• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the generic AliasAnalysis interface, which is used as the
11 // common interface used by all clients of alias analysis information, and
12 // implemented by all alias analysis implementations.  Mod/Ref information is
13 // also captured by this interface.
14 //
15 // Implementations of this interface must implement the various virtual methods,
16 // which automatically provides functionality for the entire suite of client
17 // APIs.
18 //
19 // This API identifies memory regions with the MemoryLocation class. The pointer
20 // component specifies the base memory address of the region. The Size specifies
21 // the maximum size (in address units) of the memory region, or
22 // MemoryLocation::UnknownSize if the size is not known. The TBAA tag
23 // identifies the "type" of the memory reference; see the
24 // TypeBasedAliasAnalysis class for details.
25 //
26 // Some non-obvious details include:
27 //  - Pointers that point to two completely different objects in memory never
28 //    alias, regardless of the value of the Size component.
29 //  - NoAlias doesn't imply inequal pointers. The most obvious example of this
30 //    is two pointers to constant memory. Even if they are equal, constant
31 //    memory is never stored to, so there will never be any dependencies.
32 //    In this and other situations, the pointers may be both NoAlias and
33 //    MustAlias at the same time. The current API can only return one result,
34 //    though this is rarely a problem in practice.
35 //
36 //===----------------------------------------------------------------------===//
37 
38 #ifndef LLVM_ANALYSIS_ALIASANALYSIS_H
39 #define LLVM_ANALYSIS_ALIASANALYSIS_H
40 
41 #include "llvm/IR/CallSite.h"
42 #include "llvm/IR/Metadata.h"
43 #include "llvm/IR/PassManager.h"
44 #include "llvm/Analysis/MemoryLocation.h"
45 #include "llvm/Analysis/TargetLibraryInfo.h"
46 
47 namespace llvm {
48 class BasicAAResult;
49 class LoadInst;
50 class StoreInst;
51 class VAArgInst;
52 class DataLayout;
53 class Pass;
54 class AnalysisUsage;
55 class MemTransferInst;
56 class MemIntrinsic;
57 class DominatorTree;
58 class OrderedBasicBlock;
59 
60 /// The possible results of an alias query.
61 ///
62 /// These results are always computed between two MemoryLocation objects as
63 /// a query to some alias analysis.
64 ///
65 /// Note that these are unscoped enumerations because we would like to support
66 /// implicitly testing a result for the existence of any possible aliasing with
67 /// a conversion to bool, but an "enum class" doesn't support this. The
68 /// canonical names from the literature are suffixed and unique anyways, and so
69 /// they serve as global constants in LLVM for these results.
70 ///
71 /// See docs/AliasAnalysis.html for more information on the specific meanings
72 /// of these values.
73 enum AliasResult {
74   /// The two locations do not alias at all.
75   ///
76   /// This value is arranged to convert to false, while all other values
77   /// convert to true. This allows a boolean context to convert the result to
78   /// a binary flag indicating whether there is the possibility of aliasing.
79   NoAlias = 0,
80   /// The two locations may or may not alias. This is the least precise result.
81   MayAlias,
82   /// The two locations alias, but only due to a partial overlap.
83   PartialAlias,
84   /// The two locations precisely alias each other.
85   MustAlias,
86 };
87 
88 /// Flags indicating whether a memory access modifies or references memory.
89 ///
90 /// This is no access at all, a modification, a reference, or both
91 /// a modification and a reference. These are specifically structured such that
92 /// they form a two bit matrix and bit-tests for 'mod' or 'ref' work with any
93 /// of the possible values.
94 enum ModRefInfo {
95   /// The access neither references nor modifies the value stored in memory.
96   MRI_NoModRef = 0,
97   /// The access references the value stored in memory.
98   MRI_Ref = 1,
99   /// The access modifies the value stored in memory.
100   MRI_Mod = 2,
101   /// The access both references and modifies the value stored in memory.
102   MRI_ModRef = MRI_Ref | MRI_Mod
103 };
104 
105 /// The locations at which a function might access memory.
106 ///
107 /// These are primarily used in conjunction with the \c AccessKind bits to
108 /// describe both the nature of access and the locations of access for a
109 /// function call.
110 enum FunctionModRefLocation {
111   /// Base case is no access to memory.
112   FMRL_Nowhere = 0,
113   /// Access to memory via argument pointers.
114   FMRL_ArgumentPointees = 4,
115   /// Access to any memory.
116   FMRL_Anywhere = 8 | FMRL_ArgumentPointees
117 };
118 
119 /// Summary of how a function affects memory in the program.
120 ///
121 /// Loads from constant globals are not considered memory accesses for this
122 /// interface. Also, functions may freely modify stack space local to their
123 /// invocation without having to report it through these interfaces.
124 enum FunctionModRefBehavior {
125   /// This function does not perform any non-local loads or stores to memory.
126   ///
127   /// This property corresponds to the GCC 'const' attribute.
128   /// This property corresponds to the LLVM IR 'readnone' attribute.
129   /// This property corresponds to the IntrNoMem LLVM intrinsic flag.
130   FMRB_DoesNotAccessMemory = FMRL_Nowhere | MRI_NoModRef,
131 
132   /// The only memory references in this function (if it has any) are
133   /// non-volatile loads from objects pointed to by its pointer-typed
134   /// arguments, with arbitrary offsets.
135   ///
136   /// This property corresponds to the IntrReadArgMem LLVM intrinsic flag.
137   FMRB_OnlyReadsArgumentPointees = FMRL_ArgumentPointees | MRI_Ref,
138 
139   /// The only memory references in this function (if it has any) are
140   /// non-volatile loads and stores from objects pointed to by its
141   /// pointer-typed arguments, with arbitrary offsets.
