1 //===- subzero/src/IceVariableSplitting.cpp - Local variable splitting ----===//
2 //
3 // The Subzero Code Generator
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// \brief Aggressive block-local variable splitting to improve linear-scan
12 /// register allocation.
13 ///
14 //===----------------------------------------------------------------------===//
15
16 #include "IceVariableSplitting.h"
17
18 #include "IceCfg.h"
19 #include "IceCfgNode.h"
20 #include "IceClFlags.h"
21 #include "IceInst.h"
22 #include "IceOperand.h"
23 #include "IceTargetLowering.h"
24
25 namespace Ice {
26
27 namespace {
28
29 /// A Variable is "allocable" if it is a register allocation candidate but
30 /// doesn't already have a register.
isAllocable(const Variable * Var)31 bool isAllocable(const Variable *Var) {
32 if (Var == nullptr)
33 return false;
34 return !Var->hasReg() && Var->mayHaveReg();
35 }
36
37 /// A Variable is "inf" if it already has a register or is infinite-weight.
isInf(const Variable * Var)38 bool isInf(const Variable *Var) {
39 if (Var == nullptr)
40 return false;
41 return Var->hasReg() || Var->mustHaveReg();
42 }
43
44 /// VariableMap is a simple helper class that keeps track of the latest split
45 /// version of the original Variables, as well as the instruction containing the
46 /// last use of the Variable within the current block. For each entry, the
47 /// Variable is tagged with the CfgNode that it is valid in, so that we don't
48 /// need to clear the entire Map[] vector for each block.
49 class VariableMap {
50 private:
51 VariableMap() = delete;
52 VariableMap(const VariableMap &) = delete;
53 VariableMap &operator=(const VariableMap &) = delete;
54
55 struct VarInfo {
56 /// MappedVar is the latest mapped/split version of the Variable.
57 Variable *MappedVar = nullptr;
58 /// MappedVarNode is the block in which MappedVar is valid.
59 const CfgNode *MappedVarNode = nullptr;
60 /// LastUseInst is the last instruction in the block that uses the Variable
61 /// as a source operand.
62 const Inst *LastUseInst = nullptr;
63 /// LastUseNode is the block in which LastUseInst is valid.
64 const CfgNode *LastUseNode = nullptr;
65 VarInfo() = default;
66
67 private:
68 VarInfo(const VarInfo &) = delete;
69 VarInfo &operator=(const VarInfo &) = delete;
70 };
71
72 public:
VariableMap(Cfg * Func)73 explicit VariableMap(Cfg *Func)
74 : Func(Func), NumVars(Func->getNumVariables()), Map(NumVars) {}
75 /// Reset the mappings at the start of a block.
reset(const CfgNode * CurNode)76 void reset(const CfgNode *CurNode) {
77 Node = CurNode;
78 // Do a prepass through all the instructions, marking which instruction is
79 // the last use of each Variable within the block.
80 for (const Inst &Instr : Node->getInsts()) {
81 if (Instr.isDeleted())
82 continue;
83 for (SizeT i = 0; i < Instr.getSrcSize(); ++i) {
84 if (auto *SrcVar = llvm::dyn_cast<Variable>(Instr.getSrc(i))) {
85 const SizeT VarNum = getVarNum(SrcVar);
86 Map[VarNum].LastUseInst = &Instr;
87 Map[VarNum].LastUseNode = Node;
88 }
89 }
90 }
91 }
92 /// Get Var's current mapping (or Var itself if it has no mapping yet).
get(Variable * Var) const93 Variable *get(Variable *Var) const {
94 const SizeT VarNum = getVarNum(Var);
95 Variable *MappedVar = Map[VarNum].MappedVar;
96 if (MappedVar == nullptr)
97 return Var;
98 if (Map[VarNum].MappedVarNode != Node)
99 return Var;
100 return MappedVar;
101 }
102 /// Create a new linked Variable in the LinkedTo chain, and set it as Var's
103 /// latest mapping.
