• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2016 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "SkNormalMapSource.h"
9 
10 #include "SkArenaAlloc.h"
11 #include "SkLightingShader.h"
12 #include "SkMatrix.h"
13 #include "SkNormalSource.h"
14 #include "SkPM4f.h"
15 #include "SkReadBuffer.h"
16 #include "SkWriteBuffer.h"
17 
18 #if SK_SUPPORT_GPU
19 #include "GrCoordTransform.h"
20 #include "GrSamplerParams.h"
21 #include "glsl/GrGLSLFragmentProcessor.h"
22 #include "glsl/GrGLSLFragmentShaderBuilder.h"
23 #include "SkGr.h"
24 
25 class NormalMapFP : public GrFragmentProcessor {
26 public:
Make(sk_sp<GrFragmentProcessor> mapFP,const SkMatrix & invCTM)27     static sk_sp<GrFragmentProcessor> Make(sk_sp<GrFragmentProcessor> mapFP,
28                                            const SkMatrix& invCTM) {
29         return sk_sp<GrFragmentProcessor>(new NormalMapFP(std::move(mapFP), invCTM));
30     }
31 
32     class GLSLNormalMapFP : public GrGLSLFragmentProcessor {
33     public:
GLSLNormalMapFP()34         GLSLNormalMapFP()
35             : fColumnMajorInvCTM22{0.0f} {}
36 
emitCode(EmitArgs & args)37         void emitCode(EmitArgs& args) override {
38             GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
39             GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
40 
41             // add uniform
42             const char* xformUniName = nullptr;
43             fXformUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kMat22f_GrSLType,
44                                                    kDefault_GrSLPrecision, "Xform", &xformUniName);
45 
46             SkString dstNormalColorName("dstNormalColor");
47             this->emitChild(0, &dstNormalColorName, args);
48             fragBuilder->codeAppendf("vec3 normal = normalize(%s.rgb - vec3(0.5));",
49                                      dstNormalColorName.c_str());
50 
51             // If there's no x & y components, return (0, 0, +/- 1) instead to avoid division by 0
52             fragBuilder->codeAppend( "if (abs(normal.z) > 0.999) {");
53             fragBuilder->codeAppendf("    %s = normalize(vec4(0.0, 0.0, normal.z, 0.0));",
54                     args.fOutputColor);
55             // Else, Normalizing the transformed X and Y, while keeping constant both Z and the
56             // vector's angle in the XY plane. This maintains the "slope" for the surface while
57             // appropriately rotating the normal regardless of any anisotropic scaling that occurs.
58             // Here, we call 'scaling factor' the number that must divide the transformed X and Y so
59             // that the normal's length remains equal to 1.
60             fragBuilder->codeAppend( "} else {");
61             fragBuilder->codeAppendf("    vec2 transformed = %s * normal.xy;",
62                     xformUniName);
63             fragBuilder->codeAppend( "    float scalingFactorSquared = "
64                                                  "( (transformed.x * transformed.x) "
65                                                    "+ (transformed.y * transformed.y) )"
66                                                  "/(1.0 - (normal.z * normal.z));");
67             fragBuilder->codeAppendf("    %s = vec4(transformed*inversesqrt(scalingFactorSquared),"
68                                                    "normal.z, 0.0);",
69                     args.fOutputColor);
70             fragBuilder->codeAppend( "}");
71         }
72 
GenKey(const GrProcessor &,const GrShaderCaps &,GrProcessorKeyBuilder * b)73         static void GenKey(const GrProcessor&, const GrShaderCaps&, GrProcessorKeyBuilder* b) {
74             b->add32(0x0);
75         }
76 
77     private:
onSetData(const GrGLSLProgramDataManager & pdman,const GrFragmentProcessor & proc)78         void onSetData(const GrGLSLProgramDataManager& pdman,
79                        const GrFragmentProcessor& proc) override {