142   ///
143   /// This property corresponds to the IntrArgMemOnly LLVM intrinsic flag.
144   FMRB_OnlyAccessesArgumentPointees = FMRL_ArgumentPointees | MRI_ModRef,
145 
146   /// This function does not perform any non-local stores or volatile loads,
147   /// but may read from any memory location.
148   ///
149   /// This property corresponds to the GCC 'pure' attribute.
150   /// This property corresponds to the LLVM IR 'readonly' attribute.
151   /// This property corresponds to the IntrReadMem LLVM intrinsic flag.
152   FMRB_OnlyReadsMemory = FMRL_Anywhere | MRI_Ref,
153 
154   // This function does not read from memory anywhere, but may write to any
155   // memory location.
156   //
157   // This property corresponds to the LLVM IR 'writeonly' attribute.
158   // This property corresponds to the IntrWriteMem LLVM intrinsic flag.
159   FMRB_DoesNotReadMemory = FMRL_Anywhere | MRI_Mod,
160 
161   /// This indicates that the function could not be classified into one of the
162   /// behaviors above.
163   FMRB_UnknownModRefBehavior = FMRL_Anywhere | MRI_ModRef
164 };
165 
166 class AAResults {
167 public:
168   // Make these results default constructable and movable. We have to spell
169   // these out because MSVC won't synthesize them.
AAResults(const TargetLibraryInfo & TLI)170   AAResults(const TargetLibraryInfo &TLI) : TLI(TLI) {}
171   AAResults(AAResults &&Arg);
172   ~AAResults();
173 
174   /// Register a specific AA result.
addAAResult(AAResultT & AAResult)175   template <typename AAResultT> void addAAResult(AAResultT &AAResult) {
176     // FIXME: We should use a much lighter weight system than the usual
177     // polymorphic pattern because we don't own AAResult. It should
178     // ideally involve two pointers and no separate allocation.
179     AAs.emplace_back(new Model<AAResultT>(AAResult, *this));
180   }
181 
182   //===--------------------------------------------------------------------===//
183   /// \name Alias Queries
184   /// @{
185 
186   /// The main low level interface to the alias analysis implementation.
187   /// Returns an AliasResult indicating whether the two pointers are aliased to
188   /// each other. This is the interface that must be implemented by specific
189   /// alias analysis implementations.
190   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB);
191 
192   /// A convenience wrapper around the primary \c alias interface.
alias(const Value * V1,uint64_t V1Size,const Value * V2,uint64_t V2Size)193   AliasResult alias(const Value *V1, uint64_t V1Size, const Value *V2,
194                     uint64_t V2Size) {
195     return alias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
196   }
197 
198   /// A convenience wrapper around the primary \c alias interface.
alias(const Value * V1,const Value * V2)199   AliasResult alias(const Value *V1, const Value *V2) {
200     return alias(V1, MemoryLocation::UnknownSize, V2,
201                  MemoryLocation::UnknownSize);
202   }
203 
204   /// A trivial helper function to check to see if the specified pointers are
205   /// no-alias.
isNoAlias(const MemoryLocation & LocA,const MemoryLocation & LocB)206   bool isNoAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
207     return alias(LocA, LocB) == NoAlias;
208   }
209 
210   /// A convenience wrapper around the \c isNoAlias helper interface.
isNoAlias(const Value * V1,uint64_t V1Size,const Value * V2,uint64_t V2Size)211   bool isNoAlias(const Value *V1, uint64_t V1Size, const Value *V2,
212                  uint64_t V2Size) {
213     return isNoAlias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
214   }
215 
216   /// A convenience wrapper around the \c isNoAlias helper interface.
isNoAlias(const Value * V1,const Value * V2)217   bool isNoAlias(const Value *V1, const Value *V2) {
218     return isNoAlias(MemoryLocation(V1), MemoryLocation(V2));
219   }
220 
221   /// A trivial helper function to check to see if the specified pointers are
222   /// must-alias.
isMustAlias(const MemoryLocation & LocA,const MemoryLocation & LocB)223   bool isMustAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
224     return alias(LocA, LocB) == MustAlias;
225   }
226 
227   /// A convenience wrapper around the \c isMustAlias helper interface.
isMustAlias(const Value * V1,const Value * V2)228   bool isMustAlias(const Value *V1, const Value *V2) {
229     return alias(V1, 1, V2, 1) == MustAlias;
230   }
231 
232   /// Checks whether the given location points to constant memory, or if
233   /// \p OrLocal is true whether it points to a local alloca.
234   bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal = false);
235 
236   /// A convenience wrapper around the primary \c pointsToConstantMemory
237   /// interface.
238   bool pointsToConstantMemory(const Value *P, bool OrLocal = false) {
239     return pointsToConstantMemory(MemoryLocation(P), OrLocal);
240   }
241 
242   /// @}
243   //===--------------------------------------------------------------------===//
244   /// \name Simple mod/ref information
245   /// @{
246 
247   /// Get the ModRef info associated with a pointer argument of a callsite. The
248   /// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
249   /// that these bits do not necessarily account for the overall behavior of
250   /// the function, but rather only provide additional per-argument
251   /// information.
252   ModRefInfo getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx);
253 
254   /// Return the behavior of the given call site.
255   FunctionModRefBehavior getModRefBehavior(ImmutableCallSite CS);
256 
257   /// Return the behavior when calling the given function.
258   FunctionModRefBehavior getModRefBehavior(const Function *F);
259 
260   /// Checks if the specified call is known to never read or write memory.
261   ///
262   /// Note that if the call only reads from known-constant memory, it is also
263   /// legal to return true. Also, calls that unwind the stack are legal for
264   /// this predicate.
