));
2378 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
2379 }
2380 // Leave comparisons against 0 and -1 alone for now, since they're usually
2381 // optimized. FIXME: revisit this when we can custom lower all setcc
2382 // optimizations.
2383 if (C->isAllOnesValue() || C->isNullValue())
2384 return SDValue();
2385 }
2386
2387 // If we have an integer seteq/setne, turn it into a compare against zero
2388 // by xor'ing the rhs with the lhs, which is faster than setting a
2389 // condition register, reading it back out, and masking the correct bit. The
2390 // normal approach here uses sub to do this instead of xor. Using xor exposes
2391 // the result to other bit-twiddling opportunities.
2392 EVT LHSVT = Op.getOperand(0).getValueType();
2393 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
2394 EVT VT = Op.getValueType();
2395 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
2396 Op.getOperand(1));
2397 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
2398 }
2399 return SDValue();
2400 }
2401
LowerVAARG(SDValue Op,SelectionDAG & DAG) const2402 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
2403 SDNode *Node = Op.getNode();
2404 EVT VT = Node->getValueType(0);
2405 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2406 SDValue InChain = Node->getOperand(0);
2407 SDValue VAListPtr = Node->getOperand(1);
2408 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2409 SDLoc dl(Node);
2410
2411 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
2412
2413 // gpr_index
2414 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
2415 VAListPtr, MachinePointerInfo(SV), MVT::i8,
2416 false, false, false, 0);
2417 InChain = GprIndex.getValue(1);
2418
2419 if (VT == MVT::i64) {
2420 // Check if GprIndex is even
2421 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
2422 DAG.getConstant(1, dl, MVT::i32));
2423 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
2424 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
2425 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
2426 DAG.getConstant(1, dl, MVT::i32));
2427 // Align GprIndex to be even if it isn't
2428 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
2429 GprIndex);
2430 }
2431
2432 // fpr index is 1 byte after gpr
2433 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2434 DAG.getConstant(1, dl, MVT::i32));
2435
2436 // fpr
2437 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
2438 FprPtr, MachinePointerInfo(SV), MVT::i8,
2439 false, false, false, 0);
2440 InChain = FprIndex.getValue(1);
2441
2442 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2443 DAG.getConstant(8, dl, MVT::i32));
2444
2445 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2446 DAG.getConstant(4, dl, MVT::i32));
2447
2448 // areas
2449 SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr,
2450 MachinePointerInfo(), false, false,
2451 false, 0);
2452 InChain = OverflowArea.getValue(1);
2453
2454 SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr,
2455 MachinePointerInfo(), false, false,
2456 false, 0);
2457 InChain = RegSaveArea.getValue(1);
2458
2459 // select overflow_area if index > 8
2460 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
2461 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
2462
2463 // adjustment constant gpr_index * 4/8
2464 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
2465 VT.isInteger() ? GprIndex : FprIndex,
2466 DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
2467 MVT::i32));
2468
2469 // OurReg = RegSaveArea + RegConstant
2470 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
2471 RegConstant);
2472
2473 // Floating types are 32 bytes into RegSaveArea
2474 if (VT.isFloatingPoint())
2475 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
2476 DAG.getConstant(32, dl, MVT::i32));
2477
2478 // increase {f,g}pr_index by 1 (or 2 if VT is i64)
2479 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
2480 VT.isInteger() ? GprIndex : FprIndex,
2481 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
2482 MVT::i32));
2483
2484 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
2485 VT.isInteger() ? VAListPtr : FprPtr,
2486 MachinePointerInfo(SV),
2487 MVT::i8, false, false, 0);
2488
2489 // determine if we should load from reg_save_area or overflow_area
2490 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
2491
2492 // increase overflow_area by 4/8 if gpr/fpr > 8
2493 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
2494 DAG.getConstant(VT.isInteger() ? 4 : 8,
2495 dl, MVT::i32));
2496
2497 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
2498 OverflowAreaPlusN);
2499
2500 InChain = DAG.getTruncStore(InChain, dl, OverflowArea,
2501 OverflowAreaPtr,
2502 MachinePointerInfo(),
2503 MVT::i32, false, false, 0);
2504
2505 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(),
2506 false, false, false, 0);
2507 }
2508
LowerVACOPY(SDValue Op,SelectionDAG & DAG) const2509 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
2510 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
2511
2512 // We have to copy the entire va_list struct:
2513 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
2514 return DAG.getMemcpy(Op.getOperand(0), Op,
2515 Op.getOperand(1), Op.getOperand(2),
2516 DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true,
2517 false, MachinePointerInfo(), MachinePointerInfo());
2518 }
2519
LowerADJUST_TRAMPOLINE(SDValue Op,SelectionDAG & DAG) const2520 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
2521 SelectionDAG &DAG) const {
2522 return Op.getOperand(0);
2523 }
2524
LowerINIT_TRAMPOLINE(SDValue Op,SelectionDAG & DAG) const2525 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
2526 SelectionDAG &DAG) const {
2527 SDValue Chain = Op.getOperand(0);
2528 SDValue Trmp = Op.getOperand(1); // trampoline
2529 SDValue FPtr = Op.getOperand(2); // nested function
2530 SDValue Nest = Op.getOperand(3); // 'nest' parameter value
2531 SDLoc dl(Op);
2532
2533 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2534 bool isPPC64 = (PtrVT == MVT::i64);
2535 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
2536
2537 TargetLowering::ArgListTy Args;
2538 TargetLowering::ArgListEntry Entry;
2539
2540 Entry.Ty = IntPtrTy;
2541 Entry.Node = Trmp; Args.push_back(Entry);
2542
2543 // TrampSize == (isPPC64 ? 48 : 40);
2544 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
2545 isPPC64 ? MVT::i64 : MVT::i32);
2546 Args.push_back(Entry);
2547
2548 Entry.Node = FPtr; Args.push_back(Entry);
2549 Entry.Node = Nest; Args.push_back(Entry);
2550
2551 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
2552 TargetLowering::CallLoweringInfo CLI(DAG);
2553 CLI.setDebugLoc(dl).setChain(Chain)
2554 .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
2555 DAG.getExternalSymbol("__trampoline_setup", PtrVT),
2556 std::move(Args));
2557
2558 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2559 return CallResult.second;
2560 }
2561
LowerVASTART(SDValue Op,SelectionDAG & DAG) const2562 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
2563 MachineFunction &MF = DAG.getMachineFunction();
2564 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2565 EVT PtrVT = getPointerTy(MF.getDataLayout());
2566
2567 SDLoc dl(Op);
2568
2569 if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
2570 // vastart just stores the address of the VarArgsFrameIndex slot into the
2571 // memory location argument.
2572 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2573 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2574 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
2575 MachinePointerInfo(SV),
2576 false, false, 0);
2577 }
2578
2579 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
2580 // We suppose the given va_list is already allocated.
2581 //
2582 // typedef struct {
2583 // char gpr; /* index into the array of 8 GPRs
2584 // * stored in the register save area
2585 // * gpr=0 corresponds to r3,
2586 // * gpr=1 to r4, etc.
2587 // */
2588 // char fpr; /* index into the array of 8 FPRs
2589 // * stored in the register save area
2590 // * fpr=0 corresponds to f1,
2591 // * fpr=1 to f2, etc.
2592 // */
2593 // char *overflow_arg_area;
2594 // /* location on stack that holds
2595 // * the next overflow argument
2596 // */
2597 // char *reg_save_area;
2598 // /* where r3:r10 and f1:f8 (if saved)
2599 // * are stored
2600 // */
2601 // } va_list[1];
2602
2603 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
2604 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
2605 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
2606 PtrVT);
2607 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
2608 PtrVT);
2609
2610 uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
2611 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
2612
2613 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
2614 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
2615
2616 uint64_t FPROffset = 1;
2617 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
2618
2619 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2620
2621 // Store first byte : number of int regs
2622 SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
2623 Op.getOperand(1),
2624 MachinePointerInfo(SV),
2625 MVT::i8, false, false, 0);
2626 uint64_t nextOffset = FPROffset;
2627 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
2628 ConstFPROffset);
2629
2630 // Store second byte : number of float regs
2631 SDValue secondStore =
2632 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
2633 MachinePointerInfo(SV, nextOffset), MVT::i8,
2634 false, false, 0);
2635 nextOffset += StackOffset;
2636 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
2637
2638 // Store second word : arguments given on stack
2639 SDValue thirdStore =
2640 DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
2641 MachinePointerInfo(SV, nextOffset),
2642 false, false, 0);
2643 nextOffset += FrameOffset;
2644 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
2645
2646 // Store third word : arguments given in registers
2647 return DAG.getStore(thirdStore, dl, FR, nextPtr,
2648 MachinePointerInfo(SV, nextOffset),
2649 false, false, 0);
2650
2651 }
2652
2653 #include "PPCGenCallingConv.inc"
2654
2655 // Function whose sole purpose is to kill compiler warnings
2656 // stemming from unused functions included from PPCGenCallingConv.inc.
useFastISelCCs(unsigned Flag) const2657 CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const {
2658 return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS;
2659 }
2660
CC_PPC32_SVR4_Custom_Dummy(unsigned & ValNo,MVT & ValVT,MVT & LocVT,CCValAssign::LocInfo & LocInfo,ISD::ArgFlagsTy & ArgFlags,CCState & State)2661 bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
2662 CCValAssign::LocInfo &LocInfo,
2663 ISD::ArgFlagsTy &ArgFlags,
2664 CCState &State) {
2665 return true;
2666 }
2667
CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned & ValNo,MVT & ValVT,MVT & LocVT,CCValAssign::LocInfo & LocInfo,ISD::ArgFlagsTy & ArgFlags,CCState & State)2668 bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
2669 MVT &LocVT,
2670 CCValAssign::LocInfo &LocInfo,
2671 ISD::ArgFlagsTy &ArgFlags,
2672 CCState &State) {
2673 static const MCPhysReg ArgRegs[] = {
2674 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2675 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2676 };
2677 const unsigned NumArgRegs = array_lengthof(ArgRegs);
2678
2679 unsigned RegNum = State.getFirstUnallocated(ArgRegs);
2680
2681 // Skip one register if the first unallocated register has an even register
2682 // number and there are still argument registers available which have not been
2683 // allocated yet. RegNum is actually an index into ArgRegs, which means we
2684 // need to skip a register if RegNum is odd.
2685 if (RegNum != NumArgRegs && RegNum % 2 == 1) {
2686 State.AllocateReg(ArgRegs[RegNum]);
2687 }
2688
2689 // Always return false here, as this function only makes sure that the first
2690 // unallocated register has an odd register number and does not actually
2691 // allocate a register for the current argument.
2692 return false;
2693 }
2694
CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned & ValNo,MVT & ValVT,MVT & LocVT,CCValAssign::LocInfo & LocInfo,ISD::ArgFlagsTy & ArgFlags,CCState & State)2695 bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
2696 MVT &LocVT,
2697 CCValAssign::LocInfo &LocInfo,
2698 ISD::ArgFlagsTy &ArgFlags,
2699 CCState &State) {
2700 static const MCPhysReg ArgRegs[] = {
2701 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
2702 PPC::F8
2703 };
2704
2705 const unsigned NumArgRegs = array_lengthof(ArgRegs);
2706
2707 unsigned RegNum = State.getFirstUnallocated(ArgRegs);
2708
2709 // If there is only one Floating-point register left we need to put both f64
2710 // values of a split ppc_fp128 value on the stack.
2711 if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
2712 State.AllocateReg(ArgRegs[RegNum]);
2713 }
2714
2715 // Always return false here, as this function only makes sure that the two f64
2716 // values a ppc_fp128 value is split into are both passed in registers or both
2717 // passed on the stack and does not actually allocate a register for the
2718 // current argument.
2719 return false;
2720 }
2721
2722 /// FPR - The set of FP registers that should be allocated for arguments,
2723 /// on Darwin.
2724 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5,
2725 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10,
2726 PPC::F11, PPC::F12, PPC::F13};
2727
2728 /// QFPR - The set of QPX registers that should be allocated for arguments.
2729 static const MCPhysReg QFPR[] = {
2730 PPC::QF1, PPC::QF2, PPC::QF3, PPC::QF4, PPC::QF5, PPC::QF6, PPC::QF7,
2731 PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13};
2732
2733 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
2734 /// the stack.
CalculateStackSlotSize(EVT ArgVT,ISD::ArgFlagsTy Flags,unsigned PtrByteSize)2735 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
2736 unsigned PtrByteSize) {
2737 unsigned ArgSize = ArgVT.getStoreSize();
2738 if (Flags.isByVal())
2739 ArgSize = Flags.getByValSize();
2740
2741 // Round up to multiples of the pointer size, except for array members,
2742 // which are always packed.
2743 if (!Flags.isInConsecutiveRegs())
2744 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2745
2746 return ArgSize;
2747 }
2748
2749 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
2750 /// on the stack.
CalculateStackSlotAlignment(EVT ArgVT,EVT OrigVT,ISD::ArgFlagsTy Flags,unsigned PtrByteSize)2751 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
2752 ISD::ArgFlagsTy Flags,
2753 unsigned PtrByteSize) {
2754 unsigned Align = PtrByteSize;
2755
2756 // Altivec parameters are padded to a 16 byte boundary.
2757 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
2758 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
2759 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
2760 ArgVT == MVT::v1i128)
2761 Align = 16;
2762 // QPX vector types stored in double-precision are padded to a 32 byte
2763 // boundary.
2764 else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1)
2765 Align = 32;
2766
2767 // ByVal parameters are aligned as requested.
2768 if (Flags.isByVal()) {
2769 unsigned BVAlign = Flags.getByValAlign();
2770 if (BVAlign > PtrByteSize) {
2771 if (BVAlign % PtrByteSize != 0)
2772 llvm_unreachable(
2773 "ByVal alignment is not a multiple of the pointer size");
2774
2775 Align = BVAlign;
2776 }
2777 }
2778
2779 // Array members are always packed to their original alignment.
2780 if (Flags.isInConsecutiveRegs()) {
2781 // If the array member was split into multiple registers, the first
2782 // needs to be aligned to the size of the full type. (Except for
2783 // ppcf128, which is only aligned as its f64 components.)
2784 if (Flags.isSplit() && OrigVT != MVT::ppcf128)
2785 Align = OrigVT.getStoreSize();
2786 else
2787 Align = ArgVT.getStoreSize();
2788 }
2789
2790 return Align;
2791 }
2792
2793 /// CalculateStackSlotUsed - Return whether this argument will use its
2794 /// stack slot (instead of being passed in registers). ArgOffset,
2795 /// AvailableFPRs, and AvailableVRs must hold the current argument
2796 /// position, and will be updated to account for this argument.
CalculateStackSlotUsed(EVT ArgVT,EVT OrigVT,ISD::ArgFlagsTy Flags,unsigned PtrByteSize,unsigned LinkageSize,unsigned ParamAreaSize,unsigned & ArgOffset,unsigned & AvailableFPRs,unsigned & AvailableVRs,bool HasQPX)2797 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT,
2798 ISD::ArgFlagsTy Flags,
2799 unsigned PtrByteSize,
2800 unsigned LinkageSize,
2801 unsigned ParamAreaSize,
2802 unsigned &ArgOffset,
2803 unsigned &AvailableFPRs,
2804 unsigned &AvailableVRs, bool HasQPX) {
2805 bool UseMemory = false;
2806
2807 // Respect alignment of argument on the stack.
2808 unsigned Align =
2809 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
2810 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
2811 // If there's no space left in the argument save area, we must
2812 // use memory (this check also catches zero-sized arguments).
2813 if (ArgOffset >= LinkageSize + ParamAreaSize)
2814 UseMemory = true;
2815
2816 // Allocate argument on the stack.
2817 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
2818 if (Flags.isInConsecutiveRegsLast())
2819 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2820 // If we overran the argument save area, we must use memory
2821 // (this check catches arguments passed partially in memory)
2822 if (ArgOffset > LinkageSize + ParamAreaSize)
2823 UseMemory = true;
2824
2825 // However, if the argument is actually passed in an FPR or a VR,
2826 // we don't use memory after all.
2827 if (!Flags.isByVal()) {
2828 if (ArgVT == MVT::f32 || ArgVT == MVT::f64 ||
2829 // QPX registers overlap with the scalar FP registers.
2830 (HasQPX && (ArgVT == MVT::v4f32 ||
2831 ArgVT == MVT::v4f64 ||
2832 ArgVT == MVT::v4i1)))
2833 if (AvailableFPRs > 0) {
2834 --AvailableFPRs;
2835 return false;
2836 }
2837 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
2838 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
2839 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
2840 ArgVT == MVT::v1i128)
2841 if (AvailableVRs > 0) {
2842 --AvailableVRs;
2843 return false;
2844 }
2845 }
2846
2847 return UseMemory;
2848 }
2849
2850 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
2851 /// ensure minimum alignment required for target.
EnsureStackAlignment(const PPCFrameLowering * Lowering,unsigned NumBytes)2852 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
2853 unsigned NumBytes) {
2854 unsigned TargetAlign = Lowering->getStackAlignment();
2855 unsigned AlignMask = TargetAlign - 1;
2856 NumBytes = (NumBytes + AlignMask) & ~AlignMask;
2857 return NumBytes;
2858 }
2859
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const2860 SDValue PPCTargetLowering::LowerFormalArguments(
2861 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2862 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
2863 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
2864 if (Subtarget.isSVR4ABI()) {
2865 if (Subtarget.isPPC64())
2866 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
2867 dl, DAG, InVals);
2868 else
2869 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
2870 dl, DAG, InVals);
2871 } else {
2872 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
2873 dl, DAG, InVals);
2874 }
2875 }
2876
LowerFormalArguments_32SVR4(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const2877 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
2878 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2879 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
2880 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
2881
2882 // 32-bit SVR4 ABI Stack Frame Layout:
2883 // +-----------------------------------+
2884 // +--> | Back chain |
2885 // | +-----------------------------------+
2886 // | | Floating-point register save area |
2887 // | +-----------------------------------+
2888 // | | General register save area |
2889 // | +-----------------------------------+
2890 // | | CR save word |
2891 // | +-----------------------------------+
2892 // | | VRSAVE save word |
2893 // | +-----------------------------------+
2894 // | | Alignment padding |
2895 // | +-----------------------------------+
2896 // | | Vector register save area |
2897 // | +-----------------------------------+
2898 // | | Local variable space |
2899 // | +-----------------------------------+
2900 // | | Parameter list area |
2901 // | +-----------------------------------+
2902 // | | LR save word |
2903 // | +-----------------------------------+
2904 // SP--> +--- | Back chain |
2905 // +-----------------------------------+
2906 //
2907 // Specifications:
2908 // System V Application Binary Interface PowerPC Processor Supplement
2909 // AltiVec Technology Programming Interface Manual
2910
2911 MachineFunction &MF = DAG.getMachineFunction();
2912 MachineFrameInfo *MFI = MF.getFrameInfo();
2913 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2914
2915 EVT PtrVT = getPointerTy(MF.getDataLayout());
2916 // Potential tail calls could cause overwriting of argument stack slots.
2917 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
2918 (CallConv == CallingConv::Fast));
2919 unsigned PtrByteSize = 4;
2920
2921 // Assign locations to all of the incoming arguments.
2922 SmallVector<CCValAssign, 16> ArgLocs;
2923 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2924 *DAG.getContext());
2925
2926 // Reserve space for the linkage area on the stack.
2927 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
2928 CCInfo.AllocateStack(LinkageSize, PtrByteSize);
2929 if (useSoftFloat())
2930 CCInfo.PreAnalyzeFormalArguments(Ins);
2931
2932 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
2933 CCInfo.clearWasPPCF128();
2934
2935 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2936 CCValAssign &VA = ArgLocs[i];
2937
2938 // Arguments stored in registers.
2939 if (VA.isRegLoc()) {
2940 const TargetRegisterClass *RC;
2941 EVT ValVT = VA.getValVT();
2942
2943 switch (ValVT.getSimpleVT().SimpleTy) {
2944 default:
2945 llvm_unreachable("ValVT not supported by formal arguments Lowering");
2946 case MVT::i1:
2947 case MVT::i32:
2948 RC = &PPC::GPRCRegClass;
2949 break;
2950 case MVT::f32:
2951 if (Subtarget.hasP8Vector())
2952 RC = &PPC::VSSRCRegClass;
2953 else
2954 RC = &PPC::F4RCRegClass;
2955 break;
2956 case MVT::f64:
2957 if (Subtarget.hasVSX())
2958 RC = &PPC::VSFRCRegClass;
2959 else
2960 RC = &PPC::F8RCRegClass;
2961 break;
2962 case MVT::v16i8:
2963 case MVT::v8i16:
2964 case MVT::v4i32:
2965 RC = &PPC::VRRCRegClass;
2966 break;
2967 case MVT::v4f32:
2968 RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass;
2969 break;
2970 case MVT::v2f64:
2971 case MVT::v2i64:
2972 RC = &PPC::VSHRCRegClass;
2973 break;
2974 case MVT::v4f64:
2975 RC = &PPC::QFRCRegClass;
2976 break;
2977 case MVT::v4i1:
2978 RC = &PPC::QBRCRegClass;
2979 break;
2980 }
2981
2982 // Transform the arguments stored in physical registers into virtual ones.
2983 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2984 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
2985 ValVT == MVT::i1 ? MVT::i32 : ValVT);
2986
2987 if (ValVT == MVT::i1)
2988 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
2989
2990 InVals.push_back(ArgValue);
2991 } else {
2992 // Argument stored in memory.
2993 assert(VA.isMemLoc());
2994
2995 unsigned ArgSize = VA.getLocVT().getStoreSize();
2996 int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
2997 isImmutable);
2998
2999 // Create load nodes to retrieve arguments from the stack.
3000 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3001 InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
3002 MachinePointerInfo(),
3003 false, false, false, 0));
3004 }
3005 }
3006
3007 // Assign locations to all of the incoming aggregate by value arguments.
3008 // Aggregates passed by value are stored in the local variable space of the
3009 // caller's stack frame, right above the parameter list area.
3010 SmallVector<CCValAssign, 16> ByValArgLocs;
3011 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3012 ByValArgLocs, *DAG.getContext());
3013
3014 // Reserve stack space for the allocations in CCInfo.
3015 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
3016
3017 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
3018
3019 // Area that is at least reserved in the caller of this function.
3020 unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
3021 MinReservedArea = std::max(MinReservedArea, LinkageSize);
3022
3023 // Set the size that is at least reserved in caller of this function. Tail
3024 // call optimized function's reserved stack space needs to be aligned so that
3025 // taking the difference between two stack areas will result in an aligned
3026 // stack.
3027 MinReservedArea =
3028 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3029 FuncInfo->setMinReservedArea(MinReservedArea);
3030
3031 SmallVector<SDValue, 8> MemOps;
3032
3033 // If the function takes variable number of arguments, make a frame index for
3034 // the start of the first vararg value... for expansion of llvm.va_start.
3035 if (isVarArg) {
3036 static const MCPhysReg GPArgRegs[] = {
3037 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3038 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3039 };
3040 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
3041
3042 static const MCPhysReg FPArgRegs[] = {
3043 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
3044 PPC::F8
3045 };
3046 unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
3047
3048 if (useSoftFloat())
3049 NumFPArgRegs = 0;
3050
3051 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
3052 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
3053
3054 // Make room for NumGPArgRegs and NumFPArgRegs.
3055 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
3056 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
3057
3058 FuncInfo->setVarArgsStackOffset(
3059 MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
3060 CCInfo.getNextStackOffset(), true));
3061
3062 FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false));
3063 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3064
3065 // The fixed integer arguments of a variadic function are stored to the
3066 // VarArgsFrameIndex on the stack so that they may be loaded by
3067 // dereferencing the result of va_next.
3068 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
3069 // Get an existing live-in vreg, or add a new one.
3070 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
3071 if (!VReg)
3072 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
3073
3074 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3075 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3076 MachinePointerInfo(), false, false, 0);
3077 MemOps.push_back(Store);
3078 // Increment the address by four for the next argument to store
3079 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
3080 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3081 }
3082
3083 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
3084 // is set.
3085 // The double arguments are stored to the VarArgsFrameIndex
3086 // on the stack.
3087 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
3088 // Get an existing live-in vreg, or add a new one.
3089 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
3090 if (!VReg)
3091 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
3092
3093 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
3094 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3095 MachinePointerInfo(), false, false, 0);
3096 MemOps.push_back(Store);
3097 // Increment the address by eight for the next argument to store
3098 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
3099 PtrVT);
3100 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3101 }
3102 }
3103
3104 if (!MemOps.empty())
3105 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3106
3107 return Chain;
3108 }
3109
3110 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3111 // value to MVT::i64 and then truncate to the correct register size.
extendArgForPPC64(ISD::ArgFlagsTy Flags,EVT ObjectVT,SelectionDAG & DAG,SDValue ArgVal,const SDLoc & dl) const3112 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
3113 EVT ObjectVT, SelectionDAG &DAG,
3114 SDValue ArgVal,
3115 const SDLoc &dl) const {
3116 if (Flags.isSExt())
3117 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
3118 DAG.getValueType(ObjectVT));
3119 else if (Flags.isZExt())
3120 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
3121 DAG.getValueType(ObjectVT));
3122
3123 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
3124 }
3125
LowerFormalArguments_64SVR4(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const3126 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
3127 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3128 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3129 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3130 // TODO: add description of PPC stack frame format, or at least some docs.
3131 //
3132 bool isELFv2ABI = Subtarget.isELFv2ABI();
3133 bool isLittleEndian = Subtarget.isLittleEndian();
3134 MachineFunction &MF = DAG.getMachineFunction();
3135 MachineFrameInfo *MFI = MF.getFrameInfo();
3136 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3137
3138 assert(!(CallConv == CallingConv::Fast && isVarArg) &&
3139 "fastcc not supported on varargs functions");
3140
3141 EVT PtrVT = getPointerTy(MF.getDataLayout());
3142 // Potential tail calls could cause overwriting of argument stack slots.
3143 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3144 (CallConv == CallingConv::Fast));
3145 unsigned PtrByteSize = 8;
3146 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3147
3148 static const MCPhysReg GPR[] = {
3149 PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3150 PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3151 };
3152 static const MCPhysReg VR[] = {
3153 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3154 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3155 };
3156 static const MCPhysReg VSRH[] = {
3157 PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8,
3158 PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13
3159 };
3160
3161 const unsigned Num_GPR_Regs = array_lengthof(GPR);
3162 const unsigned Num_FPR_Regs = 13;
3163 const unsigned Num_VR_Regs = array_lengthof(VR);
3164 const unsigned Num_QFPR_Regs = Num_FPR_Regs;
3165
3166 // Do a first pass over the arguments to determine whether the ABI
3167 // guarantees that our caller has allocated the parameter save area
3168 // on its stack frame. In the ELFv1 ABI, this is always the case;
3169 // in the ELFv2 ABI, it is true if this is a vararg function or if
3170 // any parameter is located in a stack slot.
3171
3172 bool HasParameterArea = !isELFv2ABI || isVarArg;
3173 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
3174 unsigned NumBytes = LinkageSize;
3175 unsigned AvailableFPRs = Num_FPR_Regs;
3176 unsigned AvailableVRs = Num_VR_Regs;
3177 for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
3178 if (Ins[i].Flags.isNest())
3179 continue;
3180
3181 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
3182 PtrByteSize, LinkageSize, ParamAreaSize,
3183 NumBytes, AvailableFPRs, AvailableVRs,
3184 Subtarget.hasQPX()))
3185 HasParameterArea = true;
3186 }
3187
3188 // Add DAG nodes to load the arguments or copy them out of registers. On
3189 // entry to a function on PPC, the arguments start after the linkage area,
3190 // although the first ones are often in registers.
3191
3192 unsigned ArgOffset = LinkageSize;
3193 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3194 unsigned &QFPR_idx = FPR_idx;
3195 SmallVector<SDValue, 8> MemOps;
3196 Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
3197 unsigned CurArgIdx = 0;
3198 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3199 SDValue ArgVal;
3200 bool needsLoad = false;
3201 EVT ObjectVT = Ins[ArgNo].VT;
3202 EVT OrigVT = Ins[ArgNo].ArgVT;
3203 unsigned ObjSize = ObjectVT.getStoreSize();
3204 unsigned ArgSize = ObjSize;
3205 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3206 if (Ins[ArgNo].isOrigArg()) {
3207 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
3208 CurArgIdx = Ins[ArgNo].getOrigArgIndex();
3209 }
3210 // We re-align the argument offset for each argument, except when using the
3211 // fast calling convention, when we need to make sure we do that only when
3212 // we'll actually use a stack slot.
3213 unsigned CurArgOffset, Align;
3214 auto ComputeArgOffset = [&]() {
3215 /* Respect alignment of argument on the stack. */
3216 Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
3217 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
3218 CurArgOffset = ArgOffset;
3219 };
3220
3221 if (CallConv != CallingConv::Fast) {
3222 ComputeArgOffset();
3223
3224 /* Compute GPR index associated with argument offset. */
3225 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3226 GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
3227 }
3228
3229 // FIXME the codegen can be much improved in some cases.
3230 // We do not have to keep everything in memory.
3231 if (Flags.isByVal()) {
3232 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
3233
3234 if (CallConv == CallingConv::Fast)
3235 ComputeArgOffset();
3236
3237 // ObjSize is the true size, ArgSize rounded up to multiple of registers.
3238 ObjSize = Flags.getByValSize();
3239 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3240 // Empty aggregate parameters do not take up registers. Examples:
3241 // struct { } a;
3242 // union { } b;
3243 // int c[0];
3244 // etc. However, we have to provide a place-holder in InVals, so
3245 // pretend we have an 8-byte item at the current address for that
3246 // purpose.
3247 if (!ObjSize) {
3248 int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
3249 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3250 InVals.push_back(FIN);
3251 continue;
3252 }
3253
3254 // Create a stack object covering all stack doublewords occupied
3255 // by the argument. If the argument is (fully or partially) on
3256 // the stack, or if the argument is fully in registers but the
3257 // caller has allocated the parameter save anyway, we can refer
3258 // directly to the caller's stack frame. Otherwise, create a
3259 // local copy in our own frame.
3260 int FI;
3261 if (HasParameterArea ||
3262 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
3263 FI = MFI->CreateFixedObject(ArgSize, ArgOffset, false, true);
3264 else
3265 FI = MFI->CreateStackObject(ArgSize, Align, false);
3266 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3267
3268 // Handle aggregates smaller than 8 bytes.
3269 if (ObjSize < PtrByteSize) {
3270 // The value of the object is its address, which differs from the
3271 // address of the enclosing doubleword on big-endian systems.
3272 SDValue Arg = FIN;
3273 if (!isLittleEndian) {
3274 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
3275 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
3276 }
3277 InVals.push_back(Arg);
3278
3279 if (GPR_idx != Num_GPR_Regs) {
3280 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3281 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3282 SDValue Store;
3283
3284 if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
3285 EVT ObjType = (ObjSize == 1 ? MVT::i8 :
3286 (ObjSize == 2 ? MVT::i16 : MVT::i32));
3287 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
3288 MachinePointerInfo(&*FuncArg), ObjType,
3289 false, false, 0);
3290 } else {
3291 // For sizes that don't fit a truncating store (3, 5, 6, 7),
3292 // store the whole register as-is to the parameter save area
3293 // slot.
3294 Store =
3295 DAG.getStore(Val.getValue(1), dl, Val, FIN,
3296 MachinePointerInfo(&*FuncArg), false, false, 0);
3297 }
3298
3299 MemOps.push_back(Store);
3300 }
3301 // Whether we copied from a register or not, advance the offset
3302 // into the parameter save area by a full doubleword.
3303 ArgOffset += PtrByteSize;
3304 continue;
3305 }
3306
3307 // The value of the object is its address, which is the address of
3308 // its first stack doubleword.
3309 InVals.push_back(FIN);
3310
3311 // Store whatever pieces of the object are in registers to memory.
3312 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
3313 if (GPR_idx == Num_GPR_Regs)
3314 break;
3315
3316 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3317 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3318 SDValue Addr = FIN;
3319 if (j) {
3320 SDValue Off = DAG.getConstant(j, dl, PtrVT);
3321 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
3322 }
3323 SDValue Store =
3324 DAG.getStore(Val.getValue(1), dl, Val, Addr,
3325 MachinePointerInfo(&*FuncArg, j), false, false, 0);
3326 MemOps.push_back(Store);
3327 ++GPR_idx;
3328 }
3329 ArgOffset += ArgSize;
3330 continue;
3331 }
3332
3333 switch (ObjectVT.getSimpleVT().SimpleTy) {
3334 default: llvm_unreachable("Unhandled argument type!");
3335 case MVT::i1:
3336 case MVT::i32:
3337 case MVT::i64:
3338 if (Flags.isNest()) {
3339 // The 'nest' parameter, if any, is passed in R11.
3340 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
3341 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3342
3343 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3344 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3345
3346 break;
3347 }
3348
3349 // These can be scalar arguments or elements of an integer array type
3350 // passed directly. Clang may use those instead of "byval" aggregate
3351 // types to avoid forcing arguments to memory unnecessarily.
3352 if (GPR_idx != Num_GPR_Regs) {
3353 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3354 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3355
3356 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3357 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3358 // value to MVT::i64 and then truncate to the correct register size.
3359 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3360 } else {
3361 if (CallConv == CallingConv::Fast)
3362 ComputeArgOffset();
3363
3364 needsLoad = true;
3365 ArgSize = PtrByteSize;
3366 }
3367 if (CallConv != CallingConv::Fast || needsLoad)
3368 ArgOffset += 8;
3369 break;
3370
3371 case MVT::f32:
3372 case MVT::f64:
3373 // These can be scalar arguments or elements of a float array type
3374 // passed directly. The latter are used to implement ELFv2 homogenous
3375 // float aggregates.
3376 if (FPR_idx != Num_FPR_Regs) {
3377 unsigned VReg;
3378
3379 if (ObjectVT == MVT::f32)
3380 VReg = MF.addLiveIn(FPR[FPR_idx],
3381 Subtarget.hasP8Vector()
3382 ? &PPC::VSSRCRegClass
3383 : &PPC::F4RCRegClass);
3384 else
3385 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
3386 ? &PPC::VSFRCRegClass
3387 : &PPC::F8RCRegClass);
3388
3389 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3390 ++FPR_idx;
3391 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
3392 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
3393 // once we support fp <-> gpr moves.
3394
3395 // This can only ever happen in the presence of f32 array types,
3396 // since otherwise we never run out of FPRs before running out
3397 // of GPRs.
3398 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3399 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3400
3401 if (ObjectVT == MVT::f32) {
3402 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
3403 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
3404 DAG.getConstant(32, dl, MVT::i32));
3405 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
3406 }
3407
3408 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
3409 } else {
3410 if (CallConv == CallingConv::Fast)
3411 ComputeArgOffset();
3412
3413 needsLoad = true;
3414 }
3415
3416 // When passing an array of floats, the array occupies consecutive
3417 // space in the argument area; only round up to the next doubleword
3418 // at the end of the array. Otherwise, each float takes 8 bytes.
3419 if (CallConv != CallingConv::Fast || needsLoad) {
3420 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
3421 ArgOffset += ArgSize;
3422 if (Flags.isInConsecutiveRegsLast())
3423 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3424 }
3425 break;
3426 case MVT::v4f32:
3427 case MVT::v4i32:
3428 case MVT::v8i16:
3429 case MVT::v16i8:
3430 case MVT::v2f64:
3431 case MVT::v2i64:
3432 case MVT::v1i128:
3433 if (!Subtarget.hasQPX()) {
3434 // These can be scalar arguments or elements of a vector array type
3435 // passed directly. The latter are used to implement ELFv2 homogenous
3436 // vector aggregates.
3437 if (VR_idx != Num_VR_Regs) {
3438 unsigned VReg = (ObjectVT == MVT::v2f64 || ObjectVT == MVT::v2i64) ?
3439 MF.addLiveIn(VSRH[VR_idx], &PPC::VSHRCRegClass) :
3440 MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
3441 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3442 ++VR_idx;
3443 } else {
3444 if (CallConv == CallingConv::Fast)
3445 ComputeArgOffset();
3446
3447 needsLoad = true;
3448 }
3449 if (CallConv != CallingConv::Fast || needsLoad)
3450 ArgOffset += 16;
3451 break;
3452 } // not QPX
3453
3454 assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 &&
3455 "Invalid QPX parameter type");
3456 /* fall through */
3457
3458 case MVT::v4f64:
3459 case MVT::v4i1:
3460 // QPX vectors are treated like their scalar floating-point subregisters
3461 // (except that they're larger).
3462 unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32;
3463 if (QFPR_idx != Num_QFPR_Regs) {
3464 const TargetRegisterClass *RC;
3465 switch (ObjectVT.getSimpleVT().SimpleTy) {
3466 case MVT::v4f64: RC = &PPC::QFRCRegClass; break;
3467 case MVT::v4f32: RC = &PPC::QSRCRegClass; break;
3468 default: RC = &PPC::QBRCRegClass; break;
3469 }
3470
3471 unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC);
3472 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3473 ++QFPR_idx;
3474 } else {
3475 if (CallConv == CallingConv::Fast)
3476 ComputeArgOffset();
3477 needsLoad = true;
3478 }
3479 if (CallConv != CallingConv::Fast || needsLoad)
3480 ArgOffset += Sz;
3481 break;
3482 }
3483
3484 // We need to load the argument to a virtual register if we determined
3485 // above that we ran out of physical registers of the appropriate type.
3486 if (needsLoad) {
3487 if (ObjSize < ArgSize && !isLittleEndian)
3488 CurArgOffset += ArgSize - ObjSize;
3489 int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
3490 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3491 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
3492 false, false, false, 0);
3493 }
3494
3495 InVals.push_back(ArgVal);
3496 }
3497
3498 // Area that is at least reserved in the caller of this function.
3499 unsigned MinReservedArea;
3500 if (HasParameterArea)
3501 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
3502 else
3503 MinReservedArea = LinkageSize;
3504
3505 // Set the size that is at least reserved in caller of this function. Tail
3506 // call optimized functions' reserved stack space needs to be aligned so that
3507 // taking the difference between two stack areas will result in an aligned
3508 // stack.
3509 MinReservedArea =
3510 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3511 FuncInfo->setMinReservedArea(MinReservedArea);
3512
3513 // If the function takes variable number of arguments, make a frame index for
3514 // the start of the first vararg value... for expansion of llvm.va_start.
3515 if (isVarArg) {
3516 int Depth = ArgOffset;
3517
3518 FuncInfo->setVarArgsFrameIndex(
3519 MFI->CreateFixedObject(PtrByteSize, Depth, true));
3520 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3521
3522 // If this function is vararg, store any remaining integer argument regs
3523 // to their spots on the stack so that they may be loaded by dereferencing
3524 // the result of va_next.
3525 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3526 GPR_idx < Num_GPR_Regs; ++GPR_idx) {
3527 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3528 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3529 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3530 MachinePointerInfo(), false, false, 0);
3531 MemOps.push_back(Store);
3532 // Increment the address by four for the next argument to store
3533 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
3534 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3535 }
3536 }
3537
3538 if (!MemOps.empty())
3539 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3540
3541 return Chain;
3542 }
3543
LowerFormalArguments_Darwin(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const3544 SDValue PPCTargetLowering::LowerFormalArguments_Darwin(
3545 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3546 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3547 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3548 // TODO: add description of PPC stack frame format, or at least some docs.
3549 //
3550 MachineFunction &MF = DAG.getMachineFunction();
3551 MachineFrameInfo *MFI = MF.getFrameInfo();
3552 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3553
3554 EVT PtrVT = getPointerTy(MF.getDataLayout());
3555 bool isPPC64 = PtrVT == MVT::i64;
3556 // Potential tail calls could cause overwriting of argument stack slots.
3557 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3558 (CallConv == CallingConv::Fast));
3559 unsigned PtrByteSize = isPPC64 ? 8 : 4;
3560 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3561 unsigned ArgOffset = LinkageSize;
3562 // Area that is at least reserved in caller of this function.
3563 unsigned MinReservedArea = ArgOffset;
3564
3565 static const MCPhysReg GPR_32[] = { // 32-bit registers.
3566 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3567 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3568 };
3569 static const MCPhysReg GPR_64[] = { // 64-bit registers.
3570 PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3571 PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3572 };
3573 static const MCPhysReg VR[] = {
3574 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3575 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3576 };
3577
3578 const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
3579 const unsigned Num_FPR_Regs = 13;
3580 const unsigned Num_VR_Regs = array_lengthof( VR);
3581
3582 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3583
3584 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
3585
3586 // In 32-bit non-varargs functions, the stack space for vectors is after the
3587 // stack space for non-vectors. We do not use this space unless we have
3588 // too many vectors to fit in registers, something that only occurs in
3589 // constructed examples:), but we have to walk the arglist to figure
3590 // that out...for the pathological case, compute VecArgOffset as the
3591 // start of the vector parameter area. Computing VecArgOffset is the
3592 // entire point of the following loop.
3593 unsigned VecArgOffset = ArgOffset;
3594 if (!isVarArg && !isPPC64) {
3595 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
3596 ++ArgNo) {
3597 EVT ObjectVT = Ins[ArgNo].VT;
3598 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3599
3600 if (Flags.isByVal()) {
3601 // ObjSize is the true size, ArgSize rounded up to multiple of regs.
3602 unsigned ObjSize = Flags.getByValSize();
3603 unsigned ArgSize =
3604 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3605 VecArgOffset += ArgSize;
3606 continue;
3607 }
3608
3609 switch(ObjectVT.getSimpleVT().SimpleTy) {
3610 default: llvm_unreachable("Unhandled argument type!");
3611 case MVT::i1:
3612 case MVT::i32:
3613 case MVT::f32:
3614 VecArgOffset += 4;
3615 break;
3616 case MVT::i64: // PPC64
3617 case MVT::f64:
3618 // FIXME: We are guaranteed to be !isPPC64 at this point.
3619 // Does MVT::i64 apply?
3620 VecArgOffset += 8;
3621 break;
3622 case MVT::v4f32:
3623 case MVT::v4i32:
3624 case MVT::v8i16:
3625 case MVT::v16i8:
3626 // Nothing to do, we're only looking at Nonvector args here.
3627 break;
3628 }
3629 }
3630 }
3631 // We've found where the vector parameter area in memory is. Skip the
3632 // first 12 parameters; these don't use that memory.
3633 VecArgOffset = ((VecArgOffset+15)/16)*16;
3634 VecArgOffset += 12*16;
3635
3636 // Add DAG nodes to load the arguments or copy them out of registers. On
3637 // entry to a function on PPC, the arguments start after the linkage area,
3638 // although the first ones are often in registers.