80             const NormalMapFP& normalMapFP = proc.cast<NormalMapFP>();
81 
82             const SkMatrix& invCTM = normalMapFP.invCTM();
83             fColumnMajorInvCTM22[0] = invCTM.get(SkMatrix::kMScaleX);
84             fColumnMajorInvCTM22[1] = invCTM.get(SkMatrix::kMSkewY);
85             fColumnMajorInvCTM22[2] = invCTM.get(SkMatrix::kMSkewX);
86             fColumnMajorInvCTM22[3] = invCTM.get(SkMatrix::kMScaleY);
87             pdman.setMatrix2f(fXformUni, fColumnMajorInvCTM22);
88         }
89 
90     private:
91         // Upper-right 2x2 corner of the inverse of the CTM in column-major form
92         float fColumnMajorInvCTM22[4];
93         GrGLSLProgramDataManager::UniformHandle fXformUni;
94     };
95 
onGetGLSLProcessorKey(const GrShaderCaps & caps,GrProcessorKeyBuilder * b) const96     void onGetGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const override {
97         GLSLNormalMapFP::GenKey(*this, caps, b);
98     }
99 
name() const100     const char* name() const override { return "NormalMapFP"; }
101 
invCTM() const102     const SkMatrix& invCTM() const { return fInvCTM; }
103 
104 private:
NormalMapFP(sk_sp<GrFragmentProcessor> mapFP,const SkMatrix & invCTM)105     NormalMapFP(sk_sp<GrFragmentProcessor> mapFP, const SkMatrix& invCTM)
106             : INHERITED(kNone_OptimizationFlags), fInvCTM(invCTM) {
107         this->registerChildProcessor(mapFP);
108 
109         this->initClassID<NormalMapFP>();
110     }
111 
onCreateGLSLInstance() const112     GrGLSLFragmentProcessor* onCreateGLSLInstance() const override { return new GLSLNormalMapFP; }
113 
onIsEqual(const GrFragmentProcessor & proc) const114     bool onIsEqual(const GrFragmentProcessor& proc) const override {
115         const NormalMapFP& normalMapFP = proc.cast<NormalMapFP>();
116         return fInvCTM == normalMapFP.fInvCTM;
117     }
118 
119     SkMatrix fInvCTM;
120 
121     typedef GrFragmentProcessor INHERITED;
122 };
123 
asFragmentProcessor(const SkShaderBase::AsFPArgs & args) const124 sk_sp<GrFragmentProcessor> SkNormalMapSourceImpl::asFragmentProcessor(
125         const SkShaderBase::AsFPArgs& args) const {
126     sk_sp<GrFragmentProcessor> mapFP = as_SB(fMapShader)->asFragmentProcessor(args);
127     if (!mapFP) {
128         return nullptr;
129     }
130 
131     return NormalMapFP::Make(std::move(mapFP), fInvCTM);
132 }
133 
134 #endif // SK_SUPPORT_GPU
135 
136 ////////////////////////////////////////////////////////////////////////////
137 
Provider(const SkNormalMapSourceImpl & source,SkShaderBase::Context * mapContext)138 SkNormalMapSourceImpl::Provider::Provider(const SkNormalMapSourceImpl& source,
139                                           SkShaderBase::Context* mapContext)
140     : fSource(source)
141     , fMapContext(mapContext) {}
142 
asProvider(const SkShaderBase::ContextRec & rec,SkArenaAlloc * alloc) const143 SkNormalSource::Provider* SkNormalMapSourceImpl::asProvider(const SkShaderBase::ContextRec &rec,
144                                                             SkArenaAlloc* alloc) const {
145     SkMatrix normTotalInv;
146     if (!this->computeNormTotalInverse(rec, &normTotalInv)) {
147         return nullptr;
148     }
149 
150     // Overriding paint's alpha because we need the normal map's RGB channels to be unpremul'd
151     SkPaint overridePaint {*(rec.fPaint)};
152     overridePaint.setAlpha(0xFF);
153     SkShaderBase::ContextRec overrideRec(overridePaint, *(rec.fMatrix), rec.fLocalMatrix,
154                                          rec.fPreferredDstType, rec.fDstColorSpace);
155 
156     auto* context = as_SB(fMapShader)->makeContext(overrideRec, alloc);
157     if (!context) {
158         return nullptr;
159     }
160 
161     return alloc->make<Provider>(*this, context);
162 }
163 