265   ///
266   /// Many optimizations (such as CSE and LICM) can be performed on such calls
267   /// without worrying about aliasing properties, and many calls have this
268   /// property (e.g. calls to 'sin' and 'cos').
269   ///
270   /// This property corresponds to the GCC 'const' attribute.
doesNotAccessMemory(ImmutableCallSite CS)271   bool doesNotAccessMemory(ImmutableCallSite CS) {
272     return getModRefBehavior(CS) == FMRB_DoesNotAccessMemory;
273   }
274 
275   /// Checks if the specified function is known to never read or write memory.
276   ///
277   /// Note that if the function only reads from known-constant memory, it is
278   /// also legal to return true. Also, function that unwind the stack are legal
279   /// for this predicate.
280   ///
281   /// Many optimizations (such as CSE and LICM) can be performed on such calls
282   /// to such functions without worrying about aliasing properties, and many
283   /// functions have this property (e.g. 'sin' and 'cos').
284   ///
285   /// This property corresponds to the GCC 'const' attribute.
doesNotAccessMemory(const Function * F)286   bool doesNotAccessMemory(const Function *F) {
287     return getModRefBehavior(F) == FMRB_DoesNotAccessMemory;
288   }
289 
290   /// Checks if the specified call is known to only read from non-volatile
291   /// memory (or not access memory at all).
292   ///
293   /// Calls that unwind the stack are legal for this predicate.
294   ///
295   /// This property allows many common optimizations to be performed in the
296   /// absence of interfering store instructions, such as CSE of strlen calls.
297   ///
298   /// This property corresponds to the GCC 'pure' attribute.
onlyReadsMemory(ImmutableCallSite CS)299   bool onlyReadsMemory(ImmutableCallSite CS) {
300     return onlyReadsMemory(getModRefBehavior(CS));
301   }
302 
303   /// Checks if the specified function is known to only read from non-volatile
304   /// memory (or not access memory at all).
305   ///
306   /// Functions that unwind the stack are legal for this predicate.
307   ///
308   /// This property allows many common optimizations to be performed in the
309   /// absence of interfering store instructions, such as CSE of strlen calls.
310   ///
311   /// This property corresponds to the GCC 'pure' attribute.
onlyReadsMemory(const Function * F)312   bool onlyReadsMemory(const Function *F) {
313     return onlyReadsMemory(getModRefBehavior(F));
314   }
315 
316   /// Checks if functions with the specified behavior are known to only read
317   /// from non-volatile memory (or not access memory at all).
onlyReadsMemory(FunctionModRefBehavior MRB)318   static bool onlyReadsMemory(FunctionModRefBehavior MRB) {
319     return !(MRB & MRI_Mod);
320   }
321 
322   /// Checks if functions with the specified behavior are known to only write
323   /// memory (or not access memory at all).
doesNotReadMemory(FunctionModRefBehavior MRB)324   static bool doesNotReadMemory(FunctionModRefBehavior MRB) {
325     return !(MRB & MRI_Ref);
326   }
327 
328   /// Checks if functions with the specified behavior are known to read and
329   /// write at most from objects pointed to by their pointer-typed arguments
330   /// (with arbitrary offsets).
onlyAccessesArgPointees(FunctionModRefBehavior MRB)331   static bool onlyAccessesArgPointees(FunctionModRefBehavior MRB) {
332     return !(MRB & FMRL_Anywhere & ~FMRL_ArgumentPointees);
333   }
334 
335   /// Checks if functions with the specified behavior are known to potentially
336   /// read or write from objects pointed to be their pointer-typed arguments
337   /// (with arbitrary offsets).
doesAccessArgPointees(FunctionModRefBehavior MRB)338   static bool doesAccessArgPointees(FunctionModRefBehavior MRB) {
339     return (MRB & MRI_ModRef) && (MRB & FMRL_ArgumentPointees);
340   }
341 
342   /// getModRefInfo (for call sites) - Return information about whether
343   /// a particular call site modifies or reads the specified memory location.
344   ModRefInfo getModRefInfo(ImmutableCallSite CS, const MemoryLocation &Loc);
345 
346   /// getModRefInfo (for call sites) - A convenience wrapper.
getModRefInfo(ImmutableCallSite CS,const Value * P,uint64_t Size)347   ModRefInfo getModRefInfo(ImmutableCallSite CS, const Value *P,
348                            uint64_t Size) {
349     return getModRefInfo(CS, MemoryLocation(P, Size));
350   }
351 
352   /// getModRefInfo (for calls) - Return information about whether
353   /// a particular call modifies or reads the specified memory location.
getModRefInfo(const CallInst * C,const MemoryLocation & Loc)354   ModRefInfo getModRefInfo(const CallInst *C, const MemoryLocation &Loc) {
355     return getModRefInfo(ImmutableCallSite(C), Loc);
356   }
357 
358   /// getModRefInfo (for calls) - A convenience wrapper.
getModRefInfo(const CallInst * C,const Value * P,uint64_t Size)359   ModRefInfo getModRefInfo(const CallInst *C, const Value *P, uint64_t Size) {
360     return getModRefInfo(C, MemoryLocation(P, Size));
361   }
362 
363   /// getModRefInfo (for invokes) - Return information about whether
364   /// a particular invoke modifies or reads the specified memory location.
getModRefInfo(const InvokeInst * I,const MemoryLocation & Loc)365   ModRefInfo getModRefInfo(const InvokeInst *I, const MemoryLocation &Loc) {
366     return getModRefInfo(ImmutableCallSite(I), Loc);
367   }
368 
369   /// getModRefInfo (for invokes) - A convenience wrapper.
getModRefInfo(const InvokeInst * I,const Value * P,uint64_t Size)370   ModRefInfo getModRefInfo(const InvokeInst *I, const Value *P, uint64_t Size) {
371     return getModRefInfo(I, MemoryLocation(P, Size));
372   }
373 
374   /// getModRefInfo (for loads) - Return information about whether
375   /// a particular load modifies or reads the specified memory location.