3639
3640 SmallVector<SDValue, 8> MemOps;
3641 unsigned nAltivecParamsAtEnd = 0;
3642 Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
3643 unsigned CurArgIdx = 0;
3644 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3645 SDValue ArgVal;
3646 bool needsLoad = false;
3647 EVT ObjectVT = Ins[ArgNo].VT;
3648 unsigned ObjSize = ObjectVT.getSizeInBits()/8;
3649 unsigned ArgSize = ObjSize;
3650 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3651 if (Ins[ArgNo].isOrigArg()) {
3652 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
3653 CurArgIdx = Ins[ArgNo].getOrigArgIndex();
3654 }
3655 unsigned CurArgOffset = ArgOffset;
3656
3657 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
3658 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
3659 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
3660 if (isVarArg || isPPC64) {
3661 MinReservedArea = ((MinReservedArea+15)/16)*16;
3662 MinReservedArea += CalculateStackSlotSize(ObjectVT,
3663 Flags,
3664 PtrByteSize);
3665 } else nAltivecParamsAtEnd++;
3666 } else
3667 // Calculate min reserved area.
3668 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
3669 Flags,
3670 PtrByteSize);
3671
3672 // FIXME the codegen can be much improved in some cases.
3673 // We do not have to keep everything in memory.
3674 if (Flags.isByVal()) {
3675 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
3676
3677 // ObjSize is the true size, ArgSize rounded up to multiple of registers.
3678 ObjSize = Flags.getByValSize();
3679 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3680 // Objects of size 1 and 2 are right justified, everything else is
3681 // left justified. This means the memory address is adjusted forwards.
3682 if (ObjSize==1 || ObjSize==2) {
3683 CurArgOffset = CurArgOffset + (4 - ObjSize);
3684 }
3685 // The value of the object is its address.
3686 int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, false, true);
3687 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3688 InVals.push_back(FIN);
3689 if (ObjSize==1 || ObjSize==2) {
3690 if (GPR_idx != Num_GPR_Regs) {
3691 unsigned VReg;
3692 if (isPPC64)
3693 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3694 else
3695 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
3696 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3697 EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
3698 SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
3699 MachinePointerInfo(&*FuncArg),
3700 ObjType, false, false, 0);
3701 MemOps.push_back(Store);
3702 ++GPR_idx;
3703 }
3704
3705 ArgOffset += PtrByteSize;
3706
3707 continue;
3708 }
3709 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
3710 // Store whatever pieces of the object are in registers
3711 // to memory. ArgOffset will be the address of the beginning
3712 // of the object.
3713 if (GPR_idx != Num_GPR_Regs) {
3714 unsigned VReg;
3715 if (isPPC64)
3716 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3717 else
3718 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
3719 int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
3720 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3721 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3722 SDValue Store =
3723 DAG.getStore(Val.getValue(1), dl, Val, FIN,
3724 MachinePointerInfo(&*FuncArg, j), false, false, 0);
3725 MemOps.push_back(Store);
3726 ++GPR_idx;
3727 ArgOffset += PtrByteSize;
3728 } else {
3729 ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
3730 break;
3731 }
3732 }
3733 continue;
3734 }
3735
3736 switch (ObjectVT.getSimpleVT().SimpleTy) {
3737 default: llvm_unreachable("Unhandled argument type!");
3738 case MVT::i1:
3739 case MVT::i32:
3740 if (!isPPC64) {
3741 if (GPR_idx != Num_GPR_Regs) {
3742 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
3743 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
3744
3745 if (ObjectVT == MVT::i1)
3746 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
3747
3748 ++GPR_idx;
3749 } else {
3750 needsLoad = true;
3751 ArgSize = PtrByteSize;
3752 }
3753 // All int arguments reserve stack space in the Darwin ABI.
3754 ArgOffset += PtrByteSize;
3755 break;
3756 }
3757 // FALLTHROUGH
3758 case MVT::i64: // PPC64
3759 if (GPR_idx != Num_GPR_Regs) {
3760 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3761 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3762
3763 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3764 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3765 // value to MVT::i64 and then truncate to the correct register size.
3766 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3767
3768 ++GPR_idx;
3769 } else {
3770 needsLoad = true;
3771 ArgSize = PtrByteSize;
3772 }
3773 // All int arguments reserve stack space in the Darwin ABI.
3774 ArgOffset += 8;
3775 break;
3776
3777 case MVT::f32:
3778 case MVT::f64:
3779 // Every 4 bytes of argument space consumes one of the GPRs available for
3780 // argument passing.
3781 if (GPR_idx != Num_GPR_Regs) {
3782 ++GPR_idx;
3783 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
3784 ++GPR_idx;
3785 }
3786 if (FPR_idx != Num_FPR_Regs) {
3787 unsigned VReg;
3788
3789 if (ObjectVT == MVT::f32)
3790 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
3791 else
3792 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
3793
3794 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3795 ++FPR_idx;
3796 } else {
3797 needsLoad = true;
3798 }
3799
3800 // All FP arguments reserve stack space in the Darwin ABI.
3801 ArgOffset += isPPC64 ? 8 : ObjSize;
3802 break;
3803 case MVT::v4f32:
3804 case MVT::v4i32:
3805 case MVT::v8i16:
3806 case MVT::v16i8:
3807 // Note that vector arguments in registers don't reserve stack space,
3808 // except in varargs functions.
3809 if (VR_idx != Num_VR_Regs) {
3810 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
3811 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3812 if (isVarArg) {
3813 while ((ArgOffset % 16) != 0) {
3814 ArgOffset += PtrByteSize;
3815 if (GPR_idx != Num_GPR_Regs)
3816 GPR_idx++;
3817 }
3818 ArgOffset += 16;
3819 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
3820 }
3821 ++VR_idx;
3822 } else {
3823 if (!isVarArg && !isPPC64) {
3824 // Vectors go after all the nonvectors.
3825 CurArgOffset = VecArgOffset;
3826 VecArgOffset += 16;
3827 } else {
3828 // Vectors are aligned.
3829 ArgOffset = ((ArgOffset+15)/16)*16;
3830 CurArgOffset = ArgOffset;
3831 ArgOffset += 16;
3832 }
3833 needsLoad = true;
3834 }
3835 break;
3836 }
3837
3838 // We need to load the argument to a virtual register if we determined above
3839 // that we ran out of physical registers of the appropriate type.
3840 if (needsLoad) {
3841 int FI = MFI->CreateFixedObject(ObjSize,
3842 CurArgOffset + (ArgSize - ObjSize),
3843 isImmutable);
3844 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3845 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
3846 false, false, false, 0);
3847 }
3848
3849 InVals.push_back(ArgVal);
3850 }
3851
3852 // Allow for Altivec parameters at the end, if needed.
3853 if (nAltivecParamsAtEnd) {
3854 MinReservedArea = ((MinReservedArea+15)/16)*16;
3855 MinReservedArea += 16*nAltivecParamsAtEnd;
3856 }
3857
3858 // Area that is at least reserved in the caller of this function.
3859 MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
3860
3861 // Set the size that is at least reserved in caller of this function. Tail
3862 // call optimized functions' reserved stack space needs to be aligned so that
3863 // taking the difference between two stack areas will result in an aligned
3864 // stack.
3865 MinReservedArea =
3866 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3867 FuncInfo->setMinReservedArea(MinReservedArea);
3868
3869 // If the function takes variable number of arguments, make a frame index for
3870 // the start of the first vararg value... for expansion of llvm.va_start.
3871 if (isVarArg) {
3872 int Depth = ArgOffset;
3873
3874 FuncInfo->setVarArgsFrameIndex(
3875 MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
3876 Depth, true));
3877 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3878
3879 // If this function is vararg, store any remaining integer argument regs
3880 // to their spots on the stack so that they may be loaded by dereferencing
3881 // the result of va_next.
3882 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
3883 unsigned VReg;
3884
3885 if (isPPC64)
3886 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3887 else
3888 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
3889
3890 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3891 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3892 MachinePointerInfo(), false, false, 0);
3893 MemOps.push_back(Store);
3894 // Increment the address by four for the next argument to store
3895 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
3896 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3897 }
3898 }
3899
3900 if (!MemOps.empty())
3901 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3902
3903 return Chain;
3904 }
3905
3906 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
3907 /// adjusted to accommodate the arguments for the tailcall.
CalculateTailCallSPDiff(SelectionDAG & DAG,bool isTailCall,unsigned ParamSize)3908 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
3909 unsigned ParamSize) {
3910
3911 if (!isTailCall) return 0;
3912
3913 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
3914 unsigned CallerMinReservedArea = FI->getMinReservedArea();
3915 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
3916 // Remember only if the new adjustement is bigger.
3917 if (SPDiff < FI->getTailCallSPDelta())
3918 FI->setTailCallSPDelta(SPDiff);
3919
3920 return SPDiff;
3921 }
3922
3923 static bool isFunctionGlobalAddress(SDValue Callee);
3924
3925 static bool
resideInSameModule(SDValue Callee,Reloc::Model RelMod)3926 resideInSameModule(SDValue Callee, Reloc::Model RelMod) {
3927 // If !G, Callee can be an external symbol.
3928 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
3929 if (!G) return false;
3930
3931 const GlobalValue *GV = G->getGlobal();
3932
3933 if (GV->isDeclaration()) return false;
3934
3935 switch(GV->getLinkage()) {
3936 default: llvm_unreachable("unknow linkage type");
3937 case GlobalValue::AvailableExternallyLinkage:
3938 case GlobalValue::ExternalWeakLinkage:
3939 return false;
3940
3941 // Callee with weak linkage is allowed if it has hidden or protected
3942 // visibility
3943 case GlobalValue::LinkOnceAnyLinkage:
3944 case GlobalValue::LinkOnceODRLinkage: // e.g. c++ inline functions
3945 case GlobalValue::WeakAnyLinkage:
3946 case GlobalValue::WeakODRLinkage: // e.g. c++ template instantiation
3947 if (GV->hasDefaultVisibility())
3948 return false;
3949
3950 case GlobalValue::ExternalLinkage:
3951 case GlobalValue::InternalLinkage:
3952 case GlobalValue::PrivateLinkage:
3953 break;
3954 }
3955
3956 // With '-fPIC', calling default visiblity function need insert 'nop' after
3957 // function call, no matter that function resides in same module or not, so
3958 // we treat it as in different module.
3959 if (RelMod == Reloc::PIC_ && GV->hasDefaultVisibility())
3960 return false;
3961
3962 return true;
3963 }
3964
3965 static bool
needStackSlotPassParameters(const PPCSubtarget & Subtarget,const SmallVectorImpl<ISD::OutputArg> & Outs)3966 needStackSlotPassParameters(const PPCSubtarget &Subtarget,
3967 const SmallVectorImpl<ISD::OutputArg> &Outs) {
3968 assert(Subtarget.isSVR4ABI() && Subtarget.isPPC64());
3969
3970 const unsigned PtrByteSize = 8;
3971 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3972
3973 static const MCPhysReg GPR[] = {
3974 PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3975 PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3976 };
3977 static const MCPhysReg VR[] = {
3978 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3979 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3980 };
3981
3982 const unsigned NumGPRs = array_lengthof(GPR);
3983 const unsigned NumFPRs = 13;
3984 const unsigned NumVRs = array_lengthof(VR);
3985 const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
3986
3987 unsigned NumBytes = LinkageSize;
3988 unsigned AvailableFPRs = NumFPRs;
3989 unsigned AvailableVRs = NumVRs;
3990
3991 for (const ISD::OutputArg& Param : Outs) {
3992 if (Param.Flags.isNest()) continue;
3993
3994 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags,
3995 PtrByteSize, LinkageSize, ParamAreaSize,
3996 NumBytes, AvailableFPRs, AvailableVRs,
3997 Subtarget.hasQPX()))
3998 return true;
3999 }
4000 return false;
4001 }
4002
4003 static bool
hasSameArgumentList(const Function * CallerFn,ImmutableCallSite * CS)4004 hasSameArgumentList(const Function *CallerFn, ImmutableCallSite *CS) {
4005 if (CS->arg_size() != CallerFn->getArgumentList().size())
4006 return false;
4007
4008 ImmutableCallSite::arg_iterator CalleeArgIter = CS->arg_begin();
4009 ImmutableCallSite::arg_iterator CalleeArgEnd = CS->arg_end();
4010 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
4011
4012 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
4013 const Value* CalleeArg = *CalleeArgIter;
4014 const Value* CallerArg = &(*CallerArgIter);
4015 if (CalleeArg == CallerArg)
4016 continue;
4017
4018 // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
4019 // tail call @callee([4 x i64] undef, [4 x i64] %b)
4020 // }
4021 // 1st argument of callee is undef and has the same type as caller.
4022 if (CalleeArg->getType() == CallerArg->getType() &&
4023 isa<UndefValue>(CalleeArg))
4024 continue;
4025
4026 return false;
4027 }
4028
4029 return true;
4030 }
4031
4032 bool
IsEligibleForTailCallOptimization_64SVR4(SDValue Callee,CallingConv::ID CalleeCC,ImmutableCallSite * CS,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<ISD::InputArg> & Ins,SelectionDAG & DAG) const4033 PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
4034 SDValue Callee,
4035 CallingConv::ID CalleeCC,
4036 ImmutableCallSite *CS,
4037 bool isVarArg,
4038 const SmallVectorImpl<ISD::OutputArg> &Outs,
4039 const SmallVectorImpl<ISD::InputArg> &Ins,
4040 SelectionDAG& DAG) const {
4041 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
4042
4043 if (DisableSCO && !TailCallOpt) return false;
4044
4045 // Variadic argument functions are not supported.
4046 if (isVarArg) return false;
4047
4048 MachineFunction &MF = DAG.getMachineFunction();
4049 CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
4050
4051 // Tail or Sibling call optimization (TCO/SCO) needs callee and caller has
4052 // the same calling convention
4053 if (CallerCC != CalleeCC) return false;
4054
4055 // SCO support C calling convention
4056 if (CalleeCC != CallingConv::Fast && CalleeCC != CallingConv::C)
4057 return false;
4058
4059 // Functions containing by val parameters are not supported.
4060 if (std::any_of(Ins.begin(), Ins.end(),
4061 [](const ISD::InputArg& IA) { return IA.Flags.isByVal(); }))
4062 return false;
4063
4064 // No TCO/SCO on indirect call because Caller have to restore its TOC
4065 if (!isFunctionGlobalAddress(Callee) &&
4066 !isa<ExternalSymbolSDNode>(Callee))
4067 return false;
4068
4069 // Check if Callee resides in the same module, because for now, PPC64 SVR4 ABI
4070 // (ELFv1/ELFv2) doesn't allow tail calls to a symbol resides in another
4071 // module.
4072 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
4073 if (!resideInSameModule(Callee, getTargetMachine().getRelocationModel()))
4074 return false;
4075
4076 // TCO allows altering callee ABI, so we don't have to check further.
4077 if (CalleeCC == CallingConv::Fast && TailCallOpt)
4078 return true;
4079
4080 if (DisableSCO) return false;
4081
4082 // If callee use the same argument list that caller is using, then we can
4083 // apply SCO on this case. If it is not, then we need to check if callee needs
4084 // stack for passing arguments.
4085 if (!hasSameArgumentList(MF.getFunction(), CS) &&
4086 needStackSlotPassParameters(Subtarget, Outs)) {
4087 return false;
4088 }
4089
4090 return true;
4091 }
4092
4093 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
4094 /// for tail call optimization. Targets which want to do tail call
4095 /// optimization should implement this function.
4096 bool
IsEligibleForTailCallOptimization(SDValue Callee,CallingConv::ID CalleeCC,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,SelectionDAG & DAG) const4097 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
4098 CallingConv::ID CalleeCC,
4099 bool isVarArg,
4100 const SmallVectorImpl<ISD::InputArg> &Ins,
4101 SelectionDAG& DAG) const {
4102 if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4103 return false;
4104
4105 // Variable argument functions are not supported.
4106 if (isVarArg)
4107 return false;
4108
4109 MachineFunction &MF = DAG.getMachineFunction();
4110 CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
4111 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
4112 // Functions containing by val parameters are not supported.
4113 for (unsigned i = 0; i != Ins.size(); i++) {
4114 ISD::ArgFlagsTy Flags = Ins[i].Flags;
4115 if (Flags.isByVal()) return false;
4116 }
4117
4118 // Non-PIC/GOT tail calls are supported.
4119 if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
4120 return true;
4121
4122 // At the moment we can only do local tail calls (in same module, hidden
4123 // or protected) if we are generating PIC.
4124 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4125 return G->getGlobal()->hasHiddenVisibility()
4126 || G->getGlobal()->hasProtectedVisibility();
4127 }
4128
4129 return false;
4130 }
4131
4132 /// isCallCompatibleAddress - Return the immediate to use if the specified
4133 /// 32-bit value is representable in the immediate field of a BxA instruction.
isBLACompatibleAddress(SDValue Op,SelectionDAG & DAG)4134 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
4135 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4136 if (!C) return nullptr;
4137
4138 int Addr = C->getZExtValue();
4139 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero.
4140 SignExtend32<26>(Addr) != Addr)
4141 return nullptr; // Top 6 bits have to be sext of immediate.
4142
4143 return DAG
4144 .getConstant(
4145 (int)C->getZExtValue() >> 2, SDLoc(Op),
4146 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
4147 .getNode();
4148 }
4149
4150 namespace {
4151
4152 struct TailCallArgumentInfo {
4153 SDValue Arg;
4154 SDValue FrameIdxOp;
4155 int FrameIdx;
4156
TailCallArgumentInfo__anon5b4a364d0311::TailCallArgumentInfo4157 TailCallArgumentInfo() : FrameIdx(0) {}
4158 };
4159 }
4160
4161 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
StoreTailCallArgumentsToStackSlot(SelectionDAG & DAG,SDValue Chain,const SmallVectorImpl<TailCallArgumentInfo> & TailCallArgs,SmallVectorImpl<SDValue> & MemOpChains,const SDLoc & dl)4162 static void StoreTailCallArgumentsToStackSlot(
4163 SelectionDAG &DAG, SDValue Chain,
4164 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
4165 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
4166 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
4167 SDValue Arg = TailCallArgs[i].Arg;
4168 SDValue FIN = TailCallArgs[i].FrameIdxOp;
4169 int FI = TailCallArgs[i].FrameIdx;
4170 // Store relative to framepointer.
4171 MemOpChains.push_back(DAG.getStore(
4172 Chain, dl, Arg, FIN,
4173 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), false,
4174 false, 0));
4175 }
4176 }
4177
4178 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
4179 /// the appropriate stack slot for the tail call optimized function call.
EmitTailCallStoreFPAndRetAddr(SelectionDAG & DAG,SDValue Chain,SDValue OldRetAddr,SDValue OldFP,int SPDiff,const SDLoc & dl)4180 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
4181 SDValue OldRetAddr, SDValue OldFP,
4182 int SPDiff, const SDLoc &dl) {
4183 if (SPDiff) {
4184 // Calculate the new stack slot for the return address.
4185 MachineFunction &MF = DAG.getMachineFunction();
4186 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
4187 const PPCFrameLowering *FL = Subtarget.getFrameLowering();
4188 bool isPPC64 = Subtarget.isPPC64();
4189 int SlotSize = isPPC64 ? 8 : 4;
4190 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
4191 int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
4192 NewRetAddrLoc, true);
4193 EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4194 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
4195 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
4196 MachinePointerInfo::getFixedStack(MF, NewRetAddr),
4197 false, false, 0);
4198
4199 // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
4200 // slot as the FP is never overwritten.
4201 if (Subtarget.isDarwinABI()) {
4202 int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset();
4203 int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
4204 true);
4205 SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
4206 Chain = DAG.getStore(
4207 Chain, dl, OldFP, NewFramePtrIdx,
4208 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), NewFPIdx),
4209 false, false, 0);
4210 }
4211 }
4212 return Chain;
4213 }
4214
4215 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
4216 /// the position of the argument.
4217 static void
CalculateTailCallArgDest(SelectionDAG & DAG,MachineFunction & MF,bool isPPC64,SDValue Arg,int SPDiff,unsigned ArgOffset,SmallVectorImpl<TailCallArgumentInfo> & TailCallArguments)4218 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
4219 SDValue Arg, int SPDiff, unsigned ArgOffset,
4220 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
4221 int Offset = ArgOffset + SPDiff;
4222 uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
4223 int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
4224 EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4225 SDValue FIN = DAG.getFrameIndex(FI, VT);
4226 TailCallArgumentInfo Info;
4227 Info.Arg = Arg;
4228 Info.FrameIdxOp = FIN;
4229 Info.FrameIdx = FI;
4230 TailCallArguments.push_back(Info);
4231 }
4232
4233 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
4234 /// stack slot. Returns the chain as result and the loaded frame pointers in
4235 /// LROpOut/FPOpout. Used when tail calling.
EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,int SPDiff,SDValue Chain,SDValue & LROpOut,SDValue & FPOpOut,const SDLoc & dl) const4236 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
4237 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
4238 SDValue &FPOpOut, const SDLoc &dl) const {
4239 if (SPDiff) {
4240 // Load the LR and FP stack slot for later adjusting.
4241 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
4242 LROpOut = getReturnAddrFrameIndex(DAG);
4243 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(),
4244 false, false, false, 0);
4245 Chain = SDValue(LROpOut.getNode(), 1);
4246
4247 // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
4248 // slot as the FP is never overwritten.
4249 if (Subtarget.isDarwinABI()) {
4250 FPOpOut = getFramePointerFrameIndex(DAG);
4251 FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(),
4252 false, false, false, 0);
4253 Chain = SDValue(FPOpOut.getNode(), 1);
4254 }
4255 }
4256 return Chain;
4257 }
4258
4259 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
4260 /// by "Src" to address "Dst" of size "Size". Alignment information is
4261 /// specified by the specific parameter attribute. The copy will be passed as
4262 /// a byval function parameter.
4263 /// Sometimes what we are copying is the end of a larger object, the part that
4264 /// does not fit in registers.
CreateCopyOfByValArgument(SDValue Src,SDValue Dst,SDValue Chain,ISD::ArgFlagsTy Flags,SelectionDAG & DAG,const SDLoc & dl)4265 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
4266 SDValue Chain, ISD::ArgFlagsTy Flags,
4267 SelectionDAG &DAG, const SDLoc &dl) {
4268 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
4269 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
4270 false, false, false, MachinePointerInfo(),
4271 MachinePointerInfo());
4272 }
4273
4274 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
4275 /// tail calls.
LowerMemOpCallTo(SelectionDAG & DAG,MachineFunction & MF,SDValue Chain,SDValue Arg,SDValue PtrOff,int SPDiff,unsigned ArgOffset,bool isPPC64,bool isTailCall,bool isVector,SmallVectorImpl<SDValue> & MemOpChains,SmallVectorImpl<TailCallArgumentInfo> & TailCallArguments,const SDLoc & dl)4276 static void LowerMemOpCallTo(
4277 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
4278 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
4279 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
4280 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
4281 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4282 if (!isTailCall) {
4283 if (isVector) {
4284 SDValue StackPtr;
4285 if (isPPC64)
4286 StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4287 else
4288 StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4289 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
4290 DAG.getConstant(ArgOffset, dl, PtrVT));
4291 }
4292 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
4293 MachinePointerInfo(), false, false, 0));
4294 // Calculate and remember argument location.
4295 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
4296 TailCallArguments);
4297 }
4298
4299 static void
PrepareTailCall(SelectionDAG & DAG,SDValue & InFlag,SDValue & Chain,const SDLoc & dl,int SPDiff,unsigned NumBytes,SDValue LROp,SDValue FPOp,SmallVectorImpl<TailCallArgumentInfo> & TailCallArguments)4300 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
4301 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
4302 SDValue FPOp,
4303 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
4304 // Emit a sequence of copyto/copyfrom virtual registers for arguments that
4305 // might overwrite each other in case of tail call optimization.
4306 SmallVector<SDValue, 8> MemOpChains2;
4307 // Do not flag preceding copytoreg stuff together with the following stuff.
4308 InFlag = SDValue();
4309 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
4310 MemOpChains2, dl);
4311 if (!MemOpChains2.empty())
4312 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
4313
4314 // Store the return address to the appropriate stack slot.
4315 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
4316
4317 // Emit callseq_end just before tailcall node.
4318 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4319 DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
4320 InFlag = Chain.getValue(1);
4321 }
4322
4323 // Is this global address that of a function that can be called by name? (as
4324 // opposed to something that must hold a descriptor for an indirect call).
isFunctionGlobalAddress(SDValue Callee)4325 static bool isFunctionGlobalAddress(SDValue Callee) {
4326 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
4327 if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
4328 Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
4329 return false;
4330
4331 return G->getGlobal()->getValueType()->isFunctionTy();
4332 }
4333
4334 return false;
4335 }
4336
4337 static unsigned
PrepareCall(SelectionDAG & DAG,SDValue & Callee,SDValue & InFlag,SDValue & Chain,SDValue CallSeqStart,const SDLoc & dl,int SPDiff,bool isTailCall,bool isPatchPoint,bool hasNest,SmallVectorImpl<std::pair<unsigned,SDValue>> & RegsToPass,SmallVectorImpl<SDValue> & Ops,std::vector<EVT> & NodeTys,ImmutableCallSite * CS,const PPCSubtarget & Subtarget)4338 PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, SDValue &Chain,
4339 SDValue CallSeqStart, const SDLoc &dl, int SPDiff, bool isTailCall,
4340 bool isPatchPoint, bool hasNest,
4341 SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
4342 SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys,
4343 ImmutableCallSite *CS, const PPCSubtarget &Subtarget) {
4344
4345 bool isPPC64 = Subtarget.isPPC64();
4346 bool isSVR4ABI = Subtarget.isSVR4ABI();
4347 bool isELFv2ABI = Subtarget.isELFv2ABI();
4348
4349 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4350 NodeTys.push_back(MVT::Other); // Returns a chain
4351 NodeTys.push_back(MVT::Glue); // Returns a flag for retval copy to use.
4352
4353 unsigned CallOpc = PPCISD::CALL;
4354
4355 bool needIndirectCall = true;
4356 if (!isSVR4ABI || !isPPC64)
4357 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
4358 // If this is an absolute destination address, use the munged value.
4359 Callee = SDValue(Dest, 0);
4360 needIndirectCall = false;
4361 }
4362
4363 // PC-relative references to external symbols should go through $stub, unless
4364 // we're building with the leopard linker or later, which automatically
4365 // synthesizes these stubs.
4366 const TargetMachine &TM = DAG.getTarget();
4367 const Module *Mod = DAG.getMachineFunction().getFunction()->getParent();
4368 const GlobalValue *GV = nullptr;
4369 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee))
4370 GV = G->getGlobal();
4371 bool Local = TM.shouldAssumeDSOLocal(*Mod, GV);
4372 bool UsePlt = !Local && Subtarget.isTargetELF() && !isPPC64;
4373
4374 if (isFunctionGlobalAddress(Callee)) {
4375 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee);
4376 // A call to a TLS address is actually an indirect call to a
4377 // thread-specific pointer.
4378 unsigned OpFlags = 0;
4379 if (UsePlt)
4380 OpFlags = PPCII::MO_PLT;
4381
4382 // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
4383 // every direct call is) turn it into a TargetGlobalAddress /
4384 // TargetExternalSymbol node so that legalize doesn't hack it.
4385 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
4386 Callee.getValueType(), 0, OpFlags);
4387 needIndirectCall = false;
4388 }
4389
4390 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
4391 unsigned char OpFlags = 0;
4392
4393 if (UsePlt)
4394 OpFlags = PPCII::MO_PLT;
4395
4396 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
4397 OpFlags);
4398 needIndirectCall = false;
4399 }
4400
4401 if (isPatchPoint) {
4402 // We'll form an invalid direct call when lowering a patchpoint; the full
4403 // sequence for an indirect call is complicated, and many of the
4404 // instructions introduced might have side effects (and, thus, can't be
4405 // removed later). The call itself will be removed as soon as the
4406 // argument/return lowering is complete, so the fact that it has the wrong
4407 // kind of operands should not really matter.
4408 needIndirectCall = false;
4409 }
4410
4411 if (needIndirectCall) {
4412 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair
4413 // to do the call, we can't use PPCISD::CALL.
4414 SDValue MTCTROps[] = {Chain, Callee, InFlag};
4415
4416 if (isSVR4ABI && isPPC64 && !isELFv2ABI) {
4417 // Function pointers in the 64-bit SVR4 ABI do not point to the function
4418 // entry point, but to the function descriptor (the function entry point
4419 // address is part of the function descriptor though).
4420 // The function descriptor is a three doubleword structure with the
4421 // following fields: function entry point, TOC base address and
4422 // environment pointer.
4423 // Thus for a call through a function pointer, the following actions need
4424 // to be performed:
4425 // 1. Save the TOC of the caller in the TOC save area of its stack
4426 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
4427 // 2. Load the address of the function entry point from the function
4428 // descriptor.
4429 // 3. Load the TOC of the callee from the function descriptor into r2.
4430 // 4. Load the environment pointer from the function descriptor into
4431 // r11.
4432 // 5. Branch to the function entry point address.
4433 // 6. On return of the callee, the TOC of the caller needs to be
4434 // restored (this is done in FinishCall()).
4435 //
4436 // The loads are scheduled at the beginning of the call sequence, and the
4437 // register copies are flagged together to ensure that no other
4438 // operations can be scheduled in between. E.g. without flagging the
4439 // copies together, a TOC access in the caller could be scheduled between
4440 // the assignment of the callee TOC and the branch to the callee, which
4441 // results in the TOC access going through the TOC of the callee instead
4442 // of going through the TOC of the caller, which leads to incorrect code.
4443
4444 // Load the address of the function entry point from the function
4445 // descriptor.
4446 SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1);
4447 if (LDChain.getValueType() == MVT::Glue)
4448 LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2);
4449
4450 bool LoadsInv = Subtarget.hasInvariantFunctionDescriptors();
4451
4452 MachinePointerInfo MPI(CS ? CS->getCalledValue() : nullptr);
4453 SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI,
4454 false, false, LoadsInv, 8);
4455
4456 // Load environment pointer into r11.
4457 SDValue PtrOff = DAG.getIntPtrConstant(16, dl);
4458 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
4459 SDValue LoadEnvPtr = DAG.getLoad(MVT::i64, dl, LDChain, AddPtr,
4460 MPI.getWithOffset(16), false, false,
4461 LoadsInv, 8);
4462
4463 SDValue TOCOff = DAG.getIntPtrConstant(8, dl);
4464 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff);
4465 SDValue TOCPtr = DAG.getLoad(MVT::i64, dl, LDChain, AddTOC,
4466 MPI.getWithOffset(8), false, false,
4467 LoadsInv, 8);
4468
4469 setUsesTOCBasePtr(DAG);
4470 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr,
4471 InFlag);
4472 Chain = TOCVal.getValue(0);
4473 InFlag = TOCVal.getValue(1);
4474
4475 // If the function call has an explicit 'nest' parameter, it takes the
4476 // place of the environment pointer.
4477 if (!hasNest) {
4478 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
4479 InFlag);
4480
4481 Chain = EnvVal.getValue(0);
4482 InFlag = EnvVal.getValue(1);
4483 }
4484
4485 MTCTROps[0] = Chain;
4486 MTCTROps[1] = LoadFuncPtr;
4487 MTCTROps[2] = InFlag;
4488 }
4489
4490 Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys,
4491 makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2));
4492 InFlag = Chain.getValue(1);
4493
4494 NodeTys.clear();
4495 NodeTys.push_back(MVT::Other);
4496 NodeTys.push_back(MVT::Glue);
4497 Ops.push_back(Chain);
4498 CallOpc = PPCISD::BCTRL;
4499 Callee.setNode(nullptr);
4500 // Add use of X11 (holding environment pointer)
4501 if (isSVR4ABI && isPPC64 && !isELFv2ABI && !hasNest)
4502 Ops.push_back(DAG.getRegister(PPC::X11, PtrVT));
4503 // Add CTR register as callee so a bctr can be emitted later.
4504 if (isTailCall)
4505 Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
4506 }
4507
4508 // If this is a direct call, pass the chain and the callee.
4509 if (Callee.getNode()) {
4510 Ops.push_back(Chain);
4511 Ops.push_back(Callee);
4512 }
4513 // If this is a tail call add stack pointer delta.
4514 if (isTailCall)
4515 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
4516
4517 // Add argument registers to the end of the list so that they are known live
4518 // into the call.
4519 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
4520 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
4521 RegsToPass[i].second.getValueType()));
4522
4523 // All calls, in both the ELF V1 and V2 ABIs, need the TOC register live
4524 // into the call.
4525 if (isSVR4ABI && isPPC64 && !isPatchPoint) {
4526 setUsesTOCBasePtr(DAG);
4527 Ops.push_back(DAG.getRegister(PPC::X2, PtrVT));
4528 }
4529
4530 return CallOpc;
4531 }
4532
4533 static
isLocalCall(const SDValue & Callee)4534 bool isLocalCall(const SDValue &Callee)
4535 {
4536 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4537 return G->getGlobal()->isStrongDefinitionForLinker();
4538 return false;
4539 }
4540
LowerCallResult(SDValue Chain,SDValue InFlag,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const4541 SDValue PPCTargetLowering::LowerCallResult(
4542 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
4543 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4544 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4545
4546 SmallVector<CCValAssign, 16> RVLocs;
4547 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
4548 *DAG.getContext());
4549 CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
4550
4551 // Copy all of the result registers out of their specified physreg.
4552 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
4553 CCValAssign &VA = RVLocs[i];
4554 assert(VA.isRegLoc() && "Can only return in registers!");
4555
4556 SDValue Val = DAG.getCopyFromReg(Chain, dl,
4557 VA.getLocReg(), VA.getLocVT(), InFlag);
4558 Chain = Val.getValue(1);
4559 InFlag = Val.getValue(2);
4560
4561 switch (VA.getLocInfo()) {
4562 default: llvm_unreachable("Unknown loc info!");
4563 case CCValAssign::Full: break;
4564 case CCValAssign::AExt:
4565 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
4566 break;
4567 case CCValAssign::ZExt:
4568 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
4569 DAG.getValueType(VA.getValVT()));
4570 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
4571 break;
4572 case CCValAssign::SExt:
4573 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
4574 DAG.getValueType(VA.getValVT()));
4575 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
4576 break;
4577 }
4578
4579 InVals.push_back(Val);
4580 }
4581
4582 return Chain;
4583 }
4584
FinishCall(CallingConv::ID CallConv,const SDLoc & dl,bool isTailCall,bool isVarArg,bool isPatchPoint,bool hasNest,SelectionDAG & DAG,SmallVector<std::pair<unsigned,SDValue>,8> & RegsToPass,SDValue InFlag,SDValue Chain,SDValue CallSeqStart,SDValue & Callee,int SPDiff,unsigned NumBytes,const SmallVectorImpl<ISD::InputArg> & Ins,SmallVectorImpl<SDValue> & InVals,ImmutableCallSite * CS) const4585 SDValue PPCTargetLowering::FinishCall(
4586 CallingConv::ID CallConv, const SDLoc &dl, bool isTailCall, bool isVarArg,
4587 bool isPatchPoint, bool hasNest, SelectionDAG &DAG,
4588 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue InFlag,
4589 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
4590 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
4591 SmallVectorImpl<SDValue> &InVals, ImmutableCallSite *CS) const {
4592
4593 std::vector<EVT> NodeTys;
4594 SmallVector<SDValue, 8> Ops;
4595 unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl,
4596 SPDiff, isTailCall, isPatchPoint, hasNest,
4597 RegsToPass, Ops, NodeTys, CS, Subtarget);
4598
4599 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
4600 if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64())
4601 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
4602
4603 // When performing tail call optimization the callee pops its arguments off
4604 // the stack. Account for this here so these bytes can be pushed back on in
4605 // PPCFrameLowering::eliminateCallFramePseudoInstr.
4606 int BytesCalleePops =
4607 (CallConv == CallingConv::Fast &&
4608 getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
4609
4610 // Add a register mask operand representing the call-preserved registers.
4611 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
4612 const uint32_t *Mask =
4613 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
4614 assert(Mask && "Missing call preserved mask for calling convention");
4615 Ops.push_back(DAG.getRegisterMask(Mask));
4616
4617 if (InFlag.getNode())
4618 Ops.push_back(InFlag);
4619
4620 // Emit tail call.
4621 if (isTailCall) {
4622 assert(((Callee.getOpcode() == ISD::Register &&
4623 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
4624 Callee.getOpcode() == ISD::TargetExternalSymbol ||
4625 Callee.getOpcode() == ISD::TargetGlobalAddress ||
4626 isa<ConstantSDNode>(Callee)) &&
4627 "Expecting an global address, external symbol, absolute value or register");
4628
4629 DAG.getMachineFunction().getFrameInfo()->setHasTailCall();
4630 return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops);
4631 }
4632
4633 // Add a NOP immediately after the branch instruction when using the 64-bit
4634 // SVR4 ABI. At link time, if caller and callee are in a different module and
4635 // thus have a different TOC, the call will be replaced with a call to a stub
4636 // function which saves the current TOC, loads the TOC of the callee and
4637 // branches to the callee. The NOP will be replaced with a load instruction
4638 // which restores the TOC of the caller from the TOC save slot of the current
4639 // stack frame. If caller and callee belong to the same module (and have the
4640 // same TOC), the NOP will remain unchanged.
4641
4642 if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64() &&
4643 !isPatchPoint) {
4644 if (CallOpc == PPCISD::BCTRL) {
4645 // This is a call through a function pointer.
4646 // Restore the caller TOC from the save area into R2.
4647 // See PrepareCall() for more information about calls through function
4648 // pointers in the 64-bit SVR4 ABI.
4649 // We are using a target-specific load with r2 hard coded, because the
4650 // result of a target-independent load would never go directly into r2,
4651 // since r2 is a reserved register (which prevents the register allocator
4652 // from allocating it), resulting in an additional register being
4653 // allocated and an unnecessary move instruction being generated.
4654 CallOpc = PPCISD::BCTRL_LOAD_TOC;
4655
4656 EVT PtrVT = getPointerTy(DAG.getDataLayout());
4657 SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT);
4658 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
4659 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
4660 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff);
4661
4662 // The address needs to go after the chain input but before the flag (or
4663 // any other variadic arguments).
4664 Ops.insert(std::next(Ops.begin()), AddTOC);
4665 } else if ((CallOpc == PPCISD::CALL) &&
4666 (!isLocalCall(Callee) ||
4667 DAG.getTarget().getRelocationModel() == Reloc::PIC_))
4668 // Otherwise insert NOP for non-local calls.
4669 CallOpc = PPCISD::CALL_NOP;
4670 }
4671
4672 Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
4673 InFlag = Chain.getValue(1);
4674
4675 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4676 DAG.getIntPtrConstant(BytesCalleePops, dl, true),
4677 InFlag, dl);
4678 if (!Ins.empty())
4679 InFlag = Chain.getValue(1);
4680
4681 return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
4682 Ins, dl, DAG, InVals);
4683 }
4684
4685 SDValue
LowerCall(TargetLowering::CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const4686 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
4687 SmallVectorImpl<SDValue> &InVals) const {
4688 SelectionDAG &DAG = CLI.DAG;
4689 SDLoc &dl = CLI.DL;
4690 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
4691 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
4692 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
4693 SDValue Chain = CLI.Chain;
4694 SDValue Callee = CLI.Callee;
4695 bool &isTailCall = CLI.IsTailCall;
4696 CallingConv::ID CallConv = CLI.CallConv;
4697 bool isVarArg = CLI.IsVarArg;
4698 bool isPatchPoint = CLI.IsPatchPoint;
4699 ImmutableCallSite *CS = CLI.CS;
4700
4701 if (isTailCall) {
4702 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
4703 isTailCall =
4704 IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS,
4705 isVarArg, Outs, Ins, DAG);
4706 else
4707 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
4708 Ins, DAG);
4709 if (isTailCall) {
4710 ++NumTailCalls;
4711 if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4712 ++NumSiblingCalls;
4713
4714 assert(isa<GlobalAddressSDNode>(Callee) &&
4715 "Callee should be an llvm::Function object.");
4716 DEBUG(
4717 const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
4718 const unsigned Width = 80 - strlen("TCO caller: ")
4719 - strlen(", callee linkage: 0, 0");
4720 dbgs() << "TCO caller: "
4721 << left_justify(DAG.getMachineFunction().getName(), Width)
4722 << ", callee linkage: "
4723 << GV->getVisibility() << ", " << GV->getLinkage() << "\n"
4724 );
4725 }
4726 }
4727
4728 if (!isTailCall && CS && CS->isMustTailCall())
4729 report_fatal_error("failed to perform tail call elimination on a call "
4730 "site marked musttail");
4731
4732 if (Subtarget.isSVR4ABI()) {
4733 if (Subtarget.isPPC64())
4734 return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
4735 isTailCall, isPatchPoint, Outs, OutVals, Ins,
4736 dl, DAG, InVals, CS);
4737 else
4738 return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
4739 isTailCall, isPatchPoint, Outs, OutVals, Ins,
4740 dl, DAG, InVals, CS);
4741 }
4742
4743 return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
4744 isTailCall, isPatchPoint, Outs, OutVals, Ins,
4745 dl, DAG, InVals, CS);
4746 }
4747
LowerCall_32SVR4(SDValue Chain,SDValue Callee,CallingConv::ID CallConv,bool isVarArg,bool isTailCall,bool isPatchPoint,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals,ImmutableCallSite * CS) const4748 SDValue PPCTargetLowering::LowerCall_32SVR4(
4749 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
4750 bool isTailCall, bool isPatchPoint,
4751 const SmallVectorImpl<ISD::OutputArg> &Outs,
4752 const SmallVectorImpl<SDValue> &OutVals,
4753 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4754 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
4755 ImmutableCallSite *CS) const {
4756 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
4757 // of the 32-bit SVR4 ABI stack frame layout.
4758
4759 assert((CallConv == CallingConv::C ||
4760 CallConv == CallingConv::Fast) && "Unknown calling convention!");
4761
4762 unsigned PtrByteSize = 4;
4763
4764 MachineFunction &MF = DAG.getMachineFunction();
4765
4766 // Mark this function as potentially containing a function that contains a
4767 // tail call. As a consequence the frame pointer will be used for dynamicalloc
4768 // and restoring the callers stack pointer in this functions epilog. This is
4769 // done because by tail calling the called function might overwrite the value
4770 // in this function's (MF) stack pointer stack slot 0(SP).
4771 if (getTargetMachine().Options.GuaranteedTailCallOpt &&
4772 CallConv == CallingConv::Fast)
4773 MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
4774
4775 // Count how many bytes are to be pushed on the stack, including the linkage
4776 // area, parameter list area and the part of the local variable space which
4777 // contains copies of aggregates which are passed by value.
4778
4779 // Assign locations to all of the outgoing arguments.
4780 SmallVector<CCValAssign, 16> ArgLocs;
4781 PPCCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
4782
4783 // Reserve space for the linkage area on the stack.
4784 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
4785 PtrByteSize);
4786 if (useSoftFloat())
4787 CCInfo.PreAnalyzeCallOperands(Outs);
4788
4789 if (isVarArg) {
4790 // Handle fixed and variable vector arguments differently.
4791 // Fixed vector arguments go into registers as long as registers are
4792 // available. Variable vector arguments always go into memory.