makeLinked(Variable * Var)104 Variable *makeLinked(Variable *Var) {
105 Variable *NewVar = Func->makeVariable(Var->getType());
106 NewVar->setRegClass(Var->getRegClass());
107 NewVar->setLinkedTo(get(Var));
108 const SizeT VarNum = getVarNum(Var);
109 Map[VarNum].MappedVar = NewVar;
110 Map[VarNum].MappedVarNode = Node;
111 return NewVar;
112 }
113 /// Given Var that is LinkedTo some other variable, re-splice it into the
114 /// LinkedTo chain so that the chain is ordered by Variable::getIndex().
spliceBlockLocalLinkedToChain(Variable * Var)115 void spliceBlockLocalLinkedToChain(Variable *Var) {
116 Variable *LinkedTo = Var->getLinkedTo();
117 assert(LinkedTo != nullptr);
118 assert(Var->getIndex() > LinkedTo->getIndex());
119 const SizeT VarNum = getVarNum(LinkedTo);
120 Variable *Link = Map[VarNum].MappedVar;
121 if (Link == nullptr || Map[VarNum].MappedVarNode != Node)
122 return;
123 Variable *LinkParent = Link->getLinkedTo();
124 while (LinkParent != nullptr && LinkParent->getIndex() >= Var->getIndex()) {
125 Link = LinkParent;
126 LinkParent = Link->getLinkedTo();
127 }
128 Var->setLinkedTo(LinkParent);
129 Link->setLinkedTo(Var);
130 }
131 /// Return whether the given Variable has any uses as a source operand within
132 /// the current block. If it has no source operand uses, but is assigned as a
133 /// dest variable in some instruction in the block, then we needn't bother
134 /// splitting it.
isDestUsedInBlock(const Variable * Dest) const135 bool isDestUsedInBlock(const Variable *Dest) const {
136 return Map[getVarNum(Dest)].LastUseNode == Node;
137 }
138 /// Return whether the given instruction is the last use of the given Variable
139 /// within the current block. If it is, then we needn't bother splitting the
140 /// Variable at this instruction.
isInstLastUseOfVar(const Variable * Var,const Inst * Instr)141 bool isInstLastUseOfVar(const Variable *Var, const Inst *Instr) {
142 return Map[getVarNum(Var)].LastUseInst == Instr;
143 }
144
145 private:
146 Cfg *const Func;
147 // NumVars is for the size of the Map array. It can be const because any new
148 // Variables created during the splitting pass don't need to be mapped.
149 const SizeT NumVars;
150 CfgVector<VarInfo> Map;
151 const CfgNode *Node = nullptr;
152 /// Get Var's VarNum, and do some validation.
getVarNum(const Variable * Var) const153 SizeT getVarNum(const Variable *Var) const {
154 const SizeT VarNum = Var->getIndex();
155 assert(VarNum < NumVars);
156 return VarNum;
157 }
158 };
159
160 /// LocalVariableSplitter tracks the necessary splitting state across
161 /// instructions.
162 class LocalVariableSplitter {
163 LocalVariableSplitter() = delete;
164 LocalVariableSplitter(const LocalVariableSplitter &) = delete;
165 LocalVariableSplitter &operator=(const LocalVariableSplitter &) = delete;
166
167 public:
LocalVariableSplitter(Cfg * Func)168 explicit LocalVariableSplitter(Cfg *Func)
169 : Target(Func->getTarget()), VarMap(Func) {}
170 /// setNode() is called before processing the instructions of a block.
setNode(CfgNode * CurNode)171 void setNode(CfgNode *CurNode) {
172 Node = CurNode;
173 VarMap.reset(Node);
174 LinkedToFixups.clear();
175 }
176 /// finalizeNode() is called after all instructions in the block are
177 /// processed.
finalizeNode()178 void finalizeNode() {
179 // Splice in any preexisting LinkedTo links into the single chain. These
180 // are the ones that were recorded during setInst().