376   ModRefInfo getModRefInfo(const LoadInst *L, const MemoryLocation &Loc);
377 
378   /// getModRefInfo (for loads) - A convenience wrapper.
getModRefInfo(const LoadInst * L,const Value * P,uint64_t Size)379   ModRefInfo getModRefInfo(const LoadInst *L, const Value *P, uint64_t Size) {
380     return getModRefInfo(L, MemoryLocation(P, Size));
381   }
382 
383   /// getModRefInfo (for stores) - Return information about whether
384   /// a particular store modifies or reads the specified memory location.
385   ModRefInfo getModRefInfo(const StoreInst *S, const MemoryLocation &Loc);
386 
387   /// getModRefInfo (for stores) - A convenience wrapper.
getModRefInfo(const StoreInst * S,const Value * P,uint64_t Size)388   ModRefInfo getModRefInfo(const StoreInst *S, const Value *P, uint64_t Size) {
389     return getModRefInfo(S, MemoryLocation(P, Size));
390   }
391 
392   /// getModRefInfo (for fences) - Return information about whether
393   /// a particular store modifies or reads the specified memory location.
getModRefInfo(const FenceInst * S,const MemoryLocation & Loc)394   ModRefInfo getModRefInfo(const FenceInst *S, const MemoryLocation &Loc) {
395     // Conservatively correct.  (We could possibly be a bit smarter if
396     // Loc is a alloca that doesn't escape.)
397     return MRI_ModRef;
398   }
399 
400   /// getModRefInfo (for fences) - A convenience wrapper.
getModRefInfo(const FenceInst * S,const Value * P,uint64_t Size)401   ModRefInfo getModRefInfo(const FenceInst *S, const Value *P, uint64_t Size) {
402     return getModRefInfo(S, MemoryLocation(P, Size));
403   }
404 
405   /// getModRefInfo (for cmpxchges) - Return information about whether
406   /// a particular cmpxchg modifies or reads the specified memory location.
407   ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX,
408                            const MemoryLocation &Loc);
409 
410   /// getModRefInfo (for cmpxchges) - A convenience wrapper.
getModRefInfo(const AtomicCmpXchgInst * CX,const Value * P,unsigned Size)411   ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX, const Value *P,
412                            unsigned Size) {
413     return getModRefInfo(CX, MemoryLocation(P, Size));
414   }
415 
416   /// getModRefInfo (for atomicrmws) - Return information about whether
417   /// a particular atomicrmw modifies or reads the specified memory location.
418   ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const MemoryLocation &Loc);
419 
420   /// getModRefInfo (for atomicrmws) - A convenience wrapper.
getModRefInfo(const AtomicRMWInst * RMW,const Value * P,unsigned Size)421   ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const Value *P,
422                            unsigned Size) {
423     return getModRefInfo(RMW, MemoryLocation(P, Size));
424   }
425 
426   /// getModRefInfo (for va_args) - Return information about whether
427   /// a particular va_arg modifies or reads the specified memory location.
428   ModRefInfo getModRefInfo(const VAArgInst *I, const MemoryLocation &Loc);
429 
430   /// getModRefInfo (for va_args) - A convenience wrapper.
getModRefInfo(const VAArgInst * I,const Value * P,uint64_t Size)431   ModRefInfo getModRefInfo(const VAArgInst *I, const Value *P, uint64_t Size) {
432     return getModRefInfo(I, MemoryLocation(P, Size));
433   }
434 
435   /// getModRefInfo (for catchpads) - Return information about whether
436   /// a particular catchpad modifies or reads the specified memory location.
437   ModRefInfo getModRefInfo(const CatchPadInst *I, const MemoryLocation &Loc);
438 
439   /// getModRefInfo (for catchpads) - A convenience wrapper.
getModRefInfo(const CatchPadInst * I,const Value * P,uint64_t Size)440   ModRefInfo getModRefInfo(const CatchPadInst *I, const Value *P,
441                            uint64_t Size) {
442     return getModRefInfo(I, MemoryLocation(P, Size));
443   }
444 
445   /// getModRefInfo (for catchrets) - Return information about whether
446   /// a particular catchret modifies or reads the specified memory location.
447   ModRefInfo getModRefInfo(const CatchReturnInst *I, const MemoryLocation &Loc);
448 
449   /// getModRefInfo (for catchrets) - A convenience wrapper.
getModRefInfo(const CatchReturnInst * I,const Value * P,uint64_t Size)450   ModRefInfo getModRefInfo(const CatchReturnInst *I, const Value *P,
451                            uint64_t Size) {
452     return getModRefInfo(I, MemoryLocation(P, Size));
453   }
454 
455   /// Check whether or not an instruction may read or write memory (without
456   /// regard to a specific location).
457   ///
458   /// For function calls, this delegates to the alias-analysis specific
459   /// call-site mod-ref behavior queries. Otherwise it delegates to the generic
460   /// mod ref information query without a location.
getModRefInfo(const Instruction * I)461   ModRefInfo getModRefInfo(const Instruction *I) {
462     if (auto CS = ImmutableCallSite(I)) {
463       auto MRB = getModRefBehavior(CS);
464       if ((MRB & MRI_ModRef) == MRI_ModRef)
465         return MRI_ModRef;
466       if (MRB & MRI_Ref)
467         return MRI_Ref;
468       if (MRB & MRI_Mod)
469         return MRI_Mod;
470       return MRI_NoModRef;
471     }
472 
473     return getModRefInfo(I, MemoryLocation());
474   }
475 
476   /// Check whether or not an instruction may read or write the specified
477   /// memory location.