4793 unsigned NumArgs = Outs.size();
4794
4795 for (unsigned i = 0; i != NumArgs; ++i) {
4796 MVT ArgVT = Outs[i].VT;
4797 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
4798 bool Result;
4799
4800 if (Outs[i].IsFixed) {
4801 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
4802 CCInfo);
4803 } else {
4804 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
4805 ArgFlags, CCInfo);
4806 }
4807
4808 if (Result) {
4809 #ifndef NDEBUG
4810 errs() << "Call operand #" << i << " has unhandled type "
4811 << EVT(ArgVT).getEVTString() << "\n";
4812 #endif
4813 llvm_unreachable(nullptr);
4814 }
4815 }
4816 } else {
4817 // All arguments are treated the same.
4818 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
4819 }
4820 CCInfo.clearWasPPCF128();
4821
4822 // Assign locations to all of the outgoing aggregate by value arguments.
4823 SmallVector<CCValAssign, 16> ByValArgLocs;
4824 CCState CCByValInfo(CallConv, isVarArg, MF, ByValArgLocs, *DAG.getContext());
4825
4826 // Reserve stack space for the allocations in CCInfo.
4827 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
4828
4829 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
4830
4831 // Size of the linkage area, parameter list area and the part of the local
4832 // space variable where copies of aggregates which are passed by value are
4833 // stored.
4834 unsigned NumBytes = CCByValInfo.getNextStackOffset();
4835
4836 // Calculate by how many bytes the stack has to be adjusted in case of tail
4837 // call optimization.
4838 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
4839
4840 // Adjust the stack pointer for the new arguments...
4841 // These operations are automatically eliminated by the prolog/epilog pass
4842 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4843 dl);
4844 SDValue CallSeqStart = Chain;
4845
4846 // Load the return address and frame pointer so it can be moved somewhere else
4847 // later.
4848 SDValue LROp, FPOp;
4849 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
4850
4851 // Set up a copy of the stack pointer for use loading and storing any
4852 // arguments that may not fit in the registers available for argument
4853 // passing.
4854 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4855
4856 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
4857 SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
4858 SmallVector<SDValue, 8> MemOpChains;
4859
4860 bool seenFloatArg = false;
4861 // Walk the register/memloc assignments, inserting copies/loads.
4862 for (unsigned i = 0, j = 0, e = ArgLocs.size();
4863 i != e;
4864 ++i) {
4865 CCValAssign &VA = ArgLocs[i];
4866 SDValue Arg = OutVals[i];
4867 ISD::ArgFlagsTy Flags = Outs[i].Flags;
4868
4869 if (Flags.isByVal()) {
4870 // Argument is an aggregate which is passed by value, thus we need to
4871 // create a copy of it in the local variable space of the current stack
4872 // frame (which is the stack frame of the caller) and pass the address of
4873 // this copy to the callee.
4874 assert((j < ByValArgLocs.size()) && "Index out of bounds!");
4875 CCValAssign &ByValVA = ByValArgLocs[j++];
4876 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
4877
4878 // Memory reserved in the local variable space of the callers stack frame.
4879 unsigned LocMemOffset = ByValVA.getLocMemOffset();
4880
4881 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
4882 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
4883 StackPtr, PtrOff);
4884
4885 // Create a copy of the argument in the local area of the current
4886 // stack frame.
4887 SDValue MemcpyCall =
4888 CreateCopyOfByValArgument(Arg, PtrOff,
4889 CallSeqStart.getNode()->getOperand(0),
4890 Flags, DAG, dl);
4891
4892 // This must go outside the CALLSEQ_START..END.
4893 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
4894 CallSeqStart.getNode()->getOperand(1),
4895 SDLoc(MemcpyCall));
4896 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
4897 NewCallSeqStart.getNode());
4898 Chain = CallSeqStart = NewCallSeqStart;
4899
4900 // Pass the address of the aggregate copy on the stack either in a
4901 // physical register or in the parameter list area of the current stack
4902 // frame to the callee.
4903 Arg = PtrOff;
4904 }
4905
4906 if (VA.isRegLoc()) {
4907 if (Arg.getValueType() == MVT::i1)
4908 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Arg);
4909
4910 seenFloatArg |= VA.getLocVT().isFloatingPoint();
4911 // Put argument in a physical register.
4912 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
4913 } else {
4914 // Put argument in the parameter list area of the current stack frame.
4915 assert(VA.isMemLoc());
4916 unsigned LocMemOffset = VA.getLocMemOffset();
4917
4918 if (!isTailCall) {
4919 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
4920 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
4921 StackPtr, PtrOff);
4922
4923 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
4924 MachinePointerInfo(),
4925 false, false, 0));
4926 } else {
4927 // Calculate and remember argument location.
4928 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
4929 TailCallArguments);
4930 }
4931 }
4932 }
4933
4934 if (!MemOpChains.empty())
4935 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
4936
4937 // Build a sequence of copy-to-reg nodes chained together with token chain
4938 // and flag operands which copy the outgoing args into the appropriate regs.
4939 SDValue InFlag;
4940 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
4941 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
4942 RegsToPass[i].second, InFlag);
4943 InFlag = Chain.getValue(1);
4944 }
4945
4946 // Set CR bit 6 to true if this is a vararg call with floating args passed in
4947 // registers.
4948 if (isVarArg) {
4949 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
4950 SDValue Ops[] = { Chain, InFlag };
4951
4952 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
4953 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
4954
4955 InFlag = Chain.getValue(1);
4956 }
4957
4958 if (isTailCall)
4959 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
4960 TailCallArguments);
4961
4962 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
4963 /* unused except on PPC64 ELFv1 */ false, DAG,
4964 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
4965 NumBytes, Ins, InVals, CS);
4966 }
4967
4968 // Copy an argument into memory, being careful to do this outside the
4969 // call sequence for the call to which the argument belongs.
createMemcpyOutsideCallSeq(SDValue Arg,SDValue PtrOff,SDValue CallSeqStart,ISD::ArgFlagsTy Flags,SelectionDAG & DAG,const SDLoc & dl) const4970 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
4971 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
4972 SelectionDAG &DAG, const SDLoc &dl) const {
4973 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
4974 CallSeqStart.getNode()->getOperand(0),
4975 Flags, DAG, dl);
4976 // The MEMCPY must go outside the CALLSEQ_START..END.
4977 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
4978 CallSeqStart.getNode()->getOperand(1),
4979 SDLoc(MemcpyCall));
4980 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
4981 NewCallSeqStart.getNode());
4982 return NewCallSeqStart;
4983 }
4984
LowerCall_64SVR4(SDValue Chain,SDValue Callee,CallingConv::ID CallConv,bool isVarArg,bool isTailCall,bool isPatchPoint,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals,ImmutableCallSite * CS) const4985 SDValue PPCTargetLowering::LowerCall_64SVR4(
4986 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
4987 bool isTailCall, bool isPatchPoint,
4988 const SmallVectorImpl<ISD::OutputArg> &Outs,
4989 const SmallVectorImpl<SDValue> &OutVals,
4990 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4991 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
4992 ImmutableCallSite *CS) const {
4993
4994 bool isELFv2ABI = Subtarget.isELFv2ABI();
4995 bool isLittleEndian = Subtarget.isLittleEndian();
4996 unsigned NumOps = Outs.size();
4997 bool hasNest = false;
4998 bool IsSibCall = false;
4999
5000 EVT PtrVT = getPointerTy(DAG.getDataLayout());
5001 unsigned PtrByteSize = 8;
5002
5003 MachineFunction &MF = DAG.getMachineFunction();
5004
5005 if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
5006 IsSibCall = true;
5007
5008 // Mark this function as potentially containing a function that contains a
5009 // tail call. As a consequence the frame pointer will be used for dynamicalloc
5010 // and restoring the callers stack pointer in this functions epilog. This is
5011 // done because by tail calling the called function might overwrite the value
5012 // in this function's (MF) stack pointer stack slot 0(SP).
5013 if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5014 CallConv == CallingConv::Fast)
5015 MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5016
5017 assert(!(CallConv == CallingConv::Fast && isVarArg) &&
5018 "fastcc not supported on varargs functions");
5019
5020 // Count how many bytes are to be pushed on the stack, including the linkage
5021 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes
5022 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
5023 // area is 32 bytes reserved space for [SP][CR][LR][TOC].
5024 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
5025 unsigned NumBytes = LinkageSize;
5026 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
5027 unsigned &QFPR_idx = FPR_idx;
5028
5029 static const MCPhysReg GPR[] = {
5030 PPC::X3, PPC::X4, PPC::X5, PPC::X6,
5031 PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5032 };
5033 static const MCPhysReg VR[] = {
5034 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5035 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
5036 };
5037 static const MCPhysReg VSRH[] = {
5038 PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8,
5039 PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13
5040 };
5041
5042 const unsigned NumGPRs = array_lengthof(GPR);
5043 const unsigned NumFPRs = 13;
5044 const unsigned NumVRs = array_lengthof(VR);
5045 const unsigned NumQFPRs = NumFPRs;
5046
5047 // When using the fast calling convention, we don't provide backing for
5048 // arguments that will be in registers.
5049 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
5050
5051 // Add up all the space actually used.
5052 for (unsigned i = 0; i != NumOps; ++i) {
5053 ISD::ArgFlagsTy Flags = Outs[i].Flags;
5054 EVT ArgVT = Outs[i].VT;
5055 EVT OrigVT = Outs[i].ArgVT;
5056
5057 if (Flags.isNest())
5058 continue;
5059
5060 if (CallConv == CallingConv::Fast) {
5061 if (Flags.isByVal())
5062 NumGPRsUsed += (Flags.getByValSize()+7)/8;
5063 else
5064 switch (ArgVT.getSimpleVT().SimpleTy) {
5065 default: llvm_unreachable("Unexpected ValueType for argument!");
5066 case MVT::i1:
5067 case MVT::i32:
5068 case MVT::i64:
5069 if (++NumGPRsUsed <= NumGPRs)
5070 continue;
5071 break;
5072 case MVT::v4i32:
5073 case MVT::v8i16:
5074 case MVT::v16i8:
5075 case MVT::v2f64:
5076 case MVT::v2i64:
5077 case MVT::v1i128:
5078 if (++NumVRsUsed <= NumVRs)
5079 continue;
5080 break;
5081 case MVT::v4f32:
5082 // When using QPX, this is handled like a FP register, otherwise, it
5083 // is an Altivec register.
5084 if (Subtarget.hasQPX()) {
5085 if (++NumFPRsUsed <= NumFPRs)
5086 continue;
5087 } else {
5088 if (++NumVRsUsed <= NumVRs)
5089 continue;
5090 }
5091 break;
5092 case MVT::f32:
5093 case MVT::f64:
5094 case MVT::v4f64: // QPX
5095 case MVT::v4i1: // QPX
5096 if (++NumFPRsUsed <= NumFPRs)
5097 continue;
5098 break;
5099 }
5100 }
5101
5102 /* Respect alignment of argument on the stack. */
5103 unsigned Align =
5104 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5105 NumBytes = ((NumBytes + Align - 1) / Align) * Align;
5106
5107 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
5108 if (Flags.isInConsecutiveRegsLast())
5109 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
5110 }
5111
5112 unsigned NumBytesActuallyUsed = NumBytes;
5113
5114 // The prolog code of the callee may store up to 8 GPR argument registers to
5115 // the stack, allowing va_start to index over them in memory if its varargs.
5116 // Because we cannot tell if this is needed on the caller side, we have to
5117 // conservatively assume that it is needed. As such, make sure we have at
5118 // least enough stack space for the caller to store the 8 GPRs.
5119 // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area.
5120 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
5121
5122 // Tail call needs the stack to be aligned.
5123 if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5124 CallConv == CallingConv::Fast)
5125 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
5126
5127 int SPDiff = 0;
5128
5129 // Calculate by how many bytes the stack has to be adjusted in case of tail
5130 // call optimization.
5131 if (!IsSibCall)
5132 SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5133
5134 // To protect arguments on the stack from being clobbered in a tail call,
5135 // force all the loads to happen before doing any other lowering.
5136 if (isTailCall)
5137 Chain = DAG.getStackArgumentTokenFactor(Chain);
5138
5139 // Adjust the stack pointer for the new arguments...
5140 // These operations are automatically eliminated by the prolog/epilog pass
5141 if (!IsSibCall)
5142 Chain = DAG.getCALLSEQ_START(Chain,
5143 DAG.getIntPtrConstant(NumBytes, dl, true), dl);
5144 SDValue CallSeqStart = Chain;
5145
5146 // Load the return address and frame pointer so it can be move somewhere else
5147 // later.
5148 SDValue LROp, FPOp;
5149 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5150
5151 // Set up a copy of the stack pointer for use loading and storing any
5152 // arguments that may not fit in the registers available for argument
5153 // passing.
5154 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5155
5156 // Figure out which arguments are going to go in registers, and which in
5157 // memory. Also, if this is a vararg function, floating point operations
5158 // must be stored to our stack, and loaded into integer regs as well, if
5159 // any integer regs are available for argument passing.
5160 unsigned ArgOffset = LinkageSize;
5161
5162 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5163 SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5164
5165 SmallVector<SDValue, 8> MemOpChains;
5166 for (unsigned i = 0; i != NumOps; ++i) {
5167 SDValue Arg = OutVals[i];
5168 ISD::ArgFlagsTy Flags = Outs[i].Flags;
5169 EVT ArgVT = Outs[i].VT;
5170 EVT OrigVT = Outs[i].ArgVT;
5171
5172 // PtrOff will be used to store the current argument to the stack if a
5173 // register cannot be found for it.
5174 SDValue PtrOff;
5175
5176 // We re-align the argument offset for each argument, except when using the
5177 // fast calling convention, when we need to make sure we do that only when
5178 // we'll actually use a stack slot.
5179 auto ComputePtrOff = [&]() {
5180 /* Respect alignment of argument on the stack. */
5181 unsigned Align =
5182 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5183 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
5184
5185 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
5186
5187 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
5188 };
5189
5190 if (CallConv != CallingConv::Fast) {
5191 ComputePtrOff();
5192
5193 /* Compute GPR index associated with argument offset. */
5194 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
5195 GPR_idx = std::min(GPR_idx, NumGPRs);
5196 }
5197
5198 // Promote integers to 64-bit values.
5199 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
5200 // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
5201 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
5202 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
5203 }
5204
5205 // FIXME memcpy is used way more than necessary. Correctness first.
5206 // Note: "by value" is code for passing a structure by value, not
5207 // basic types.
5208 if (Flags.isByVal()) {
5209 // Note: Size includes alignment padding, so
5210 // struct x { short a; char b; }
5211 // will have Size = 4. With #pragma pack(1), it will have Size = 3.
5212 // These are the proper values we need for right-justifying the
5213 // aggregate in a parameter register.
5214 unsigned Size = Flags.getByValSize();
5215
5216 // An empty aggregate parameter takes up no storage and no
5217 // registers.
5218 if (Size == 0)
5219 continue;
5220
5221 if (CallConv == CallingConv::Fast)
5222 ComputePtrOff();
5223
5224 // All aggregates smaller than 8 bytes must be passed right-justified.
5225 if (Size==1 || Size==2 || Size==4) {
5226 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
5227 if (GPR_idx != NumGPRs) {
5228 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
5229 MachinePointerInfo(), VT,
5230 false, false, false, 0);
5231 MemOpChains.push_back(Load.getValue(1));
5232 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5233
5234 ArgOffset += PtrByteSize;
5235 continue;
5236 }
5237 }
5238
5239 if (GPR_idx == NumGPRs && Size < 8) {
5240 SDValue AddPtr = PtrOff;
5241 if (!isLittleEndian) {
5242 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
5243 PtrOff.getValueType());
5244 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5245 }
5246 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5247 CallSeqStart,
5248 Flags, DAG, dl);
5249 ArgOffset += PtrByteSize;
5250 continue;
5251 }
5252 // Copy entire object into memory. There are cases where gcc-generated
5253 // code assumes it is there, even if it could be put entirely into
5254 // registers. (This is not what the doc says.)
5255
5256 // FIXME: The above statement is likely due to a misunderstanding of the
5257 // documents. All arguments must be copied into the parameter area BY
5258 // THE CALLEE in the event that the callee takes the address of any
5259 // formal argument. That has not yet been implemented. However, it is
5260 // reasonable to use the stack area as a staging area for the register
5261 // load.
5262
5263 // Skip this for small aggregates, as we will use the same slot for a
5264 // right-justified copy, below.
5265 if (Size >= 8)
5266 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
5267 CallSeqStart,
5268 Flags, DAG, dl);
5269
5270 // When a register is available, pass a small aggregate right-justified.
5271 if (Size < 8 && GPR_idx != NumGPRs) {
5272 // The easiest way to get this right-justified in a register
5273 // is to copy the structure into the rightmost portion of a
5274 // local variable slot, then load the whole slot into the
5275 // register.
5276 // FIXME: The memcpy seems to produce pretty awful code for
5277 // small aggregates, particularly for packed ones.
5278 // FIXME: It would be preferable to use the slot in the
5279 // parameter save area instead of a new local variable.
5280 SDValue AddPtr = PtrOff;
5281 if (!isLittleEndian) {
5282 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
5283 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5284 }
5285 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5286 CallSeqStart,
5287 Flags, DAG, dl);
5288
5289 // Load the slot into the register.
5290 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff,
5291 MachinePointerInfo(),
5292 false, false, false, 0);
5293 MemOpChains.push_back(Load.getValue(1));
5294 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5295
5296 // Done with this argument.
5297 ArgOffset += PtrByteSize;
5298 continue;
5299 }
5300
5301 // For aggregates larger than PtrByteSize, copy the pieces of the
5302 // object that fit into registers from the parameter save area.
5303 for (unsigned j=0; j<Size; j+=PtrByteSize) {
5304 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
5305 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
5306 if (GPR_idx != NumGPRs) {
5307 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
5308 MachinePointerInfo(),
5309 false, false, false, 0);
5310 MemOpChains.push_back(Load.getValue(1));
5311 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5312 ArgOffset += PtrByteSize;
5313 } else {
5314 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
5315 break;
5316 }
5317 }
5318 continue;
5319 }
5320
5321 switch (Arg.getSimpleValueType().SimpleTy) {
5322 default: llvm_unreachable("Unexpected ValueType for argument!");
5323 case MVT::i1:
5324 case MVT::i32:
5325 case MVT::i64:
5326 if (Flags.isNest()) {
5327 // The 'nest' parameter, if any, is passed in R11.
5328 RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
5329 hasNest = true;
5330 break;
5331 }
5332
5333 // These can be scalar arguments or elements of an integer array type
5334 // passed directly. Clang may use those instead of "byval" aggregate
5335 // types to avoid forcing arguments to memory unnecessarily.
5336 if (GPR_idx != NumGPRs) {
5337 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
5338 } else {
5339 if (CallConv == CallingConv::Fast)
5340 ComputePtrOff();
5341
5342 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5343 true, isTailCall, false, MemOpChains,
5344 TailCallArguments, dl);
5345 if (CallConv == CallingConv::Fast)
5346 ArgOffset += PtrByteSize;
5347 }
5348 if (CallConv != CallingConv::Fast)
5349 ArgOffset += PtrByteSize;
5350 break;
5351 case MVT::f32:
5352 case MVT::f64: {
5353 // These can be scalar arguments or elements of a float array type
5354 // passed directly. The latter are used to implement ELFv2 homogenous
5355 // float aggregates.
5356
5357 // Named arguments go into FPRs first, and once they overflow, the
5358 // remaining arguments go into GPRs and then the parameter save area.
5359 // Unnamed arguments for vararg functions always go to GPRs and
5360 // then the parameter save area. For now, put all arguments to vararg
5361 // routines always in both locations (FPR *and* GPR or stack slot).
5362 bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs;
5363 bool NeededLoad = false;
5364
5365 // First load the argument into the next available FPR.
5366 if (FPR_idx != NumFPRs)
5367 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
5368
5369 // Next, load the argument into GPR or stack slot if needed.
5370 if (!NeedGPROrStack)
5371 ;
5372 else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) {
5373 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
5374 // once we support fp <-> gpr moves.
5375
5376 // In the non-vararg case, this can only ever happen in the
5377 // presence of f32 array types, since otherwise we never run
5378 // out of FPRs before running out of GPRs.
5379 SDValue ArgVal;
5380
5381 // Double values are always passed in a single GPR.
5382 if (Arg.getValueType() != MVT::f32) {
5383 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
5384
5385 // Non-array float values are extended and passed in a GPR.
5386 } else if (!Flags.isInConsecutiveRegs()) {
5387 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5388 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
5389
5390 // If we have an array of floats, we collect every odd element
5391 // together with its predecessor into one GPR.
5392 } else if (ArgOffset % PtrByteSize != 0) {
5393 SDValue Lo, Hi;
5394 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
5395 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5396 if (!isLittleEndian)
5397 std::swap(Lo, Hi);
5398 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
5399
5400 // The final element, if even, goes into the first half of a GPR.
5401 } else if (Flags.isInConsecutiveRegsLast()) {
5402 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5403 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
5404 if (!isLittleEndian)
5405 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
5406 DAG.getConstant(32, dl, MVT::i32));
5407
5408 // Non-final even elements are skipped; they will be handled
5409 // together the with subsequent argument on the next go-around.
5410 } else
5411 ArgVal = SDValue();
5412
5413 if (ArgVal.getNode())
5414 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
5415 } else {
5416 if (CallConv == CallingConv::Fast)
5417 ComputePtrOff();
5418
5419 // Single-precision floating-point values are mapped to the
5420 // second (rightmost) word of the stack doubleword.
5421 if (Arg.getValueType() == MVT::f32 &&
5422 !isLittleEndian && !Flags.isInConsecutiveRegs()) {
5423 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
5424 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
5425 }
5426
5427 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5428 true, isTailCall, false, MemOpChains,
5429 TailCallArguments, dl);
5430
5431 NeededLoad = true;
5432 }
5433 // When passing an array of floats, the array occupies consecutive
5434 // space in the argument area; only round up to the next doubleword
5435 // at the end of the array. Otherwise, each float takes 8 bytes.
5436 if (CallConv != CallingConv::Fast || NeededLoad) {
5437 ArgOffset += (Arg.getValueType() == MVT::f32 &&
5438 Flags.isInConsecutiveRegs()) ? 4 : 8;
5439 if (Flags.isInConsecutiveRegsLast())
5440 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
5441 }
5442 break;
5443 }
5444 case MVT::v4f32:
5445 case MVT::v4i32:
5446 case MVT::v8i16:
5447 case MVT::v16i8:
5448 case MVT::v2f64:
5449 case MVT::v2i64:
5450 case MVT::v1i128:
5451 if (!Subtarget.hasQPX()) {
5452 // These can be scalar arguments or elements of a vector array type
5453 // passed directly. The latter are used to implement ELFv2 homogenous
5454 // vector aggregates.
5455
5456 // For a varargs call, named arguments go into VRs or on the stack as
5457 // usual; unnamed arguments always go to the stack or the corresponding
5458 // GPRs when within range. For now, we always put the value in both
5459 // locations (or even all three).
5460 if (isVarArg) {
5461 // We could elide this store in the case where the object fits
5462 // entirely in R registers. Maybe later.
5463 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
5464 MachinePointerInfo(), false, false, 0);
5465 MemOpChains.push_back(Store);
5466 if (VR_idx != NumVRs) {
5467 SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
5468 MachinePointerInfo(),
5469 false, false, false, 0);
5470 MemOpChains.push_back(Load.getValue(1));
5471
5472 unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 ||
5473 Arg.getSimpleValueType() == MVT::v2i64) ?
5474 VSRH[VR_idx] : VR[VR_idx];
5475 ++VR_idx;
5476
5477 RegsToPass.push_back(std::make_pair(VReg, Load));
5478 }
5479 ArgOffset += 16;
5480 for (unsigned i=0; i<16; i+=PtrByteSize) {
5481 if (GPR_idx == NumGPRs)
5482 break;
5483 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
5484 DAG.getConstant(i, dl, PtrVT));
5485 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
5486 false, false, false, 0);
5487 MemOpChains.push_back(Load.getValue(1));
5488 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5489 }
5490 break;
5491 }
5492
5493 // Non-varargs Altivec params go into VRs or on the stack.
5494 if (VR_idx != NumVRs) {
5495 unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 ||
5496 Arg.getSimpleValueType() == MVT::v2i64) ?
5497 VSRH[VR_idx] : VR[VR_idx];
5498 ++VR_idx;
5499
5500 RegsToPass.push_back(std::make_pair(VReg, Arg));
5501 } else {
5502 if (CallConv == CallingConv::Fast)
5503 ComputePtrOff();
5504
5505 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5506 true, isTailCall, true, MemOpChains,
5507 TailCallArguments, dl);
5508 if (CallConv == CallingConv::Fast)
5509 ArgOffset += 16;
5510 }
5511
5512 if (CallConv != CallingConv::Fast)
5513 ArgOffset += 16;
5514 break;
5515 } // not QPX
5516
5517 assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 &&
5518 "Invalid QPX parameter type");
5519
5520 /* fall through */
5521 case MVT::v4f64:
5522 case MVT::v4i1: {
5523 bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32;
5524 if (isVarArg) {
5525 // We could elide this store in the case where the object fits
5526 // entirely in R registers. Maybe later.
5527 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
5528 MachinePointerInfo(), false, false, 0);
5529 MemOpChains.push_back(Store);
5530 if (QFPR_idx != NumQFPRs) {
5531 SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl,
5532 Store, PtrOff, MachinePointerInfo(),
5533 false, false, false, 0);
5534 MemOpChains.push_back(Load.getValue(1));
5535 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load));
5536 }
5537 ArgOffset += (IsF32 ? 16 : 32);
5538 for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) {
5539 if (GPR_idx == NumGPRs)
5540 break;
5541 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
5542 DAG.getConstant(i, dl, PtrVT));
5543 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
5544 false, false, false, 0);
5545 MemOpChains.push_back(Load.getValue(1));
5546 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5547 }
5548 break;
5549 }
5550
5551 // Non-varargs QPX params go into registers or on the stack.
5552 if (QFPR_idx != NumQFPRs) {
5553 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg));
5554 } else {
5555 if (CallConv == CallingConv::Fast)
5556 ComputePtrOff();
5557
5558 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5559 true, isTailCall, true, MemOpChains,
5560 TailCallArguments, dl);
5561 if (CallConv == CallingConv::Fast)
5562 ArgOffset += (IsF32 ? 16 : 32);
5563 }
5564
5565 if (CallConv != CallingConv::Fast)
5566 ArgOffset += (IsF32 ? 16 : 32);
5567 break;
5568 }
5569 }
5570 }
5571
5572 assert(NumBytesActuallyUsed == ArgOffset);
5573 (void)NumBytesActuallyUsed;
5574
5575 if (!MemOpChains.empty())
5576 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5577
5578 // Check if this is an indirect call (MTCTR/BCTRL).
5579 // See PrepareCall() for more information about calls through function
5580 // pointers in the 64-bit SVR4 ABI.
5581 if (!isTailCall && !isPatchPoint &&
5582 !isFunctionGlobalAddress(Callee) &&
5583 !isa<ExternalSymbolSDNode>(Callee)) {
5584 // Load r2 into a virtual register and store it to the TOC save area.
5585 setUsesTOCBasePtr(DAG);
5586 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
5587 // TOC save area offset.
5588 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5589 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5590 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
5591 Chain = DAG.getStore(
5592 Val.getValue(1), dl, Val, AddPtr,
5593 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset),
5594 false, false, 0);
5595 // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
5596 // This does not mean the MTCTR instruction must use R12; it's easier
5597 // to model this as an extra parameter, so do that.
5598 if (isELFv2ABI && !isPatchPoint)
5599 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
5600 }
5601
5602 // Build a sequence of copy-to-reg nodes chained together with token chain
5603 // and flag operands which copy the outgoing args into the appropriate regs.
5604 SDValue InFlag;
5605 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5606 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5607 RegsToPass[i].second, InFlag);
5608 InFlag = Chain.getValue(1);
5609 }
5610
5611 if (isTailCall && !IsSibCall)
5612 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
5613 TailCallArguments);
5614
5615 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, hasNest,
5616 DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee,
5617 SPDiff, NumBytes, Ins, InVals, CS);
5618 }
5619
LowerCall_Darwin(SDValue Chain,SDValue Callee,CallingConv::ID CallConv,bool isVarArg,bool isTailCall,bool isPatchPoint,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals,ImmutableCallSite * CS) const5620 SDValue PPCTargetLowering::LowerCall_Darwin(
5621 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
5622 bool isTailCall, bool isPatchPoint,
5623 const SmallVectorImpl<ISD::OutputArg> &Outs,
5624 const SmallVectorImpl<SDValue> &OutVals,
5625 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5626 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5627 ImmutableCallSite *CS) const {
5628
5629 unsigned NumOps = Outs.size();
5630
5631 EVT PtrVT = getPointerTy(DAG.getDataLayout());
5632 bool isPPC64 = PtrVT == MVT::i64;
5633 unsigned PtrByteSize = isPPC64 ? 8 : 4;
5634
5635 MachineFunction &MF = DAG.getMachineFunction();
5636
5637 // Mark this function as potentially containing a function that contains a
5638 // tail call. As a consequence the frame pointer will be used for dynamicalloc
5639 // and restoring the callers stack pointer in this functions epilog. This is
5640 // done because by tail calling the called function might overwrite the value
5641 // in this function's (MF) stack pointer stack slot 0(SP).
5642 if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5643 CallConv == CallingConv::Fast)
5644 MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5645
5646 // Count how many bytes are to be pushed on the stack, including the linkage
5647 // area, and parameter passing area. We start with 24/48 bytes, which is
5648 // prereserved space for [SP][CR][LR][3 x unused].
5649 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
5650 unsigned NumBytes = LinkageSize;
5651
5652 // Add up all the space actually used.
5653 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
5654 // they all go in registers, but we must reserve stack space for them for
5655 // possible use by the caller. In varargs or 64-bit calls, parameters are
5656 // assigned stack space in order, with padding so Altivec parameters are
5657 // 16-byte aligned.
5658 unsigned nAltivecParamsAtEnd = 0;
5659 for (unsigned i = 0; i != NumOps; ++i) {
5660 ISD::ArgFlagsTy Flags = Outs[i].Flags;
5661 EVT ArgVT = Outs[i].VT;
5662 // Varargs Altivec parameters are padded to a 16 byte boundary.
5663 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
5664 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
5665 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
5666 if (!isVarArg && !isPPC64) {
5667 // Non-varargs Altivec parameters go after all the non-Altivec
5668 // parameters; handle those later so we know how much padding we need.
5669 nAltivecParamsAtEnd++;
5670 continue;
5671 }
5672 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
5673 NumBytes = ((NumBytes+15)/16)*16;
5674 }
5675 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
5676 }
5677
5678 // Allow for Altivec parameters at the end, if needed.
5679 if (nAltivecParamsAtEnd) {
5680 NumBytes = ((NumBytes+15)/16)*16;
5681 NumBytes += 16*nAltivecParamsAtEnd;
5682 }
5683
5684 // The prolog code of the callee may store up to 8 GPR argument registers to
5685 // the stack, allowing va_start to index over them in memory if its varargs.
5686 // Because we cannot tell if this is needed on the caller side, we have to
5687 // conservatively assume that it is needed. As such, make sure we have at
5688 // least enough stack space for the caller to store the 8 GPRs.
5689 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
5690
5691 // Tail call needs the stack to be aligned.
5692 if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5693 CallConv == CallingConv::Fast)
5694 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
5695
5696 // Calculate by how many bytes the stack has to be adjusted in case of tail
5697 // call optimization.
5698 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5699
5700 // To protect arguments on the stack from being clobbered in a tail call,
5701 // force all the loads to happen before doing any other lowering.
5702 if (isTailCall)
5703 Chain = DAG.getStackArgumentTokenFactor(Chain);
5704
5705 // Adjust the stack pointer for the new arguments...
5706 // These operations are automatically eliminated by the prolog/epilog pass
5707 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5708 dl);
5709 SDValue CallSeqStart = Chain;
5710
5711 // Load the return address and frame pointer so it can be move somewhere else
5712 // later.
5713 SDValue LROp, FPOp;
5714 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5715
5716 // Set up a copy of the stack pointer for use loading and storing any
5717 // arguments that may not fit in the registers available for argument
5718 // passing.
5719 SDValue StackPtr;
5720 if (isPPC64)
5721 StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5722 else
5723 StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5724
5725 // Figure out which arguments are going to go in registers, and which in
5726 // memory. Also, if this is a vararg function, floating point operations
5727 // must be stored to our stack, and loaded into integer regs as well, if
5728 // any integer regs are available for argument passing.
5729 unsigned ArgOffset = LinkageSize;
5730 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
5731
5732 static const MCPhysReg GPR_32[] = { // 32-bit registers.
5733 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
5734 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
5735 };
5736 static const MCPhysReg GPR_64[] = { // 64-bit registers.
5737 PPC::X3, PPC::X4, PPC::X5, PPC::X6,
5738 PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5739 };
5740 static const MCPhysReg VR[] = {
5741 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5742 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
5743 };
5744 const unsigned NumGPRs = array_lengthof(GPR_32);
5745 const unsigned NumFPRs = 13;
5746 const unsigned NumVRs = array_lengthof(VR);
5747
5748 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
5749
5750 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5751 SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5752
5753 SmallVector<SDValue, 8> MemOpChains;
5754 for (unsigned i = 0; i != NumOps; ++i) {
5755 SDValue Arg = OutVals[i];
5756 ISD::ArgFlagsTy Flags = Outs[i].Flags;
5757
5758 // PtrOff will be used to store the current argument to the stack if a
5759 // register cannot be found for it.
5760 SDValue PtrOff;
5761
5762 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
5763
5764 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
5765
5766 // On PPC64, promote integers to 64-bit values.
5767 if (isPPC64 && Arg.getValueType() == MVT::i32) {
5768 // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
5769 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
5770 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
5771 }
5772
5773 // FIXME memcpy is used way more than necessary. Correctness first.
5774 // Note: "by value" is code for passing a structure by value, not
5775 // basic types.
5776 if (Flags.isByVal()) {
5777 unsigned Size = Flags.getByValSize();
5778 // Very small objects are passed right-justified. Everything else is
5779 // passed left-justified.
5780 if (Size==1 || Size==2) {
5781 EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
5782 if (GPR_idx != NumGPRs) {
5783 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
5784 MachinePointerInfo(), VT,
5785 false, false, false, 0);
5786 MemOpChains.push_back(Load.getValue(1));
5787 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5788
5789 ArgOffset += PtrByteSize;
5790 } else {
5791 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
5792 PtrOff.getValueType());
5793 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5794 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5795 CallSeqStart,
5796 Flags, DAG, dl);
5797 ArgOffset += PtrByteSize;
5798 }
5799 continue;
5800 }
5801 // Copy entire object into memory. There are cases where gcc-generated
5802 // code assumes it is there, even if it could be put entirely into
5803 // registers. (This is not what the doc says.)
5804 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
5805 CallSeqStart,
5806 Flags, DAG, dl);
5807
5808 // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
5809 // copy the pieces of the object that fit into registers from the
5810 // parameter save area.
5811 for (unsigned j=0; j<Size; j+=PtrByteSize) {
5812 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
5813 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
5814 if (GPR_idx != NumGPRs) {
5815 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
5816 MachinePointerInfo(),
5817 false, false, false, 0);
5818 MemOpChains.push_back(Load.getValue(1));
5819 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5820 ArgOffset += PtrByteSize;
5821 } else {
5822 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
5823 break;
5824 }
5825 }
5826 continue;
5827 }
5828
5829 switch (Arg.getSimpleValueType().SimpleTy) {
5830 default: llvm_unreachable("Unexpected ValueType for argument!");
5831 case MVT::i1:
5832 case MVT::i32:
5833 case MVT::i64:
5834 if (GPR_idx != NumGPRs) {
5835 if (Arg.getValueType() == MVT::i1)
5836 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
5837
5838 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
5839 } else {
5840 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5841 isPPC64, isTailCall, false, MemOpChains,
5842 TailCallArguments, dl);
5843 }
5844 ArgOffset += PtrByteSize;
5845 break;
5846 case MVT::f32:
5847 case MVT::f64:
5848 if (FPR_idx != NumFPRs) {
5849 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
5850
5851 if (isVarArg) {
5852 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
5853 MachinePointerInfo(), false, false, 0);
5854 MemOpChains.push_back(Store);
5855
5856 // Float varargs are always shadowed in available integer registers
5857 if (GPR_idx != NumGPRs) {
5858 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
5859 MachinePointerInfo(), false, false,
5860 false, 0);
5861 MemOpChains.push_back(Load.getValue(1));
5862 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5863 }
5864 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
5865 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
5866 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
5867 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
5868 MachinePointerInfo(),
5869 false, false, false, 0);
5870 MemOpChains.push_back(Load.getValue(1));
5871 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5872 }
5873 } else {
5874 // If we have any FPRs remaining, we may also have GPRs remaining.
5875 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
5876 // GPRs.
5877 if (GPR_idx != NumGPRs)
5878 ++GPR_idx;
5879 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
5880 !isPPC64) // PPC64 has 64-bit GPR's obviously :)
5881 ++GPR_idx;
5882 }
5883 } else
5884 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5885 isPPC64, isTailCall, false, MemOpChains,
5886 TailCallArguments, dl);
5887 if (isPPC64)
5888 ArgOffset += 8;
5889 else
5890 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
5891 break;
5892 case MVT::v4f32:
5893 case MVT::v4i32:
5894 case MVT::v8i16:
5895 case MVT::v16i8:
5896 if (isVarArg) {
5897 // These go aligned on the stack, or in the corresponding R registers
5898 // when within range. The Darwin PPC ABI doc claims they also go in
5899 // V registers; in fact gcc does this only for arguments that are
5900 // prototyped, not for those that match the ... We do it for all
5901 // arguments, seems to work.
5902 while (ArgOffset % 16 !=0) {
5903 ArgOffset += PtrByteSize;
5904 if (GPR_idx != NumGPRs)
5905 GPR_idx++;
5906 }
5907 // We could elide this store in the case where the object fits
5908 // entirely in R registers. Maybe later.
5909 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
5910 DAG.getConstant(ArgOffset, dl, PtrVT));
5911 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
5912 MachinePointerInfo(), false, false, 0);
5913 MemOpChains.push_back(Store);
5914 if (VR_idx != NumVRs) {
5915 SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
5916 MachinePointerInfo(),
5917 false, false, false, 0);
5918 MemOpChains.push_back(Load.getValue(1));
5919 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
5920 }
5921 ArgOffset += 16;
5922 for (unsigned i=0; i<16; i+=PtrByteSize) {
5923 if (GPR_idx == NumGPRs)
5924 break;
5925 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
5926 DAG.getConstant(i, dl, PtrVT));
5927 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
5928 false, false, false, 0);
5929 MemOpChains.push_back(Load.getValue(1));
5930 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5931 }
5932 break;
5933 }
5934
5935 // Non-varargs Altivec params generally go in registers, but have
5936 // stack space allocated at the end.
5937 if (VR_idx != NumVRs) {
5938 // Doesn't have GPR space allocated.
5939 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
5940 } else if (nAltivecParamsAtEnd==0) {
5941 // We are emitting Altivec params in order.
5942 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5943 isPPC64, isTailCall, true, MemOpChains,
5944 TailCallArguments, dl);
5945 ArgOffset += 16;
5946 }
5947 break;
5948 }
5949 }
5950 // If all Altivec parameters fit in registers, as they usually do,
5951 // they get stack space following the non-Altivec parameters. We
5952 // don't track this here because nobody below needs it.
5953 // If there are more Altivec parameters than fit in registers emit
5954 // the stores here.
5955 if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
5956 unsigned j = 0;
5957 // Offset is aligned; skip 1st 12 params which go in V registers.
5958 ArgOffset = ((ArgOffset+15)/16)*16;
5959 ArgOffset += 12*16;
5960 for (unsigned i = 0; i != NumOps; ++i) {
5961 SDValue Arg = OutVals[i];
5962 EVT ArgType = Outs[i].VT;
5963 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
5964 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
5965 if (++j > NumVRs) {
5966 SDValue PtrOff;
5967 // We are emitting Altivec params in order.
5968 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5969 isPPC64, isTailCall, true, MemOpChains,
5970 TailCallArguments, dl);
5971 ArgOffset += 16;
5972 }
5973 }
5974 }
5975 }
5976
5977 if (!MemOpChains.empty())
5978 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5979
5980 // On Darwin, R12 must contain the address of an indirect callee. This does
5981 // not mean the MTCTR instruction must use R12; it's easier to model this as
5982 // an extra parameter, so do that.
5983 if (!isTailCall &&
5984 !isFunctionGlobalAddress(Callee) &&
5985 !isa<ExternalSymbolSDNode>(Callee) &&
5986 !isBLACompatibleAddress(Callee, DAG))
5987 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
5988 PPC::R12), Callee));
5989
5990 // Build a sequence of copy-to-reg nodes chained together with token chain
5991 // and flag operands which copy the outgoing args into the appropriate regs.
5992 SDValue InFlag;
5993 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5994 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5995 RegsToPass[i].second, InFlag);
5996 InFlag = Chain.getValue(1);
5997 }
5998
5999 if (isTailCall)
6000 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6001 TailCallArguments);
6002
6003 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
6004 /* unused except on PPC64 ELFv1 */ false, DAG,
6005 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
6006 NumBytes, Ins, InVals, CS);
6007 }
6008
6009 bool
CanLowerReturn(CallingConv::ID CallConv,MachineFunction & MF,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,LLVMContext & Context) const6010 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
6011 MachineFunction &MF, bool isVarArg,
6012 const SmallVectorImpl<ISD::OutputArg> &Outs,
6013 LLVMContext &Context) const {
6014 SmallVector<CCValAssign, 16> RVLocs;
6015 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
6016 return CCInfo.CheckReturn(Outs, RetCC_PPC);
6017 }
6018
6019 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & dl,SelectionDAG & DAG) const6020 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
6021 bool isVarArg,
6022 const SmallVectorImpl<ISD::OutputArg> &Outs,
6023 const SmallVectorImpl<SDValue> &OutVals,
6024 const SDLoc &dl, SelectionDAG &DAG) const {
6025
6026 SmallVector<CCValAssign, 16> RVLocs;
6027 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
6028 *DAG.getContext());
6029 CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
6030
6031 SDValue Flag;
6032 SmallVector<SDValue, 4> RetOps(1, Chain);
6033
6034 // Copy the result values into the output registers.
6035 for (unsigned i = 0; i != RVLocs.size(); ++i) {
6036 CCValAssign &VA = RVLocs[i];
6037 assert(VA.isRegLoc() && "Can only return in registers!");
6038
6039 SDValue Arg = OutVals[i];
6040
6041 switch (VA.getLocInfo()) {
6042 default: llvm_unreachable("Unknown loc info!");
6043 case CCValAssign::Full: break;
6044 case CCValAssign::AExt:
6045 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
6046 break;
6047 case CCValAssign::ZExt:
6048 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
6049 break;
6050 case CCValAssign::SExt:
6051 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
6052 break;
6053 }
6054
6055 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
6056 Flag = Chain.getValue(1);
6057 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
6058 }
6059
6060 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
6061 const MCPhysReg *I =
6062 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
6063 if (I) {
6064 for (; *I; ++I) {
6065
6066 if (PPC::G8RCRegClass.contains(*I))
6067 RetOps.push_back(DAG.getRegister(*I, MVT::i64));
6068 else if (PPC::F8RCRegClass.contains(*I))
6069 RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
6070 else if (PPC::CRRCRegClass.contains(*I))
6071 RetOps.push_back(DAG.getRegister(*I, MVT::i1));
6072 else if (PPC::VRRCRegClass.contains(*I))
6073 RetOps.push_back(DAG.getRegister(*I, MVT::Other));
6074 else
6075 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
6076 }
6077 }
6078
6079 RetOps[0] = Chain; // Update chain.
6080
6081 // Add the flag if we have it.