181 for (Variable *Var : LinkedToFixups) {
182 VarMap.spliceBlockLocalLinkedToChain(Var);
183 }
184 }
185 /// setInst() is called before processing the next instruction. The iterators
186 /// are the insertion points for a new instructions, depending on whether the
187 /// new instruction should be inserted before or after the current
188 /// instruction.
setInst(Inst * CurInst,InstList::iterator Cur,InstList::iterator Next)189 void setInst(Inst *CurInst, InstList::iterator Cur, InstList::iterator Next) {
190 Instr = CurInst;
191 Dest = Instr->getDest();
192 IterCur = Cur;
193 IterNext = Next;
194 ShouldSkipRemainingInstructions = false;
195 // Note any preexisting LinkedTo relationships that were created during
196 // target lowering. Record them in LinkedToFixups which is then processed
197 // in finalizeNode().
198 if (Dest != nullptr && Dest->getLinkedTo() != nullptr) {
199 LinkedToFixups.emplace_back(Dest);
200 }
201 }
shouldSkipRemainingInstructions() const202 bool shouldSkipRemainingInstructions() const {
203 return ShouldSkipRemainingInstructions;
204 }
isUnconditionallyExecuted() const205 bool isUnconditionallyExecuted() const { return WaitingForLabel == nullptr; }
206
207 /// Note: the handle*() functions return true to indicate that the instruction
208 /// has now been handled and that the instruction loop should continue to the
209 /// next instruction in the block (and return false otherwise). In addition,
210 /// they set the ShouldSkipRemainingInstructions flag to indicate that no more
211 /// instructions in the block should be processed.
212
213 /// Handle an "unwanted" instruction by returning true;
handleUnwantedInstruction()214 bool handleUnwantedInstruction() {
215 // We can limit the splitting to an arbitrary subset of the instructions,
216 // and still expect correct code. As such, we can do instruction-subset
217 // bisection to help debug any problems in this pass.
218 static constexpr char AnInstructionHasNoName[] = "";
219 if (!BuildDefs::minimal() &&
220 !getFlags().matchSplitInsts(AnInstructionHasNoName,
221 Instr->getNumber())) {
222 return true;
223 }
224 if (!llvm::isa<InstTarget>(Instr)) {
225 // Ignore non-lowered instructions like FakeDef/FakeUse.
226 return true;
227 }
228 return false;
229 }
230
231 /// Process a potential label instruction.
handleLabel()232 bool handleLabel() {
233 if (!Instr->isLabel())
234 return false;
235 // A Label instruction shouldn't have any operands, so it can be handled
236 // right here and then move on.
237 assert(Dest == nullptr);
238 assert(Instr->getSrcSize() == 0);
239 if (Instr == WaitingForLabel) {
240 // If we found the forward-branch-target Label instruction we're waiting
241 // for, then clear the WaitingForLabel state.
242 WaitingForLabel = nullptr;
243 } else if (WaitingForLabel == nullptr && WaitingForBranchTo == nullptr) {
244 // If we found a new Label instruction while the WaitingFor* state is
245 // clear, then set things up for this being a backward branch target.
246 WaitingForBranchTo = Instr;
247 } else {
248 // We see something we don't understand, so skip to the next block.
249 ShouldSkipRemainingInstructions = true;
250 }
251 return true;
252 }
253
254 /// Process a potential intra-block branch instruction.
handleIntraBlockBranch()255 bool handleIntraBlockBranch() {
256 const Inst *Label = Instr->getIntraBlockBranchTarget();
257 if (Label == nullptr)
258 return false;
259 // An intra-block branch instruction shouldn't have any operands, so it can
260 // be handled right here and then move on.
261 assert(Dest == nullptr);
262 assert(Instr->getSrcSize() == 0);
263 if (WaitingForBranchTo == Label && WaitingForLabel == nullptr) {
264 WaitingForBranchTo = nullptr;
265 } else if (WaitingForBranchTo == nullptr &&
266 (WaitingForLabel == nullptr || WaitingForLabel == Label)) {
267 WaitingForLabel = Label;
268 } else {
269 // We see something we don't understand, so skip to the next block.