478   ///
479   /// An instruction that doesn't read or write memory may be trivially LICM'd
480   /// for example.
481   ///
482   /// This primarily delegates to specific helpers above.
getModRefInfo(const Instruction * I,const MemoryLocation & Loc)483   ModRefInfo getModRefInfo(const Instruction *I, const MemoryLocation &Loc) {
484     switch (I->getOpcode()) {
485     case Instruction::VAArg:  return getModRefInfo((const VAArgInst*)I, Loc);
486     case Instruction::Load:   return getModRefInfo((const LoadInst*)I,  Loc);
487     case Instruction::Store:  return getModRefInfo((const StoreInst*)I, Loc);
488     case Instruction::Fence:  return getModRefInfo((const FenceInst*)I, Loc);
489     case Instruction::AtomicCmpXchg:
490       return getModRefInfo((const AtomicCmpXchgInst*)I, Loc);
491     case Instruction::AtomicRMW:
492       return getModRefInfo((const AtomicRMWInst*)I, Loc);
493     case Instruction::Call:   return getModRefInfo((const CallInst*)I,  Loc);
494     case Instruction::Invoke: return getModRefInfo((const InvokeInst*)I,Loc);
495     case Instruction::CatchPad:
496       return getModRefInfo((const CatchPadInst *)I, Loc);
497     case Instruction::CatchRet:
498       return getModRefInfo((const CatchReturnInst *)I, Loc);
499     default:
500       return MRI_NoModRef;
501     }
502   }
503 
504   /// A convenience wrapper for constructing the memory location.
getModRefInfo(const Instruction * I,const Value * P,uint64_t Size)505   ModRefInfo getModRefInfo(const Instruction *I, const Value *P,
506                            uint64_t Size) {
507     return getModRefInfo(I, MemoryLocation(P, Size));
508   }
509 
510   /// Return information about whether a call and an instruction may refer to
511   /// the same memory locations.
512   ModRefInfo getModRefInfo(Instruction *I, ImmutableCallSite Call);
513 
514   /// Return information about whether two call sites may refer to the same set
515   /// of memory locations. See the AA documentation for details:
516   ///   http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
517   ModRefInfo getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2);
518 
519   /// \brief Return information about whether a particular call site modifies
520   /// or reads the specified memory location \p MemLoc before instruction \p I
521   /// in a BasicBlock. A ordered basic block \p OBB can be used to speed up
522   /// instruction ordering queries inside the BasicBlock containing \p I.
523   ModRefInfo callCapturesBefore(const Instruction *I,
524                                 const MemoryLocation &MemLoc, DominatorTree *DT,
525                                 OrderedBasicBlock *OBB = nullptr);
526 
527   /// \brief A convenience wrapper to synthesize a memory location.
528   ModRefInfo callCapturesBefore(const Instruction *I, const Value *P,
529                                 uint64_t Size, DominatorTree *DT,
530                                 OrderedBasicBlock *OBB = nullptr) {
531     return callCapturesBefore(I, MemoryLocation(P, Size), DT, OBB);
532   }
533 
534   /// @}
535   //===--------------------------------------------------------------------===//
536   /// \name Higher level methods for querying mod/ref information.
537   /// @{
538 
539   /// Check if it is possible for execution of the specified basic block to
540   /// modify the location Loc.
541   bool canBasicBlockModify(const BasicBlock &BB, const MemoryLocation &Loc);
542 
543   /// A convenience wrapper synthesizing a memory location.
canBasicBlockModify(const BasicBlock & BB,const Value * P,uint64_t Size)544   bool canBasicBlockModify(const BasicBlock &BB, const Value *P,
545                            uint64_t Size) {
546     return canBasicBlockModify(BB, MemoryLocation(P, Size));
547   }
548 
549   /// Check if it is possible for the execution of the specified instructions
550   /// to mod\ref (according to the mode) the location Loc.
551   ///
552   /// The instructions to consider are all of the instructions in the range of
553   /// [I1,I2] INCLUSIVE. I1 and I2 must be in the same basic block.
554   bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
555                                  const MemoryLocation &Loc,
556                                  const ModRefInfo Mode);
557 
558   /// A convenience wrapper synthesizing a memory location.
canInstructionRangeModRef(const Instruction & I1,const Instruction & I2,const Value * Ptr,uint64_t Size,const ModRefInfo Mode)559   bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
560                                  const Value *Ptr, uint64_t Size,
561                                  const ModRefInfo Mode) {
562     return canInstructionRangeModRef(I1, I2, MemoryLocation(Ptr, Size), Mode);
563   }
564 
565 private:
566   class Concept;
567   template <typename T> class Model;
568 
569   template <typename T> friend class AAResultBase;
570 
571   const TargetLibraryInfo &TLI;
572 
573   std::vector<std::unique_ptr<Concept>> AAs;
574 };
575 
576 /// Temporary typedef for legacy code that uses a generic \c AliasAnalysis
577 /// pointer or reference.
578 typedef AAResults AliasAnalysis;
579 
580 /// A private abstract base class describing the concept of an individual alias
581 /// analysis implementation.
582 ///
583 /// This interface is implemented by any \c Model instantiation. It is also the
584 /// interface which a type used to instantiate the model must provide.
585 ///
586 /// All of these methods model methods by the same name in the \c
587 /// AAResults class. Only differences and specifics to how the
588 /// implementations are called are documented here.
589 class AAResults::Concept {
590 public:
591   virtual ~Concept() = 0;
592 
593   /// An update API used internally by the AAResults to provide
594   /// a handle back to the top level aggregation.