6082 if (Flag.getNode())
6083 RetOps.push_back(Flag);
6084
6085 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
6086 }
6087
6088 SDValue
LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,SelectionDAG & DAG) const6089 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
6090 SelectionDAG &DAG) const {
6091 SDLoc dl(Op);
6092
6093 // Get the corect type for integers.
6094 EVT IntVT = Op.getValueType();
6095
6096 // Get the inputs.
6097 SDValue Chain = Op.getOperand(0);
6098 SDValue FPSIdx = getFramePointerFrameIndex(DAG);
6099 // Build a DYNAREAOFFSET node.
6100 SDValue Ops[2] = {Chain, FPSIdx};
6101 SDVTList VTs = DAG.getVTList(IntVT);
6102 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
6103 }
6104
LowerSTACKRESTORE(SDValue Op,SelectionDAG & DAG) const6105 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
6106 SelectionDAG &DAG) const {
6107 // When we pop the dynamic allocation we need to restore the SP link.
6108 SDLoc dl(Op);
6109
6110 // Get the corect type for pointers.
6111 EVT PtrVT = getPointerTy(DAG.getDataLayout());
6112
6113 // Construct the stack pointer operand.
6114 bool isPPC64 = Subtarget.isPPC64();
6115 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
6116 SDValue StackPtr = DAG.getRegister(SP, PtrVT);
6117
6118 // Get the operands for the STACKRESTORE.
6119 SDValue Chain = Op.getOperand(0);
6120 SDValue SaveSP = Op.getOperand(1);
6121
6122 // Load the old link SP.
6123 SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr,
6124 MachinePointerInfo(),
6125 false, false, false, 0);
6126
6127 // Restore the stack pointer.
6128 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
6129
6130 // Store the old link SP.
6131 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(),
6132 false, false, 0);
6133 }
6134
getReturnAddrFrameIndex(SelectionDAG & DAG) const6135 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
6136 MachineFunction &MF = DAG.getMachineFunction();
6137 bool isPPC64 = Subtarget.isPPC64();
6138 EVT PtrVT = getPointerTy(MF.getDataLayout());
6139
6140 // Get current frame pointer save index. The users of this index will be
6141 // primarily DYNALLOC instructions.
6142 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
6143 int RASI = FI->getReturnAddrSaveIndex();
6144
6145 // If the frame pointer save index hasn't been defined yet.
6146 if (!RASI) {
6147 // Find out what the fix offset of the frame pointer save area.
6148 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
6149 // Allocate the frame index for frame pointer save area.
6150 RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
6151 // Save the result.
6152 FI->setReturnAddrSaveIndex(RASI);
6153 }
6154 return DAG.getFrameIndex(RASI, PtrVT);
6155 }
6156
6157 SDValue
getFramePointerFrameIndex(SelectionDAG & DAG) const6158 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
6159 MachineFunction &MF = DAG.getMachineFunction();
6160 bool isPPC64 = Subtarget.isPPC64();
6161 EVT PtrVT = getPointerTy(MF.getDataLayout());
6162
6163 // Get current frame pointer save index. The users of this index will be
6164 // primarily DYNALLOC instructions.
6165 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
6166 int FPSI = FI->getFramePointerSaveIndex();
6167
6168 // If the frame pointer save index hasn't been defined yet.
6169 if (!FPSI) {
6170 // Find out what the fix offset of the frame pointer save area.
6171 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
6172 // Allocate the frame index for frame pointer save area.
6173 FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
6174 // Save the result.
6175 FI->setFramePointerSaveIndex(FPSI);
6176 }
6177 return DAG.getFrameIndex(FPSI, PtrVT);
6178 }
6179
LowerDYNAMIC_STACKALLOC(SDValue Op,SelectionDAG & DAG) const6180 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
6181 SelectionDAG &DAG) const {
6182 // Get the inputs.
6183 SDValue Chain = Op.getOperand(0);
6184 SDValue Size = Op.getOperand(1);
6185 SDLoc dl(Op);
6186
6187 // Get the corect type for pointers.
6188 EVT PtrVT = getPointerTy(DAG.getDataLayout());
6189 // Negate the size.
6190 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
6191 DAG.getConstant(0, dl, PtrVT), Size);
6192 // Construct a node for the frame pointer save index.
6193 SDValue FPSIdx = getFramePointerFrameIndex(DAG);
6194 // Build a DYNALLOC node.
6195 SDValue Ops[3] = { Chain, NegSize, FPSIdx };
6196 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
6197 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
6198 }
6199
lowerEH_SJLJ_SETJMP(SDValue Op,SelectionDAG & DAG) const6200 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
6201 SelectionDAG &DAG) const {
6202 SDLoc DL(Op);
6203 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
6204 DAG.getVTList(MVT::i32, MVT::Other),
6205 Op.getOperand(0), Op.getOperand(1));
6206 }
6207
lowerEH_SJLJ_LONGJMP(SDValue Op,SelectionDAG & DAG) const6208 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
6209 SelectionDAG &DAG) const {
6210 SDLoc DL(Op);
6211 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
6212 Op.getOperand(0), Op.getOperand(1));
6213 }
6214
LowerLOAD(SDValue Op,SelectionDAG & DAG) const6215 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
6216 if (Op.getValueType().isVector())
6217 return LowerVectorLoad(Op, DAG);
6218
6219 assert(Op.getValueType() == MVT::i1 &&
6220 "Custom lowering only for i1 loads");
6221
6222 // First, load 8 bits into 32 bits, then truncate to 1 bit.
6223
6224 SDLoc dl(Op);
6225 LoadSDNode *LD = cast<LoadSDNode>(Op);
6226
6227 SDValue Chain = LD->getChain();
6228 SDValue BasePtr = LD->getBasePtr();
6229 MachineMemOperand *MMO = LD->getMemOperand();
6230
6231 SDValue NewLD =
6232 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
6233 BasePtr, MVT::i8, MMO);
6234 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
6235
6236 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
6237 return DAG.getMergeValues(Ops, dl);
6238 }
6239
LowerSTORE(SDValue Op,SelectionDAG & DAG) const6240 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
6241 if (Op.getOperand(1).getValueType().isVector())
6242 return LowerVectorStore(Op, DAG);
6243
6244 assert(Op.getOperand(1).getValueType() == MVT::i1 &&
6245 "Custom lowering only for i1 stores");
6246
6247 // First, zero extend to 32 bits, then use a truncating store to 8 bits.
6248
6249 SDLoc dl(Op);
6250 StoreSDNode *ST = cast<StoreSDNode>(Op);
6251
6252 SDValue Chain = ST->getChain();
6253 SDValue BasePtr = ST->getBasePtr();
6254 SDValue Value = ST->getValue();
6255 MachineMemOperand *MMO = ST->getMemOperand();
6256
6257 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
6258 Value);
6259 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
6260 }
6261
6262 // FIXME: Remove this once the ANDI glue bug is fixed:
LowerTRUNCATE(SDValue Op,SelectionDAG & DAG) const6263 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
6264 assert(Op.getValueType() == MVT::i1 &&
6265 "Custom lowering only for i1 results");
6266
6267 SDLoc DL(Op);
6268 return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1,
6269 Op.getOperand(0));
6270 }
6271
6272 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
6273 /// possible.
LowerSELECT_CC(SDValue Op,SelectionDAG & DAG) const6274 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
6275 // Not FP? Not a fsel.
6276 if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
6277 !Op.getOperand(2).getValueType().isFloatingPoint())
6278 return Op;
6279
6280 // We might be able to do better than this under some circumstances, but in
6281 // general, fsel-based lowering of select is a finite-math-only optimization.
6282 // For more information, see section F.3 of the 2.06 ISA specification.
6283 if (!DAG.getTarget().Options.NoInfsFPMath ||
6284 !DAG.getTarget().Options.NoNaNsFPMath)
6285 return Op;
6286 // TODO: Propagate flags from the select rather than global settings.
6287 SDNodeFlags Flags;
6288 Flags.setNoInfs(true);
6289 Flags.setNoNaNs(true);
6290
6291 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
6292
6293 EVT ResVT = Op.getValueType();
6294 EVT CmpVT = Op.getOperand(0).getValueType();
6295 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
6296 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3);
6297 SDLoc dl(Op);
6298
6299 // If the RHS of the comparison is a 0.0, we don't need to do the
6300 // subtraction at all.
6301 SDValue Sel1;
6302 if (isFloatingPointZero(RHS))
6303 switch (CC) {
6304 default: break; // SETUO etc aren't handled by fsel.
6305 case ISD::SETNE:
6306 std::swap(TV, FV);
6307 case ISD::SETEQ:
6308 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
6309 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6310 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
6311 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits
6312 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
6313 return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6314 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
6315 case ISD::SETULT:
6316 case ISD::SETLT:
6317 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
6318 case ISD::SETOGE:
6319 case ISD::SETGE:
6320 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
6321 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6322 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
6323 case ISD::SETUGT:
6324 case ISD::SETGT:
6325 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
6326 case ISD::SETOLE:
6327 case ISD::SETLE:
6328 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
6329 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6330 return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6331 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
6332 }
6333
6334 SDValue Cmp;
6335 switch (CC) {
6336 default: break; // SETUO etc aren't handled by fsel.
6337 case ISD::SETNE:
6338 std::swap(TV, FV);
6339 case ISD::SETEQ:
6340 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags);
6341 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
6342 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6343 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6344 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits
6345 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
6346 return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6347 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
6348 case ISD::SETULT:
6349 case ISD::SETLT:
6350 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags);
6351 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
6352 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6353 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
6354 case ISD::SETOGE:
6355 case ISD::SETGE:
6356 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags);
6357 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
6358 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6359 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6360 case ISD::SETUGT:
6361 case ISD::SETGT:
6362 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, &Flags);
6363 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
6364 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6365 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
6366 case ISD::SETOLE:
6367 case ISD::SETLE:
6368 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, &Flags);
6369 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
6370 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6371 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6372 }
6373 return Op;
6374 }
6375
LowerFP_TO_INTForReuse(SDValue Op,ReuseLoadInfo & RLI,SelectionDAG & DAG,const SDLoc & dl) const6376 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
6377 SelectionDAG &DAG,
6378 const SDLoc &dl) const {
6379 assert(Op.getOperand(0).getValueType().isFloatingPoint());
6380 SDValue Src = Op.getOperand(0);
6381 if (Src.getValueType() == MVT::f32)
6382 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
6383
6384 SDValue Tmp;
6385 switch (Op.getSimpleValueType().SimpleTy) {
6386 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
6387 case MVT::i32:
6388 Tmp = DAG.getNode(
6389 Op.getOpcode() == ISD::FP_TO_SINT
6390 ? PPCISD::FCTIWZ
6391 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
6392 dl, MVT::f64, Src);
6393 break;
6394 case MVT::i64:
6395 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
6396 "i64 FP_TO_UINT is supported only with FPCVT");
6397 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
6398 PPCISD::FCTIDUZ,
6399 dl, MVT::f64, Src);
6400 break;
6401 }
6402
6403 // Convert the FP value to an int value through memory.
6404 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
6405 (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT());
6406 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
6407 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
6408 MachinePointerInfo MPI =
6409 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
6410
6411 // Emit a store to the stack slot.
6412 SDValue Chain;
6413 if (i32Stack) {
6414 MachineFunction &MF = DAG.getMachineFunction();
6415 MachineMemOperand *MMO =
6416 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4);
6417 SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
6418 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
6419 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
6420 } else
6421 Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr,
6422 MPI, false, false, 0);
6423
6424 // Result is a load from the stack slot. If loading 4 bytes, make sure to
6425 // add in a bias on big endian.
6426 if (Op.getValueType() == MVT::i32 && !i32Stack) {
6427 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
6428 DAG.getConstant(4, dl, FIPtr.getValueType()));
6429 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
6430 }
6431
6432 RLI.Chain = Chain;
6433 RLI.Ptr = FIPtr;
6434 RLI.MPI = MPI;
6435 }
6436
6437 /// \brief Custom lowers floating point to integer conversions to use
6438 /// the direct move instructions available in ISA 2.07 to avoid the
6439 /// need for load/store combinations.
LowerFP_TO_INTDirectMove(SDValue Op,SelectionDAG & DAG,const SDLoc & dl) const6440 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
6441 SelectionDAG &DAG,
6442 const SDLoc &dl) const {
6443 assert(Op.getOperand(0).getValueType().isFloatingPoint());
6444 SDValue Src = Op.getOperand(0);
6445
6446 if (Src.getValueType() == MVT::f32)
6447 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
6448
6449 SDValue Tmp;
6450 switch (Op.getSimpleValueType().SimpleTy) {
6451 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
6452 case MVT::i32:
6453 Tmp = DAG.getNode(
6454 Op.getOpcode() == ISD::FP_TO_SINT
6455 ? PPCISD::FCTIWZ
6456 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
6457 dl, MVT::f64, Src);
6458 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp);
6459 break;
6460 case MVT::i64:
6461 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
6462 "i64 FP_TO_UINT is supported only with FPCVT");
6463 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
6464 PPCISD::FCTIDUZ,
6465 dl, MVT::f64, Src);
6466 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp);
6467 break;
6468 }
6469 return Tmp;
6470 }
6471
LowerFP_TO_INT(SDValue Op,SelectionDAG & DAG,const SDLoc & dl) const6472 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
6473 const SDLoc &dl) const {
6474 if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
6475 return LowerFP_TO_INTDirectMove(Op, DAG, dl);
6476
6477 ReuseLoadInfo RLI;
6478 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
6479
6480 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, false,
6481 false, RLI.IsInvariant, RLI.Alignment, RLI.AAInfo,
6482 RLI.Ranges);
6483 }
6484
6485 // We're trying to insert a regular store, S, and then a load, L. If the
6486 // incoming value, O, is a load, we might just be able to have our load use the
6487 // address used by O. However, we don't know if anything else will store to
6488 // that address before we can load from it. To prevent this situation, we need
6489 // to insert our load, L, into the chain as a peer of O. To do this, we give L
6490 // the same chain operand as O, we create a token factor from the chain results
6491 // of O and L, and we replace all uses of O's chain result with that token
6492 // factor (see spliceIntoChain below for this last part).
canReuseLoadAddress(SDValue Op,EVT MemVT,ReuseLoadInfo & RLI,SelectionDAG & DAG,ISD::LoadExtType ET) const6493 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
6494 ReuseLoadInfo &RLI,
6495 SelectionDAG &DAG,
6496 ISD::LoadExtType ET) const {
6497 SDLoc dl(Op);
6498 if (ET == ISD::NON_EXTLOAD &&
6499 (Op.getOpcode() == ISD::FP_TO_UINT ||
6500 Op.getOpcode() == ISD::FP_TO_SINT) &&
6501 isOperationLegalOrCustom(Op.getOpcode(),
6502 Op.getOperand(0).getValueType())) {
6503
6504 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
6505 return true;
6506 }
6507
6508 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
6509 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
6510 LD->isNonTemporal())
6511 return false;
6512 if (LD->getMemoryVT() != MemVT)
6513 return false;
6514
6515 RLI.Ptr = LD->getBasePtr();
6516 if (LD->isIndexed() && !LD->getOffset().isUndef()) {
6517 assert(LD->getAddressingMode() == ISD::PRE_INC &&
6518 "Non-pre-inc AM on PPC?");
6519 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
6520 LD->getOffset());
6521 }
6522
6523 RLI.Chain = LD->getChain();
6524 RLI.MPI = LD->getPointerInfo();
6525 RLI.IsInvariant = LD->isInvariant();
6526 RLI.Alignment = LD->getAlignment();
6527 RLI.AAInfo = LD->getAAInfo();
6528 RLI.Ranges = LD->getRanges();
6529
6530 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
6531 return true;
6532 }
6533
6534 // Given the head of the old chain, ResChain, insert a token factor containing
6535 // it and NewResChain, and make users of ResChain now be users of that token
6536 // factor.
spliceIntoChain(SDValue ResChain,SDValue NewResChain,SelectionDAG & DAG) const6537 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
6538 SDValue NewResChain,
6539 SelectionDAG &DAG) const {
6540 if (!ResChain)
6541 return;
6542
6543 SDLoc dl(NewResChain);
6544
6545 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6546 NewResChain, DAG.getUNDEF(MVT::Other));
6547 assert(TF.getNode() != NewResChain.getNode() &&
6548 "A new TF really is required here");
6549
6550 DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
6551 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
6552 }
6553
6554 /// \brief Analyze profitability of direct move
6555 /// prefer float load to int load plus direct move
6556 /// when there is no integer use of int load
directMoveIsProfitable(const SDValue & Op)6557 static bool directMoveIsProfitable(const SDValue &Op) {
6558 SDNode *Origin = Op.getOperand(0).getNode();
6559 if (Origin->getOpcode() != ISD::LOAD)
6560 return true;
6561
6562 for (SDNode::use_iterator UI = Origin->use_begin(),
6563 UE = Origin->use_end();
6564 UI != UE; ++UI) {
6565
6566 // Only look at the users of the loaded value.
6567 if (UI.getUse().get().getResNo() != 0)
6568 continue;
6569
6570 if (UI->getOpcode() != ISD::SINT_TO_FP &&
6571 UI->getOpcode() != ISD::UINT_TO_FP)
6572 return true;
6573 }
6574
6575 return false;
6576 }
6577
6578 /// \brief Custom lowers integer to floating point conversions to use
6579 /// the direct move instructions available in ISA 2.07 to avoid the
6580 /// need for load/store combinations.
LowerINT_TO_FPDirectMove(SDValue Op,SelectionDAG & DAG,const SDLoc & dl) const6581 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
6582 SelectionDAG &DAG,
6583 const SDLoc &dl) const {
6584 assert((Op.getValueType() == MVT::f32 ||
6585 Op.getValueType() == MVT::f64) &&
6586 "Invalid floating point type as target of conversion");
6587 assert(Subtarget.hasFPCVT() &&
6588 "Int to FP conversions with direct moves require FPCVT");
6589 SDValue FP;
6590 SDValue Src = Op.getOperand(0);
6591 bool SinglePrec = Op.getValueType() == MVT::f32;
6592 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
6593 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP;
6594 unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) :
6595 (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU);
6596
6597 if (WordInt) {
6598 FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ,
6599 dl, MVT::f64, Src);
6600 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
6601 }
6602 else {
6603 FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src);
6604 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
6605 }
6606
6607 return FP;
6608 }
6609
LowerINT_TO_FP(SDValue Op,SelectionDAG & DAG) const6610 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
6611 SelectionDAG &DAG) const {
6612 SDLoc dl(Op);
6613
6614 if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) {
6615 if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64)
6616 return SDValue();
6617
6618 SDValue Value = Op.getOperand(0);
6619 // The values are now known to be -1 (false) or 1 (true). To convert this
6620 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
6621 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
6622 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
6623
6624 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
6625
6626 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
6627
6628 if (Op.getValueType() != MVT::v4f64)
6629 Value = DAG.getNode(ISD::FP_ROUND, dl,
6630 Op.getValueType(), Value,
6631 DAG.getIntPtrConstant(1, dl));
6632 return Value;
6633 }
6634
6635 // Don't handle ppc_fp128 here; let it be lowered to a libcall.
6636 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
6637 return SDValue();
6638
6639 if (Op.getOperand(0).getValueType() == MVT::i1)
6640 return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0),
6641 DAG.getConstantFP(1.0, dl, Op.getValueType()),
6642 DAG.getConstantFP(0.0, dl, Op.getValueType()));
6643
6644 // If we have direct moves, we can do all the conversion, skip the store/load
6645 // however, without FPCVT we can't do most conversions.
6646 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
6647 Subtarget.isPPC64() && Subtarget.hasFPCVT())
6648 return LowerINT_TO_FPDirectMove(Op, DAG, dl);
6649
6650 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
6651 "UINT_TO_FP is supported only with FPCVT");
6652
6653 // If we have FCFIDS, then use it when converting to single-precision.
6654 // Otherwise, convert to double-precision and then round.
6655 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
6656 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
6657 : PPCISD::FCFIDS)
6658 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
6659 : PPCISD::FCFID);
6660 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
6661 ? MVT::f32
6662 : MVT::f64;
6663
6664 if (Op.getOperand(0).getValueType() == MVT::i64) {
6665 SDValue SINT = Op.getOperand(0);
6666 // When converting to single-precision, we actually need to convert
6667 // to double-precision first and then round to single-precision.
6668 // To avoid double-rounding effects during that operation, we have
6669 // to prepare the input operand. Bits that might be truncated when
6670 // converting to double-precision are replaced by a bit that won't
6671 // be lost at this stage, but is below the single-precision rounding
6672 // position.
6673 //
6674 // However, if -enable-unsafe-fp-math is in effect, accept double
6675 // rounding to avoid the extra overhead.
6676 if (Op.getValueType() == MVT::f32 &&
6677 !Subtarget.hasFPCVT() &&
6678 !DAG.getTarget().Options.UnsafeFPMath) {
6679
6680 // Twiddle input to make sure the low 11 bits are zero. (If this
6681 // is the case, we are guaranteed the value will fit into the 53 bit
6682 // mantissa of an IEEE double-precision value without rounding.)
6683 // If any of those low 11 bits were not zero originally, make sure
6684 // bit 12 (value 2048) is set instead, so that the final rounding
6685 // to single-precision gets the correct result.
6686 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
6687 SINT, DAG.getConstant(2047, dl, MVT::i64));
6688 Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
6689 Round, DAG.getConstant(2047, dl, MVT::i64));
6690 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
6691 Round = DAG.getNode(ISD::AND, dl, MVT::i64,
6692 Round, DAG.getConstant(-2048, dl, MVT::i64));
6693
6694 // However, we cannot use that value unconditionally: if the magnitude
6695 // of the input value is small, the bit-twiddling we did above might
6696 // end up visibly changing the output. Fortunately, in that case, we
6697 // don't need to twiddle bits since the original input will convert
6698 // exactly to double-precision floating-point already. Therefore,
6699 // construct a conditional to use the original value if the top 11
6700 // bits are all sign-bit copies, and use the rounded value computed
6701 // above otherwise.
6702 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
6703 SINT, DAG.getConstant(53, dl, MVT::i32));
6704 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
6705 Cond, DAG.getConstant(1, dl, MVT::i64));
6706 Cond = DAG.getSetCC(dl, MVT::i32,
6707 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
6708
6709 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
6710 }
6711
6712 ReuseLoadInfo RLI;
6713 SDValue Bits;
6714
6715 MachineFunction &MF = DAG.getMachineFunction();
6716 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
6717 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, false,
6718 false, RLI.IsInvariant, RLI.Alignment, RLI.AAInfo,
6719 RLI.Ranges);
6720 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
6721 } else if (Subtarget.hasLFIWAX() &&
6722 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
6723 MachineMemOperand *MMO =
6724 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
6725 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
6726 SDValue Ops[] = { RLI.Chain, RLI.Ptr };
6727 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
6728 DAG.getVTList(MVT::f64, MVT::Other),
6729 Ops, MVT::i32, MMO);
6730 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
6731 } else if (Subtarget.hasFPCVT() &&
6732 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
6733 MachineMemOperand *MMO =
6734 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
6735 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
6736 SDValue Ops[] = { RLI.Chain, RLI.Ptr };
6737 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
6738 DAG.getVTList(MVT::f64, MVT::Other),
6739 Ops, MVT::i32, MMO);
6740 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
6741 } else if (((Subtarget.hasLFIWAX() &&
6742 SINT.getOpcode() == ISD::SIGN_EXTEND) ||
6743 (Subtarget.hasFPCVT() &&
6744 SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
6745 SINT.getOperand(0).getValueType() == MVT::i32) {
6746 MachineFrameInfo *FrameInfo = MF.getFrameInfo();
6747 EVT PtrVT = getPointerTy(DAG.getDataLayout());
6748
6749 int FrameIdx = FrameInfo->CreateStackObject(4, 4, false);
6750 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
6751
6752 SDValue Store = DAG.getStore(
6753 DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx,
6754 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx),
6755 false, false, 0);
6756
6757 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
6758 "Expected an i32 store");
6759
6760 RLI.Ptr = FIdx;
6761 RLI.Chain = Store;
6762 RLI.MPI =
6763 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
6764 RLI.Alignment = 4;
6765
6766 MachineMemOperand *MMO =
6767 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
6768 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
6769 SDValue Ops[] = { RLI.Chain, RLI.Ptr };
6770 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
6771 PPCISD::LFIWZX : PPCISD::LFIWAX,
6772 dl, DAG.getVTList(MVT::f64, MVT::Other),
6773 Ops, MVT::i32, MMO);
6774 } else
6775 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
6776
6777 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
6778
6779 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
6780 FP = DAG.getNode(ISD::FP_ROUND, dl,
6781 MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
6782 return FP;
6783 }
6784
6785 assert(Op.getOperand(0).getValueType() == MVT::i32 &&
6786 "Unhandled INT_TO_FP type in custom expander!");
6787 // Since we only generate this in 64-bit mode, we can take advantage of
6788 // 64-bit registers. In particular, sign extend the input value into the
6789 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
6790 // then lfd it and fcfid it.
6791 MachineFunction &MF = DAG.getMachineFunction();
6792 MachineFrameInfo *FrameInfo = MF.getFrameInfo();
6793 EVT PtrVT = getPointerTy(MF.getDataLayout());
6794
6795 SDValue Ld;
6796 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
6797 ReuseLoadInfo RLI;
6798 bool ReusingLoad;
6799 if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI,
6800 DAG))) {
6801 int FrameIdx = FrameInfo->CreateStackObject(4, 4, false);
6802 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
6803
6804 SDValue Store = DAG.getStore(
6805 DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
6806 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx),
6807 false, false, 0);
6808
6809 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
6810 "Expected an i32 store");
6811
6812 RLI.Ptr = FIdx;
6813 RLI.Chain = Store;
6814 RLI.MPI =
6815 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
6816 RLI.Alignment = 4;
6817 }
6818
6819 MachineMemOperand *MMO =
6820 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
6821 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
6822 SDValue Ops[] = { RLI.Chain, RLI.Ptr };
6823 Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
6824 PPCISD::LFIWZX : PPCISD::LFIWAX,
6825 dl, DAG.getVTList(MVT::f64, MVT::Other),
6826 Ops, MVT::i32, MMO);
6827 if (ReusingLoad)
6828 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
6829 } else {
6830 assert(Subtarget.isPPC64() &&
6831 "i32->FP without LFIWAX supported only on PPC64");
6832
6833 int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
6834 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
6835
6836 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
6837 Op.getOperand(0));
6838
6839 // STD the extended value into the stack slot.
6840 SDValue Store = DAG.getStore(
6841 DAG.getEntryNode(), dl, Ext64, FIdx,
6842 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx),
6843 false, false, 0);
6844
6845 // Load the value as a double.
6846 Ld = DAG.getLoad(
6847 MVT::f64, dl, Store, FIdx,
6848 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx),
6849 false, false, false, 0);
6850 }
6851
6852 // FCFID it and return it.
6853 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
6854 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
6855 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
6856 DAG.getIntPtrConstant(0, dl));
6857 return FP;
6858 }
6859
LowerFLT_ROUNDS_(SDValue Op,SelectionDAG & DAG) const6860 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
6861 SelectionDAG &DAG) const {
6862 SDLoc dl(Op);
6863 /*
6864 The rounding mode is in bits 30:31 of FPSR, and has the following
6865 settings:
6866 00 Round to nearest
6867 01 Round to 0
6868 10 Round to +inf
6869 11 Round to -inf
6870
6871 FLT_ROUNDS, on the other hand, expects the following:
6872 -1 Undefined
6873 0 Round to 0
6874 1 Round to nearest
6875 2 Round to +inf
6876 3 Round to -inf
6877
6878 To perform the conversion, we do:
6879 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
6880 */
6881
6882 MachineFunction &MF = DAG.getMachineFunction();
6883 EVT VT = Op.getValueType();
6884 EVT PtrVT = getPointerTy(MF.getDataLayout());
6885
6886 // Save FP Control Word to register
6887 EVT NodeTys[] = {
6888 MVT::f64, // return register
6889 MVT::Glue // unused in this context
6890 };
6891 SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None);
6892
6893 // Save FP register to stack slot
6894 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
6895 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
6896 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
6897 StackSlot, MachinePointerInfo(), false, false,0);
6898
6899 // Load FP Control Word from low 32 bits of stack slot.
6900 SDValue Four = DAG.getConstant(4, dl, PtrVT);
6901 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
6902 SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(),
6903 false, false, false, 0);
6904
6905 // Transform as necessary
6906 SDValue CWD1 =
6907 DAG.getNode(ISD::AND, dl, MVT::i32,
6908 CWD, DAG.getConstant(3, dl, MVT::i32));
6909 SDValue CWD2 =
6910 DAG.getNode(ISD::SRL, dl, MVT::i32,
6911 DAG.getNode(ISD::AND, dl, MVT::i32,
6912 DAG.getNode(ISD::XOR, dl, MVT::i32,
6913 CWD, DAG.getConstant(3, dl, MVT::i32)),
6914 DAG.getConstant(3, dl, MVT::i32)),
6915 DAG.getConstant(1, dl, MVT::i32));
6916
6917 SDValue RetVal =
6918 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
6919
6920 return DAG.getNode((VT.getSizeInBits() < 16 ?
6921 ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
6922 }
6923
LowerSHL_PARTS(SDValue Op,SelectionDAG & DAG) const6924 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
6925 EVT VT = Op.getValueType();
6926 unsigned BitWidth = VT.getSizeInBits();
6927 SDLoc dl(Op);
6928 assert(Op.getNumOperands() == 3 &&
6929 VT == Op.getOperand(1).getValueType() &&
6930 "Unexpected SHL!");
6931
6932 // Expand into a bunch of logical ops. Note that these ops
6933 // depend on the PPC behavior for oversized shift amounts.
6934 SDValue Lo = Op.getOperand(0);
6935 SDValue Hi = Op.getOperand(1);
6936 SDValue Amt = Op.getOperand(2);
6937 EVT AmtVT = Amt.getValueType();
6938
6939 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
6940 DAG.getConstant(BitWidth, dl, AmtVT), Amt);
6941 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
6942 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
6943 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
6944 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
6945 DAG.getConstant(-BitWidth, dl, AmtVT));
6946 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
6947 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
6948 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
6949 SDValue OutOps[] = { OutLo, OutHi };
6950 return DAG.getMergeValues(OutOps, dl);
6951 }
6952
LowerSRL_PARTS(SDValue Op,SelectionDAG & DAG) const6953 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
6954 EVT VT = Op.getValueType();
6955 SDLoc dl(Op);
6956 unsigned BitWidth = VT.getSizeInBits();
6957 assert(Op.getNumOperands() == 3 &&
6958 VT == Op.getOperand(1).getValueType() &&
6959 "Unexpected SRL!");
6960
6961 // Expand into a bunch of logical ops. Note that these ops
6962 // depend on the PPC behavior for oversized shift amounts.
6963 SDValue Lo = Op.getOperand(0);
6964 SDValue Hi = Op.getOperand(1);
6965 SDValue Amt = Op.getOperand(2);
6966 EVT AmtVT = Amt.getValueType();
6967
6968 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
6969 DAG.getConstant(BitWidth, dl, AmtVT), Amt);
6970 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
6971 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
6972 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
6973 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
6974 DAG.getConstant(-BitWidth, dl, AmtVT));
6975 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
6976 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
6977 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
6978 SDValue OutOps[] = { OutLo, OutHi };
6979 return DAG.getMergeValues(OutOps, dl);
6980 }
6981
LowerSRA_PARTS(SDValue Op,SelectionDAG & DAG) const6982 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
6983 SDLoc dl(Op);
6984 EVT VT = Op.getValueType();
6985 unsigned BitWidth = VT.getSizeInBits();
6986 assert(Op.getNumOperands() == 3 &&
6987 VT == Op.getOperand(1).getValueType() &&
6988 "Unexpected SRA!");
6989
6990 // Expand into a bunch of logical ops, followed by a select_cc.
6991 SDValue Lo = Op.getOperand(0);
6992 SDValue Hi = Op.getOperand(1);
6993 SDValue Amt = Op.getOperand(2);
6994 EVT AmtVT = Amt.getValueType();
6995
6996 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
6997 DAG.getConstant(BitWidth, dl, AmtVT), Amt);
6998 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
6999 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
7000 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7001 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
7002 DAG.getConstant(-BitWidth, dl, AmtVT));
7003 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
7004 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
7005 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
7006 Tmp4, Tmp6, ISD::SETLE);
7007 SDValue OutOps[] = { OutLo, OutHi };
7008 return DAG.getMergeValues(OutOps, dl);
7009 }
7010
7011 //===----------------------------------------------------------------------===//
7012 // Vector related lowering.
7013 //
7014
7015 /// BuildSplatI - Build a canonical splati of Val with an element size of
7016 /// SplatSize. Cast the result to VT.
BuildSplatI(int Val,unsigned SplatSize,EVT VT,SelectionDAG & DAG,const SDLoc & dl)7017 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
7018 SelectionDAG &DAG, const SDLoc &dl) {
7019 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
7020
7021 static const MVT VTys[] = { // canonical VT to use for each size.
7022 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
7023 };
7024
7025 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
7026
7027 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
7028 if (Val == -1)
7029 SplatSize = 1;
7030
7031 EVT CanonicalVT = VTys[SplatSize-1];
7032
7033 // Build a canonical splat for this value.
7034 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
7035 }
7036
7037 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
7038 /// specified intrinsic ID.
BuildIntrinsicOp(unsigned IID,SDValue Op,SelectionDAG & DAG,const SDLoc & dl,EVT DestVT=MVT::Other)7039 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
7040 const SDLoc &dl, EVT DestVT = MVT::Other) {
7041 if (DestVT == MVT::Other) DestVT = Op.getValueType();
7042 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
7043 DAG.getConstant(IID, dl, MVT::i32), Op);
7044 }
7045
7046 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
7047 /// specified intrinsic ID.
BuildIntrinsicOp(unsigned IID,SDValue LHS,SDValue RHS,SelectionDAG & DAG,const SDLoc & dl,EVT DestVT=MVT::Other)7048 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
7049 SelectionDAG &DAG, const SDLoc &dl,
7050 EVT DestVT = MVT::Other) {
7051 if (DestVT == MVT::Other) DestVT = LHS.getValueType();
7052 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
7053 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
7054 }
7055
7056 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
7057 /// specified intrinsic ID.
BuildIntrinsicOp(unsigned IID,SDValue Op0,SDValue Op1,SDValue Op2,SelectionDAG & DAG,const SDLoc & dl,EVT DestVT=MVT::Other)7058 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
7059 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
7060 EVT DestVT = MVT::Other) {
7061 if (DestVT == MVT::Other) DestVT = Op0.getValueType();
7062 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
7063 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
7064 }
7065
7066 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
7067 /// amount. The result has the specified value type.
BuildVSLDOI(SDValue LHS,SDValue RHS,unsigned Amt,EVT VT,SelectionDAG & DAG,const SDLoc & dl)7068 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
7069 SelectionDAG &DAG, const SDLoc &dl) {
7070 // Force LHS/RHS to be the right type.
7071 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
7072 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
7073
7074 int Ops[16];
7075 for (unsigned i = 0; i != 16; ++i)
7076 Ops[i] = i + Amt;
7077 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
7078 return DAG.getNode(ISD::BITCAST, dl, VT, T);
7079 }
7080
7081 // If this is a case we can't handle, return null and let the default
7082 // expansion code take care of it. If we CAN select this case, and if it
7083 // selects to a single instruction, return Op. Otherwise, if we can codegen
7084 // this case more efficiently than a constant pool load, lower it to the
7085 // sequence of ops that should be used.
LowerBUILD_VECTOR(SDValue Op,SelectionDAG & DAG) const7086 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
7087 SelectionDAG &DAG) const {
7088 SDLoc dl(Op);
7089 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
7090 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
7091
7092 if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) {
7093 // We first build an i32 vector, load it into a QPX register,
7094 // then convert it to a floating-point vector and compare it
7095 // to a zero vector to get the boolean result.
7096 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
7097 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
7098 MachinePointerInfo PtrInfo =
7099 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7100 EVT PtrVT = getPointerTy(DAG.getDataLayout());
7101 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7102
7103 assert(BVN->getNumOperands() == 4 &&
7104 "BUILD_VECTOR for v4i1 does not have 4 operands");
7105
7106 bool IsConst = true;
7107 for (unsigned i = 0; i < 4; ++i) {
7108 if (BVN->getOperand(i).isUndef()) continue;
7109 if (!isa<ConstantSDNode>(BVN->getOperand(i))) {
7110 IsConst = false;
7111 break;
7112 }
7113 }
7114
7115 if (IsConst) {
7116 Constant *One =
7117 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0);
7118 Constant *NegOne =
7119 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0);
7120
7121 Constant *CV[4];
7122 for (unsigned i = 0; i < 4; ++i) {
7123 if (BVN->getOperand(i).isUndef())
7124 CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext()));
7125 else if (isNullConstant(BVN->getOperand(i)))
7126 CV[i] = NegOne;
7127 else
7128 CV[i] = One;
7129 }
7130
7131 Constant *CP = ConstantVector::get(CV);
7132 SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()),
7133 16 /* alignment */);
7134
7135 SDValue Ops[] = {DAG.getEntryNode(), CPIdx};
7136 SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other});
7137 return DAG.getMemIntrinsicNode(
7138 PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32,
7139 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
7140 }
7141
7142 SmallVector<SDValue, 4> Stores;
7143 for (unsigned i = 0; i < 4; ++i) {
7144 if (BVN->getOperand(i).isUndef()) continue;
7145
7146 unsigned Offset = 4*i;
7147 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
7148 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
7149
7150 unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize();
7151 if (StoreSize > 4) {
7152 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
7153 BVN->getOperand(i), Idx,
7154 PtrInfo.getWithOffset(Offset),
7155 MVT::i32, false, false, 0));
7156 } else {
7157 SDValue StoreValue = BVN->getOperand(i);
7158 if (StoreSize < 4)
7159 StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue);
7160
7161 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl,
7162 StoreValue, Idx,
7163 PtrInfo.getWithOffset(Offset),
7164 false, false, 0));
7165 }
7166 }
7167
7168 SDValue StoreChain;
7169 if (!Stores.empty())
7170 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7171 else
7172 StoreChain = DAG.getEntryNode();
7173
7174 // Now load from v4i32 into the QPX register; this will extend it to
7175 // v4i64 but not yet convert it to a floating point. Nevertheless, this
7176 // is typed as v4f64 because the QPX register integer states are not
7177 // explicitly represented.
7178
7179 SDValue Ops[] = {StoreChain,
7180 DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32),
7181 FIdx};
7182 SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other});
7183
7184 SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN,
7185 dl, VTs, Ops, MVT::v4i32, PtrInfo);
7186 LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
7187 DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32),
7188 LoadedVect);
7189
7190 SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64);
7191
7192 return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ);
7193 }
7194
7195 // All other QPX vectors are handled by generic code.
7196 if (Subtarget.hasQPX())
7197 return SDValue();
7198
7199 // Check if this is a splat of a constant value.
7200 APInt APSplatBits, APSplatUndef;
7201 unsigned SplatBitSize;
7202 bool HasAnyUndefs;
7203 if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
7204 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
7205 SplatBitSize > 32)
7206 return SDValue();
7207
7208 unsigned SplatBits = APSplatBits.getZExtValue();
7209 unsigned SplatUndef = APSplatUndef.getZExtValue();
7210 unsigned SplatSize = SplatBitSize / 8;
7211
7212 // First, handle single instruction cases.
7213
7214 // All zeros?
7215 if (SplatBits == 0) {
7216 // Canonicalize all zero vectors to be v4i32.
7217 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
7218 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
7219 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
7220 }
7221 return Op;
7222 }
7223
7224 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
7225 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
7226 (32-SplatBitSize));
7227 if (SextVal >= -16 && SextVal <= 15)
7228 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
7229
7230 // Two instruction sequences.
7231
7232 // If this value is in the range [-32,30] and is even, use:
7233 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
7234 // If this value is in the range [17,31] and is odd, use:
7235 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
7236 // If this value is in the range [-31,-17] and is odd, use:
7237 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
7238 // Note the last two are three-instruction sequences.
7239 if (SextVal >= -32 && SextVal <= 31) {
7240 // To avoid having these optimizations undone by constant folding,
7241 // we convert to a pseudo that will be expanded later into one of
7242 // the above forms.
7243 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
7244 EVT VT = (SplatSize == 1 ? MVT::v16i8 :
7245 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
7246 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
7247 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
7248 if (VT == Op.getValueType())
7249 return RetVal;
7250 else
7251 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
7252 }
7253
7254 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is
7255 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important
7256 // for fneg/fabs.
7257 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
7258 // Make -1 and vspltisw -1:
7259 SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
7260
7261 // Make the VSLW intrinsic, computing 0x8000_0000.
7262 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
7263 OnesV, DAG, dl);
7264
7265 // xor by OnesV to invert it.
7266 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
7267 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7268 }
7269
7270 // Check to see if this is a wide variety of vsplti*, binop self cases.
7271 static const signed char SplatCsts[] = {
7272 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
7273 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
7274 };
7275
7276 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
7277 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
7278 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1'
7279 int i = SplatCsts[idx];
7280
7281 // Figure out what shift amount will be used by altivec if shifted by i in
7282 // this splat size.
7283 unsigned TypeShiftAmt = i & (SplatBitSize-1);
7284
7285 // vsplti + shl self.
7286 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
7287 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
7288 static const unsigned IIDs[] = { // Intrinsic to use for each size.
7289 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
7290 Intrinsic::ppc_altivec_vslw
7291 };
7292 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
7293 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7294 }
7295
7296 // vsplti + srl self.
7297 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
7298 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
7299 static const unsigned IIDs[] = { // Intrinsic to use for each size.
7300 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
7301 Intrinsic::ppc_altivec_vsrw
7302 };
7303 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
7304 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7305 }
7306
7307 // vsplti + sra self.
7308 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
7309 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
7310 static const unsigned IIDs[] = { // Intrinsic to use for each size.
7311 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
7312 Intrinsic::ppc_altivec_vsraw
7313 };
7314 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
7315 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7316 }
7317
7318 // vsplti + rol self.
7319 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
7320 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
7321 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
7322 static const unsigned IIDs[] = { // Intrinsic to use for each size.
7323 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
7324 Intrinsic::ppc_altivec_vrlw
7325 };
7326 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
7327 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7328 }
7329
7330 // t = vsplti c, result = vsldoi t, t, 1
7331 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
7332 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
7333 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
7334 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
7335 }
7336 // t = vsplti c, result = vsldoi t, t, 2
7337 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
7338 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
7339 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
7340 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
7341 }
7342 // t = vsplti c, result = vsldoi t, t, 3
7343 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
7344 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
7345 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
7346 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
7347 }
7348 }
7349
7350 return SDValue();
7351 }
7352
7353 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
7354 /// the specified operations to build the shuffle.