270 ShouldSkipRemainingInstructions = true;
271 }
272 return true;
273 }
274
275 /// Specially process a potential "Variable=Variable" assignment instruction,
276 /// when it conforms to certain patterns.
handleSimpleVarAssign()277 bool handleSimpleVarAssign() {
278 if (!Instr->isVarAssign())
279 return false;
280 const bool DestIsInf = isInf(Dest);
281 const bool DestIsAllocable = isAllocable(Dest);
282 auto *SrcVar = llvm::cast<Variable>(Instr->getSrc(0));
283 const bool SrcIsInf = isInf(SrcVar);
284 const bool SrcIsAllocable = isAllocable(SrcVar);
285 if (DestIsInf && SrcIsInf) {
286 // The instruction:
287 // t:inf = u:inf
288 // No transformation is needed.
289 return true;
290 }
291 if (DestIsInf && SrcIsAllocable && Dest->getType() == SrcVar->getType()) {
292 // The instruction:
293 // t:inf = v
294 // gets transformed to:
295 // t:inf = v1
296 // v2 = t:inf
297 // where:
298 // v1 := map[v]
299 // v2 := linkTo(v)
300 // map[v] := v2
301 //
302 // If both v2 and its linkedToStackRoot get a stack slot, then "v2=t:inf"
303 // is recognized as a redundant assignment and elided.
304 //
305 // Note that if the dest and src types are different, then this is
306 // actually a truncation operation, which would make "v2=t:inf" an invalid
307 // instruction. In this case, the type test will make it fall through to
308 // the general case below.
309 Variable *OldMapped = VarMap.get(SrcVar);
310 Instr->replaceSource(0, OldMapped);
311 if (isUnconditionallyExecuted()) {
312 // Only create new mapping state if the instruction is unconditionally
313 // executed.
314 if (!VarMap.isInstLastUseOfVar(SrcVar, Instr)) {
315 Variable *NewMapped = VarMap.makeLinked(SrcVar);
316 Inst *Mov = Target->createLoweredMove(NewMapped, Dest);
317 Node->getInsts().insert(IterNext, Mov);
318 }
319 }
320 return true;
321 }
322 if (DestIsAllocable && SrcIsInf) {
323 if (!VarMap.isDestUsedInBlock(Dest)) {
324 return true;
325 }
326 // The instruction:
327 // v = t:inf
328 // gets transformed to:
329 // v = t:inf
330 // v2 = t:inf
331 // where:
332 // v2 := linkTo(v)
333 // map[v] := v2
334 //
335 // If both v2 and v get a stack slot, then "v2=t:inf" is recognized as a
336 // redundant assignment and elided.
337 if (isUnconditionallyExecuted()) {
338 // Only create new mapping state if the instruction is unconditionally
339 // executed.
340 Variable *NewMapped = VarMap.makeLinked(Dest);
341 Inst *Mov = Target->createLoweredMove(NewMapped, SrcVar);
342 Node->getInsts().insert(IterNext, Mov);
343 } else {
344 // For a conditionally executed instruction, add a redefinition of the
345 // original Dest mapping, without creating a new linked variable.