595   virtual void setAAResults(AAResults *NewAAR) = 0;
596 
597   //===--------------------------------------------------------------------===//
598   /// \name Alias Queries
599   /// @{
600 
601   /// The main low level interface to the alias analysis implementation.
602   /// Returns an AliasResult indicating whether the two pointers are aliased to
603   /// each other. This is the interface that must be implemented by specific
604   /// alias analysis implementations.
605   virtual AliasResult alias(const MemoryLocation &LocA,
606                             const MemoryLocation &LocB) = 0;
607 
608   /// Checks whether the given location points to constant memory, or if
609   /// \p OrLocal is true whether it points to a local alloca.
610   virtual bool pointsToConstantMemory(const MemoryLocation &Loc,
611                                       bool OrLocal) = 0;
612 
613   /// @}
614   //===--------------------------------------------------------------------===//
615   /// \name Simple mod/ref information
616   /// @{
617 
618   /// Get the ModRef info associated with a pointer argument of a callsite. The
619   /// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
620   /// that these bits do not necessarily account for the overall behavior of
621   /// the function, but rather only provide additional per-argument
622   /// information.
623   virtual ModRefInfo getArgModRefInfo(ImmutableCallSite CS,
624                                       unsigned ArgIdx) = 0;
625 
626   /// Return the behavior of the given call site.
627   virtual FunctionModRefBehavior getModRefBehavior(ImmutableCallSite CS) = 0;
628 
629   /// Return the behavior when calling the given function.
630   virtual FunctionModRefBehavior getModRefBehavior(const Function *F) = 0;
631 
632   /// getModRefInfo (for call sites) - Return information about whether
633   /// a particular call site modifies or reads the specified memory location.
634   virtual ModRefInfo getModRefInfo(ImmutableCallSite CS,
635                                    const MemoryLocation &Loc) = 0;
636 
637   /// Return information about whether two call sites may refer to the same set
638   /// of memory locations. See the AA documentation for details:
639   ///   http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
640   virtual ModRefInfo getModRefInfo(ImmutableCallSite CS1,
641                                    ImmutableCallSite CS2) = 0;
642 
643   /// @}
644 };
645 
646 /// A private class template which derives from \c Concept and wraps some other
647 /// type.
648 ///
649 /// This models the concept by directly forwarding each interface point to the
650 /// wrapped type which must implement a compatible interface. This provides
651 /// a type erased binding.
652 template <typename AAResultT> class AAResults::Model final : public Concept {
653   AAResultT &Result;
654 
655 public:
Model(AAResultT & Result,AAResults & AAR)656   explicit Model(AAResultT &Result, AAResults &AAR) : Result(Result) {
657     Result.setAAResults(&AAR);
658   }
~Model()659   ~Model() override {}
660 
setAAResults(AAResults * NewAAR)661   void setAAResults(AAResults *NewAAR) override { Result.setAAResults(NewAAR); }
662 
alias(const MemoryLocation & LocA,const MemoryLocation & LocB)663   AliasResult alias(const MemoryLocation &LocA,
664                     const MemoryLocation &LocB) override {
665     return Result.alias(LocA, LocB);
666   }
667 
pointsToConstantMemory(const MemoryLocation & Loc,bool OrLocal)668   bool pointsToConstantMemory(const MemoryLocation &Loc,
669                               bool OrLocal) override {
670     return Result.pointsToConstantMemory(Loc, OrLocal);
671   }
672 
getArgModRefInfo(ImmutableCallSite CS,unsigned ArgIdx)673   ModRefInfo getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) override {
674     return Result.getArgModRefInfo(CS, ArgIdx);
675   }
676 
getModRefBehavior(ImmutableCallSite CS)677   FunctionModRefBehavior getModRefBehavior(ImmutableCallSite CS) override {
678     return Result.getModRefBehavior(CS);
679   }
680 
getModRefBehavior(const Function * F)681   FunctionModRefBehavior getModRefBehavior(const Function *F) override {
682     return Result.getModRefBehavior(F);
683   }
684 
getModRefInfo(ImmutableCallSite CS,const MemoryLocation & Loc)685   ModRefInfo getModRefInfo(ImmutableCallSite CS,
686                            const MemoryLocation &Loc) override {
687     return Result.getModRefInfo(CS, Loc);
688   }
689 
getModRefInfo(ImmutableCallSite CS1,ImmutableCallSite CS2)690   ModRefInfo getModRefInfo(ImmutableCallSite CS1,
691                            ImmutableCallSite CS2) override {
692     return Result.getModRefInfo(CS1, CS2);
693   }
694 };
695 
696 /// A CRTP-driven "mixin" base class to help implement the function alias
697 /// analysis results concept.
698 ///
699 /// Because of the nature of many alias analysis implementations, they often
700 /// only implement a subset of the interface. This base class will attempt to
701 /// implement the remaining portions of the interface in terms of simpler forms
702 /// of the interface where possible, and otherwise provide conservatively
703 /// correct fallback implementations.
704 ///
705 /// Implementors of an alias analysis should derive from this CRTP, and then
706 /// override specific methods that they wish to customize. There is no need to
707 /// use virtual anywhere, the CRTP base class does static dispatch to the
708 /// derived type passed into it.
709 template <typename DerivedT> class AAResultBase {
710   // Expose some parts of the interface only to the AAResults::Model
711   // for wrapping. Specifically, this allows the model to call our
712   // setAAResults method without exposing it as a fully public API.
713   friend class AAResults::Model<DerivedT>;
714 
715   /// A pointer to the AAResults object that this AAResult is
716   /// aggregated within. May be null if not aggregated.