GeneratePerfectShuffle(unsigned PFEntry,SDValue LHS,SDValue RHS,SelectionDAG & DAG,const SDLoc & dl)7355 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
7356 SDValue RHS, SelectionDAG &DAG,
7357 const SDLoc &dl) {
7358 unsigned OpNum = (PFEntry >> 26) & 0x0F;
7359 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
7360 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
7361
7362 enum {
7363 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
7364 OP_VMRGHW,
7365 OP_VMRGLW,
7366 OP_VSPLTISW0,
7367 OP_VSPLTISW1,
7368 OP_VSPLTISW2,
7369 OP_VSPLTISW3,
7370 OP_VSLDOI4,
7371 OP_VSLDOI8,
7372 OP_VSLDOI12
7373 };
7374
7375 if (OpNum == OP_COPY) {
7376 if (LHSID == (1*9+2)*9+3) return LHS;
7377 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
7378 return RHS;
7379 }
7380
7381 SDValue OpLHS, OpRHS;
7382 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
7383 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
7384
7385 int ShufIdxs[16];
7386 switch (OpNum) {
7387 default: llvm_unreachable("Unknown i32 permute!");
7388 case OP_VMRGHW:
7389 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3;
7390 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
7391 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7;
7392 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
7393 break;
7394 case OP_VMRGLW:
7395 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
7396 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
7397 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
7398 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
7399 break;
7400 case OP_VSPLTISW0:
7401 for (unsigned i = 0; i != 16; ++i)
7402 ShufIdxs[i] = (i&3)+0;
7403 break;
7404 case OP_VSPLTISW1:
7405 for (unsigned i = 0; i != 16; ++i)
7406 ShufIdxs[i] = (i&3)+4;
7407 break;
7408 case OP_VSPLTISW2:
7409 for (unsigned i = 0; i != 16; ++i)
7410 ShufIdxs[i] = (i&3)+8;
7411 break;
7412 case OP_VSPLTISW3:
7413 for (unsigned i = 0; i != 16; ++i)
7414 ShufIdxs[i] = (i&3)+12;
7415 break;
7416 case OP_VSLDOI4:
7417 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
7418 case OP_VSLDOI8:
7419 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
7420 case OP_VSLDOI12:
7421 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
7422 }
7423 EVT VT = OpLHS.getValueType();
7424 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
7425 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
7426 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
7427 return DAG.getNode(ISD::BITCAST, dl, VT, T);
7428 }
7429
7430 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this
7431 /// is a shuffle we can handle in a single instruction, return it. Otherwise,
7432 /// return the code it can be lowered into. Worst case, it can always be
7433 /// lowered into a vperm.
LowerVECTOR_SHUFFLE(SDValue Op,SelectionDAG & DAG) const7434 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
7435 SelectionDAG &DAG) const {
7436 SDLoc dl(Op);
7437 SDValue V1 = Op.getOperand(0);
7438 SDValue V2 = Op.getOperand(1);
7439 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
7440 EVT VT = Op.getValueType();
7441 bool isLittleEndian = Subtarget.isLittleEndian();
7442
7443 unsigned ShiftElts, InsertAtByte;
7444 bool Swap;
7445 if (Subtarget.hasP9Vector() &&
7446 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
7447 isLittleEndian)) {
7448 if (Swap)
7449 std::swap(V1, V2);
7450 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
7451 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
7452 if (ShiftElts) {
7453 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
7454 DAG.getConstant(ShiftElts, dl, MVT::i32));
7455 SDValue Ins = DAG.getNode(PPCISD::XXINSERT, dl, MVT::v4i32, Conv1, Shl,
7456 DAG.getConstant(InsertAtByte, dl, MVT::i32));
7457 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
7458 }
7459 SDValue Ins = DAG.getNode(PPCISD::XXINSERT, dl, MVT::v4i32, Conv1, Conv2,
7460 DAG.getConstant(InsertAtByte, dl, MVT::i32));
7461 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
7462 }
7463
7464 if (Subtarget.hasVSX()) {
7465 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
7466 int SplatIdx = PPC::getVSPLTImmediate(SVOp, 4, DAG);
7467 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
7468 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
7469 DAG.getConstant(SplatIdx, dl, MVT::i32));
7470 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
7471 }
7472
7473 // Left shifts of 8 bytes are actually swaps. Convert accordingly.
7474 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
7475 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
7476 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
7477 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
7478 }
7479
7480 }
7481
7482 if (Subtarget.hasQPX()) {
7483 if (VT.getVectorNumElements() != 4)
7484 return SDValue();
7485
7486 if (V2.isUndef()) V2 = V1;
7487
7488 int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp);
7489 if (AlignIdx != -1) {
7490 return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2,
7491 DAG.getConstant(AlignIdx, dl, MVT::i32));
7492 } else if (SVOp->isSplat()) {
7493 int SplatIdx = SVOp->getSplatIndex();
7494 if (SplatIdx >= 4) {
7495 std::swap(V1, V2);
7496 SplatIdx -= 4;
7497 }
7498
7499 return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1,
7500 DAG.getConstant(SplatIdx, dl, MVT::i32));
7501 }
7502
7503 // Lower this into a qvgpci/qvfperm pair.
7504
7505 // Compute the qvgpci literal
7506 unsigned idx = 0;
7507 for (unsigned i = 0; i < 4; ++i) {
7508 int m = SVOp->getMaskElt(i);
7509 unsigned mm = m >= 0 ? (unsigned) m : i;
7510 idx |= mm << (3-i)*3;
7511 }
7512
7513 SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64,
7514 DAG.getConstant(idx, dl, MVT::i32));
7515 return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3);
7516 }
7517
7518 // Cases that are handled by instructions that take permute immediates
7519 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
7520 // selected by the instruction selector.
7521 if (V2.isUndef()) {
7522 if (PPC::isSplatShuffleMask(SVOp, 1) ||
7523 PPC::isSplatShuffleMask(SVOp, 2) ||
7524 PPC::isSplatShuffleMask(SVOp, 4) ||
7525 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
7526 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
7527 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
7528 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
7529 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
7530 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
7531 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
7532 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
7533 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
7534 (Subtarget.hasP8Altivec() && (
7535 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
7536 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
7537 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
7538 return Op;
7539 }
7540 }
7541
7542 // Altivec has a variety of "shuffle immediates" that take two vector inputs
7543 // and produce a fixed permutation. If any of these match, do not lower to
7544 // VPERM.
7545 unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
7546 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
7547 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
7548 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
7549 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
7550 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
7551 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
7552 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
7553 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
7554 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
7555 (Subtarget.hasP8Altivec() && (
7556 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
7557 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
7558 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
7559 return Op;
7560
7561 // Check to see if this is a shuffle of 4-byte values. If so, we can use our
7562 // perfect shuffle table to emit an optimal matching sequence.
7563 ArrayRef<int> PermMask = SVOp->getMask();
7564
7565 unsigned PFIndexes[4];
7566 bool isFourElementShuffle = true;
7567 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
7568 unsigned EltNo = 8; // Start out undef.
7569 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte.
7570 if (PermMask[i*4+j] < 0)
7571 continue; // Undef, ignore it.
7572
7573 unsigned ByteSource = PermMask[i*4+j];
7574 if ((ByteSource & 3) != j) {
7575 isFourElementShuffle = false;
7576 break;
7577 }
7578
7579 if (EltNo == 8) {
7580 EltNo = ByteSource/4;
7581 } else if (EltNo != ByteSource/4) {
7582 isFourElementShuffle = false;
7583 break;
7584 }
7585 }
7586 PFIndexes[i] = EltNo;
7587 }
7588
7589 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
7590 // perfect shuffle vector to determine if it is cost effective to do this as
7591 // discrete instructions, or whether we should use a vperm.
7592 // For now, we skip this for little endian until such time as we have a
7593 // little-endian perfect shuffle table.
7594 if (isFourElementShuffle && !isLittleEndian) {
7595 // Compute the index in the perfect shuffle table.
7596 unsigned PFTableIndex =
7597 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
7598
7599 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
7600 unsigned Cost = (PFEntry >> 30);
7601
7602 // Determining when to avoid vperm is tricky. Many things affect the cost
7603 // of vperm, particularly how many times the perm mask needs to be computed.
7604 // For example, if the perm mask can be hoisted out of a loop or is already
7605 // used (perhaps because there are multiple permutes with the same shuffle
7606 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of
7607 // the loop requires an extra register.
7608 //
7609 // As a compromise, we only emit discrete instructions if the shuffle can be
7610 // generated in 3 or fewer operations. When we have loop information
7611 // available, if this block is within a loop, we should avoid using vperm
7612 // for 3-operation perms and use a constant pool load instead.
7613 if (Cost < 3)
7614 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
7615 }
7616
7617 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
7618 // vector that will get spilled to the constant pool.
7619 if (V2.isUndef()) V2 = V1;
7620
7621 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
7622 // that it is in input element units, not in bytes. Convert now.
7623
7624 // For little endian, the order of the input vectors is reversed, and
7625 // the permutation mask is complemented with respect to 31. This is
7626 // necessary to produce proper semantics with the big-endian-biased vperm
7627 // instruction.
7628 EVT EltVT = V1.getValueType().getVectorElementType();
7629 unsigned BytesPerElement = EltVT.getSizeInBits()/8;
7630
7631 SmallVector<SDValue, 16> ResultMask;
7632 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
7633 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
7634
7635 for (unsigned j = 0; j != BytesPerElement; ++j)
7636 if (isLittleEndian)
7637 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
7638 dl, MVT::i32));
7639 else
7640 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
7641 MVT::i32));
7642 }
7643
7644 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
7645 if (isLittleEndian)
7646 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
7647 V2, V1, VPermMask);
7648 else
7649 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
7650 V1, V2, VPermMask);
7651 }
7652
7653 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
7654 /// vector comparison. If it is, return true and fill in Opc/isDot with
7655 /// information about the intrinsic.
getVectorCompareInfo(SDValue Intrin,int & CompareOpc,bool & isDot,const PPCSubtarget & Subtarget)7656 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
7657 bool &isDot, const PPCSubtarget &Subtarget) {
7658 unsigned IntrinsicID =
7659 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
7660 CompareOpc = -1;
7661 isDot = false;
7662 switch (IntrinsicID) {
7663 default: return false;
7664 // Comparison predicates.
7665 case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break;
7666 case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
7667 case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break;
7668 case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break;
7669 case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
7670 case Intrinsic::ppc_altivec_vcmpequd_p:
7671 if (Subtarget.hasP8Altivec()) {
7672 CompareOpc = 199;
7673 isDot = 1;
7674 } else
7675 return false;
7676
7677 break;
7678 case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
7679 case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
7680 case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
7681 case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
7682 case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
7683 case Intrinsic::ppc_altivec_vcmpgtsd_p:
7684 if (Subtarget.hasP8Altivec()) {
7685 CompareOpc = 967;
7686 isDot = 1;
7687 } else
7688 return false;
7689
7690 break;
7691 case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
7692 case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
7693 case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
7694 case Intrinsic::ppc_altivec_vcmpgtud_p:
7695 if (Subtarget.hasP8Altivec()) {
7696 CompareOpc = 711;
7697 isDot = 1;
7698 } else
7699 return false;
7700
7701 break;
7702 // VSX predicate comparisons use the same infrastructure
7703 case Intrinsic::ppc_vsx_xvcmpeqdp_p:
7704 case Intrinsic::ppc_vsx_xvcmpgedp_p:
7705 case Intrinsic::ppc_vsx_xvcmpgtdp_p:
7706 case Intrinsic::ppc_vsx_xvcmpeqsp_p:
7707 case Intrinsic::ppc_vsx_xvcmpgesp_p:
7708 case Intrinsic::ppc_vsx_xvcmpgtsp_p:
7709 if (Subtarget.hasVSX()) {
7710 switch (IntrinsicID) {
7711 case Intrinsic::ppc_vsx_xvcmpeqdp_p: CompareOpc = 99; break;
7712 case Intrinsic::ppc_vsx_xvcmpgedp_p: CompareOpc = 115; break;
7713 case Intrinsic::ppc_vsx_xvcmpgtdp_p: CompareOpc = 107; break;
7714 case Intrinsic::ppc_vsx_xvcmpeqsp_p: CompareOpc = 67; break;
7715 case Intrinsic::ppc_vsx_xvcmpgesp_p: CompareOpc = 83; break;
7716 case Intrinsic::ppc_vsx_xvcmpgtsp_p: CompareOpc = 75; break;
7717 }
7718 isDot = 1;
7719 }
7720 else
7721 return false;
7722
7723 break;
7724
7725 // Normal Comparisons.
7726 case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break;
7727 case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break;
7728 case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break;
7729 case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break;
7730 case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break;
7731 case Intrinsic::ppc_altivec_vcmpequd:
7732 if (Subtarget.hasP8Altivec()) {
7733 CompareOpc = 199;
7734 isDot = 0;
7735 } else
7736 return false;
7737
7738 break;
7739 case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break;
7740 case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break;
7741 case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break;
7742 case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break;
7743 case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break;
7744 case Intrinsic::ppc_altivec_vcmpgtsd:
7745 if (Subtarget.hasP8Altivec()) {
7746 CompareOpc = 967;
7747 isDot = 0;
7748 } else
7749 return false;
7750
7751 break;
7752 case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break;
7753 case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break;
7754 case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break;
7755 case Intrinsic::ppc_altivec_vcmpgtud:
7756 if (Subtarget.hasP8Altivec()) {
7757 CompareOpc = 711;
7758 isDot = 0;
7759 } else
7760 return false;
7761
7762 break;
7763 }
7764 return true;
7765 }
7766
7767 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
7768 /// lower, do it, otherwise return null.
LowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG) const7769 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
7770 SelectionDAG &DAG) const {
7771 unsigned IntrinsicID =
7772 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7773
7774 if (IntrinsicID == Intrinsic::thread_pointer) {
7775 // Reads the thread pointer register, used for __builtin_thread_pointer.
7776 bool is64bit = Subtarget.isPPC64();
7777 return DAG.getRegister(is64bit ? PPC::X13 : PPC::R2,
7778 is64bit ? MVT::i64 : MVT::i32);
7779 }
7780
7781 // If this is a lowered altivec predicate compare, CompareOpc is set to the
7782 // opcode number of the comparison.
7783 SDLoc dl(Op);
7784 int CompareOpc;
7785 bool isDot;
7786 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
7787 return SDValue(); // Don't custom lower most intrinsics.
7788
7789 // If this is a non-dot comparison, make the VCMP node and we are done.
7790 if (!isDot) {
7791 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
7792 Op.getOperand(1), Op.getOperand(2),
7793 DAG.getConstant(CompareOpc, dl, MVT::i32));
7794 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
7795 }
7796
7797 // Create the PPCISD altivec 'dot' comparison node.
7798 SDValue Ops[] = {
7799 Op.getOperand(2), // LHS
7800 Op.getOperand(3), // RHS
7801 DAG.getConstant(CompareOpc, dl, MVT::i32)
7802 };
7803 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
7804 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
7805
7806 // Now that we have the comparison, emit a copy from the CR to a GPR.
7807 // This is flagged to the above dot comparison.
7808 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
7809 DAG.getRegister(PPC::CR6, MVT::i32),
7810 CompNode.getValue(1));
7811
7812 // Unpack the result based on how the target uses it.
7813 unsigned BitNo; // Bit # of CR6.
7814 bool InvertBit; // Invert result?
7815 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
7816 default: // Can't happen, don't crash on invalid number though.
7817 case 0: // Return the value of the EQ bit of CR6.
7818 BitNo = 0; InvertBit = false;
7819 break;
7820 case 1: // Return the inverted value of the EQ bit of CR6.
7821 BitNo = 0; InvertBit = true;
7822 break;
7823 case 2: // Return the value of the LT bit of CR6.
7824 BitNo = 2; InvertBit = false;
7825 break;
7826 case 3: // Return the inverted value of the LT bit of CR6.
7827 BitNo = 2; InvertBit = true;
7828 break;
7829 }
7830
7831 // Shift the bit into the low position.
7832 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
7833 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
7834 // Isolate the bit.
7835 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
7836 DAG.getConstant(1, dl, MVT::i32));
7837
7838 // If we are supposed to, toggle the bit.
7839 if (InvertBit)
7840 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
7841 DAG.getConstant(1, dl, MVT::i32));
7842 return Flags;
7843 }
7844
LowerSIGN_EXTEND_INREG(SDValue Op,SelectionDAG & DAG) const7845 SDValue PPCTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
7846 SelectionDAG &DAG) const {
7847 SDLoc dl(Op);
7848 // For v2i64 (VSX), we can pattern patch the v2i32 case (using fp <-> int
7849 // instructions), but for smaller types, we need to first extend up to v2i32
7850 // before doing going farther.
7851 if (Op.getValueType() == MVT::v2i64) {
7852 EVT ExtVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
7853 if (ExtVT != MVT::v2i32) {
7854 Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0));
7855 Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, Op,
7856 DAG.getValueType(EVT::getVectorVT(*DAG.getContext(),
7857 ExtVT.getVectorElementType(), 4)));
7858 Op = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Op);
7859 Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v2i64, Op,
7860 DAG.getValueType(MVT::v2i32));
7861 }
7862
7863 return Op;
7864 }
7865
7866 return SDValue();
7867 }
7868
LowerSCALAR_TO_VECTOR(SDValue Op,SelectionDAG & DAG) const7869 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
7870 SelectionDAG &DAG) const {
7871 SDLoc dl(Op);
7872 // Create a stack slot that is 16-byte aligned.
7873 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
7874 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
7875 EVT PtrVT = getPointerTy(DAG.getDataLayout());
7876 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7877
7878 // Store the input value into Value#0 of the stack slot.
7879 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
7880 Op.getOperand(0), FIdx, MachinePointerInfo(),
7881 false, false, 0);
7882 // Load it out.
7883 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(),
7884 false, false, false, 0);
7885 }
7886
LowerEXTRACT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const7887 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
7888 SelectionDAG &DAG) const {
7889 SDLoc dl(Op);
7890 SDNode *N = Op.getNode();
7891
7892 assert(N->getOperand(0).getValueType() == MVT::v4i1 &&
7893 "Unknown extract_vector_elt type");
7894
7895 SDValue Value = N->getOperand(0);
7896
7897 // The first part of this is like the store lowering except that we don't
7898 // need to track the chain.
7899
7900 // The values are now known to be -1 (false) or 1 (true). To convert this
7901 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
7902 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
7903 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
7904
7905 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
7906 // understand how to form the extending load.
7907 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
7908
7909 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
7910
7911 // Now convert to an integer and store.
7912 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
7913 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
7914 Value);
7915
7916 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
7917 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
7918 MachinePointerInfo PtrInfo =
7919 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7920 EVT PtrVT = getPointerTy(DAG.getDataLayout());
7921 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7922
7923 SDValue StoreChain = DAG.getEntryNode();
7924 SDValue Ops[] = {StoreChain,
7925 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
7926 Value, FIdx};
7927 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
7928
7929 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
7930 dl, VTs, Ops, MVT::v4i32, PtrInfo);
7931
7932 // Extract the value requested.
7933 unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
7934 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
7935 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
7936
7937 SDValue IntVal = DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
7938 PtrInfo.getWithOffset(Offset),
7939 false, false, false, 0);
7940
7941 if (!Subtarget.useCRBits())
7942 return IntVal;
7943
7944 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal);
7945 }
7946
7947 /// Lowering for QPX v4i1 loads
LowerVectorLoad(SDValue Op,SelectionDAG & DAG) const7948 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
7949 SelectionDAG &DAG) const {
7950 SDLoc dl(Op);
7951 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
7952 SDValue LoadChain = LN->getChain();
7953 SDValue BasePtr = LN->getBasePtr();
7954
7955 if (Op.getValueType() == MVT::v4f64 ||
7956 Op.getValueType() == MVT::v4f32) {
7957 EVT MemVT = LN->getMemoryVT();
7958 unsigned Alignment = LN->getAlignment();
7959
7960 // If this load is properly aligned, then it is legal.
7961 if (Alignment >= MemVT.getStoreSize())
7962 return Op;
7963
7964 EVT ScalarVT = Op.getValueType().getScalarType(),
7965 ScalarMemVT = MemVT.getScalarType();
7966 unsigned Stride = ScalarMemVT.getStoreSize();
7967
7968 SDValue Vals[4], LoadChains[4];
7969 for (unsigned Idx = 0; Idx < 4; ++Idx) {
7970 SDValue Load;
7971 if (ScalarVT != ScalarMemVT)
7972 Load =
7973 DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain,
7974 BasePtr,
7975 LN->getPointerInfo().getWithOffset(Idx*Stride),
7976 ScalarMemVT, LN->isVolatile(), LN->isNonTemporal(),
7977 LN->isInvariant(), MinAlign(Alignment, Idx*Stride),
7978 LN->getAAInfo());
7979 else
7980 Load =
7981 DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr,
7982 LN->getPointerInfo().getWithOffset(Idx*Stride),
7983 LN->isVolatile(), LN->isNonTemporal(),
7984 LN->isInvariant(), MinAlign(Alignment, Idx*Stride),
7985 LN->getAAInfo());
7986
7987 if (Idx == 0 && LN->isIndexed()) {
7988 assert(LN->getAddressingMode() == ISD::PRE_INC &&
7989 "Unknown addressing mode on vector load");
7990 Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(),
7991 LN->getAddressingMode());
7992 }
7993
7994 Vals[Idx] = Load;
7995 LoadChains[Idx] = Load.getValue(1);
7996
7997 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
7998 DAG.getConstant(Stride, dl,
7999 BasePtr.getValueType()));
8000 }
8001
8002 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
8003 SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals);
8004
8005 if (LN->isIndexed()) {
8006 SDValue RetOps[] = { Value, Vals[0].getValue(1), TF };
8007 return DAG.getMergeValues(RetOps, dl);
8008 }
8009
8010 SDValue RetOps[] = { Value, TF };
8011 return DAG.getMergeValues(RetOps, dl);
8012 }
8013
8014 assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower");
8015 assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported");
8016
8017 // To lower v4i1 from a byte array, we load the byte elements of the
8018 // vector and then reuse the BUILD_VECTOR logic.
8019
8020 SDValue VectElmts[4], VectElmtChains[4];
8021 for (unsigned i = 0; i < 4; ++i) {
8022 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
8023 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
8024
8025 VectElmts[i] = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx,
8026 LN->getPointerInfo().getWithOffset(i),
8027 MVT::i8 /* memory type */, LN->isVolatile(),
8028 LN->isNonTemporal(), LN->isInvariant(),
8029 1 /* alignment */, LN->getAAInfo());
8030 VectElmtChains[i] = VectElmts[i].getValue(1);
8031 }
8032
8033 LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains);
8034 SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts);
8035
8036 SDValue RVals[] = { Value, LoadChain };
8037 return DAG.getMergeValues(RVals, dl);
8038 }
8039
8040 /// Lowering for QPX v4i1 stores
LowerVectorStore(SDValue Op,SelectionDAG & DAG) const8041 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
8042 SelectionDAG &DAG) const {
8043 SDLoc dl(Op);
8044 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
8045 SDValue StoreChain = SN->getChain();
8046 SDValue BasePtr = SN->getBasePtr();
8047 SDValue Value = SN->getValue();
8048
8049 if (Value.getValueType() == MVT::v4f64 ||
8050 Value.getValueType() == MVT::v4f32) {
8051 EVT MemVT = SN->getMemoryVT();
8052 unsigned Alignment = SN->getAlignment();
8053
8054 // If this store is properly aligned, then it is legal.
8055 if (Alignment >= MemVT.getStoreSize())
8056 return Op;
8057
8058 EVT ScalarVT = Value.getValueType().getScalarType(),
8059 ScalarMemVT = MemVT.getScalarType();
8060 unsigned Stride = ScalarMemVT.getStoreSize();
8061
8062 SDValue Stores[4];
8063 for (unsigned Idx = 0; Idx < 4; ++Idx) {
8064 SDValue Ex = DAG.getNode(
8065 ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value,
8066 DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout())));
8067 SDValue Store;
8068 if (ScalarVT != ScalarMemVT)
8069 Store =
8070 DAG.getTruncStore(StoreChain, dl, Ex, BasePtr,
8071 SN->getPointerInfo().getWithOffset(Idx*Stride),
8072 ScalarMemVT, SN->isVolatile(), SN->isNonTemporal(),
8073 MinAlign(Alignment, Idx*Stride), SN->getAAInfo());
8074 else
8075 Store =
8076 DAG.getStore(StoreChain, dl, Ex, BasePtr,
8077 SN->getPointerInfo().getWithOffset(Idx*Stride),
8078 SN->isVolatile(), SN->isNonTemporal(),
8079 MinAlign(Alignment, Idx*Stride), SN->getAAInfo());
8080
8081 if (Idx == 0 && SN->isIndexed()) {
8082 assert(SN->getAddressingMode() == ISD::PRE_INC &&
8083 "Unknown addressing mode on vector store");
8084 Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(),
8085 SN->getAddressingMode());
8086 }
8087
8088 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
8089 DAG.getConstant(Stride, dl,
8090 BasePtr.getValueType()));
8091 Stores[Idx] = Store;
8092 }
8093
8094 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
8095
8096 if (SN->isIndexed()) {
8097 SDValue RetOps[] = { TF, Stores[0].getValue(1) };
8098 return DAG.getMergeValues(RetOps, dl);
8099 }
8100
8101 return TF;
8102 }
8103
8104 assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported");
8105 assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower");
8106
8107 // The values are now known to be -1 (false) or 1 (true). To convert this
8108 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
8109 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
8110 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
8111
8112 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
8113 // understand how to form the extending load.
8114 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
8115
8116 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
8117
8118 // Now convert to an integer and store.
8119 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
8120 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
8121 Value);
8122
8123 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
8124 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
8125 MachinePointerInfo PtrInfo =
8126 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8127 EVT PtrVT = getPointerTy(DAG.getDataLayout());
8128 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8129
8130 SDValue Ops[] = {StoreChain,
8131 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
8132 Value, FIdx};
8133 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
8134
8135 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
8136 dl, VTs, Ops, MVT::v4i32, PtrInfo);
8137
8138 // Move data into the byte array.
8139 SDValue Loads[4], LoadChains[4];
8140 for (unsigned i = 0; i < 4; ++i) {
8141 unsigned Offset = 4*i;
8142 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
8143 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
8144
8145 Loads[i] =
8146 DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
8147 PtrInfo.getWithOffset(Offset), false, false, false, 0);
8148 LoadChains[i] = Loads[i].getValue(1);
8149 }
8150
8151 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
8152
8153 SDValue Stores[4];
8154 for (unsigned i = 0; i < 4; ++i) {
8155 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
8156 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
8157
8158 Stores[i] = DAG.getTruncStore(
8159 StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i),
8160 MVT::i8 /* memory type */, SN->isNonTemporal(), SN->isVolatile(),
8161 1 /* alignment */, SN->getAAInfo());
8162 }
8163
8164 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
8165
8166 return StoreChain;
8167 }
8168
LowerMUL(SDValue Op,SelectionDAG & DAG) const8169 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
8170 SDLoc dl(Op);
8171 if (Op.getValueType() == MVT::v4i32) {
8172 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
8173
8174 SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl);
8175 SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
8176
8177 SDValue RHSSwap = // = vrlw RHS, 16
8178 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
8179
8180 // Shrinkify inputs to v8i16.
8181 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
8182 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
8183 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
8184
8185 // Low parts multiplied together, generating 32-bit results (we ignore the
8186 // top parts).
8187 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
8188 LHS, RHS, DAG, dl, MVT::v4i32);
8189
8190 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
8191 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
8192 // Shift the high parts up 16 bits.
8193 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
8194 Neg16, DAG, dl);
8195 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
8196 } else if (Op.getValueType() == MVT::v8i16) {
8197 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
8198
8199 SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
8200
8201 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
8202 LHS, RHS, Zero, DAG, dl);
8203 } else if (Op.getValueType() == MVT::v16i8) {
8204 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
8205 bool isLittleEndian = Subtarget.isLittleEndian();
8206
8207 // Multiply the even 8-bit parts, producing 16-bit sums.
8208 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
8209 LHS, RHS, DAG, dl, MVT::v8i16);
8210 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
8211
8212 // Multiply the odd 8-bit parts, producing 16-bit sums.
8213 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
8214 LHS, RHS, DAG, dl, MVT::v8i16);
8215 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
8216
8217 // Merge the results together. Because vmuleub and vmuloub are
8218 // instructions with a big-endian bias, we must reverse the
8219 // element numbering and reverse the meaning of "odd" and "even"
8220 // when generating little endian code.
8221 int Ops[16];
8222 for (unsigned i = 0; i != 8; ++i) {
8223 if (isLittleEndian) {
8224 Ops[i*2 ] = 2*i;
8225 Ops[i*2+1] = 2*i+16;
8226 } else {
8227 Ops[i*2 ] = 2*i+1;
8228 Ops[i*2+1] = 2*i+1+16;
8229 }
8230 }
8231 if (isLittleEndian)
8232 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
8233 else
8234 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
8235 } else {
8236 llvm_unreachable("Unknown mul to lower!");
8237 }
8238 }
8239
8240 /// LowerOperation - Provide custom lowering hooks for some operations.
8241 ///
LowerOperation(SDValue Op,SelectionDAG & DAG) const8242 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
8243 switch (Op.getOpcode()) {
8244 default: llvm_unreachable("Wasn't expecting to be able to lower this!");
8245 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
8246 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
8247 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
8248 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
8249 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
8250 case ISD::SETCC: return LowerSETCC(Op, DAG);
8251 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG);
8252 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG);
8253 case ISD::VASTART:
8254 return LowerVASTART(Op, DAG);
8255
8256 case ISD::VAARG:
8257 return LowerVAARG(Op, DAG);
8258
8259 case ISD::VACOPY:
8260 return LowerVACOPY(Op, DAG);
8261
8262 case ISD::STACKRESTORE:
8263 return LowerSTACKRESTORE(Op, DAG);
8264
8265 case ISD::DYNAMIC_STACKALLOC:
8266 return LowerDYNAMIC_STACKALLOC(Op, DAG);
8267
8268 case ISD::GET_DYNAMIC_AREA_OFFSET:
8269 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
8270
8271 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG);
8272 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG);
8273
8274 case ISD::LOAD: return LowerLOAD(Op, DAG);
8275 case ISD::STORE: return LowerSTORE(Op, DAG);
8276 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG);
8277 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
8278 case ISD::FP_TO_UINT:
8279 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG,
8280 SDLoc(Op));
8281 case ISD::UINT_TO_FP:
8282 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG);
8283 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
8284
8285 // Lower 64-bit shifts.
8286 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG);
8287 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG);
8288 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG);
8289
8290 // Vector-related lowering.
8291 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
8292 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
8293 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
8294 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
8295 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
8296 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
8297 case ISD::MUL: return LowerMUL(Op, DAG);
8298
8299 // For counter-based loop handling.
8300 case ISD::INTRINSIC_W_CHAIN: return SDValue();
8301
8302 // Frame & Return address.
8303 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
8304 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
8305 }
8306 }
8307
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const8308 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
8309 SmallVectorImpl<SDValue>&Results,
8310 SelectionDAG &DAG) const {
8311 SDLoc dl(N);
8312 switch (N->getOpcode()) {
8313 default:
8314 llvm_unreachable("Do not know how to custom type legalize this operation!");
8315 case ISD::READCYCLECOUNTER: {
8316 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
8317 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
8318
8319 Results.push_back(RTB);
8320 Results.push_back(RTB.getValue(1));
8321 Results.push_back(RTB.getValue(2));
8322 break;
8323 }
8324 case ISD::INTRINSIC_W_CHAIN: {
8325 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
8326 Intrinsic::ppc_is_decremented_ctr_nonzero)
8327 break;
8328
8329 assert(N->getValueType(0) == MVT::i1 &&
8330 "Unexpected result type for CTR decrement intrinsic");
8331 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
8332 N->getValueType(0));
8333 SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
8334 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
8335 N->getOperand(1));
8336
8337 Results.push_back(NewInt);
8338 Results.push_back(NewInt.getValue(1));
8339 break;
8340 }
8341 case ISD::VAARG: {
8342 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
8343 return;
8344
8345 EVT VT = N->getValueType(0);
8346
8347 if (VT == MVT::i64) {
8348 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
8349
8350 Results.push_back(NewNode);
8351 Results.push_back(NewNode.getValue(1));
8352 }
8353 return;
8354 }
8355 case ISD::FP_ROUND_INREG: {
8356 assert(N->getValueType(0) == MVT::ppcf128);
8357 assert(N->getOperand(0).getValueType() == MVT::ppcf128);
8358 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
8359 MVT::f64, N->getOperand(0),
8360 DAG.getIntPtrConstant(0, dl));
8361 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
8362 MVT::f64, N->getOperand(0),
8363 DAG.getIntPtrConstant(1, dl));
8364
8365 // Add the two halves of the long double in round-to-zero mode.
8366 SDValue FPreg = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
8367
8368 // We know the low half is about to be thrown away, so just use something
8369 // convenient.
8370 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
8371 FPreg, FPreg));
8372 return;
8373 }
8374 case ISD::FP_TO_SINT:
8375 case ISD::FP_TO_UINT:
8376 // LowerFP_TO_INT() can only handle f32 and f64.
8377 if (N->getOperand(0).getValueType() == MVT::ppcf128)
8378 return;
8379 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
8380 return;
8381 }
8382 }
8383
8384 //===----------------------------------------------------------------------===//
8385 // Other Lowering Code
8386 //===----------------------------------------------------------------------===//
8387
callIntrinsic(IRBuilder<> & Builder,Intrinsic::ID Id)8388 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
8389 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
8390 Function *Func = Intrinsic::getDeclaration(M, Id);
8391 return Builder.CreateCall(Func, {});
8392 }
8393
8394 // The mappings for emitLeading/TrailingFence is taken from
8395 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
emitLeadingFence(IRBuilder<> & Builder,AtomicOrdering Ord,bool IsStore,bool IsLoad) const8396 Instruction* PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
8397 AtomicOrdering Ord, bool IsStore,
8398 bool IsLoad) const {
8399 if (Ord == AtomicOrdering::SequentiallyConsistent)
8400 return callIntrinsic(Builder, Intrinsic::ppc_sync);
8401 if (isReleaseOrStronger(Ord))
8402 return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
8403 return nullptr;
8404 }
8405
emitTrailingFence(IRBuilder<> & Builder,AtomicOrdering Ord,bool IsStore,bool IsLoad) const8406 Instruction* PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
8407 AtomicOrdering Ord, bool IsStore,
8408 bool IsLoad) const {
8409 if (IsLoad && isAcquireOrStronger(Ord))
8410 return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
8411 // FIXME: this is too conservative, a dependent branch + isync is enough.
8412 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
8413 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
8414 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
8415 return nullptr;
8416 }
8417
8418 MachineBasicBlock *
EmitAtomicBinary(MachineInstr & MI,MachineBasicBlock * BB,unsigned AtomicSize,unsigned BinOpcode) const8419 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
8420 unsigned AtomicSize,
8421 unsigned BinOpcode) const {
8422 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
8423 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
8424
8425 auto LoadMnemonic = PPC::LDARX;
8426 auto StoreMnemonic = PPC::STDCX;
8427 switch (AtomicSize) {
8428 default:
8429 llvm_unreachable("Unexpected size of atomic entity");
8430 case 1:
8431 LoadMnemonic = PPC::LBARX;
8432 StoreMnemonic = PPC::STBCX;
8433 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
8434 break;
8435 case 2:
8436 LoadMnemonic = PPC::LHARX;
8437 StoreMnemonic = PPC::STHCX;
8438 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
8439 break;
8440 case 4:
8441 LoadMnemonic = PPC::LWARX;
8442 StoreMnemonic = PPC::STWCX;
8443 break;
8444 case 8:
8445 LoadMnemonic = PPC::LDARX;
8446 StoreMnemonic = PPC::STDCX;
8447 break;
8448 }
8449
8450 const BasicBlock *LLVM_BB = BB->getBasicBlock();
8451 MachineFunction *F = BB->getParent();
8452 MachineFunction::iterator It = ++BB->getIterator();
8453
8454 unsigned dest = MI.getOperand(0).getReg();
8455 unsigned ptrA = MI.getOperand(1).getReg();
8456 unsigned ptrB = MI.getOperand(2).getReg();
8457 unsigned incr = MI.getOperand(3).getReg();
8458 DebugLoc dl = MI.getDebugLoc();
8459
8460 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
8461 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
8462 F->insert(It, loopMBB);
8463 F->insert(It, exitMBB);
8464 exitMBB->splice(exitMBB->begin(), BB,
8465 std::next(MachineBasicBlock::iterator(MI)), BB->end());
8466 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
8467
8468 MachineRegisterInfo &RegInfo = F->getRegInfo();
8469 unsigned TmpReg = (!BinOpcode) ? incr :
8470 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
8471 : &PPC::GPRCRegClass);
8472
8473 // thisMBB:
8474 // ...
8475 // fallthrough --> loopMBB
8476 BB->addSuccessor(loopMBB);
8477
8478 // loopMBB:
8479 // l[wd]arx dest, ptr
8480 // add r0, dest, incr
8481 // st[wd]cx. r0, ptr
8482 // bne- loopMBB
8483 // fallthrough --> exitMBB
8484 BB = loopMBB;
8485 BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
8486 .addReg(ptrA).addReg(ptrB);
8487 if (BinOpcode)
8488 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
8489 BuildMI(BB, dl, TII->get(StoreMnemonic))
8490 .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
8491 BuildMI(BB, dl, TII->get(PPC::BCC))
8492 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
8493 BB->addSuccessor(loopMBB);
8494 BB->addSuccessor(exitMBB);
8495
8496 // exitMBB:
8497 // ...
8498 BB = exitMBB;
8499 return BB;
8500 }
8501
8502 MachineBasicBlock *
EmitPartwordAtomicBinary(MachineInstr & MI,MachineBasicBlock * BB,bool is8bit,unsigned BinOpcode) const8503 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr &MI,
8504 MachineBasicBlock *BB,
8505 bool is8bit, // operation
8506 unsigned BinOpcode) const {
8507 // If we support part-word atomic mnemonics, just use them
8508 if (Subtarget.hasPartwordAtomics())
8509 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode);
8510
8511 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
8512 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
8513 // In 64 bit mode we have to use 64 bits for addresses, even though the
8514 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address
8515 // registers without caring whether they're 32 or 64, but here we're
8516 // doing actual arithmetic on the addresses.
8517 bool is64bit = Subtarget.isPPC64();
8518 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
8519
8520 const BasicBlock *LLVM_BB = BB->getBasicBlock();
8521 MachineFunction *F = BB->getParent();
8522 MachineFunction::iterator It = ++BB->getIterator();
8523
8524 unsigned dest = MI.getOperand(0).getReg();
8525 unsigned ptrA = MI.getOperand(1).getReg();
8526 unsigned ptrB = MI.getOperand(2).getReg();
8527 unsigned incr = MI.getOperand(3).getReg();
8528 DebugLoc dl = MI.getDebugLoc();
8529
8530 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
8531 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
8532 F->insert(It, loopMBB);
8533 F->insert(It, exitMBB);
8534 exitMBB->splice(exitMBB->begin(), BB,
8535 std::next(MachineBasicBlock::iterator(MI)), BB->end());
8536 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
8537
8538 MachineRegisterInfo &RegInfo = F->getRegInfo();
8539 const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass
8540 : &PPC::GPRCRegClass;
8541 unsigned PtrReg = RegInfo.createVirtualRegister(RC);
8542 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
8543 unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
8544 unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
8545 unsigned MaskReg = RegInfo.createVirtualRegister(RC);
8546 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
8547 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
8548 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
8549 unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
8550 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
8551 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
8552 unsigned Ptr1Reg;
8553 unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
8554
8555 // thisMBB:
8556 // ...
8557 // fallthrough --> loopMBB
8558 BB->addSuccessor(loopMBB);
8559
8560 // The 4-byte load must be aligned, while a char or short may be
8561 // anywhere in the word. Hence all this nasty bookkeeping code.
8562 // add ptr1, ptrA, ptrB [copy if ptrA==0]
8563 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
8564 // xori shift, shift1, 24 [16]
8565 // rlwinm ptr, ptr1, 0, 0, 29
8566 // slw incr2, incr, shift
8567 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
8568 // slw mask, mask2, shift
8569 // loopMBB:
8570 // lwarx tmpDest, ptr
8571 // add tmp, tmpDest, incr2
8572 // andc tmp2, tmpDest, mask
8573 // and tmp3, tmp, mask
8574 // or tmp4, tmp3, tmp2
8575 // stwcx. tmp4, ptr
8576 // bne- loopMBB
8577 // fallthrough --> exitMBB
8578 // srw dest, tmpDest, shift
8579 if (ptrA != ZeroReg) {
8580 Ptr1Reg = RegInfo.createVirtualRegister(RC);
8581 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
8582 .addReg(ptrA).addReg(ptrB);
8583 } else {
8584 Ptr1Reg = ptrB;
8585 }
8586 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
8587 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
8588 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
8589 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
8590 if (is64bit)
8591 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
8592 .addReg(Ptr1Reg).addImm(0).addImm(61);
8593 else
8594 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
8595 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
8596 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
8597 .addReg(incr).addReg(ShiftReg);
8598 if (is8bit)
8599 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
8600 else {
8601 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
8602 BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
8603 }
8604 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
8605 .addReg(Mask2Reg).addReg(ShiftReg);
8606
8607 BB = loopMBB;
8608 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
8609 .addReg(ZeroReg).addReg(PtrReg);
8610 if (BinOpcode)
8611 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
8612 .addReg(Incr2Reg).addReg(TmpDestReg);
8613 BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
8614 .addReg(TmpDestReg).addReg(MaskReg);
8615 BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
8616 .addReg(TmpReg).addReg(MaskReg);
8617 BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
8618 .addReg(Tmp3Reg).addReg(Tmp2Reg);
8619 BuildMI(BB, dl, TII->get(PPC::STWCX))
8620 .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
8621 BuildMI(BB, dl, TII->get(PPC::BCC))
8622 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
8623 BB->addSuccessor(loopMBB);
8624 BB->addSuccessor(exitMBB);
8625
8626 // exitMBB:
8627 // ...