computeNormTotalInverse(const SkShaderBase::ContextRec & rec,SkMatrix * normTotalInverse) const164 bool SkNormalMapSourceImpl::computeNormTotalInverse(const SkShaderBase::ContextRec& rec,
165                                                     SkMatrix* normTotalInverse) const {
166     SkMatrix total = SkMatrix::Concat(*rec.fMatrix, fMapShader->getLocalMatrix());
167     if (rec.fLocalMatrix) {
168         total.preConcat(*rec.fLocalMatrix);
169     }
170 
171     return total.invert(normTotalInverse);
172 }
173 
174 #define BUFFER_MAX 16
fillScanLine(int x,int y,SkPoint3 output[],int count) const175 void SkNormalMapSourceImpl::Provider::fillScanLine(int x, int y, SkPoint3 output[],
176                                                    int count) const {
177     SkPMColor tmpNormalColors[BUFFER_MAX];
178 
179     do {
180         int n = SkTMin(count, BUFFER_MAX);
181 
182         fMapContext->shadeSpan(x, y, tmpNormalColors, n);
183 
184         for (int i = 0; i < n; i++) {
185             SkPoint3 tempNorm;
186 
187             tempNorm.set(SkIntToScalar(SkGetPackedR32(tmpNormalColors[i])) - 127.0f,
188                          SkIntToScalar(SkGetPackedG32(tmpNormalColors[i])) - 127.0f,
189                          SkIntToScalar(SkGetPackedB32(tmpNormalColors[i])) - 127.0f);
190 
191             tempNorm.normalize();
192 
193 
194             if (!SkScalarNearlyEqual(SkScalarAbs(tempNorm.fZ), 1.0f)) {
195                 SkVector transformed = fSource.fInvCTM.mapVector(tempNorm.fX, tempNorm.fY);
196 
197                 // Normalizing the transformed X and Y, while keeping constant both Z and the
198                 // vector's angle in the XY plane. This maintains the "slope" for the surface while
199                 // appropriately rotating the normal for any anisotropic scaling that occurs.
200                 // Here, we call scaling factor the number that must divide the transformed X and Y
201                 // so that the normal's length remains equal to 1.
202                 SkScalar scalingFactorSquared =
203                         (SkScalarSquare(transformed.fX) + SkScalarSquare(transformed.fY))
204                         / (1.0f - SkScalarSquare(tempNorm.fZ));
205                 SkScalar invScalingFactor = SkScalarInvert(SkScalarSqrt(scalingFactorSquared));
206 
207                 output[i].fX = transformed.fX * invScalingFactor;
208                 output[i].fY = transformed.fY * invScalingFactor;
209                 output[i].fZ = tempNorm.fZ;
210             } else {
211                 output[i] = {0.0f, 0.0f, tempNorm.fZ};
212                 output[i].normalize();
213             }
214 
215             SkASSERT(SkScalarNearlyEqual(output[i].length(), 1.0f));
216         }
217 
218         output += n;
219         x += n;
220         count -= n;
221     } while (count > 0);
222 }
223 
224 ////////////////////////////////////////////////////////////////////////////////
225 
CreateProc(SkReadBuffer & buf)226 sk_sp<SkFlattenable> SkNormalMapSourceImpl::CreateProc(SkReadBuffer& buf) {
227 
228     sk_sp<SkShader> mapShader = buf.readFlattenable<SkShaderBase>();
229 
230     SkMatrix invCTM;
231     buf.readMatrix(&invCTM);
232 
233     return sk_make_sp<SkNormalMapSourceImpl>(std::move(mapShader), invCTM);
234 }
235 
flatten(SkWriteBuffer & buf) const236 void SkNormalMapSourceImpl::flatten(SkWriteBuffer& buf) const {
237     this->INHERITED::flatten(buf);
238 
239     buf.writeFlattenable(fMapShader.get());
240     buf.writeMatrix(fInvCTM);
241 }
242 
243 ////////////////////////////////////////////////////////////////////////////
244 
MakeFromNormalMap(sk_sp<SkShader> map,const SkMatrix & ctm)245 sk_sp<SkNormalSource> SkNormalSource::MakeFromNormalMap(sk_sp<SkShader> map, const SkMatrix& ctm) {
246     SkMatrix invCTM;
247 
248     if (!ctm.invert(&invCTM) || !map) {
249         return nullptr;
250     }
251 
252     return sk_make_sp<SkNormalMapSourceImpl>(std::move(map), invCTM);
253 }
254