717   AAResults *AAR;
718 
719   /// Helper to dispatch calls back through the derived type.
derived()720   DerivedT &derived() { return static_cast<DerivedT &>(*this); }
721 
722   /// A setter for the AAResults pointer, which is used to satisfy the
723   /// AAResults::Model contract.
setAAResults(AAResults * NewAAR)724   void setAAResults(AAResults *NewAAR) { AAR = NewAAR; }
725 
726 protected:
727   /// This proxy class models a common pattern where we delegate to either the
728   /// top-level \c AAResults aggregation if one is registered, or to the
729   /// current result if none are registered.
730   class AAResultsProxy {
731     AAResults *AAR;
732     DerivedT &CurrentResult;
733 
734   public:
AAResultsProxy(AAResults * AAR,DerivedT & CurrentResult)735     AAResultsProxy(AAResults *AAR, DerivedT &CurrentResult)
736         : AAR(AAR), CurrentResult(CurrentResult) {}
737 
alias(const MemoryLocation & LocA,const MemoryLocation & LocB)738     AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
739       return AAR ? AAR->alias(LocA, LocB) : CurrentResult.alias(LocA, LocB);
740     }
741 
pointsToConstantMemory(const MemoryLocation & Loc,bool OrLocal)742     bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal) {
743       return AAR ? AAR->pointsToConstantMemory(Loc, OrLocal)
744                  : CurrentResult.pointsToConstantMemory(Loc, OrLocal);
745     }
746 
getArgModRefInfo(ImmutableCallSite CS,unsigned ArgIdx)747     ModRefInfo getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) {
748       return AAR ? AAR->getArgModRefInfo(CS, ArgIdx) : CurrentResult.getArgModRefInfo(CS, ArgIdx);
749     }
750 
getModRefBehavior(ImmutableCallSite CS)751     FunctionModRefBehavior getModRefBehavior(ImmutableCallSite CS) {
752       return AAR ? AAR->getModRefBehavior(CS) : CurrentResult.getModRefBehavior(CS);
753     }
754 
getModRefBehavior(const Function * F)755     FunctionModRefBehavior getModRefBehavior(const Function *F) {
756       return AAR ? AAR->getModRefBehavior(F) : CurrentResult.getModRefBehavior(F);
757     }
758 
getModRefInfo(ImmutableCallSite CS,const MemoryLocation & Loc)759     ModRefInfo getModRefInfo(ImmutableCallSite CS, const MemoryLocation &Loc) {
760       return AAR ? AAR->getModRefInfo(CS, Loc)
761                  : CurrentResult.getModRefInfo(CS, Loc);
762     }
763 
getModRefInfo(ImmutableCallSite CS1,ImmutableCallSite CS2)764     ModRefInfo getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2) {
765       return AAR ? AAR->getModRefInfo(CS1, CS2) : CurrentResult.getModRefInfo(CS1, CS2);
766     }
767   };
768 
AAResultBase()769   explicit AAResultBase() {}
770 
771   // Provide all the copy and move constructors so that derived types aren't
772   // constrained.
AAResultBase(const AAResultBase & Arg)773   AAResultBase(const AAResultBase &Arg) {}
AAResultBase(AAResultBase && Arg)774   AAResultBase(AAResultBase &&Arg) {}
775 
776   /// Get a proxy for the best AA result set to query at this time.
777   ///
778   /// When this result is part of a larger aggregation, this will proxy to that
779   /// aggregation. When this result is used in isolation, it will just delegate
780   /// back to the derived class's implementation.
781   ///
782   /// Note that callers of this need to take considerable care to not cause
783   /// performance problems when they use this routine, in the case of a large
784   /// number of alias analyses being aggregated, it can be expensive to walk
785   /// back across the chain.
getBestAAResults()786   AAResultsProxy getBestAAResults() { return AAResultsProxy(AAR, derived()); }
787 
788 public:
alias(const MemoryLocation & LocA,const MemoryLocation & LocB)789   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
790     return MayAlias;
791   }
792 
pointsToConstantMemory(const MemoryLocation & Loc,bool OrLocal)793   bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal) {
794     return false;
795   }
796 
getArgModRefInfo(ImmutableCallSite CS,unsigned ArgIdx)797   ModRefInfo getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) {
798     return MRI_ModRef;
799   }
800 
getModRefBehavior(ImmutableCallSite CS)801   FunctionModRefBehavior getModRefBehavior(ImmutableCallSite CS) {
802     return FMRB_UnknownModRefBehavior;
803   }
804 
getModRefBehavior(const Function * F)805   FunctionModRefBehavior getModRefBehavior(const Function *F) {
806     return FMRB_UnknownModRefBehavior;
807   }
808 
getModRefInfo(ImmutableCallSite CS,const MemoryLocation & Loc)809   ModRefInfo getModRefInfo(ImmutableCallSite CS, const MemoryLocation &Loc) {
810     return MRI_ModRef;
811   }
812 
getModRefInfo(ImmutableCallSite CS1,ImmutableCallSite CS2)813   ModRefInfo getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2) {
814     return MRI_ModRef;
815   }
816 };
817 
818 
819 /// Return true if this pointer is returned by a noalias function.
820 bool isNoAliasCall(const Value *V);
821 
822 /// Return true if this is an argument with the noalias attribute.
823 bool isNoAliasArgument(const Value *V);
824 
825 /// Return true if this pointer refers to a distinct and identifiable object.
826 /// This returns true for:
827 ///    Global Variables and Functions (but not Global Aliases)
828 ///    Allocas
829 ///    ByVal and NoAlias Arguments
830 ///    NoAlias returns (e.g. calls to malloc)
831 ///
832 bool isIdentifiedObject(const Value *V);
833 
834 /// Return true if V is umabigously identified at the function-level.