8628 BB = exitMBB;
8629 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
8630 .addReg(ShiftReg);
8631 return BB;
8632 }
8633
8634 llvm::MachineBasicBlock *
emitEHSjLjSetJmp(MachineInstr & MI,MachineBasicBlock * MBB) const8635 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
8636 MachineBasicBlock *MBB) const {
8637 DebugLoc DL = MI.getDebugLoc();
8638 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
8639
8640 MachineFunction *MF = MBB->getParent();
8641 MachineRegisterInfo &MRI = MF->getRegInfo();
8642
8643 const BasicBlock *BB = MBB->getBasicBlock();
8644 MachineFunction::iterator I = ++MBB->getIterator();
8645
8646 // Memory Reference
8647 MachineInstr::mmo_iterator MMOBegin = MI.memoperands_begin();
8648 MachineInstr::mmo_iterator MMOEnd = MI.memoperands_end();
8649
8650 unsigned DstReg = MI.getOperand(0).getReg();
8651 const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
8652 assert(RC->hasType(MVT::i32) && "Invalid destination!");
8653 unsigned mainDstReg = MRI.createVirtualRegister(RC);
8654 unsigned restoreDstReg = MRI.createVirtualRegister(RC);
8655
8656 MVT PVT = getPointerTy(MF->getDataLayout());
8657 assert((PVT == MVT::i64 || PVT == MVT::i32) &&
8658 "Invalid Pointer Size!");
8659 // For v = setjmp(buf), we generate
8660 //
8661 // thisMBB:
8662 // SjLjSetup mainMBB
8663 // bl mainMBB
8664 // v_restore = 1
8665 // b sinkMBB
8666 //
8667 // mainMBB:
8668 // buf[LabelOffset] = LR
8669 // v_main = 0
8670 //
8671 // sinkMBB:
8672 // v = phi(main, restore)
8673 //
8674
8675 MachineBasicBlock *thisMBB = MBB;
8676 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
8677 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
8678 MF->insert(I, mainMBB);
8679 MF->insert(I, sinkMBB);
8680
8681 MachineInstrBuilder MIB;
8682
8683 // Transfer the remainder of BB and its successor edges to sinkMBB.
8684 sinkMBB->splice(sinkMBB->begin(), MBB,
8685 std::next(MachineBasicBlock::iterator(MI)), MBB->end());
8686 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
8687
8688 // Note that the structure of the jmp_buf used here is not compatible
8689 // with that used by libc, and is not designed to be. Specifically, it
8690 // stores only those 'reserved' registers that LLVM does not otherwise
8691 // understand how to spill. Also, by convention, by the time this
8692 // intrinsic is called, Clang has already stored the frame address in the
8693 // first slot of the buffer and stack address in the third. Following the
8694 // X86 target code, we'll store the jump address in the second slot. We also
8695 // need to save the TOC pointer (R2) to handle jumps between shared
8696 // libraries, and that will be stored in the fourth slot. The thread
8697 // identifier (R13) is not affected.
8698
8699 // thisMBB:
8700 const int64_t LabelOffset = 1 * PVT.getStoreSize();
8701 const int64_t TOCOffset = 3 * PVT.getStoreSize();
8702 const int64_t BPOffset = 4 * PVT.getStoreSize();
8703
8704 // Prepare IP either in reg.
8705 const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
8706 unsigned LabelReg = MRI.createVirtualRegister(PtrRC);
8707 unsigned BufReg = MI.getOperand(1).getReg();
8708
8709 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) {
8710 setUsesTOCBasePtr(*MBB->getParent());
8711 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
8712 .addReg(PPC::X2)
8713 .addImm(TOCOffset)
8714 .addReg(BufReg);
8715 MIB.setMemRefs(MMOBegin, MMOEnd);
8716 }
8717
8718 // Naked functions never have a base pointer, and so we use r1. For all
8719 // other functions, this decision must be delayed until during PEI.
8720 unsigned BaseReg;
8721 if (MF->getFunction()->hasFnAttribute(Attribute::Naked))
8722 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
8723 else
8724 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
8725
8726 MIB = BuildMI(*thisMBB, MI, DL,
8727 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
8728 .addReg(BaseReg)
8729 .addImm(BPOffset)
8730 .addReg(BufReg);
8731 MIB.setMemRefs(MMOBegin, MMOEnd);
8732
8733 // Setup
8734 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
8735 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
8736 MIB.addRegMask(TRI->getNoPreservedMask());
8737
8738 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
8739
8740 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
8741 .addMBB(mainMBB);
8742 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
8743
8744 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
8745 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
8746
8747 // mainMBB:
8748 // mainDstReg = 0
8749 MIB =
8750 BuildMI(mainMBB, DL,
8751 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
8752
8753 // Store IP
8754 if (Subtarget.isPPC64()) {
8755 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
8756 .addReg(LabelReg)
8757 .addImm(LabelOffset)
8758 .addReg(BufReg);
8759 } else {
8760 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
8761 .addReg(LabelReg)
8762 .addImm(LabelOffset)
8763 .addReg(BufReg);
8764 }
8765
8766 MIB.setMemRefs(MMOBegin, MMOEnd);
8767
8768 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
8769 mainMBB->addSuccessor(sinkMBB);
8770
8771 // sinkMBB:
8772 BuildMI(*sinkMBB, sinkMBB->begin(), DL,
8773 TII->get(PPC::PHI), DstReg)
8774 .addReg(mainDstReg).addMBB(mainMBB)
8775 .addReg(restoreDstReg).addMBB(thisMBB);
8776
8777 MI.eraseFromParent();
8778 return sinkMBB;
8779 }
8780
8781 MachineBasicBlock *
emitEHSjLjLongJmp(MachineInstr & MI,MachineBasicBlock * MBB) const8782 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
8783 MachineBasicBlock *MBB) const {
8784 DebugLoc DL = MI.getDebugLoc();
8785 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
8786
8787 MachineFunction *MF = MBB->getParent();
8788 MachineRegisterInfo &MRI = MF->getRegInfo();
8789
8790 // Memory Reference
8791 MachineInstr::mmo_iterator MMOBegin = MI.memoperands_begin();
8792 MachineInstr::mmo_iterator MMOEnd = MI.memoperands_end();
8793
8794 MVT PVT = getPointerTy(MF->getDataLayout());
8795 assert((PVT == MVT::i64 || PVT == MVT::i32) &&
8796 "Invalid Pointer Size!");
8797
8798 const TargetRegisterClass *RC =
8799 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
8800 unsigned Tmp = MRI.createVirtualRegister(RC);
8801 // Since FP is only updated here but NOT referenced, it's treated as GPR.
8802 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
8803 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
8804 unsigned BP =
8805 (PVT == MVT::i64)
8806 ? PPC::X30
8807 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
8808 : PPC::R30);
8809
8810 MachineInstrBuilder MIB;
8811
8812 const int64_t LabelOffset = 1 * PVT.getStoreSize();
8813 const int64_t SPOffset = 2 * PVT.getStoreSize();
8814 const int64_t TOCOffset = 3 * PVT.getStoreSize();
8815 const int64_t BPOffset = 4 * PVT.getStoreSize();
8816
8817 unsigned BufReg = MI.getOperand(0).getReg();
8818
8819 // Reload FP (the jumped-to function may not have had a
8820 // frame pointer, and if so, then its r31 will be restored
8821 // as necessary).
8822 if (PVT == MVT::i64) {
8823 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
8824 .addImm(0)
8825 .addReg(BufReg);
8826 } else {
8827 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
8828 .addImm(0)
8829 .addReg(BufReg);
8830 }
8831 MIB.setMemRefs(MMOBegin, MMOEnd);
8832
8833 // Reload IP
8834 if (PVT == MVT::i64) {
8835 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
8836 .addImm(LabelOffset)
8837 .addReg(BufReg);
8838 } else {
8839 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
8840 .addImm(LabelOffset)
8841 .addReg(BufReg);
8842 }
8843 MIB.setMemRefs(MMOBegin, MMOEnd);
8844
8845 // Reload SP
8846 if (PVT == MVT::i64) {
8847 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
8848 .addImm(SPOffset)
8849 .addReg(BufReg);
8850 } else {
8851 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
8852 .addImm(SPOffset)
8853 .addReg(BufReg);
8854 }
8855 MIB.setMemRefs(MMOBegin, MMOEnd);
8856
8857 // Reload BP
8858 if (PVT == MVT::i64) {
8859 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
8860 .addImm(BPOffset)
8861 .addReg(BufReg);
8862 } else {
8863 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
8864 .addImm(BPOffset)
8865 .addReg(BufReg);
8866 }
8867 MIB.setMemRefs(MMOBegin, MMOEnd);
8868
8869 // Reload TOC
8870 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
8871 setUsesTOCBasePtr(*MBB->getParent());
8872 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
8873 .addImm(TOCOffset)
8874 .addReg(BufReg);
8875
8876 MIB.setMemRefs(MMOBegin, MMOEnd);
8877 }
8878
8879 // Jump
8880 BuildMI(*MBB, MI, DL,
8881 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
8882 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
8883
8884 MI.eraseFromParent();
8885 return MBB;
8886 }
8887
8888 MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * BB) const8889 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
8890 MachineBasicBlock *BB) const {
8891 if (MI.getOpcode() == TargetOpcode::STACKMAP ||
8892 MI.getOpcode() == TargetOpcode::PATCHPOINT) {
8893 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() &&
8894 MI.getOpcode() == TargetOpcode::PATCHPOINT) {
8895 // Call lowering should have added an r2 operand to indicate a dependence
8896 // on the TOC base pointer value. It can't however, because there is no
8897 // way to mark the dependence as implicit there, and so the stackmap code
8898 // will confuse it with a regular operand. Instead, add the dependence
8899 // here.
8900 setUsesTOCBasePtr(*BB->getParent());
8901 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
8902 }
8903
8904 return emitPatchPoint(MI, BB);
8905 }
8906
8907 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
8908 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
8909 return emitEHSjLjSetJmp(MI, BB);
8910 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
8911 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
8912 return emitEHSjLjLongJmp(MI, BB);
8913 }
8914
8915 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
8916
8917 // To "insert" these instructions we actually have to insert their
8918 // control-flow patterns.
8919 const BasicBlock *LLVM_BB = BB->getBasicBlock();
8920 MachineFunction::iterator It = ++BB->getIterator();
8921
8922 MachineFunction *F = BB->getParent();
8923
8924 if (Subtarget.hasISEL() &&
8925 (MI.getOpcode() == PPC::SELECT_CC_I4 ||
8926 MI.getOpcode() == PPC::SELECT_CC_I8 ||
8927 MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8)) {
8928 SmallVector<MachineOperand, 2> Cond;
8929 if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
8930 MI.getOpcode() == PPC::SELECT_CC_I8)
8931 Cond.push_back(MI.getOperand(4));
8932 else
8933 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
8934 Cond.push_back(MI.getOperand(1));
8935
8936 DebugLoc dl = MI.getDebugLoc();
8937 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
8938 MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
8939 } else if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
8940 MI.getOpcode() == PPC::SELECT_CC_I8 ||
8941 MI.getOpcode() == PPC::SELECT_CC_F4 ||
8942 MI.getOpcode() == PPC::SELECT_CC_F8 ||
8943 MI.getOpcode() == PPC::SELECT_CC_QFRC ||
8944 MI.getOpcode() == PPC::SELECT_CC_QSRC ||
8945 MI.getOpcode() == PPC::SELECT_CC_QBRC ||
8946 MI.getOpcode() == PPC::SELECT_CC_VRRC ||
8947 MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
8948 MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
8949 MI.getOpcode() == PPC::SELECT_CC_VSRC ||
8950 MI.getOpcode() == PPC::SELECT_I4 ||
8951 MI.getOpcode() == PPC::SELECT_I8 ||
8952 MI.getOpcode() == PPC::SELECT_F4 ||
8953 MI.getOpcode() == PPC::SELECT_F8 ||
8954 MI.getOpcode() == PPC::SELECT_QFRC ||
8955 MI.getOpcode() == PPC::SELECT_QSRC ||
8956 MI.getOpcode() == PPC::SELECT_QBRC ||
8957 MI.getOpcode() == PPC::SELECT_VRRC ||
8958 MI.getOpcode() == PPC::SELECT_VSFRC ||
8959 MI.getOpcode() == PPC::SELECT_VSSRC ||
8960 MI.getOpcode() == PPC::SELECT_VSRC) {
8961 // The incoming instruction knows the destination vreg to set, the
8962 // condition code register to branch on, the true/false values to
8963 // select between, and a branch opcode to use.
8964
8965 // thisMBB:
8966 // ...
8967 // TrueVal = ...
8968 // cmpTY ccX, r1, r2
8969 // bCC copy1MBB
8970 // fallthrough --> copy0MBB
8971 MachineBasicBlock *thisMBB = BB;
8972 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
8973 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
8974 DebugLoc dl = MI.getDebugLoc();
8975 F->insert(It, copy0MBB);
8976 F->insert(It, sinkMBB);
8977
8978 // Transfer the remainder of BB and its successor edges to sinkMBB.
8979 sinkMBB->splice(sinkMBB->begin(), BB,
8980 std::next(MachineBasicBlock::iterator(MI)), BB->end());
8981 sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
8982
8983 // Next, add the true and fallthrough blocks as its successors.
8984 BB->addSuccessor(copy0MBB);
8985 BB->addSuccessor(sinkMBB);
8986
8987 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
8988 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
8989 MI.getOpcode() == PPC::SELECT_QFRC ||
8990 MI.getOpcode() == PPC::SELECT_QSRC ||
8991 MI.getOpcode() == PPC::SELECT_QBRC ||
8992 MI.getOpcode() == PPC::SELECT_VRRC ||
8993 MI.getOpcode() == PPC::SELECT_VSFRC ||
8994 MI.getOpcode() == PPC::SELECT_VSSRC ||
8995 MI.getOpcode() == PPC::SELECT_VSRC) {
8996 BuildMI(BB, dl, TII->get(PPC::BC))
8997 .addReg(MI.getOperand(1).getReg())
8998 .addMBB(sinkMBB);
8999 } else {
9000 unsigned SelectPred = MI.getOperand(4).getImm();
9001 BuildMI(BB, dl, TII->get(PPC::BCC))
9002 .addImm(SelectPred)
9003 .addReg(MI.getOperand(1).getReg())
9004 .addMBB(sinkMBB);
9005 }
9006
9007 // copy0MBB:
9008 // %FalseValue = ...
9009 // # fallthrough to sinkMBB
9010 BB = copy0MBB;
9011
9012 // Update machine-CFG edges
9013 BB->addSuccessor(sinkMBB);
9014
9015 // sinkMBB:
9016 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
9017 // ...
9018 BB = sinkMBB;
9019 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
9020 .addReg(MI.getOperand(3).getReg())
9021 .addMBB(copy0MBB)
9022 .addReg(MI.getOperand(2).getReg())
9023 .addMBB(thisMBB);
9024 } else if (MI.getOpcode() == PPC::ReadTB) {
9025 // To read the 64-bit time-base register on a 32-bit target, we read the
9026 // two halves. Should the counter have wrapped while it was being read, we
9027 // need to try again.
9028 // ...
9029 // readLoop:
9030 // mfspr Rx,TBU # load from TBU
9031 // mfspr Ry,TB # load from TB
9032 // mfspr Rz,TBU # load from TBU
9033 // cmpw crX,Rx,Rz # check if 'old'='new'
9034 // bne readLoop # branch if they're not equal
9035 // ...
9036
9037 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
9038 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
9039 DebugLoc dl = MI.getDebugLoc();
9040 F->insert(It, readMBB);
9041 F->insert(It, sinkMBB);
9042
9043 // Transfer the remainder of BB and its successor edges to sinkMBB.
9044 sinkMBB->splice(sinkMBB->begin(), BB,
9045 std::next(MachineBasicBlock::iterator(MI)), BB->end());
9046 sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
9047
9048 BB->addSuccessor(readMBB);
9049 BB = readMBB;
9050
9051 MachineRegisterInfo &RegInfo = F->getRegInfo();
9052 unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
9053 unsigned LoReg = MI.getOperand(0).getReg();
9054 unsigned HiReg = MI.getOperand(1).getReg();
9055
9056 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
9057 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
9058 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
9059
9060 unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
9061
9062 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
9063 .addReg(HiReg).addReg(ReadAgainReg);
9064 BuildMI(BB, dl, TII->get(PPC::BCC))
9065 .addImm(PPC::PRED_NE).addReg(CmpReg).addMBB(readMBB);
9066
9067 BB->addSuccessor(readMBB);
9068 BB->addSuccessor(sinkMBB);
9069 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
9070 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
9071 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
9072 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
9073 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
9074 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
9075 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
9076 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
9077
9078 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
9079 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
9080 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
9081 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
9082 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
9083 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
9084 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
9085 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
9086
9087 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
9088 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
9089 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
9090 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
9091 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
9092 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
9093 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
9094 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
9095
9096 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
9097 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
9098 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
9099 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
9100 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
9101 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
9102 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
9103 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
9104
9105 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
9106 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
9107 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
9108 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
9109 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
9110 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
9111 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
9112 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
9113
9114 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
9115 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
9116 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
9117 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
9118 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
9119 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
9120 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
9121 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
9122
9123 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
9124 BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
9125 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
9126 BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
9127 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
9128 BB = EmitAtomicBinary(MI, BB, 4, 0);
9129 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
9130 BB = EmitAtomicBinary(MI, BB, 8, 0);
9131
9132 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
9133 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
9134 (Subtarget.hasPartwordAtomics() &&
9135 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
9136 (Subtarget.hasPartwordAtomics() &&
9137 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
9138 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
9139
9140 auto LoadMnemonic = PPC::LDARX;
9141 auto StoreMnemonic = PPC::STDCX;
9142 switch (MI.getOpcode()) {
9143 default:
9144 llvm_unreachable("Compare and swap of unknown size");
9145 case PPC::ATOMIC_CMP_SWAP_I8:
9146 LoadMnemonic = PPC::LBARX;
9147 StoreMnemonic = PPC::STBCX;
9148 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
9149 break;
9150 case PPC::ATOMIC_CMP_SWAP_I16:
9151 LoadMnemonic = PPC::LHARX;
9152 StoreMnemonic = PPC::STHCX;
9153 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
9154 break;
9155 case PPC::ATOMIC_CMP_SWAP_I32:
9156 LoadMnemonic = PPC::LWARX;
9157 StoreMnemonic = PPC::STWCX;
9158 break;
9159 case PPC::ATOMIC_CMP_SWAP_I64:
9160 LoadMnemonic = PPC::LDARX;
9161 StoreMnemonic = PPC::STDCX;
9162 break;
9163 }
9164 unsigned dest = MI.getOperand(0).getReg();
9165 unsigned ptrA = MI.getOperand(1).getReg();
9166 unsigned ptrB = MI.getOperand(2).getReg();
9167 unsigned oldval = MI.getOperand(3).getReg();
9168 unsigned newval = MI.getOperand(4).getReg();
9169 DebugLoc dl = MI.getDebugLoc();
9170
9171 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
9172 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
9173 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
9174 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
9175 F->insert(It, loop1MBB);
9176 F->insert(It, loop2MBB);
9177 F->insert(It, midMBB);
9178 F->insert(It, exitMBB);
9179 exitMBB->splice(exitMBB->begin(), BB,
9180 std::next(MachineBasicBlock::iterator(MI)), BB->end());
9181 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
9182
9183 // thisMBB:
9184 // ...
9185 // fallthrough --> loopMBB
9186 BB->addSuccessor(loop1MBB);
9187
9188 // loop1MBB:
9189 // l[bhwd]arx dest, ptr
9190 // cmp[wd] dest, oldval
9191 // bne- midMBB
9192 // loop2MBB:
9193 // st[bhwd]cx. newval, ptr
9194 // bne- loopMBB
9195 // b exitBB
9196 // midMBB:
9197 // st[bhwd]cx. dest, ptr
9198 // exitBB:
9199 BB = loop1MBB;
9200 BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
9201 .addReg(ptrA).addReg(ptrB);
9202 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
9203 .addReg(oldval).addReg(dest);
9204 BuildMI(BB, dl, TII->get(PPC::BCC))
9205 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
9206 BB->addSuccessor(loop2MBB);
9207 BB->addSuccessor(midMBB);
9208
9209 BB = loop2MBB;
9210 BuildMI(BB, dl, TII->get(StoreMnemonic))
9211 .addReg(newval).addReg(ptrA).addReg(ptrB);
9212 BuildMI(BB, dl, TII->get(PPC::BCC))
9213 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
9214 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
9215 BB->addSuccessor(loop1MBB);
9216 BB->addSuccessor(exitMBB);
9217
9218 BB = midMBB;
9219 BuildMI(BB, dl, TII->get(StoreMnemonic))
9220 .addReg(dest).addReg(ptrA).addReg(ptrB);
9221 BB->addSuccessor(exitMBB);
9222
9223 // exitMBB:
9224 // ...
9225 BB = exitMBB;
9226 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
9227 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
9228 // We must use 64-bit registers for addresses when targeting 64-bit,
9229 // since we're actually doing arithmetic on them. Other registers
9230 // can be 32-bit.
9231 bool is64bit = Subtarget.isPPC64();
9232 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
9233
9234 unsigned dest = MI.getOperand(0).getReg();
9235 unsigned ptrA = MI.getOperand(1).getReg();
9236 unsigned ptrB = MI.getOperand(2).getReg();
9237 unsigned oldval = MI.getOperand(3).getReg();
9238 unsigned newval = MI.getOperand(4).getReg();
9239 DebugLoc dl = MI.getDebugLoc();
9240
9241 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
9242 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
9243 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
9244 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
9245 F->insert(It, loop1MBB);
9246 F->insert(It, loop2MBB);
9247 F->insert(It, midMBB);
9248 F->insert(It, exitMBB);
9249 exitMBB->splice(exitMBB->begin(), BB,
9250 std::next(MachineBasicBlock::iterator(MI)), BB->end());
9251 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
9252
9253 MachineRegisterInfo &RegInfo = F->getRegInfo();
9254 const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass
9255 : &PPC::GPRCRegClass;
9256 unsigned PtrReg = RegInfo.createVirtualRegister(RC);
9257 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
9258 unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
9259 unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
9260 unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
9261 unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
9262 unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
9263 unsigned MaskReg = RegInfo.createVirtualRegister(RC);
9264 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
9265 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
9266 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
9267 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
9268 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
9269 unsigned Ptr1Reg;
9270 unsigned TmpReg = RegInfo.createVirtualRegister(RC);
9271 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
9272 // thisMBB:
9273 // ...
9274 // fallthrough --> loopMBB
9275 BB->addSuccessor(loop1MBB);
9276
9277 // The 4-byte load must be aligned, while a char or short may be
9278 // anywhere in the word. Hence all this nasty bookkeeping code.
9279 // add ptr1, ptrA, ptrB [copy if ptrA==0]
9280 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
9281 // xori shift, shift1, 24 [16]
9282 // rlwinm ptr, ptr1, 0, 0, 29
9283 // slw newval2, newval, shift
9284 // slw oldval2, oldval,shift
9285 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
9286 // slw mask, mask2, shift
9287 // and newval3, newval2, mask
9288 // and oldval3, oldval2, mask
9289 // loop1MBB:
9290 // lwarx tmpDest, ptr
9291 // and tmp, tmpDest, mask
9292 // cmpw tmp, oldval3
9293 // bne- midMBB
9294 // loop2MBB:
9295 // andc tmp2, tmpDest, mask
9296 // or tmp4, tmp2, newval3
9297 // stwcx. tmp4, ptr
9298 // bne- loop1MBB
9299 // b exitBB
9300 // midMBB:
9301 // stwcx. tmpDest, ptr
9302 // exitBB:
9303 // srw dest, tmpDest, shift
9304 if (ptrA != ZeroReg) {
9305 Ptr1Reg = RegInfo.createVirtualRegister(RC);
9306 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
9307 .addReg(ptrA).addReg(ptrB);
9308 } else {
9309 Ptr1Reg = ptrB;
9310 }
9311 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
9312 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
9313 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
9314 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
9315 if (is64bit)
9316 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
9317 .addReg(Ptr1Reg).addImm(0).addImm(61);
9318 else
9319 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
9320 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
9321 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
9322 .addReg(newval).addReg(ShiftReg);
9323 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
9324 .addReg(oldval).addReg(ShiftReg);
9325 if (is8bit)
9326 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
9327 else {
9328 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
9329 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
9330 .addReg(Mask3Reg).addImm(65535);
9331 }
9332 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
9333 .addReg(Mask2Reg).addReg(ShiftReg);
9334 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
9335 .addReg(NewVal2Reg).addReg(MaskReg);
9336 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
9337 .addReg(OldVal2Reg).addReg(MaskReg);
9338
9339 BB = loop1MBB;
9340 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
9341 .addReg(ZeroReg).addReg(PtrReg);
9342 BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
9343 .addReg(TmpDestReg).addReg(MaskReg);
9344 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
9345 .addReg(TmpReg).addReg(OldVal3Reg);
9346 BuildMI(BB, dl, TII->get(PPC::BCC))
9347 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
9348 BB->addSuccessor(loop2MBB);
9349 BB->addSuccessor(midMBB);
9350
9351 BB = loop2MBB;
9352 BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
9353 .addReg(TmpDestReg).addReg(MaskReg);
9354 BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
9355 .addReg(Tmp2Reg).addReg(NewVal3Reg);
9356 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
9357 .addReg(ZeroReg).addReg(PtrReg);
9358 BuildMI(BB, dl, TII->get(PPC::BCC))
9359 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
9360 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
9361 BB->addSuccessor(loop1MBB);
9362 BB->addSuccessor(exitMBB);
9363
9364 BB = midMBB;
9365 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
9366 .addReg(ZeroReg).addReg(PtrReg);
9367 BB->addSuccessor(exitMBB);
9368
9369 // exitMBB:
9370 // ...
9371 BB = exitMBB;
9372 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
9373 .addReg(ShiftReg);
9374 } else if (MI.getOpcode() == PPC::FADDrtz) {
9375 // This pseudo performs an FADD with rounding mode temporarily forced
9376 // to round-to-zero. We emit this via custom inserter since the FPSCR
9377 // is not modeled at the SelectionDAG level.
9378 unsigned Dest = MI.getOperand(0).getReg();
9379 unsigned Src1 = MI.getOperand(1).getReg();
9380 unsigned Src2 = MI.getOperand(2).getReg();
9381 DebugLoc dl = MI.getDebugLoc();
9382
9383 MachineRegisterInfo &RegInfo = F->getRegInfo();
9384 unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
9385
9386 // Save FPSCR value.
9387 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
9388
9389 // Set rounding mode to round-to-zero.
9390 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
9391 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
9392
9393 // Perform addition.
9394 BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
9395
9396 // Restore FPSCR value.
9397 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
9398 } else if (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT ||
9399 MI.getOpcode() == PPC::ANDIo_1_GT_BIT ||
9400 MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
9401 MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) {
9402 unsigned Opcode = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
9403 MI.getOpcode() == PPC::ANDIo_1_GT_BIT8)
9404 ? PPC::ANDIo8
9405 : PPC::ANDIo;
9406 bool isEQ = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT ||
9407 MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8);
9408
9409 MachineRegisterInfo &RegInfo = F->getRegInfo();
9410 unsigned Dest = RegInfo.createVirtualRegister(Opcode == PPC::ANDIo ?
9411 &PPC::GPRCRegClass :
9412 &PPC::G8RCRegClass);
9413
9414 DebugLoc dl = MI.getDebugLoc();
9415 BuildMI(*BB, MI, dl, TII->get(Opcode), Dest)
9416 .addReg(MI.getOperand(1).getReg())
9417 .addImm(1);
9418 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY),
9419 MI.getOperand(0).getReg())
9420 .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT);
9421 } else if (MI.getOpcode() == PPC::TCHECK_RET) {
9422 DebugLoc Dl = MI.getDebugLoc();
9423 MachineRegisterInfo &RegInfo = F->getRegInfo();
9424 unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
9425 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
9426 return BB;
9427 } else {
9428 llvm_unreachable("Unexpected instr type to insert");
9429 }
9430
9431 MI.eraseFromParent(); // The pseudo instruction is gone now.
9432 return BB;
9433 }
9434
9435 //===----------------------------------------------------------------------===//
9436 // Target Optimization Hooks
9437 //===----------------------------------------------------------------------===//
9438
getRecipOp(const char * Base,EVT VT)9439 static std::string getRecipOp(const char *Base, EVT VT) {
9440 std::string RecipOp(Base);
9441 if (VT.getScalarType() == MVT::f64)
9442 RecipOp += "d";
9443 else
9444 RecipOp += "f";
9445
9446 if (VT.isVector())
9447 RecipOp = "vec-" + RecipOp;
9448
9449 return RecipOp;
9450 }
9451
getRsqrtEstimate(SDValue Operand,DAGCombinerInfo & DCI,unsigned & RefinementSteps,bool & UseOneConstNR) const9452 SDValue PPCTargetLowering::getRsqrtEstimate(SDValue Operand,
9453 DAGCombinerInfo &DCI,
9454 unsigned &RefinementSteps,
9455 bool &UseOneConstNR) const {
9456 EVT VT = Operand.getValueType();
9457 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
9458 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
9459 (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
9460 (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
9461 (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
9462 (VT == MVT::v4f64 && Subtarget.hasQPX())) {
9463 TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals;
9464 std::string RecipOp = getRecipOp("sqrt", VT);
9465 if (!Recips.isEnabled(RecipOp))
9466 return SDValue();
9467
9468 RefinementSteps = Recips.getRefinementSteps(RecipOp);
9469 UseOneConstNR = true;
9470 return DCI.DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
9471 }
9472 return SDValue();
9473 }
9474
getRecipEstimate(SDValue Operand,DAGCombinerInfo & DCI,unsigned & RefinementSteps) const9475 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand,
9476 DAGCombinerInfo &DCI,
9477 unsigned &RefinementSteps) const {
9478 EVT VT = Operand.getValueType();
9479 if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
9480 (VT == MVT::f64 && Subtarget.hasFRE()) ||
9481 (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
9482 (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
9483 (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
9484 (VT == MVT::v4f64 && Subtarget.hasQPX())) {
9485 TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals;
9486 std::string RecipOp = getRecipOp("div", VT);
9487 if (!Recips.isEnabled(RecipOp))
9488 return SDValue();
9489
9490 RefinementSteps = Recips.getRefinementSteps(RecipOp);
9491 return DCI.DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
9492 }
9493 return SDValue();
9494 }
9495
combineRepeatedFPDivisors() const9496 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
9497 // Note: This functionality is used only when unsafe-fp-math is enabled, and
9498 // on cores with reciprocal estimates (which are used when unsafe-fp-math is
9499 // enabled for division), this functionality is redundant with the default
9500 // combiner logic (once the division -> reciprocal/multiply transformation
9501 // has taken place). As a result, this matters more for older cores than for
9502 // newer ones.
9503
9504 // Combine multiple FDIVs with the same divisor into multiple FMULs by the
9505 // reciprocal if there are two or more FDIVs (for embedded cores with only
9506 // one FP pipeline) for three or more FDIVs (for generic OOO cores).
9507 switch (Subtarget.getDarwinDirective()) {
9508 default:
9509 return 3;
9510 case PPC::DIR_440:
9511 case PPC::DIR_A2:
9512 case PPC::DIR_E500mc:
9513 case PPC::DIR_E5500:
9514 return 2;
9515 }
9516 }
9517
9518 // isConsecutiveLSLoc needs to work even if all adds have not yet been
9519 // collapsed, and so we need to look through chains of them.
getBaseWithConstantOffset(SDValue Loc,SDValue & Base,int64_t & Offset,SelectionDAG & DAG)9520 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
9521 int64_t& Offset, SelectionDAG &DAG) {
9522 if (DAG.isBaseWithConstantOffset(Loc)) {
9523 Base = Loc.getOperand(0);
9524 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
9525
9526 // The base might itself be a base plus an offset, and if so, accumulate
9527 // that as well.
9528 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
9529 }
9530 }
9531
isConsecutiveLSLoc(SDValue Loc,EVT VT,LSBaseSDNode * Base,unsigned Bytes,int Dist,SelectionDAG & DAG)9532 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
9533 unsigned Bytes, int Dist,
9534 SelectionDAG &DAG) {
9535 if (VT.getSizeInBits() / 8 != Bytes)
9536 return false;
9537
9538 SDValue BaseLoc = Base->getBasePtr();
9539 if (Loc.getOpcode() == ISD::FrameIndex) {
9540 if (BaseLoc.getOpcode() != ISD::FrameIndex)
9541 return false;
9542 const MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9543 int FI = cast<FrameIndexSDNode>(Loc)->getIndex();
9544 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
9545 int FS = MFI->getObjectSize(FI);
9546 int BFS = MFI->getObjectSize(BFI);
9547 if (FS != BFS || FS != (int)Bytes) return false;
9548 return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
9549 }
9550
9551 SDValue Base1 = Loc, Base2 = BaseLoc;
9552 int64_t Offset1 = 0, Offset2 = 0;
9553 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
9554 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
9555 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
9556 return true;
9557
9558 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9559 const GlobalValue *GV1 = nullptr;
9560 const GlobalValue *GV2 = nullptr;
9561 Offset1 = 0;
9562 Offset2 = 0;
9563 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
9564 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
9565 if (isGA1 && isGA2 && GV1 == GV2)
9566 return Offset1 == (Offset2 + Dist*Bytes);
9567 return false;
9568 }
9569
9570 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
9571 // not enforce equality of the chain operands.
isConsecutiveLS(SDNode * N,LSBaseSDNode * Base,unsigned Bytes,int Dist,SelectionDAG & DAG)9572 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
9573 unsigned Bytes, int Dist,
9574 SelectionDAG &DAG) {
9575 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
9576 EVT VT = LS->getMemoryVT();
9577 SDValue Loc = LS->getBasePtr();
9578 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
9579 }
9580
9581 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
9582 EVT VT;
9583 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
9584 default: return false;
9585 case Intrinsic::ppc_qpx_qvlfd:
9586 case Intrinsic::ppc_qpx_qvlfda:
9587 VT = MVT::v4f64;
9588 break;
9589 case Intrinsic::ppc_qpx_qvlfs:
9590 case Intrinsic::ppc_qpx_qvlfsa:
9591 VT = MVT::v4f32;
9592 break;
9593 case Intrinsic::ppc_qpx_qvlfcd:
9594 case Intrinsic::ppc_qpx_qvlfcda:
9595 VT = MVT::v2f64;
9596 break;
9597 case Intrinsic::ppc_qpx_qvlfcs:
9598 case Intrinsic::ppc_qpx_qvlfcsa:
9599 VT = MVT::v2f32;
9600 break;
9601 case Intrinsic::ppc_qpx_qvlfiwa:
9602 case Intrinsic::ppc_qpx_qvlfiwz:
9603 case Intrinsic::ppc_altivec_lvx:
9604 case Intrinsic::ppc_altivec_lvxl:
9605 case Intrinsic::ppc_vsx_lxvw4x:
9606 VT = MVT::v4i32;
9607 break;
9608 case Intrinsic::ppc_vsx_lxvd2x:
9609 VT = MVT::v2f64;
9610 break;
9611 case Intrinsic::ppc_altivec_lvebx:
9612 VT = MVT::i8;
9613 break;
9614 case Intrinsic::ppc_altivec_lvehx:
9615 VT = MVT::i16;
9616 break;
9617 case Intrinsic::ppc_altivec_lvewx:
9618 VT = MVT::i32;
9619 break;
9620 }
9621
9622 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
9623 }
9624
9625 if (N->getOpcode() == ISD::INTRINSIC_VOID) {
9626 EVT VT;
9627 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
9628 default: return false;
9629 case Intrinsic::ppc_qpx_qvstfd:
9630 case Intrinsic::ppc_qpx_qvstfda:
9631 VT = MVT::v4f64;
9632 break;
9633 case Intrinsic::ppc_qpx_qvstfs:
9634 case Intrinsic::ppc_qpx_qvstfsa:
9635 VT = MVT::v4f32;
9636 break;
9637 case Intrinsic::ppc_qpx_qvstfcd:
9638 case Intrinsic::ppc_qpx_qvstfcda:
9639 VT = MVT::v2f64;
9640 break;
9641 case Intrinsic::ppc_qpx_qvstfcs:
9642 case Intrinsic::ppc_qpx_qvstfcsa:
9643 VT = MVT::v2f32;
9644 break;
9645 case Intrinsic::ppc_qpx_qvstfiw:
9646 case Intrinsic::ppc_qpx_qvstfiwa:
9647 case Intrinsic::ppc_altivec_stvx:
9648 case Intrinsic::ppc_altivec_stvxl:
9649 case Intrinsic::ppc_vsx_stxvw4x:
9650 VT = MVT::v4i32;
9651 break;
9652 case Intrinsic::ppc_vsx_stxvd2x:
9653 VT = MVT::v2f64;
9654 break;
9655 case Intrinsic::ppc_altivec_stvebx:
9656 VT = MVT::i8;
9657 break;
9658 case Intrinsic::ppc_altivec_stvehx:
9659 VT = MVT::i16;
9660 break;
9661 case Intrinsic::ppc_altivec_stvewx:
9662 VT = MVT::i32;
9663 break;
9664 }
9665
9666 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
9667 }
9668
9669 return false;
9670 }
9671
9672 // Return true is there is a nearyby consecutive load to the one provided
9673 // (regardless of alignment). We search up and down the chain, looking though
9674 // token factors and other loads (but nothing else). As a result, a true result
9675 // indicates that it is safe to create a new consecutive load adjacent to the
9676 // load provided.
findConsecutiveLoad(LoadSDNode * LD,SelectionDAG & DAG)9677 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
9678 SDValue Chain = LD->getChain();
9679 EVT VT = LD->getMemoryVT();
9680
9681 SmallSet<SDNode *, 16> LoadRoots;
9682 SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
9683 SmallSet<SDNode *, 16> Visited;
9684
9685 // First, search up the chain, branching to follow all token-factor operands.
9686 // If we find a consecutive load, then we're done, otherwise, record all
9687 // nodes just above the top-level loads and token factors.
9688 while (!Queue.empty()) {
9689 SDNode *ChainNext = Queue.pop_back_val();
9690 if (!Visited.insert(ChainNext).second)
9691 continue;
9692
9693 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
9694 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
9695 return true;
9696
9697 if (!Visited.count(ChainLD->getChain().getNode()))
9698 Queue.push_back(ChainLD->getChain().getNode());
9699 } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
9700 for (const SDUse &O : ChainNext->ops())
9701 if (!Visited.count(O.getNode()))
9702 Queue.push_back(O.getNode());
9703 } else
9704 LoadRoots.insert(ChainNext);
9705 }
9706
9707 // Second, search down the chain, starting from the top-level nodes recorded
9708 // in the first phase. These top-level nodes are the nodes just above all
9709 // loads and token factors. Starting with their uses, recursively look though
9710 // all loads (just the chain uses) and token factors to find a consecutive
9711 // load.
9712 Visited.clear();
9713 Queue.clear();
9714
9715 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
9716 IE = LoadRoots.end(); I != IE; ++I) {
9717 Queue.push_back(*I);
9718
9719 while (!Queue.empty()) {
9720 SDNode *LoadRoot = Queue.pop_back_val();
9721 if (!Visited.insert(LoadRoot).second)
9722 continue;
9723
9724 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
9725 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
9726 return true;
9727
9728 for (SDNode::use_iterator UI = LoadRoot->use_begin(),
9729 UE = LoadRoot->use_end(); UI != UE; ++UI)
9730 if (((isa<MemSDNode>(*UI) &&
9731 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
9732 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
9733 Queue.push_back(*UI);
9734 }
9735 }
9736
9737 return false;
9738 }
9739
DAGCombineTruncBoolExt(SDNode * N,DAGCombinerInfo & DCI) const9740 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
9741 DAGCombinerInfo &DCI) const {
9742 SelectionDAG &DAG = DCI.DAG;
9743 SDLoc dl(N);
9744
9745 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
9746 // If we're tracking CR bits, we need to be careful that we don't have:
9747 // trunc(binary-ops(zext(x), zext(y)))
9748 // or
9749 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
9750 // such that we're unnecessarily moving things into GPRs when it would be
9751 // better to keep them in CR bits.
9752
9753 // Note that trunc here can be an actual i1 trunc, or can be the effective
9754 // truncation that comes from a setcc or select_cc.
9755 if (N->getOpcode() == ISD::TRUNCATE &&
9756 N->getValueType(0) != MVT::i1)
9757 return SDValue();
9758
9759 if (N->getOperand(0).getValueType() != MVT::i32 &&
9760 N->getOperand(0).getValueType() != MVT::i64)
9761 return SDValue();
9762
9763 if (N->getOpcode() == ISD::SETCC ||
9764 N->getOpcode() == ISD::SELECT_CC) {
9765 // If we're looking at a comparison, then we need to make sure that the
9766 // high bits (all except for the first) don't matter the result.
9767 ISD::CondCode CC =
9768 cast<CondCodeSDNode>(N->getOperand(
9769 N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
9770 unsigned OpBits = N->getOperand(0).getValueSizeInBits();
9771
9772 if (ISD::isSignedIntSetCC(CC)) {
9773 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
9774 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
9775 return SDValue();
9776 } else if (ISD::isUnsignedIntSetCC(CC)) {
9777 if (!DAG.MaskedValueIsZero(N->getOperand(0),
9778 APInt::getHighBitsSet(OpBits, OpBits-1)) ||
9779 !DAG.MaskedValueIsZero(N->getOperand(1),
9780 APInt::getHighBitsSet(OpBits, OpBits-1)))
9781 return SDValue();
9782 } else {
9783 // This is neither a signed nor an unsigned comparison, just make sure
9784 // that the high bits are equal.
9785 APInt Op1Zero, Op1One;
9786 APInt Op2Zero, Op2One;
9787 DAG.computeKnownBits(N->getOperand(0), Op1Zero, Op1One);
9788 DAG.computeKnownBits(N->getOperand(1), Op2Zero, Op2One);
9789
9790 // We don't really care about what is known about the first bit (if
9791 // anything), so clear it in all masks prior to comparing them.
9792 Op1Zero.clearBit(0); Op1One.clearBit(0);
9793 Op2Zero.clearBit(0); Op2One.clearBit(0);
9794
9795 if (Op1Zero != Op2Zero || Op1One != Op2One)
9796 return SDValue();
9797 }
9798 }
9799
9800 // We now know that the higher-order bits are irrelevant, we just need to
9801 // make sure that all of the intermediate operations are bit operations, and
9802 // all inputs are extensions.
9803 if (N->getOperand(0).getOpcode() != ISD::AND &&
9804 N->getOperand(0).getOpcode() != ISD::OR &&
9805 N->getOperand(0).getOpcode() != ISD::XOR &&
9806 N->getOperand(0).getOpcode() != ISD::SELECT &&
9807 N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
9808 N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
9809 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
9810 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
9811 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
9812 return SDValue();
9813
9814 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
9815 N->getOperand(1).getOpcode() != ISD::AND &&
9816 N->getOperand(1).getOpcode() != ISD::OR &&
9817 N->getOperand(1).getOpcode() != ISD::XOR &&
9818 N->getOperand(1).getOpcode() != ISD::SELECT &&
9819 N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
9820 N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
9821 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
9822 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
9823 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
9824 return SDValue();
9825
9826 SmallVector<SDValue, 4> Inputs;
9827 SmallVector<SDValue, 8> BinOps, PromOps;
9828 SmallPtrSet<SDNode *, 16> Visited;
9829
9830 for (unsigned i = 0; i < 2; ++i) {
9831 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
9832 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
9833 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
9834 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
9835 isa<ConstantSDNode>(N->getOperand(i)))
9836 Inputs.push_back(N->getOperand(i));
9837 else
9838 BinOps.push_back(N->getOperand(i));
9839
9840 if (N->getOpcode() == ISD::TRUNCATE)
9841 break;
9842 }
9843
9844 // Visit all inputs, collect all binary operations (and, or, xor and
9845 // select) that are all fed by extensions.
9846 while (!BinOps.empty()) {
9847 SDValue BinOp = BinOps.back();
9848 BinOps.pop_back();
9849
9850 if (!Visited.insert(BinOp.getNode()).second)
9851 continue;
9852
9853 PromOps.push_back(BinOp);
9854
9855 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
9856 // The condition of the select is not promoted.
9857 if (BinOp.getOpcode() == ISD::SELECT && i == 0)
9858 continue;
9859 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
9860 continue;
9861
9862 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
9863 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
9864 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
9865 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
9866 isa<ConstantSDNode>(BinOp.getOperand(i))) {
9867 Inputs.push_back(BinOp.getOperand(i));
9868 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
9869 BinOp.getOperand(i).getOpcode() == ISD::OR ||
9870 BinOp.getOperand(i).getOpcode() == ISD::XOR ||
9871 BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
9872 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
9873 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
9874 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
9875 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
9876 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
9877 BinOps.push_back(BinOp.getOperand(i));
9878 } else {
9879 // We have an input that is not an extension or another binary
9880 // operation; we'll abort this transformation.
9881 return SDValue();
9882 }
9883 }
9884 }
9885
9886 // Make sure that this is a self-contained cluster of operations (which
9887 // is not quite the same thing as saying that everything has only one
9888 // use).
9889 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
9890 if (isa<ConstantSDNode>(Inputs[i]))
9891 continue;
9892
9893 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
9894 UE = Inputs[i].getNode()->use_end();
9895 UI != UE; ++UI) {
9896 SDNode *User = *UI;
9897 if (User != N && !Visited.count(User))
9898 return SDValue();
9899
9900 // Make sure that we're not going to promote the non-output-value
9901 // operand(s) or SELECT or SELECT_CC.
9902 // FIXME: Although we could sometimes handle this, and it does occur in
9903 // practice that one of the condition inputs to the select is also one of
9904 // the outputs, we currently can't deal with this.
9905 if (User->getOpcode() == ISD::SELECT) {
9906 if (User->getOperand(0) == Inputs[i])
9907 return SDValue();
9908 } else if (User->getOpcode() == ISD::SELECT_CC) {
9909 if (User->getOperand(0) == Inputs[i] ||
9910 User->getOperand(1) == Inputs[i])
9911 return SDValue();
9912 }
9913 }
9914 }
9915
9916 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
9917 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
9918 UE = PromOps[i].getNode()->use_end();
9919 UI != UE; ++UI) {
9920 SDNode *User = *UI;
9921 if (User != N && !Visited.count(User))
9922 return SDValue();
9923
9924 // Make sure that we're not going to promote the non-output-value
9925 // operand(s) or SELECT or SELECT_CC.
9926 // FIXME: Although we could sometimes handle this, and it does occur in
9927 // practice that one of the condition inputs to the select is also one of
9928 // the outputs, we currently can't deal with this.
9929 if (User->getOpcode() == ISD::SELECT) {
9930 if (User->getOperand(0) == PromOps[i])
9931 return SDValue();
9932 } else if (User->getOpcode() == ISD::SELECT_CC) {
9933 if (User->getOperand(0) == PromOps[i] ||
9934 User->getOperand(1) == PromOps[i])
9935 return SDValue();
9936 }
9937 }
9938 }
9939
9940 // Replace all inputs with the extension operand.
9941 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
9942 // Constants may have users outside the cluster of to-be-promoted nodes,
9943 // and so we need to replace those as we do the promotions.
9944 if (isa<ConstantSDNode>(Inputs[i]))
9945 continue;
9946 else
9947 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
9948 }
9949
9950 std::list<HandleSDNode> PromOpHandles;
9951 for (auto &PromOp : PromOps)
9952 PromOpHandles.emplace_back(PromOp);
9953
9954 // Replace all operations (these are all the same, but have a different
9955 // (i1) return type). DAG.getNode will validate that the types of
9956 // a binary operator match, so go through the list in reverse so that
9957 // we've likely promoted both operands first. Any intermediate truncations or
9958 // extensions disappear.
9959 while (!PromOpHandles.empty()) {
9960 SDValue PromOp = PromOpHandles.back().getValue();
9961 PromOpHandles.pop_back();
9962
9963 if (PromOp.getOpcode() == ISD::TRUNCATE ||
9964 PromOp.getOpcode() == ISD::SIGN_EXTEND ||
9965 PromOp.getOpcode() == ISD::ZERO_EXTEND ||
9966 PromOp.getOpcode() == ISD::ANY_EXTEND) {
9967 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
9968 PromOp.getOperand(0).getValueType() != MVT::i1) {
9969 // The operand is not yet ready (see comment below).
9970 PromOpHandles.emplace_front(PromOp);
9971 continue;
9972 }
9973
9974 SDValue RepValue = PromOp.getOperand(0);
9975 if (isa<ConstantSDNode>(RepValue))
9976 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
9977
9978 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
9979 continue;
9980 }
9981
9982 unsigned C;
9983 switch (PromOp.getOpcode()) {
9984 default: C = 0; break;
9985 case ISD::SELECT: C = 1; break;
9986 case ISD::SELECT_CC: C = 2; break;
9987 }
9988
9989 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
9990 PromOp.getOperand(C).getValueType() != MVT::i1) ||
9991 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
9992 PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
9993 // The to-be-promoted operands of this node have not yet been
9994 // promoted (this should be rare because we're going through the
9995 // list backward, but if one of the operands has several users in
9996 // this cluster of to-be-promoted nodes, it is possible).
9997 PromOpHandles.emplace_front(PromOp);
9998 continue;
9999 }
10000
10001 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
10002 PromOp.getNode()->op_end());
10003
10004 // If there are any constant inputs, make sure they're replaced now.
10005 for (unsigned i = 0; i < 2; ++i)
10006 if (isa<ConstantSDNode>(Ops[C+i]))
10007 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
10008
10009 DAG.ReplaceAllUsesOfValueWith(PromOp,
10010 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
10011 }
10012
10013 // Now we're left with the initial truncation itself.
10014 if (N->getOpcode() == ISD::TRUNCATE)
10015 return N->getOperand(0);
10016
10017 // Otherwise, this is a comparison. The operands to be compared have just
10018 // changed type (to i1), but everything else is the same.
10019 return SDValue(N, 0);
10020 }
10021
DAGCombineExtBoolTrunc(SDNode * N,DAGCombinerInfo & DCI) const10022 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
10023 DAGCombinerInfo &DCI) const {
10024 SelectionDAG &DAG = DCI.DAG;
10025 SDLoc dl(N);
10026
10027 // If we're tracking CR bits, we need to be careful that we don't have:
10028 // zext(binary-ops(trunc(x), trunc(y)))
10029 // or
10030 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
10031 // such that we're unnecessarily moving things into CR bits that can more
10032 // efficiently stay in GPRs. Note that if we're not certain that the high
10033 // bits are set as required by the final extension, we still may need to do
10034 // some masking to get the proper behavior.
10035
10036 // This same functionality is important on PPC64 when dealing with
10037 // 32-to-64-bit extensions; these occur often when 32-bit values are used as
10038 // the return values of functions. Because it is so similar, it is handled
10039 // here as well.
10040
10041 if (N->getValueType(0) != MVT::i32 &&
10042 N->getValueType(0) != MVT::i64)
10043 return SDValue();
10044
10045 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
10046 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
10047 return SDValue();
10048
10049 if (N->getOperand(0).getOpcode() != ISD::AND &&
10050 N->getOperand(0).getOpcode() != ISD::OR &&
10051 N->getOperand(0).getOpcode() != ISD::XOR &&
10052 N->getOperand(0).getOpcode() != ISD::SELECT &&
10053 N->getOperand(0).getOpcode() != ISD::SELECT_CC)
10054 return SDValue();
10055
10056 SmallVector<SDValue, 4> Inputs;
10057 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
10058 SmallPtrSet<SDNode *, 16> Visited;
10059
10060 // Visit all inputs, collect all binary operations (and, or, xor and
10061 // select) that are all fed by truncations.
10062 while (!BinOps.empty()) {
10063 SDValue BinOp = BinOps.back();
10064 BinOps.pop_back();
10065
10066 if (!Visited.insert(BinOp.getNode()).second)
10067 continue;
10068
10069 PromOps.push_back(BinOp);
10070
10071 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
10072 // The condition of the select is not promoted.
10073 if (BinOp.getOpcode() == ISD::SELECT && i == 0)
10074 continue;
10075 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
10076 continue;
10077
10078 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
10079 isa<ConstantSDNode>(BinOp.getOperand(i))) {
10080 Inputs.push_back(BinOp.getOperand(i));
10081 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
10082 BinOp.getOperand(i).getOpcode() == ISD::OR ||
10083 BinOp.getOperand(i).getOpcode() == ISD::XOR ||
10084 BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
10085 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
10086 BinOps.push_back(BinOp.getOperand(i));
10087 } else {
10088 // We have an input that is not a truncation or another binary
10089 // operation; we'll abort this transformation.
10090 return SDValue();
10091 }
10092 }
10093 }
10094
10095 // The operands of a select that must be truncated when the select is
10096 // promoted because the operand is actually part of the to-be-promoted set.
10097 DenseMap<SDNode *, EVT> SelectTruncOp[2];
10098
10099 // Make sure that this is a self-contained cluster of operations (which
10100 // is not quite the same thing as saying that everything has only one
10101 // use).
10102 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
10103 if (isa<ConstantSDNode>(Inputs[i]))
10104 continue;
10105
10106 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
10107 UE = Inputs[i].getNode()->use_end();
10108 UI != UE; ++UI) {
10109 SDNode *User = *UI;
10110 if (User != N && !Visited.count(User))
10111 return SDValue();
10112
10113 // If we're going to promote the non-output-value operand(s) or SELECT or
10114 // SELECT_CC, record them for truncation.
10115 if (User->getOpcode() == ISD::SELECT) {
10116 if (User->getOperand(0) == Inputs[i])
10117 SelectTruncOp[0].insert(std::make_pair(User,
10118 User->getOperand(0).getValueType()));
10119 } else if (User->getOpcode() == ISD::SELECT_CC) {
10120 if (User->getOperand(0) == Inputs[i])
10121 SelectTruncOp[0].insert(std::make_pair(User,
10122 User->getOperand(0).getValueType()));
10123 if (User->getOperand(1) == Inputs[i])
10124 SelectTruncOp[1].insert(std::make_pair(User,
10125 User->getOperand(1).getValueType()));
10126 }
10127 }
10128 }
10129
10130 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
10131 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
10132 UE = PromOps[i].getNode()->use_end();
10133 UI != UE; ++UI) {
10134 SDNode *User = *UI;
10135 if (User != N && !Visited.count(User))
10136 return SDValue();
10137
10138 // If we're going to promote the non-output-value operand(s) or SELECT or
10139 // SELECT_CC, record them for truncation.
10140 if (User->getOpcode() == ISD::SELECT) {
10141 if (User->getOperand(0) == PromOps[i])
10142 SelectTruncOp[0].insert(std::make_pair(User,
10143 User->getOperand(0).getValueType()));
10144 } else if (User->getOpcode() == ISD::SELECT_CC) {
10145 if (User->getOperand(0) == PromOps[i])
10146 SelectTruncOp[0].insert(std::make_pair(User,
10147 User->getOperand(0).getValueType()));
10148 if (User->getOperand(1) == PromOps[i])
10149 SelectTruncOp[1].insert(std::make_pair(User,
10150 User->getOperand(1).getValueType()));
10151 }
10152 }
10153 }
10154
10155 unsigned PromBits = N->getOperand(0).getValueSizeInBits();
10156 bool ReallyNeedsExt = false;
10157 if (N->getOpcode() != ISD::ANY_EXTEND) {
10158 // If all of the inputs are not already sign/zero extended, then
10159 // we'll still need to do that at the end.
10160 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
10161 if (isa<ConstantSDNode>(Inputs[i]))
10162 continue;
10163
10164 unsigned OpBits =
10165 Inputs[i].getOperand(0).getValueSizeInBits();
10166 assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
10167
10168 if ((N->getOpcode() == ISD::ZERO_EXTEND &&
10169 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
10170 APInt::getHighBitsSet(OpBits,
10171 OpBits-PromBits))) ||
10172 (N->getOpcode() == ISD::SIGN_EXTEND &&
10173 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
10174 (OpBits-(PromBits-1)))) {
10175 ReallyNeedsExt = true;
10176 break;
10177 }
10178 }
10179 }
10180
10181 // Replace all inputs, either with the truncation operand, or a
10182 // truncation or extension to the final output type.
10183 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
10184 // Constant inputs need to be replaced with the to-be-promoted nodes that
10185 // use them because they might have users outside of the cluster of
10186 // promoted nodes.
10187 if (isa<ConstantSDNode>(Inputs[i]))
10188 continue;
10189
10190 SDValue InSrc = Inputs[i].getOperand(0);
10191 if (Inputs[i].getValueType() == N->getValueType(0))
10192 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
10193 else if (N->getOpcode() == ISD::SIGN_EXTEND)
10194 DAG.ReplaceAllUsesOfValueWith(Inputs[i],
10195 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
10196 else if (N->getOpcode() == ISD::ZERO_EXTEND)
10197 DAG.ReplaceAllUsesOfValueWith(Inputs[i],
10198 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
10199 else
10200 DAG.ReplaceAllUsesOfValueWith(Inputs[i],
10201 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
10202 }
10203
10204 std::list<HandleSDNode> PromOpHandles;
10205 for (auto &PromOp : PromOps)
10206 PromOpHandles.emplace_back(PromOp);
10207
10208 // Replace all operations (these are all the same, but have a different
10209 // (promoted) return type). DAG.getNode will validate that the types of
10210 // a binary operator match, so go through the list in reverse so that
10211 // we've likely promoted both operands first.
10212 while (!PromOpHandles.empty()) {
10213 SDValue PromOp = PromOpHandles.back().getValue();
10214 PromOpHandles.pop_back();
10215
10216 unsigned C;
10217 switch (PromOp.getOpcode()) {
10218 default: C = 0; break;
10219 case ISD::SELECT: C = 1; break;
10220 case ISD::SELECT_CC: C = 2; break;
10221 }
10222
10223 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
10224 PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
10225 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
10226 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
10227 // The to-be-promoted operands of this node have not yet been
10228 // promoted (this should be rare because we're going through the
10229 // list backward, but if one of the operands has several users in
10230 // this cluster of to-be-promoted nodes, it is possible).
10231 PromOpHandles.emplace_front(PromOp);
10232 continue;
10233 }
10234
10235 // For SELECT and SELECT_CC nodes, we do a similar check for any
10236 // to-be-promoted comparison inputs.
10237 if (PromOp.getOpcode() == ISD::SELECT ||
10238 PromOp.getOpcode() == ISD::SELECT_CC) {
10239 if ((SelectTruncOp[0].count(PromOp.getNode()) &&
10240 PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
10241 (SelectTruncOp[1].count(PromOp.getNode()) &&
10242 PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
10243 PromOpHandles.emplace_front(PromOp);
10244 continue;
10245 }
10246 }
10247
10248 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
10249 PromOp.getNode()->op_end());
10250
10251 // If this node has constant inputs, then they'll need to be promoted here.
10252 for (unsigned i = 0; i < 2; ++i) {
10253 if (!isa<ConstantSDNode>(Ops[C+i]))
10254 continue;
10255 if (Ops[C+i].getValueType() == N->getValueType(0))
10256 continue;
10257
10258 if (N->getOpcode() == ISD::SIGN_EXTEND)
10259 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
10260 else if (N->getOpcode() == ISD::ZERO_EXTEND)
10261 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
10262 else
10263 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
10264 }
10265
10266 // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
10267 // truncate them again to the original value type.
10268 if (PromOp.getOpcode() == ISD::SELECT ||
10269 PromOp.getOpcode() == ISD::SELECT_CC) {
10270 auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
10271 if (SI0 != SelectTruncOp[0].end())
10272 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
10273 auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
10274 if (SI1 != SelectTruncOp[1].end())
10275 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
10276 }
10277
10278 DAG.ReplaceAllUsesOfValueWith(PromOp,
10279 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
10280 }
10281
10282 // Now we're left with the initial extension itself.
10283 if (!ReallyNeedsExt)
10284 return N->getOperand(0);
10285
10286 // To zero extend, just mask off everything except for the first bit (in the
10287 // i1 case).
10288 if (N->getOpcode() == ISD::ZERO_EXTEND)
10289 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
10290 DAG.getConstant(APInt::getLowBitsSet(
10291 N->getValueSizeInBits(0), PromBits),
10292 dl, N->getValueType(0)));
10293
10294 assert(N->getOpcode() == ISD::SIGN_EXTEND &&
10295 "Invalid extension type");
10296 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
10297 SDValue ShiftCst =
10298 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
10299 return DAG.getNode(
10300 ISD::SRA, dl, N->getValueType(0),
10301 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
10302 ShiftCst);
10303 }
10304
DAGCombineBuildVector(SDNode * N,DAGCombinerInfo & DCI) const10305 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
10306 DAGCombinerInfo &DCI) const {
10307 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
10308 "Should be called with a BUILD_VECTOR node");
10309
10310 SelectionDAG &DAG = DCI.DAG;
10311 SDLoc dl(N);
10312 if (N->getValueType(0) != MVT::v2f64 || !Subtarget.hasVSX())
10313 return SDValue();
10314
10315 // Looking for:
10316 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
10317 if (N->getOperand(0).getOpcode() != ISD::SINT_TO_FP &&
10318 N->getOperand(0).getOpcode() != ISD::UINT_TO_FP)
10319 return SDValue();
10320 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
10321 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
10322 return SDValue();
10323 if (N->getOperand(0).getOpcode() != N->getOperand(1).getOpcode())
10324 return SDValue();
10325
10326 SDValue Ext1 = N->getOperand(0).getOperand(0);
10327 SDValue Ext2 = N->getOperand(1).getOperand(0);
10328 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
10329 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
10330 return SDValue();
10331
10332 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
10333 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
10334 if (!Ext1Op || !Ext2Op)
10335 return SDValue();
10336 if (Ext1.getValueType() != MVT::i32 ||
10337 Ext2.getValueType() != MVT::i32)
10338 if (Ext1.getOperand(0) != Ext2.getOperand(0))
10339 return SDValue();
10340
10341 int FirstElem = Ext1Op->getZExtValue();
10342 int SecondElem = Ext2Op->getZExtValue();
10343 int SubvecIdx;
10344 if (FirstElem == 0 && SecondElem == 1)
10345 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
10346 else if (FirstElem == 2 && SecondElem == 3)
10347 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
10348 else
10349 return SDValue();
10350
10351 SDValue SrcVec = Ext1.getOperand(0);
10352 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
10353 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
10354 return DAG.getNode(NodeType, dl, MVT::v2f64,
10355 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
10356 }
10357
combineFPToIntToFP(SDNode * N,DAGCombinerInfo & DCI) const10358 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
10359 DAGCombinerInfo &DCI) const {
10360 assert((N->getOpcode() == ISD::SINT_TO_FP ||
10361 N->getOpcode() == ISD::UINT_TO_FP) &&
10362 "Need an int -> FP conversion node here");
10363
10364 if (!Subtarget.has64BitSupport())
10365 return SDValue();
10366
10367 SelectionDAG &DAG = DCI.DAG;
10368 SDLoc dl(N);
10369 SDValue Op(N, 0);
10370
10371 // Don't handle ppc_fp128 here or i1 conversions.
10372 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
10373 return SDValue();
10374 if (Op.getOperand(0).getValueType() == MVT::i1)
10375 return SDValue();
10376
10377 // For i32 intermediate values, unfortunately, the conversion functions
10378 // leave the upper 32 bits of the value are undefined. Within the set of
10379 // scalar instructions, we have no method for zero- or sign-extending the
10380 // value. Thus, we cannot handle i32 intermediate values here.
10381 if (Op.getOperand(0).getValueType() == MVT::i32)
10382 return SDValue();
10383
10384 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
10385 "UINT_TO_FP is supported only with FPCVT");
10386
10387 // If we have FCFIDS, then use it when converting to single-precision.
10388 // Otherwise, convert to double-precision and then round.
10389 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
10390 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
10391 : PPCISD::FCFIDS)
10392 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
10393 : PPCISD::FCFID);
10394 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
10395 ? MVT::f32
10396 : MVT::f64;
10397
10398 // If we're converting from a float, to an int, and back to a float again,
10399 // then we don't need the store/load pair at all.
10400 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
10401 Subtarget.hasFPCVT()) ||
10402 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
10403 SDValue Src = Op.getOperand(0).getOperand(0);
10404 if (Src.getValueType() == MVT::f32) {
10405 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
10406 DCI.AddToWorklist(Src.getNode());
10407 } else if (Src.getValueType() != MVT::f64) {
10408 // Make sure that we don't pick up a ppc_fp128 source value.
10409 return SDValue();
10410 }
10411
10412 unsigned FCTOp =
10413 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
10414 PPCISD::FCTIDUZ;
10415
10416 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
10417 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
10418
10419 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
10420 FP = DAG.getNode(ISD::FP_ROUND, dl,
10421 MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
10422 DCI.AddToWorklist(FP.getNode());
10423 }
10424
10425 return FP;
10426 }
10427
10428 return SDValue();
10429 }
10430
10431 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
10432 // builtins) into loads with swaps.
expandVSXLoadForLE(SDNode * N,DAGCombinerInfo & DCI) const10433 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
10434 DAGCombinerInfo &DCI) const {
10435 SelectionDAG &DAG = DCI.DAG;
10436 SDLoc dl(N);
10437 SDValue Chain;
10438 SDValue Base;
10439 MachineMemOperand *MMO;
10440
10441 switch (N->getOpcode()) {
10442 default:
10443 llvm_unreachable("Unexpected opcode for little endian VSX load");
10444 case ISD::LOAD: {
10445 LoadSDNode *LD = cast<LoadSDNode>(N);
10446 Chain = LD->getChain();
10447 Base = LD->getBasePtr();
10448 MMO = LD->getMemOperand();
10449 // If the MMO suggests this isn't a load of a full vector, leave
10450 // things alone. For a built-in, we have to make the change for
10451 // correctness, so if there is a size problem that will be a bug.
10452 if (MMO->getSize() < 16)
10453 return SDValue();
10454 break;
10455 }
10456 case ISD::INTRINSIC_W_CHAIN: {
10457 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
10458 Chain = Intrin->getChain();
10459 // Similarly to the store case below, Intrin->getBasePtr() doesn't get
10460 // us what we want. Get operand 2 instead.
10461 Base = Intrin->getOperand(2);
10462 MMO = Intrin->getMemOperand();
10463 break;
10464 }
10465 }
10466
10467 MVT VecTy = N->getValueType(0).getSimpleVT();
10468 SDValue LoadOps[] = { Chain, Base };
10469 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
10470 DAG.getVTList(MVT::v2f64, MVT::Other),
10471 LoadOps, MVT::v2f64, MMO);
10472
10473 DCI.AddToWorklist(Load.getNode());
10474 Chain = Load.getValue(1);
10475 SDValue Swap = DAG.getNode(
10476 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
10477 DCI.AddToWorklist(Swap.getNode());
10478
10479 // Add a bitcast if the resulting load type doesn't match v2f64.
10480 if (VecTy != MVT::v2f64) {
10481 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
10482 DCI.AddToWorklist(N.getNode());
10483 // Package {bitcast value, swap's chain} to match Load's shape.
10484 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
10485 N, Swap.getValue(1));
10486 }
10487
10488 return Swap;
10489 }
10490
10491 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
10492 // builtins) into stores with swaps.
expandVSXStoreForLE(SDNode * N,DAGCombinerInfo & DCI) const10493 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
10494 DAGCombinerInfo &DCI) const {
10495 SelectionDAG &DAG = DCI.DAG;
10496 SDLoc dl(N);
10497 SDValue Chain;
10498 SDValue Base;
10499 unsigned SrcOpnd;
10500 MachineMemOperand *MMO;
10501
10502 switch (N->getOpcode()) {
10503 default:
10504 llvm_unreachable("Unexpected opcode for little endian VSX store");
10505 case ISD::STORE: {
10506 StoreSDNode *ST = cast<StoreSDNode>(N);
10507 Chain = ST->getChain();
10508 Base = ST->getBasePtr();
10509 MMO = ST->getMemOperand();
10510 SrcOpnd = 1;
10511 // If the MMO suggests this isn't a store of a full vector, leave
10512 // things alone. For a built-in, we have to make the change for
10513 // correctness, so if there is a size problem that will be a bug.
10514 if (MMO->getSize() < 16)
10515 return SDValue();
10516 break;
10517 }
10518 case ISD::INTRINSIC_VOID: {
10519 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
10520 Chain = Intrin->getChain();
10521 // Intrin->getBasePtr() oddly does not get what we want.
10522 Base = Intrin->getOperand(3);
10523 MMO = Intrin->getMemOperand();
10524 SrcOpnd = 2;
10525 break;
10526 }
10527 }
10528
10529 SDValue Src = N->getOperand(SrcOpnd);
10530 MVT VecTy = Src.getValueType().getSimpleVT();
10531
10532 // All stores are done as v2f64 and possible bit cast.
10533 if (VecTy != MVT::v2f64) {
10534 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
10535 DCI.AddToWorklist(Src.getNode());
10536 }
10537
10538 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
10539 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
10540 DCI.AddToWorklist(Swap.getNode());
10541 Chain = Swap.getValue(1);
10542 SDValue StoreOps[] = { Chain, Swap, Base };
10543 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
10544 DAG.getVTList(MVT::Other),
10545 StoreOps, VecTy, MMO);
10546 DCI.AddToWorklist(Store.getNode());
10547 return Store;
10548 }
10549
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const10550 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
10551 DAGCombinerInfo &DCI) const {
10552 SelectionDAG &DAG = DCI.DAG;
10553 SDLoc dl(N);
10554 switch (N->getOpcode()) {
10555 default: break;
10556 case PPCISD::SHL:
10557 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
10558 return N->getOperand(0);
10559 break;
10560 case PPCISD::SRL:
10561 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
10562 return N->getOperand(0);
10563 break;
10564 case PPCISD::SRA:
10565 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
10566 if (C->isNullValue() || // 0 >>s V -> 0.
10567 C->isAllOnesValue()) // -1 >>s V -> -1.
10568 return N->getOperand(0);
10569 }
10570 break;
10571 case ISD::SIGN_EXTEND:
10572 case ISD::ZERO_EXTEND:
10573 case ISD::ANY_EXTEND:
10574 return DAGCombineExtBoolTrunc(N, DCI);
10575 case ISD::TRUNCATE:
10576 case ISD::SETCC:
10577 case ISD::SELECT_CC:
10578 return DAGCombineTruncBoolExt(N, DCI);
10579 case ISD::SINT_TO_FP:
10580 case ISD::UINT_TO_FP:
10581 return combineFPToIntToFP(N, DCI);
10582 case ISD::STORE: {
10583 // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
10584 if (Subtarget.hasSTFIWX() && !cast<StoreSDNode>(N)->isTruncatingStore() &&
10585 N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
10586 N->getOperand(1).getValueType() == MVT::i32 &&
10587 N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
10588 SDValue Val = N->getOperand(1).getOperand(0);
10589 if (Val.getValueType() == MVT::f32) {
10590 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
10591 DCI.AddToWorklist(Val.getNode());
10592 }
10593 Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
10594 DCI.AddToWorklist(Val.getNode());
10595
10596 SDValue Ops[] = {
10597 N->getOperand(0), Val, N->getOperand(2),
10598 DAG.getValueType(N->getOperand(1).getValueType())
10599 };
10600
10601 Val = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
10602 DAG.getVTList(MVT::Other), Ops,
10603 cast<StoreSDNode>(N)->getMemoryVT(),
10604 cast<StoreSDNode>(N)->getMemOperand());
10605 DCI.AddToWorklist(Val.getNode());
10606 return Val;
10607 }
10608
10609 // Turn STORE (BSWAP) -> sthbrx/stwbrx.
10610 if (cast<StoreSDNode>(N)->isUnindexed() &&
10611 N->getOperand(1).getOpcode() == ISD::BSWAP &&
10612 N->getOperand(1).getNode()->hasOneUse() &&
10613 (N->getOperand(1).getValueType() == MVT::i32 ||
10614 N->getOperand(1).getValueType() == MVT::i16 ||
10615 (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
10616 N->getOperand(1).getValueType() == MVT::i64))) {
10617 SDValue BSwapOp = N->getOperand(1).getOperand(0);
10618 // Do an any-extend to 32-bits if this is a half-word input.
10619 if (BSwapOp.getValueType() == MVT::i16)
10620 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
10621
10622 SDValue Ops[] = {
10623 N->getOperand(0), BSwapOp, N->getOperand(2),
10624 DAG.getValueType(N->getOperand(1).getValueType())
10625 };
10626 return
10627 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
10628 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
10629 cast<StoreSDNode>(N)->getMemOperand());
10630 }
10631
10632 // For little endian, VSX stores require generating xxswapd/lxvd2x.
10633 EVT VT = N->getOperand(1).getValueType();
10634 if (VT.isSimple()) {
10635 MVT StoreVT = VT.getSimpleVT();
10636 if (Subtarget.hasVSX() && Subtarget.isLittleEndian() &&
10637 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
10638 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
10639 return expandVSXStoreForLE(N, DCI);
10640 }
10641 break;
10642 }
10643 case ISD::LOAD: {
10644 LoadSDNode *LD = cast<LoadSDNode>(N);
10645 EVT VT = LD->getValueType(0);
10646
10647 // For little endian, VSX loads require generating lxvd2x/xxswapd.
10648 if (VT.isSimple()) {
10649 MVT LoadVT = VT.getSimpleVT();
10650 if (Subtarget.hasVSX() && Subtarget.isLittleEndian() &&
10651 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
10652 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
10653 return expandVSXLoadForLE(N, DCI);
10654 }
10655
10656 // We sometimes end up with a 64-bit integer load, from which we extract
10657 // two single-precision floating-point numbers. This happens with
10658 // std::complex<float>, and other similar structures, because of the way we
10659 // canonicalize structure copies. However, if we lack direct moves,
10660 // then the final bitcasts from the extracted integer values to the
10661 // floating-point numbers turn into store/load pairs. Even with direct moves,
10662 // just loading the two floating-point numbers is likely better.
10663 auto ReplaceTwoFloatLoad = [&]() {
10664 if (VT != MVT::i64)
10665 return false;
10666
10667 if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
10668 LD->isVolatile())
10669 return false;
10670
10671 // We're looking for a sequence like this:
10672 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
10673 // t16: i64 = srl t13, Constant:i32<32>
10674 // t17: i32 = truncate t16
10675 // t18: f32 = bitcast t17
10676 // t19: i32 = truncate t13
10677 // t20: f32 = bitcast t19
10678
10679 if (!LD->hasNUsesOfValue(2, 0))
10680 return false;
10681
10682 auto UI = LD->use_begin();
10683 while (UI.getUse().getResNo() != 0) ++UI;
10684 SDNode *Trunc = *UI++;
10685 while (UI.getUse().getResNo() != 0) ++UI;
10686 SDNode *RightShift = *UI;
10687 if (Trunc->getOpcode() != ISD::TRUNCATE)
10688 std::swap(Trunc, RightShift);
10689
10690 if (Trunc->getOpcode() != ISD::TRUNCATE ||
10691 Trunc->getValueType(0) != MVT::i32 ||
10692 !Trunc->hasOneUse())
10693 return false;
10694 if (RightShift->getOpcode() != ISD::SRL ||
10695 !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
10696 RightShift->getConstantOperandVal(1) != 32 ||
10697 !RightShift->hasOneUse())
10698 return false;
10699
10700 SDNode *Trunc2 = *RightShift->use_begin();
10701 if (Trunc2->getOpcode() != ISD::TRUNCATE ||
10702 Trunc2->getValueType(0) != MVT::i32 ||
10703 !Trunc2->hasOneUse())
10704 return false;
10705
10706 SDNode *Bitcast = *Trunc->use_begin();
10707 SDNode *Bitcast2 = *Trunc2->use_begin();
10708
10709 if (Bitcast->getOpcode() != ISD::BITCAST ||
10710 Bitcast->getValueType(0) != MVT::f32)
10711 return false;
10712 if (Bitcast2->getOpcode() != ISD::BITCAST ||
10713 Bitcast2->getValueType(0) != MVT::f32)
10714 return false;
10715
10716 if (Subtarget.isLittleEndian())
10717 std::swap(Bitcast, Bitcast2);
10718
10719 // Bitcast has the second float (in memory-layout order) and Bitcast2
10720 // has the first one.
10721
10722 SDValue BasePtr = LD->getBasePtr();
10723 if (LD->isIndexed()) {
10724 assert(LD->getAddressingMode() == ISD::PRE_INC &&
10725 "Non-pre-inc AM on PPC?");
10726 BasePtr =
10727 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
10728 LD->getOffset());
10729 }
10730
10731 SDValue FloatLoad =
10732 DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
10733 LD->getPointerInfo(), false, LD->isNonTemporal(),
10734 LD->isInvariant(), LD->getAlignment(), LD->getAAInfo());
10735 SDValue AddPtr =
10736 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
10737 BasePtr, DAG.getIntPtrConstant(4, dl));
10738 SDValue FloatLoad2 =
10739 DAG.getLoad(MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
10740 LD->getPointerInfo().getWithOffset(4), false,
10741 LD->isNonTemporal(), LD->isInvariant(),
10742 MinAlign(LD->getAlignment(), 4), LD->getAAInfo());
10743
10744 if (LD->isIndexed()) {
10745 // Note that DAGCombine should re-form any pre-increment load(s) from
10746 // what is produced here if that makes sense.
10747 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
10748 }
10749
10750 DCI.CombineTo(Bitcast2, FloatLoad);
10751 DCI.CombineTo(Bitcast, FloatLoad2);
10752
10753 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
10754 SDValue(FloatLoad2.getNode(), 1));
10755 return true;
10756 };
10757
10758 if (ReplaceTwoFloatLoad())
10759 return SDValue(N, 0);
10760
10761 EVT MemVT = LD->getMemoryVT();
10762 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
10763 unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty);
10764 Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext());
10765 unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy);
10766 if (LD->isUnindexed() && VT.isVector() &&
10767 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
10768 // P8 and later hardware should just use LOAD.
10769 !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 ||
10770 VT == MVT::v4i32 || VT == MVT::v4f32)) ||
10771 (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) &&
10772 LD->getAlignment() >= ScalarABIAlignment)) &&
10773 LD->getAlignment() < ABIAlignment) {
10774 // This is a type-legal unaligned Altivec or QPX load.
10775 SDValue Chain = LD->getChain();
10776 SDValue Ptr = LD->getBasePtr();
10777 bool isLittleEndian = Subtarget.isLittleEndian();
10778
10779 // This implements the loading of unaligned vectors as described in
10780 // the venerable Apple Velocity Engine overview. Specifically:
10781 // https://developer.apple.com/hardwaredrivers/ve/alignment.html
10782 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
10783 //
10784 // The general idea is to expand a sequence of one or more unaligned
10785 // loads into an alignment-based permutation-control instruction (lvsl
10786 // or lvsr), a series of regular vector loads (which always truncate
10787 // their input address to an aligned address), and a series of
10788 // permutations. The results of these permutations are the requested
10789 // loaded values. The trick is that the last "extra" load is not taken
10790 // from the address you might suspect (sizeof(vector) bytes after the
10791 // last requested load), but rather sizeof(vector) - 1 bytes after the
10792 // last requested vector. The point of this is to avoid a page fault if
10793 // the base address happened to be aligned. This works because if the
10794 // base address is aligned, then adding less than a full vector length
10795 // will cause the last vector in the sequence to be (re)loaded.
10796 // Otherwise, the next vector will be fetched as you might suspect was
10797 // necessary.
10798
10799 // We might be able to reuse the permutation generation from
10800 // a different base address offset from this one by an aligned amount.
10801 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
10802 // optimization later.
10803 Intrinsic::ID Intr, IntrLD, IntrPerm;
10804 MVT PermCntlTy, PermTy, LDTy;
10805 if (Subtarget.hasAltivec()) {
10806 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr :
10807 Intrinsic::ppc_altivec_lvsl;
10808 IntrLD = Intrinsic::ppc_altivec_lvx;
10809 IntrPerm = Intrinsic::ppc_altivec_vperm;
10810 PermCntlTy = MVT::v16i8;
10811 PermTy = MVT::v4i32;
10812 LDTy = MVT::v4i32;
10813 } else {
10814 Intr = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld :
10815 Intrinsic::ppc_qpx_qvlpcls;
10816 IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd :
10817 Intrinsic::ppc_qpx_qvlfs;
10818 IntrPerm = Intrinsic::ppc_qpx_qvfperm;
10819 PermCntlTy = MVT::v4f64;
10820 PermTy = MVT::v4f64;
10821 LDTy = MemVT.getSimpleVT();
10822 }
10823
10824 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
10825
10826 // Create the new MMO for the new base load. It is like the original MMO,
10827 // but represents an area in memory almost twice the vector size centered
10828 // on the original address. If the address is unaligned, we might start
10829 // reading up to (sizeof(vector)-1) bytes below the address of the
10830 // original unaligned load.
10831 MachineFunction &MF = DAG.getMachineFunction();
10832 MachineMemOperand *BaseMMO =
10833 MF.getMachineMemOperand(LD->getMemOperand(),
10834 -(long)MemVT.getStoreSize()+1,
10835 2*MemVT.getStoreSize()-1);
10836
10837 // Create the new base load.
10838 SDValue LDXIntID =
10839 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
10840 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
10841 SDValue BaseLoad =
10842 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
10843 DAG.getVTList(PermTy, MVT::Other),
10844 BaseLoadOps, LDTy, BaseMMO);
10845
10846 // Note that the value of IncOffset (which is provided to the next
10847 // load's pointer info offset value, and thus used to calculate the
10848 // alignment), and the value of IncValue (which is actually used to
10849 // increment the pointer value) are different! This is because we
10850 // require the next load to appear to be aligned, even though it
10851 // is actually offset from the base pointer by a lesser amount.
10852 int IncOffset = VT.getSizeInBits() / 8;
10853 int IncValue = IncOffset;
10854
10855 // Walk (both up and down) the chain looking for another load at the real
10856 // (aligned) offset (the alignment of the other load does not matter in
10857 // this case). If found, then do not use the offset reduction trick, as
10858 // that will prevent the loads from being later combined (as they would
10859 // otherwise be duplicates).
10860 if (!findConsecutiveLoad(LD, DAG))
10861 --IncValue;
10862
10863 SDValue Increment =
10864 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
10865 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
10866
10867 MachineMemOperand *ExtraMMO =
10868 MF.getMachineMemOperand(LD->getMemOperand(),
10869 1, 2*MemVT.getStoreSize()-1);
10870 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
10871 SDValue ExtraLoad =
10872 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
10873 DAG.getVTList(PermTy, MVT::Other),
10874 ExtraLoadOps, LDTy, ExtraMMO);
10875
10876 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
10877 BaseLoad.getValue(1), ExtraLoad.getValue(1));
10878
10879 // Because vperm has a big-endian bias, we must reverse the order
10880 // of the input vectors and complement the permute control vector
10881 // when generating little endian code. We have already handled the
10882 // latter by using lvsr instead of lvsl, so just reverse BaseLoad
10883 // and ExtraLoad here.
10884 SDValue Perm;
10885 if (isLittleEndian)
10886 Perm = BuildIntrinsicOp(IntrPerm,
10887 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
10888 else
10889 Perm = BuildIntrinsicOp(IntrPerm,
10890 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
10891
10892 if (VT != PermTy)
10893 Perm = Subtarget.hasAltivec() ?
10894 DAG.getNode(ISD::BITCAST, dl, VT, Perm) :
10895 DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX
10896 DAG.getTargetConstant(1, dl, MVT::i64));
10897 // second argument is 1 because this rounding
10898 // is always exact.
10899
10900 // The output of the permutation is our loaded result, the TokenFactor is
10901 // our new chain.
10902 DCI.CombineTo(N, Perm, TF);
10903 return SDValue(N, 0);
10904 }
10905 }
10906 break;
10907 case ISD::INTRINSIC_WO_CHAIN: {
10908 bool isLittleEndian = Subtarget.isLittleEndian();
10909 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
10910 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
10911 : Intrinsic::ppc_altivec_lvsl);
10912 if ((IID == Intr ||
10913 IID == Intrinsic::ppc_qpx_qvlpcld ||
10914 IID == Intrinsic::ppc_qpx_qvlpcls) &&
10915 N->getOperand(1)->getOpcode() == ISD::ADD) {
10916 SDValue Add = N->getOperand(1);
10917
10918 int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ?
10919 5 /* 32 byte alignment */ : 4 /* 16 byte alignment */;
10920
10921 if (DAG.MaskedValueIsZero(
10922 Add->getOperand(1),
10923 APInt::getAllOnesValue(Bits /* alignment */)
10924 .zext(
10925 Add.getValueType().getScalarType().getSizeInBits()))) {
10926 SDNode *BasePtr = Add->getOperand(0).getNode();
10927 for (SDNode::use_iterator UI = BasePtr->use_begin(),
10928 UE = BasePtr->use_end();
10929 UI != UE; ++UI) {
10930 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
10931 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) {
10932 // We've found another LVSL/LVSR, and this address is an aligned
10933 // multiple of that one. The results will be the same, so use the
10934 // one we've just found instead.
10935
10936 return SDValue(*UI, 0);
10937 }
10938 }
10939 }
10940
10941 if (isa<ConstantSDNode>(Add->getOperand(1))) {
10942 SDNode *BasePtr = Add->getOperand(0).getNode();
10943 for (SDNode::use_iterator UI = BasePtr->use_begin(),
10944 UE = BasePtr->use_end(); UI != UE; ++UI) {
10945 if (UI->getOpcode() == ISD::ADD &&
10946 isa<ConstantSDNode>(UI->getOperand(1)) &&
10947 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
10948 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
10949 (1ULL << Bits) == 0) {
10950 SDNode *OtherAdd = *UI;
10951 for (SDNode::use_iterator VI = OtherAdd->use_begin(),
10952 VE = OtherAdd->use_end(); VI != VE; ++VI) {
10953 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
10954 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
10955 return SDValue(*VI, 0);
10956 }
10957 }
10958 }
10959 }
10960 }
10961 }
10962 }
10963
10964 break;
10965 case ISD::INTRINSIC_W_CHAIN: {
10966 // For little endian, VSX loads require generating lxvd2x/xxswapd.
10967 if (Subtarget.hasVSX() && Subtarget.isLittleEndian()) {
10968 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
10969 default:
10970 break;
10971 case Intrinsic::ppc_vsx_lxvw4x:
10972 case Intrinsic::ppc_vsx_lxvd2x:
10973 return expandVSXLoadForLE(N, DCI);
10974 }
10975 }
10976 break;
10977 }
10978 case ISD::INTRINSIC_VOID: {
10979 // For little endian, VSX stores require generating xxswapd/stxvd2x.