835 /// Different IdentifiedFunctionLocals can't alias.
836 /// Further, an IdentifiedFunctionLocal can not alias with any function
837 /// arguments other than itself, which is not necessarily true for
838 /// IdentifiedObjects.
839 bool isIdentifiedFunctionLocal(const Value *V);
840 
841 /// A manager for alias analyses.
842 ///
843 /// This class can have analyses registered with it and when run, it will run
844 /// all of them and aggregate their results into single AA results interface
845 /// that dispatches across all of the alias analysis results available.
846 ///
847 /// Note that the order in which analyses are registered is very significant.
848 /// That is the order in which the results will be aggregated and queried.
849 ///
850 /// This manager effectively wraps the AnalysisManager for registering alias
851 /// analyses. When you register your alias analysis with this manager, it will
852 /// ensure the analysis itself is registered with its AnalysisManager.
853 class AAManager : public AnalysisInfoMixin<AAManager> {
854 public:
855   typedef AAResults Result;
856 
857   // This type hase value semantics. We have to spell these out because MSVC
858   // won't synthesize them.
AAManager()859   AAManager() {}
AAManager(AAManager && Arg)860   AAManager(AAManager &&Arg) : ResultGetters(std::move(Arg.ResultGetters)) {}
AAManager(const AAManager & Arg)861   AAManager(const AAManager &Arg) : ResultGetters(Arg.ResultGetters) {}
862   AAManager &operator=(AAManager &&RHS) {
863     ResultGetters = std::move(RHS.ResultGetters);
864     return *this;
865   }
866   AAManager &operator=(const AAManager &RHS) {
867     ResultGetters = RHS.ResultGetters;
868     return *this;
869   }
870 
871   /// Register a specific AA result.
registerFunctionAnalysis()872   template <typename AnalysisT> void registerFunctionAnalysis() {
873     ResultGetters.push_back(&getFunctionAAResultImpl<AnalysisT>);
874   }
875 
876   /// Register a specific AA result.
registerModuleAnalysis()877   template <typename AnalysisT> void registerModuleAnalysis() {
878     ResultGetters.push_back(&getModuleAAResultImpl<AnalysisT>);
879   }
880 
run(Function & F,AnalysisManager<Function> & AM)881   Result run(Function &F, AnalysisManager<Function> &AM) {
882     Result R(AM.getResult<TargetLibraryAnalysis>(F));
883     for (auto &Getter : ResultGetters)
884       (*Getter)(F, AM, R);
885     return R;
886   }
887 
888 private:
889   friend AnalysisInfoMixin<AAManager>;
890   static char PassID;
891 
892   SmallVector<void (*)(Function &F, AnalysisManager<Function> &AM,
893                        AAResults &AAResults),
894               4> ResultGetters;
895 
896   template <typename AnalysisT>
getFunctionAAResultImpl(Function & F,AnalysisManager<Function> & AM,AAResults & AAResults)897   static void getFunctionAAResultImpl(Function &F,
898                                       AnalysisManager<Function> &AM,
899                                       AAResults &AAResults) {
900     AAResults.addAAResult(AM.template getResult<AnalysisT>(F));
901   }
902 
903   template <typename AnalysisT>
getModuleAAResultImpl(Function & F,AnalysisManager<Function> & AM,AAResults & AAResults)904   static void getModuleAAResultImpl(Function &F, AnalysisManager<Function> &AM,
905                                     AAResults &AAResults) {
906     auto &MAM =
907         AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager();
908     if (auto *R = MAM.template getCachedResult<AnalysisT>(*F.getParent()))
909       AAResults.addAAResult(*R);
910   }
911 };
912 
913 /// A wrapper pass to provide the legacy pass manager access to a suitably
914 /// prepared AAResults object.
915 class AAResultsWrapperPass : public FunctionPass {
916   std::unique_ptr<AAResults> AAR;
917 
918 public:
919   static char ID;
920 
921   AAResultsWrapperPass();
922 
getAAResults()923   AAResults &getAAResults() { return *AAR; }
getAAResults()924   const AAResults &getAAResults() const { return *AAR; }
925 
926   bool runOnFunction(Function &F) override;
927 
928   void getAnalysisUsage(AnalysisUsage &AU) const override;
929 };
930 
931 FunctionPass *createAAResultsWrapperPass();
932 
933 /// A wrapper pass around a callback which can be used to populate the
934 /// AAResults in the AAResultsWrapperPass from an external AA.
935 ///
936 /// The callback provided here will be used each time we prepare an AAResults
937 /// object, and will receive a reference to the function wrapper pass, the
938 /// function, and the AAResults object to populate. This should be used when
939 /// setting up a custom pass pipeline to inject a hook into the AA results.
940 ImmutablePass *createExternalAAWrapperPass(
941     std::function<void(Pass &, Function &, AAResults &)> Callback);
942 
943 /// A helper for the legacy pass manager to create a \c AAResults
944 /// object populated to the best of our ability for a particular function when
945 /// inside of a \c ModulePass or a \c CallGraphSCCPass.
946 ///
947 /// If a \c ModulePass or a \c CallGraphSCCPass calls \p
948 /// createLegacyPMAAResults, it also needs to call \p addUsedAAAnalyses in \p
949 /// getAnalysisUsage.
950 AAResults createLegacyPMAAResults(Pass &P, Function &F, BasicAAResult &BAR);
951 
952 /// A helper for the legacy pass manager to populate \p AU to add uses to make
953 /// sure the analyses required by \p createLegacyPMAAResults are available.
954 void getAAResultsAnalysisUsage(AnalysisUsage &AU);
955 
956 } // End llvm namespace
957 
958 #endif
959