10980 if (Subtarget.hasVSX() && Subtarget.isLittleEndian()) {
10981 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
10982 default:
10983 break;
10984 case Intrinsic::ppc_vsx_stxvw4x:
10985 case Intrinsic::ppc_vsx_stxvd2x:
10986 return expandVSXStoreForLE(N, DCI);
10987 }
10988 }
10989 break;
10990 }
10991 case ISD::BSWAP:
10992 // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
10993 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
10994 N->getOperand(0).hasOneUse() &&
10995 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
10996 (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
10997 N->getValueType(0) == MVT::i64))) {
10998 SDValue Load = N->getOperand(0);
10999 LoadSDNode *LD = cast<LoadSDNode>(Load);
11000 // Create the byte-swapping load.
11001 SDValue Ops[] = {
11002 LD->getChain(), // Chain
11003 LD->getBasePtr(), // Ptr
11004 DAG.getValueType(N->getValueType(0)) // VT
11005 };
11006 SDValue BSLoad =
11007 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
11008 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
11009 MVT::i64 : MVT::i32, MVT::Other),
11010 Ops, LD->getMemoryVT(), LD->getMemOperand());
11011
11012 // If this is an i16 load, insert the truncate.
11013 SDValue ResVal = BSLoad;
11014 if (N->getValueType(0) == MVT::i16)
11015 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
11016
11017 // First, combine the bswap away. This makes the value produced by the
11018 // load dead.
11019 DCI.CombineTo(N, ResVal);
11020
11021 // Next, combine the load away, we give it a bogus result value but a real
11022 // chain result. The result value is dead because the bswap is dead.
11023 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
11024
11025 // Return N so it doesn't get rechecked!
11026 return SDValue(N, 0);
11027 }
11028
11029 break;
11030 case PPCISD::VCMP: {
11031 // If a VCMPo node already exists with exactly the same operands as this
11032 // node, use its result instead of this node (VCMPo computes both a CR6 and
11033 // a normal output).
11034 //
11035 if (!N->getOperand(0).hasOneUse() &&
11036 !N->getOperand(1).hasOneUse() &&
11037 !N->getOperand(2).hasOneUse()) {
11038
11039 // Scan all of the users of the LHS, looking for VCMPo's that match.
11040 SDNode *VCMPoNode = nullptr;
11041
11042 SDNode *LHSN = N->getOperand(0).getNode();
11043 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
11044 UI != E; ++UI)
11045 if (UI->getOpcode() == PPCISD::VCMPo &&
11046 UI->getOperand(1) == N->getOperand(1) &&
11047 UI->getOperand(2) == N->getOperand(2) &&
11048 UI->getOperand(0) == N->getOperand(0)) {
11049 VCMPoNode = *UI;
11050 break;
11051 }
11052
11053 // If there is no VCMPo node, or if the flag value has a single use, don't
11054 // transform this.
11055 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
11056 break;
11057
11058 // Look at the (necessarily single) use of the flag value. If it has a
11059 // chain, this transformation is more complex. Note that multiple things
11060 // could use the value result, which we should ignore.
11061 SDNode *FlagUser = nullptr;
11062 for (SDNode::use_iterator UI = VCMPoNode->use_begin();
11063 FlagUser == nullptr; ++UI) {
11064 assert(UI != VCMPoNode->use_end() && "Didn't find user!");
11065 SDNode *User = *UI;
11066 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
11067 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
11068 FlagUser = User;
11069 break;
11070 }
11071 }
11072 }
11073
11074 // If the user is a MFOCRF instruction, we know this is safe.
11075 // Otherwise we give up for right now.
11076 if (FlagUser->getOpcode() == PPCISD::MFOCRF)
11077 return SDValue(VCMPoNode, 0);
11078 }
11079 break;
11080 }
11081 case ISD::BRCOND: {
11082 SDValue Cond = N->getOperand(1);
11083 SDValue Target = N->getOperand(2);
11084
11085 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
11086 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
11087 Intrinsic::ppc_is_decremented_ctr_nonzero) {
11088
11089 // We now need to make the intrinsic dead (it cannot be instruction
11090 // selected).
11091 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
11092 assert(Cond.getNode()->hasOneUse() &&
11093 "Counter decrement has more than one use");
11094
11095 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
11096 N->getOperand(0), Target);
11097 }
11098 }
11099 break;
11100 case ISD::BR_CC: {
11101 // If this is a branch on an altivec predicate comparison, lower this so
11102 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This
11103 // lowering is done pre-legalize, because the legalizer lowers the predicate
11104 // compare down to code that is difficult to reassemble.
11105 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
11106 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
11107
11108 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
11109 // value. If so, pass-through the AND to get to the intrinsic.
11110 if (LHS.getOpcode() == ISD::AND &&
11111 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
11112 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
11113 Intrinsic::ppc_is_decremented_ctr_nonzero &&
11114 isa<ConstantSDNode>(LHS.getOperand(1)) &&
11115 !isNullConstant(LHS.getOperand(1)))
11116 LHS = LHS.getOperand(0);
11117
11118 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
11119 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
11120 Intrinsic::ppc_is_decremented_ctr_nonzero &&
11121 isa<ConstantSDNode>(RHS)) {
11122 assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
11123 "Counter decrement comparison is not EQ or NE");
11124
11125 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
11126 bool isBDNZ = (CC == ISD::SETEQ && Val) ||
11127 (CC == ISD::SETNE && !Val);
11128
11129 // We now need to make the intrinsic dead (it cannot be instruction
11130 // selected).
11131 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
11132 assert(LHS.getNode()->hasOneUse() &&
11133 "Counter decrement has more than one use");
11134
11135 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
11136 N->getOperand(0), N->getOperand(4));
11137 }
11138
11139 int CompareOpc;
11140 bool isDot;
11141
11142 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
11143 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
11144 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
11145 assert(isDot && "Can't compare against a vector result!");
11146
11147 // If this is a comparison against something other than 0/1, then we know
11148 // that the condition is never/always true.
11149 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
11150 if (Val != 0 && Val != 1) {
11151 if (CC == ISD::SETEQ) // Cond never true, remove branch.
11152 return N->getOperand(0);
11153 // Always !=, turn it into an unconditional branch.
11154 return DAG.getNode(ISD::BR, dl, MVT::Other,
11155 N->getOperand(0), N->getOperand(4));
11156 }
11157
11158 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
11159
11160 // Create the PPCISD altivec 'dot' comparison node.
11161 SDValue Ops[] = {
11162 LHS.getOperand(2), // LHS of compare
11163 LHS.getOperand(3), // RHS of compare
11164 DAG.getConstant(CompareOpc, dl, MVT::i32)
11165 };
11166 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
11167 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
11168
11169 // Unpack the result based on how the target uses it.
11170 PPC::Predicate CompOpc;
11171 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
11172 default: // Can't happen, don't crash on invalid number though.
11173 case 0: // Branch on the value of the EQ bit of CR6.
11174 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
11175 break;
11176 case 1: // Branch on the inverted value of the EQ bit of CR6.
11177 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
11178 break;
11179 case 2: // Branch on the value of the LT bit of CR6.
11180 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
11181 break;
11182 case 3: // Branch on the inverted value of the LT bit of CR6.
11183 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
11184 break;
11185 }
11186
11187 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
11188 DAG.getConstant(CompOpc, dl, MVT::i32),
11189 DAG.getRegister(PPC::CR6, MVT::i32),
11190 N->getOperand(4), CompNode.getValue(1));
11191 }
11192 break;
11193 }
11194 case ISD::BUILD_VECTOR:
11195 return DAGCombineBuildVector(N, DCI);
11196 }
11197
11198 return SDValue();
11199 }
11200
11201 SDValue
BuildSDIVPow2(SDNode * N,const APInt & Divisor,SelectionDAG & DAG,std::vector<SDNode * > * Created) const11202 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
11203 SelectionDAG &DAG,
11204 std::vector<SDNode *> *Created) const {
11205 // fold (sdiv X, pow2)
11206 EVT VT = N->getValueType(0);
11207 if (VT == MVT::i64 && !Subtarget.isPPC64())
11208 return SDValue();
11209 if ((VT != MVT::i32 && VT != MVT::i64) ||
11210 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
11211 return SDValue();
11212
11213 SDLoc DL(N);
11214 SDValue N0 = N->getOperand(0);
11215
11216 bool IsNegPow2 = (-Divisor).isPowerOf2();
11217 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
11218 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
11219
11220 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
11221 if (Created)
11222 Created->push_back(Op.getNode());
11223
11224 if (IsNegPow2) {
11225 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
11226 if (Created)
11227 Created->push_back(Op.getNode());
11228 }
11229
11230 return Op;
11231 }
11232
11233 //===----------------------------------------------------------------------===//
11234 // Inline Assembly Support
11235 //===----------------------------------------------------------------------===//
11236
computeKnownBitsForTargetNode(const SDValue Op,APInt & KnownZero,APInt & KnownOne,const SelectionDAG & DAG,unsigned Depth) const11237 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
11238 APInt &KnownZero,
11239 APInt &KnownOne,
11240 const SelectionDAG &DAG,
11241 unsigned Depth) const {
11242 KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
11243 switch (Op.getOpcode()) {
11244 default: break;
11245 case PPCISD::LBRX: {
11246 // lhbrx is known to have the top bits cleared out.
11247 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
11248 KnownZero = 0xFFFF0000;
11249 break;
11250 }
11251 case ISD::INTRINSIC_WO_CHAIN: {
11252 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
11253 default: break;
11254 case Intrinsic::ppc_altivec_vcmpbfp_p:
11255 case Intrinsic::ppc_altivec_vcmpeqfp_p:
11256 case Intrinsic::ppc_altivec_vcmpequb_p:
11257 case Intrinsic::ppc_altivec_vcmpequh_p:
11258 case Intrinsic::ppc_altivec_vcmpequw_p:
11259 case Intrinsic::ppc_altivec_vcmpequd_p:
11260 case Intrinsic::ppc_altivec_vcmpgefp_p:
11261 case Intrinsic::ppc_altivec_vcmpgtfp_p:
11262 case Intrinsic::ppc_altivec_vcmpgtsb_p:
11263 case Intrinsic::ppc_altivec_vcmpgtsh_p:
11264 case Intrinsic::ppc_altivec_vcmpgtsw_p:
11265 case Intrinsic::ppc_altivec_vcmpgtsd_p:
11266 case Intrinsic::ppc_altivec_vcmpgtub_p:
11267 case Intrinsic::ppc_altivec_vcmpgtuh_p:
11268 case Intrinsic::ppc_altivec_vcmpgtuw_p:
11269 case Intrinsic::ppc_altivec_vcmpgtud_p:
11270 KnownZero = ~1U; // All bits but the low one are known to be zero.
11271 break;
11272 }
11273 }
11274 }
11275 }
11276
getPrefLoopAlignment(MachineLoop * ML) const11277 unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
11278 switch (Subtarget.getDarwinDirective()) {
11279 default: break;
11280 case PPC::DIR_970:
11281 case PPC::DIR_PWR4:
11282 case PPC::DIR_PWR5:
11283 case PPC::DIR_PWR5X:
11284 case PPC::DIR_PWR6:
11285 case PPC::DIR_PWR6X:
11286 case PPC::DIR_PWR7:
11287 case PPC::DIR_PWR8:
11288 case PPC::DIR_PWR9: {
11289 if (!ML)
11290 break;
11291
11292 const PPCInstrInfo *TII = Subtarget.getInstrInfo();
11293
11294 // For small loops (between 5 and 8 instructions), align to a 32-byte
11295 // boundary so that the entire loop fits in one instruction-cache line.
11296 uint64_t LoopSize = 0;
11297 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
11298 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
11299 LoopSize += TII->GetInstSizeInBytes(*J);
11300 if (LoopSize > 32)
11301 break;
11302 }
11303
11304 if (LoopSize > 16 && LoopSize <= 32)
11305 return 5;
11306
11307 break;
11308 }
11309 }
11310
11311 return TargetLowering::getPrefLoopAlignment(ML);
11312 }
11313
11314 /// getConstraintType - Given a constraint, return the type of
11315 /// constraint it is for this target.
11316 PPCTargetLowering::ConstraintType
getConstraintType(StringRef Constraint) const11317 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
11318 if (Constraint.size() == 1) {
11319 switch (Constraint[0]) {
11320 default: break;
11321 case 'b':
11322 case 'r':
11323 case 'f':
11324 case 'd':
11325 case 'v':
11326 case 'y':
11327 return C_RegisterClass;
11328 case 'Z':
11329 // FIXME: While Z does indicate a memory constraint, it specifically
11330 // indicates an r+r address (used in conjunction with the 'y' modifier
11331 // in the replacement string). Currently, we're forcing the base
11332 // register to be r0 in the asm printer (which is interpreted as zero)
11333 // and forming the complete address in the second register. This is
11334 // suboptimal.
11335 return C_Memory;
11336 }
11337 } else if (Constraint == "wc") { // individual CR bits.
11338 return C_RegisterClass;
11339 } else if (Constraint == "wa" || Constraint == "wd" ||
11340 Constraint == "wf" || Constraint == "ws") {
11341 return C_RegisterClass; // VSX registers.
11342 }
11343 return TargetLowering::getConstraintType(Constraint);
11344 }
11345
11346 /// Examine constraint type and operand type and determine a weight value.
11347 /// This object must already have been set up with the operand type
11348 /// and the current alternative constraint selected.
11349 TargetLowering::ConstraintWeight
getSingleConstraintMatchWeight(AsmOperandInfo & info,const char * constraint) const11350 PPCTargetLowering::getSingleConstraintMatchWeight(
11351 AsmOperandInfo &info, const char *constraint) const {
11352 ConstraintWeight weight = CW_Invalid;
11353 Value *CallOperandVal = info.CallOperandVal;
11354 // If we don't have a value, we can't do a match,
11355 // but allow it at the lowest weight.
11356 if (!CallOperandVal)
11357 return CW_Default;
11358 Type *type = CallOperandVal->getType();
11359
11360 // Look at the constraint type.
11361 if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
11362 return CW_Register; // an individual CR bit.
11363 else if ((StringRef(constraint) == "wa" ||
11364 StringRef(constraint) == "wd" ||
11365 StringRef(constraint) == "wf") &&
11366 type->isVectorTy())
11367 return CW_Register;
11368 else if (StringRef(constraint) == "ws" && type->isDoubleTy())
11369 return CW_Register;
11370
11371 switch (*constraint) {
11372 default:
11373 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
11374 break;
11375 case 'b':
11376 if (type->isIntegerTy())
11377 weight = CW_Register;
11378 break;
11379 case 'f':
11380 if (type->isFloatTy())
11381 weight = CW_Register;
11382 break;
11383 case 'd':
11384 if (type->isDoubleTy())
11385 weight = CW_Register;
11386 break;
11387 case 'v':
11388 if (type->isVectorTy())
11389 weight = CW_Register;
11390 break;
11391 case 'y':
11392 weight = CW_Register;
11393 break;
11394 case 'Z':
11395 weight = CW_Memory;
11396 break;
11397 }
11398 return weight;
11399 }
11400
11401 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const11402 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
11403 StringRef Constraint,
11404 MVT VT) const {
11405 if (Constraint.size() == 1) {
11406 // GCC RS6000 Constraint Letters
11407 switch (Constraint[0]) {
11408 case 'b': // R1-R31
11409 if (VT == MVT::i64 && Subtarget.isPPC64())
11410 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
11411 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
11412 case 'r': // R0-R31
11413 if (VT == MVT::i64 && Subtarget.isPPC64())
11414 return std::make_pair(0U, &PPC::G8RCRegClass);
11415 return std::make_pair(0U, &PPC::GPRCRegClass);
11416 // 'd' and 'f' constraints are both defined to be "the floating point
11417 // registers", where one is for 32-bit and the other for 64-bit. We don't
11418 // really care overly much here so just give them all the same reg classes.
11419 case 'd':
11420 case 'f':
11421 if (VT == MVT::f32 || VT == MVT::i32)
11422 return std::make_pair(0U, &PPC::F4RCRegClass);
11423 if (VT == MVT::f64 || VT == MVT::i64)
11424 return std::make_pair(0U, &PPC::F8RCRegClass);
11425 if (VT == MVT::v4f64 && Subtarget.hasQPX())
11426 return std::make_pair(0U, &PPC::QFRCRegClass);
11427 if (VT == MVT::v4f32 && Subtarget.hasQPX())
11428 return std::make_pair(0U, &PPC::QSRCRegClass);
11429 break;
11430 case 'v':
11431 if (VT == MVT::v4f64 && Subtarget.hasQPX())
11432 return std::make_pair(0U, &PPC::QFRCRegClass);
11433 if (VT == MVT::v4f32 && Subtarget.hasQPX())
11434 return std::make_pair(0U, &PPC::QSRCRegClass);
11435 if (Subtarget.hasAltivec())
11436 return std::make_pair(0U, &PPC::VRRCRegClass);
11437 case 'y': // crrc
11438 return std::make_pair(0U, &PPC::CRRCRegClass);
11439 }
11440 } else if (Constraint == "wc" && Subtarget.useCRBits()) {
11441 // An individual CR bit.
11442 return std::make_pair(0U, &PPC::CRBITRCRegClass);
11443 } else if ((Constraint == "wa" || Constraint == "wd" ||
11444 Constraint == "wf") && Subtarget.hasVSX()) {
11445 return std::make_pair(0U, &PPC::VSRCRegClass);
11446 } else if (Constraint == "ws" && Subtarget.hasVSX()) {
11447 if (VT == MVT::f32 && Subtarget.hasP8Vector())
11448 return std::make_pair(0U, &PPC::VSSRCRegClass);
11449 else
11450 return std::make_pair(0U, &PPC::VSFRCRegClass);
11451 }
11452
11453 std::pair<unsigned, const TargetRegisterClass *> R =
11454 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
11455
11456 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
11457 // (which we call X[0-9]+). If a 64-bit value has been requested, and a
11458 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
11459 // register.
11460 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
11461 // the AsmName field from *RegisterInfo.td, then this would not be necessary.
11462 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
11463 PPC::GPRCRegClass.contains(R.first))
11464 return std::make_pair(TRI->getMatchingSuperReg(R.first,
11465 PPC::sub_32, &PPC::G8RCRegClass),
11466 &PPC::G8RCRegClass);
11467
11468 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
11469 if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
11470 R.first = PPC::CR0;
11471 R.second = &PPC::CRRCRegClass;
11472 }
11473
11474 return R;
11475 }
11476
11477 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
11478 /// vector. If it is invalid, don't add anything to Ops.
LowerAsmOperandForConstraint(SDValue Op,std::string & Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const11479 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
11480 std::string &Constraint,
11481 std::vector<SDValue>&Ops,
11482 SelectionDAG &DAG) const {
11483 SDValue Result;
11484
11485 // Only support length 1 constraints.
11486 if (Constraint.length() > 1) return;
11487
11488 char Letter = Constraint[0];
11489 switch (Letter) {
11490 default: break;
11491 case 'I':
11492 case 'J':
11493 case 'K':
11494 case 'L':
11495 case 'M':
11496 case 'N':
11497 case 'O':
11498 case 'P': {
11499 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
11500 if (!CST) return; // Must be an immediate to match.
11501 SDLoc dl(Op);
11502 int64_t Value = CST->getSExtValue();
11503 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
11504 // numbers are printed as such.
11505 switch (Letter) {
11506 default: llvm_unreachable("Unknown constraint letter!");
11507 case 'I': // "I" is a signed 16-bit constant.
11508 if (isInt<16>(Value))
11509 Result = DAG.getTargetConstant(Value, dl, TCVT);
11510 break;
11511 case 'J': // "J" is a constant with only the high-order 16 bits nonzero.
11512 if (isShiftedUInt<16, 16>(Value))
11513 Result = DAG.getTargetConstant(Value, dl, TCVT);
11514 break;
11515 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits.
11516 if (isShiftedInt<16, 16>(Value))
11517 Result = DAG.getTargetConstant(Value, dl, TCVT);
11518 break;
11519 case 'K': // "K" is a constant with only the low-order 16 bits nonzero.
11520 if (isUInt<16>(Value))
11521 Result = DAG.getTargetConstant(Value, dl, TCVT);
11522 break;
11523 case 'M': // "M" is a constant that is greater than 31.
11524 if (Value > 31)
11525 Result = DAG.getTargetConstant(Value, dl, TCVT);
11526 break;
11527 case 'N': // "N" is a positive constant that is an exact power of two.
11528 if (Value > 0 && isPowerOf2_64(Value))
11529 Result = DAG.getTargetConstant(Value, dl, TCVT);
11530 break;
11531 case 'O': // "O" is the constant zero.
11532 if (Value == 0)
11533 Result = DAG.getTargetConstant(Value, dl, TCVT);
11534 break;
11535 case 'P': // "P" is a constant whose negation is a signed 16-bit constant.
11536 if (isInt<16>(-Value))
11537 Result = DAG.getTargetConstant(Value, dl, TCVT);
11538 break;
11539 }
11540 break;
11541 }
11542 }
11543
11544 if (Result.getNode()) {
11545 Ops.push_back(Result);
11546 return;
11547 }
11548
11549 // Handle standard constraint letters.
11550 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
11551 }
11552
11553 // isLegalAddressingMode - Return true if the addressing mode represented
11554 // by AM is legal for this target, for a load/store of the specified type.
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS) const11555 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
11556 const AddrMode &AM, Type *Ty,
11557 unsigned AS) const {
11558 // PPC does not allow r+i addressing modes for vectors!
11559 if (Ty->isVectorTy() && AM.BaseOffs != 0)
11560 return false;
11561
11562 // PPC allows a sign-extended 16-bit immediate field.
11563 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
11564 return false;
11565
11566 // No global is ever allowed as a base.
11567 if (AM.BaseGV)
11568 return false;
11569
11570 // PPC only support r+r,
11571 switch (AM.Scale) {
11572 case 0: // "r+i" or just "i", depending on HasBaseReg.
11573 break;
11574 case 1:
11575 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
11576 return false;
11577 // Otherwise we have r+r or r+i.
11578 break;
11579 case 2:
11580 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
11581 return false;
11582 // Allow 2*r as r+r.
11583 break;
11584 default:
11585 // No other scales are supported.
11586 return false;
11587 }
11588
11589 return true;
11590 }
11591
LowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const11592 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
11593 SelectionDAG &DAG) const {
11594 MachineFunction &MF = DAG.getMachineFunction();
11595 MachineFrameInfo *MFI = MF.getFrameInfo();
11596 MFI->setReturnAddressIsTaken(true);
11597
11598 if (verifyReturnAddressArgumentIsConstant(Op, DAG))
11599 return SDValue();
11600
11601 SDLoc dl(Op);
11602 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
11603
11604 // Make sure the function does not optimize away the store of the RA to
11605 // the stack.
11606 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
11607 FuncInfo->setLRStoreRequired();
11608 bool isPPC64 = Subtarget.isPPC64();
11609 auto PtrVT = getPointerTy(MF.getDataLayout());
11610
11611 if (Depth > 0) {
11612 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
11613 SDValue Offset =
11614 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
11615 isPPC64 ? MVT::i64 : MVT::i32);
11616 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
11617 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
11618 MachinePointerInfo(), false, false, false, 0);
11619 }
11620
11621 // Just load the return address off the stack.
11622 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
11623 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
11624 MachinePointerInfo(), false, false, false, 0);
11625 }
11626
LowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const11627 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
11628 SelectionDAG &DAG) const {
11629 SDLoc dl(Op);
11630 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
11631
11632 MachineFunction &MF = DAG.getMachineFunction();
11633 MachineFrameInfo *MFI = MF.getFrameInfo();
11634 MFI->setFrameAddressIsTaken(true);
11635
11636 EVT PtrVT = getPointerTy(MF.getDataLayout());
11637 bool isPPC64 = PtrVT == MVT::i64;
11638
11639 // Naked functions never have a frame pointer, and so we use r1. For all
11640 // other functions, this decision must be delayed until during PEI.
11641 unsigned FrameReg;
11642 if (MF.getFunction()->hasFnAttribute(Attribute::Naked))
11643 FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
11644 else
11645 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
11646
11647 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
11648 PtrVT);
11649 while (Depth--)
11650 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
11651 FrameAddr, MachinePointerInfo(), false, false,
11652 false, 0);
11653 return FrameAddr;
11654 }
11655
11656 // FIXME? Maybe this could be a TableGen attribute on some registers and
11657 // this table could be generated automatically from RegInfo.
getRegisterByName(const char * RegName,EVT VT,SelectionDAG & DAG) const11658 unsigned PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT,
11659 SelectionDAG &DAG) const {
11660 bool isPPC64 = Subtarget.isPPC64();
11661 bool isDarwinABI = Subtarget.isDarwinABI();
11662
11663 if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) ||
11664 (!isPPC64 && VT != MVT::i32))
11665 report_fatal_error("Invalid register global variable type");
11666
11667 bool is64Bit = isPPC64 && VT == MVT::i64;
11668 unsigned Reg = StringSwitch<unsigned>(RegName)
11669 .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
11670 .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2)
11671 .Case("r13", (!isPPC64 && isDarwinABI) ? 0 :
11672 (is64Bit ? PPC::X13 : PPC::R13))
11673 .Default(0);
11674
11675 if (Reg)
11676 return Reg;
11677 report_fatal_error("Invalid register name global variable");
11678 }
11679
11680 bool
isOffsetFoldingLegal(const GlobalAddressSDNode * GA) const11681 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
11682 // The PowerPC target isn't yet aware of offsets.
11683 return false;
11684 }
11685
getTgtMemIntrinsic(IntrinsicInfo & Info,const CallInst & I,unsigned Intrinsic) const11686 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
11687 const CallInst &I,
11688 unsigned Intrinsic) const {
11689
11690 switch (Intrinsic) {
11691 case Intrinsic::ppc_qpx_qvlfd:
11692 case Intrinsic::ppc_qpx_qvlfs:
11693 case Intrinsic::ppc_qpx_qvlfcd:
11694 case Intrinsic::ppc_qpx_qvlfcs:
11695 case Intrinsic::ppc_qpx_qvlfiwa:
11696 case Intrinsic::ppc_qpx_qvlfiwz:
11697 case Intrinsic::ppc_altivec_lvx:
11698 case Intrinsic::ppc_altivec_lvxl:
11699 case Intrinsic::ppc_altivec_lvebx:
11700 case Intrinsic::ppc_altivec_lvehx:
11701 case Intrinsic::ppc_altivec_lvewx:
11702 case Intrinsic::ppc_vsx_lxvd2x:
11703 case Intrinsic::ppc_vsx_lxvw4x: {
11704 EVT VT;
11705 switch (Intrinsic) {
11706 case Intrinsic::ppc_altivec_lvebx:
11707 VT = MVT::i8;
11708 break;
11709 case Intrinsic::ppc_altivec_lvehx:
11710 VT = MVT::i16;
11711 break;
11712 case Intrinsic::ppc_altivec_lvewx:
11713 VT = MVT::i32;
11714 break;
11715 case Intrinsic::ppc_vsx_lxvd2x:
11716 VT = MVT::v2f64;
11717 break;
11718 case Intrinsic::ppc_qpx_qvlfd:
11719 VT = MVT::v4f64;
11720 break;
11721 case Intrinsic::ppc_qpx_qvlfs:
11722 VT = MVT::v4f32;
11723 break;
11724 case Intrinsic::ppc_qpx_qvlfcd:
11725 VT = MVT::v2f64;
11726 break;
11727 case Intrinsic::ppc_qpx_qvlfcs:
11728 VT = MVT::v2f32;
11729 break;
11730 default:
11731 VT = MVT::v4i32;
11732 break;
11733 }
11734
11735 Info.opc = ISD::INTRINSIC_W_CHAIN;
11736 Info.memVT = VT;
11737 Info.ptrVal = I.getArgOperand(0);
11738 Info.offset = -VT.getStoreSize()+1;
11739 Info.size = 2*VT.getStoreSize()-1;
11740 Info.align = 1;
11741 Info.vol = false;
11742 Info.readMem = true;
11743 Info.writeMem = false;
11744 return true;
11745 }
11746 case Intrinsic::ppc_qpx_qvlfda:
11747 case Intrinsic::ppc_qpx_qvlfsa:
11748 case Intrinsic::ppc_qpx_qvlfcda:
11749 case Intrinsic::ppc_qpx_qvlfcsa:
11750 case Intrinsic::ppc_qpx_qvlfiwaa:
11751 case Intrinsic::ppc_qpx_qvlfiwza: {
11752 EVT VT;
11753 switch (Intrinsic) {
11754 case Intrinsic::ppc_qpx_qvlfda:
11755 VT = MVT::v4f64;
11756 break;
11757 case Intrinsic::ppc_qpx_qvlfsa:
11758 VT = MVT::v4f32;
11759 break;
11760 case Intrinsic::ppc_qpx_qvlfcda:
11761 VT = MVT::v2f64;
11762 break;
11763 case Intrinsic::ppc_qpx_qvlfcsa:
11764 VT = MVT::v2f32;
11765 break;
11766 default:
11767 VT = MVT::v4i32;
11768 break;
11769 }
11770
11771 Info.opc = ISD::INTRINSIC_W_CHAIN;
11772 Info.memVT = VT;
11773 Info.ptrVal = I.getArgOperand(0);
11774 Info.offset = 0;
11775 Info.size = VT.getStoreSize();
11776 Info.align = 1;
11777 Info.vol = false;
11778 Info.readMem = true;
11779 Info.writeMem = false;
11780 return true;
11781 }
11782 case Intrinsic::ppc_qpx_qvstfd:
11783 case Intrinsic::ppc_qpx_qvstfs:
11784 case Intrinsic::ppc_qpx_qvstfcd:
11785 case Intrinsic::ppc_qpx_qvstfcs:
11786 case Intrinsic::ppc_qpx_qvstfiw:
11787 case Intrinsic::ppc_altivec_stvx:
11788 case Intrinsic::ppc_altivec_stvxl:
11789 case Intrinsic::ppc_altivec_stvebx:
11790 case Intrinsic::ppc_altivec_stvehx:
11791 case Intrinsic::ppc_altivec_stvewx:
11792 case Intrinsic::ppc_vsx_stxvd2x:
11793 case Intrinsic::ppc_vsx_stxvw4x: {
11794 EVT VT;
11795 switch (Intrinsic) {
11796 case Intrinsic::ppc_altivec_stvebx:
11797 VT = MVT::i8;
11798 break;
11799 case Intrinsic::ppc_altivec_stvehx:
11800 VT = MVT::i16;
11801 break;
11802 case Intrinsic::ppc_altivec_stvewx:
11803 VT = MVT::i32;
11804 break;
11805 case Intrinsic::ppc_vsx_stxvd2x:
11806 VT = MVT::v2f64;
11807 break;
11808 case Intrinsic::ppc_qpx_qvstfd:
11809 VT = MVT::v4f64;
11810 break;
11811 case Intrinsic::ppc_qpx_qvstfs:
11812 VT = MVT::v4f32;
11813 break;
11814 case Intrinsic::ppc_qpx_qvstfcd:
11815 VT = MVT::v2f64;
11816 break;
11817 case Intrinsic::ppc_qpx_qvstfcs:
11818 VT = MVT::v2f32;
11819 break;
11820 default:
11821 VT = MVT::v4i32;
11822 break;
11823 }
11824
11825 Info.opc = ISD::INTRINSIC_VOID;
11826 Info.memVT = VT;
11827 Info.ptrVal = I.getArgOperand(1);
11828 Info.offset = -VT.getStoreSize()+1;
11829 Info.size = 2*VT.getStoreSize()-1;
11830 Info.align = 1;
11831 Info.vol = false;
11832 Info.readMem = false;
11833 Info.writeMem = true;
11834 return true;
11835 }
11836 case Intrinsic::ppc_qpx_qvstfda:
11837 case Intrinsic::ppc_qpx_qvstfsa:
11838 case Intrinsic::ppc_qpx_qvstfcda:
11839 case Intrinsic::ppc_qpx_qvstfcsa:
11840 case Intrinsic::ppc_qpx_qvstfiwa: {
11841 EVT VT;
11842 switch (Intrinsic) {
11843 case Intrinsic::ppc_qpx_qvstfda:
11844 VT = MVT::v4f64;
11845 break;
11846 case Intrinsic::ppc_qpx_qvstfsa:
11847 VT = MVT::v4f32;
11848 break;
11849 case Intrinsic::ppc_qpx_qvstfcda:
11850 VT = MVT::v2f64;
11851 break;
11852 case Intrinsic::ppc_qpx_qvstfcsa:
11853 VT = MVT::v2f32;
11854 break;
11855 default:
11856 VT = MVT::v4i32;
11857 break;
11858 }
11859
11860 Info.opc = ISD::INTRINSIC_VOID;
11861 Info.memVT = VT;
11862 Info.ptrVal = I.getArgOperand(1);
11863 Info.offset = 0;
11864 Info.size = VT.getStoreSize();
11865 Info.align = 1;
11866 Info.vol = false;
11867 Info.readMem = false;
11868 Info.writeMem = true;
11869 return true;
11870 }
11871 default:
11872 break;
11873 }
11874
11875 return false;
11876 }
11877
11878 /// getOptimalMemOpType - Returns the target specific optimal type for load
11879 /// and store operations as a result of memset, memcpy, and memmove
11880 /// lowering. If DstAlign is zero that means it's safe to destination
11881 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
11882 /// means there isn't a need to check it against alignment requirement,
11883 /// probably because the source does not need to be loaded. If 'IsMemset' is
11884 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
11885 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
11886 /// source is constant so it does not need to be loaded.
11887 /// It returns EVT::Other if the type should be determined using generic
11888 /// target-independent logic.
getOptimalMemOpType(uint64_t Size,unsigned DstAlign,unsigned SrcAlign,bool IsMemset,bool ZeroMemset,bool MemcpyStrSrc,MachineFunction & MF) const11889 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
11890 unsigned DstAlign, unsigned SrcAlign,
11891 bool IsMemset, bool ZeroMemset,
11892 bool MemcpyStrSrc,
11893 MachineFunction &MF) const {
11894 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
11895 const Function *F = MF.getFunction();
11896 // When expanding a memset, require at least two QPX instructions to cover
11897 // the cost of loading the value to be stored from the constant pool.
11898 if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) &&
11899 (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) &&
11900 !F->hasFnAttribute(Attribute::NoImplicitFloat)) {
11901 return MVT::v4f64;
11902 }
11903
11904 // We should use Altivec/VSX loads and stores when available. For unaligned
11905 // addresses, unaligned VSX loads are only fast starting with the P8.
11906 if (Subtarget.hasAltivec() && Size >= 16 &&
11907 (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) ||
11908 ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
11909 return MVT::v4i32;
11910 }
11911
11912 if (Subtarget.isPPC64()) {
11913 return MVT::i64;
11914 }
11915
11916 return MVT::i32;
11917 }
11918
11919 /// \brief Returns true if it is beneficial to convert a load of a constant
11920 /// to just the constant itself.
shouldConvertConstantLoadToIntImm(const APInt & Imm,Type * Ty) const11921 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
11922 Type *Ty) const {
11923 assert(Ty->isIntegerTy());
11924
11925 unsigned BitSize = Ty->getPrimitiveSizeInBits();
11926 return !(BitSize == 0 || BitSize > 64);
11927 }
11928
isTruncateFree(Type * Ty1,Type * Ty2) const11929 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
11930 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
11931 return false;
11932 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
11933 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
11934 return NumBits1 == 64 && NumBits2 == 32;
11935 }
11936
isTruncateFree(EVT VT1,EVT VT2) const11937 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
11938 if (!VT1.isInteger() || !VT2.isInteger())
11939 return false;
11940 unsigned NumBits1 = VT1.getSizeInBits();
11941 unsigned NumBits2 = VT2.getSizeInBits();
11942 return NumBits1 == 64 && NumBits2 == 32;
11943 }
11944
isZExtFree(SDValue Val,EVT VT2) const11945 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
11946 // Generally speaking, zexts are not free, but they are free when they can be
11947 // folded with other operations.
11948 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
11949 EVT MemVT = LD->getMemoryVT();
11950 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
11951 (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
11952 (LD->getExtensionType() == ISD::NON_EXTLOAD ||
11953 LD->getExtensionType() == ISD::ZEXTLOAD))
11954 return true;
11955 }
11956
11957 // FIXME: Add other cases...
11958 // - 32-bit shifts with a zext to i64
11959 // - zext after ctlz, bswap, etc.
11960 // - zext after and by a constant mask
11961
11962 return TargetLowering::isZExtFree(Val, VT2);
11963 }
11964
isFPExtFree(EVT VT) const11965 bool PPCTargetLowering::isFPExtFree(EVT VT) const {
11966 assert(VT.isFloatingPoint());
11967 return true;
11968 }
11969
isLegalICmpImmediate(int64_t Imm) const11970 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
11971 return isInt<16>(Imm) || isUInt<16>(Imm);
11972 }
11973
isLegalAddImmediate(int64_t Imm) const11974 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
11975 return isInt<16>(Imm) || isUInt<16>(Imm);
11976 }
11977
allowsMisalignedMemoryAccesses(EVT VT,unsigned,unsigned,bool * Fast) const11978 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
11979 unsigned,
11980 unsigned,
11981 bool *Fast) const {
11982 if (DisablePPCUnaligned)
11983 return false;
11984
11985 // PowerPC supports unaligned memory access for simple non-vector types.
11986 // Although accessing unaligned addresses is not as efficient as accessing
11987 // aligned addresses, it is generally more efficient than manual expansion,
11988 // and generally only traps for software emulation when crossing page
11989 // boundaries.
11990
11991 if (!VT.isSimple())
11992 return false;
11993
11994 if (VT.getSimpleVT().isVector()) {
11995 if (Subtarget.hasVSX()) {
11996 if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
11997 VT != MVT::v4f32 && VT != MVT::v4i32)
11998 return false;
11999 } else {
12000 return false;
12001 }
12002 }
12003
12004 if (VT == MVT::ppcf128)
12005 return false;
12006
12007 if (Fast)
12008 *Fast = true;
12009
12010 return true;
12011 }
12012
isFMAFasterThanFMulAndFAdd(EVT VT) const12013 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
12014 VT = VT.getScalarType();
12015
12016 if (!VT.isSimple())
12017 return false;
12018
12019 switch (VT.getSimpleVT().SimpleTy) {
12020 case MVT::f32:
12021 case MVT::f64:
12022 return true;
12023 default:
12024 break;
12025 }
12026
12027 return false;
12028 }
12029
12030 const MCPhysReg *
getScratchRegisters(CallingConv::ID) const12031 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
12032 // LR is a callee-save register, but we must treat it as clobbered by any call
12033 // site. Hence we include LR in the scratch registers, which are in turn added
12034 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
12035 // to CTR, which is used by any indirect call.
12036 static const MCPhysReg ScratchRegs[] = {
12037 PPC::X12, PPC::LR8, PPC::CTR8, 0
12038 };
12039
12040 return ScratchRegs;
12041 }
12042
getExceptionPointerRegister(const Constant * PersonalityFn) const12043 unsigned PPCTargetLowering::getExceptionPointerRegister(
12044 const Constant *PersonalityFn) const {
12045 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
12046 }
12047
getExceptionSelectorRegister(const Constant * PersonalityFn) const12048 unsigned PPCTargetLowering::getExceptionSelectorRegister(
12049 const Constant *PersonalityFn) const {
12050 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
12051 }
12052
12053 bool
shouldExpandBuildVectorWithShuffles(EVT VT,unsigned DefinedValues) const12054 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
12055 EVT VT , unsigned DefinedValues) const {
12056 if (VT == MVT::v2i64)
12057 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
12058
12059 if (Subtarget.hasVSX() || Subtarget.hasQPX())
12060 return true;
12061
12062 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
12063 }
12064
getSchedulingPreference(SDNode * N) const12065 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
12066 if (DisableILPPref || Subtarget.enableMachineScheduler())
12067 return TargetLowering::getSchedulingPreference(N);
12068
12069 return Sched::ILP;
12070 }
12071
12072 // Create a fast isel object.
12073 FastISel *
createFastISel(FunctionLoweringInfo & FuncInfo,const TargetLibraryInfo * LibInfo) const12074 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
12075 const TargetLibraryInfo *LibInfo) const {
12076 return PPC::createFastISel(FuncInfo, LibInfo);
12077 }
12078
initializeSplitCSR(MachineBasicBlock * Entry) const12079 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
12080 if (Subtarget.isDarwinABI()) return;
12081 if (!Subtarget.isPPC64()) return;
12082
12083 // Update IsSplitCSR in PPCFunctionInfo
12084 PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>();
12085 PFI->setIsSplitCSR(true);
12086 }
12087
insertCopiesSplitCSR(MachineBasicBlock * Entry,const SmallVectorImpl<MachineBasicBlock * > & Exits) const12088 void PPCTargetLowering::insertCopiesSplitCSR(
12089 MachineBasicBlock *Entry,
12090 const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
12091 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
12092 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
12093 if (!IStart)
12094 return;
12095
12096 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
12097 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
12098 MachineBasicBlock::iterator MBBI = Entry->begin();
12099 for (const MCPhysReg *I = IStart; *I; ++I) {
12100 const TargetRegisterClass *RC = nullptr;
12101 if (PPC::G8RCRegClass.contains(*I))
12102 RC = &PPC::G8RCRegClass;
12103 else if (PPC::F8RCRegClass.contains(*I))
12104 RC = &PPC::F8RCRegClass;
12105 else if (PPC::CRRCRegClass.contains(*I))
12106 RC = &PPC::CRRCRegClass;
12107 else if (PPC::VRRCRegClass.contains(*I))
12108 RC = &PPC::VRRCRegClass;
12109 else
12110 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
12111
12112 unsigned NewVR = MRI->createVirtualRegister(RC);
12113 // Create copy from CSR to a virtual register.
12114 // FIXME: this currently does not emit CFI pseudo-instructions, it works
12115 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
12116 // nounwind. If we want to generalize this later, we may need to emit
12117 // CFI pseudo-instructions.
12118 assert(Entry->getParent()->getFunction()->hasFnAttribute(
12119 Attribute::NoUnwind) &&
12120 "Function should be nounwind in insertCopiesSplitCSR!");
12121 Entry->addLiveIn(*I);
12122 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
12123 .addReg(*I);
12124
12125 // Insert the copy-back instructions right before the terminator
12126 for (auto *Exit : Exits)
12127 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
12128 TII->get(TargetOpcode::COPY), *I)
12129 .addReg(NewVR);
12130 }
12131 }
12132
12133 // Override to enable LOAD_STACK_GUARD lowering on Linux.
useLoadStackGuardNode() const12134 bool PPCTargetLowering::useLoadStackGuardNode() const {
12135 if (!Subtarget.isTargetLinux())
12136 return TargetLowering::useLoadStackGuardNode();
12137 return true;
12138 }
12139
12140 // Override to disable global variable loading on Linux.
insertSSPDeclarations(Module & M) const12141 void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
12142 if (!Subtarget.isTargetLinux())
12143 return TargetLowering::insertSSPDeclarations(M);
12144 }
12145