346 Variable *OldMapped = VarMap.get(Dest);
347 Inst *Mov = Target->createLoweredMove(OldMapped, SrcVar);
348 Mov->setDestRedefined();
349 Node->getInsts().insert(IterNext, Mov);
350 }
351 return true;
352 }
353 assert(!ShouldSkipRemainingInstructions);
354 return false;
355 }
356
357 /// Process the dest Variable of a Phi instruction.
handlePhi()358 bool handlePhi() {
359 assert(llvm::isa<InstPhi>(Instr));
360 const bool DestIsAllocable = isAllocable(Dest);
361 if (!DestIsAllocable)
362 return true;
363 if (!VarMap.isDestUsedInBlock(Dest))
364 return true;
365 Variable *NewMapped = VarMap.makeLinked(Dest);
366 Inst *Mov = Target->createLoweredMove(NewMapped, Dest);
367 Node->getInsts().insert(IterCur, Mov);
368 return true;
369 }
370
371 /// Process an arbitrary instruction.
handleGeneralInst()372 bool handleGeneralInst() {
373 const bool DestIsAllocable = isAllocable(Dest);
374 // The (non-variable-assignment) instruction:
375 // ... = F(v)
376 // where v is not infinite-weight, gets transformed to:
377 // v2 = v1
378 // ... = F(v1)
379 // where:
380 // v1 := map[v]
381 // v2 := linkTo(v)
382 // map[v] := v2
383 // After that, if the "..." dest=u is not infinite-weight, append:
384 // u2 = u
385 // where:
386 // u2 := linkTo(u)
387 // map[u] := u2
388 for (SizeT i = 0; i < Instr->getSrcSize(); ++i) {
389 // Iterate over the top-level src vars. Don't bother to dig into
390 // e.g. MemOperands because their vars should all be infinite-weight.
391 // (This assumption would need to change if the pass were done
392 // pre-lowering.)
393 if (auto *SrcVar = llvm::dyn_cast<Variable>(Instr->getSrc(i))) {
394 const bool SrcIsAllocable = isAllocable(SrcVar);
395 if (SrcIsAllocable) {
396 Variable *OldMapped = VarMap.get(SrcVar);
397 if (isUnconditionallyExecuted()) {
398 if (!VarMap.isInstLastUseOfVar(SrcVar, Instr)) {
399 Variable *NewMapped = VarMap.makeLinked(SrcVar);
400 Inst *Mov = Target->createLoweredMove(NewMapped, OldMapped);
401 Node->getInsts().insert(IterCur, Mov);
402 }
403 }
404 Instr->replaceSource(i, OldMapped);
405 }
406 }
407 }
408 // Transformation of Dest is the same as the "v=t:inf" case above.
409 if (DestIsAllocable && VarMap.isDestUsedInBlock(Dest)) {
410 if (isUnconditionallyExecuted()) {
411 Variable *NewMapped = VarMap.makeLinked(Dest);
412 Inst *Mov = Target->createLoweredMove(NewMapped, Dest);
413 Node->getInsts().insert(IterNext, Mov);
414 } else {
415 Variable *OldMapped = VarMap.get(Dest);
416 Inst *Mov = Target->createLoweredMove(OldMapped, Dest);
417 Mov->setDestRedefined();
418 Node->getInsts().insert(IterNext, Mov);
419 }
420 }
421 return true;
422 }
423
424 private:
425 TargetLowering *Target;
426 CfgNode *Node = nullptr;
427 Inst *Instr = nullptr;
428 Variable *Dest = nullptr;
429 InstList::iterator IterCur;
430 InstList::iterator IterNext;
431 bool ShouldSkipRemainingInstructions = false;
432 VariableMap VarMap;
433 CfgVector<Variable *> LinkedToFixups;
434 /// WaitingForLabel and WaitingForBranchTo are for tracking intra-block
435 /// control flow.
436 const Inst *WaitingForLabel = nullptr;
437 const Inst *WaitingForBranchTo = nullptr;
438 };
439
440 } // end of anonymous namespace
441
442 /// Within each basic block, rewrite Variable references in terms of chained
443 /// copies of the original Variable. For example:
444 /// A = B + C
445 /// might be rewritten as:
446 /// B1 = B
447 /// C1 = C
448 /// A = B + C
449 /// A1 = A
450 /// and then:
451 /// D = A + B
452 /// might be rewritten as:
453 /// A2 = A1
454 /// B2 = B1
455 /// D = A1 + B1
456 /// D1 = D
457 ///
458 /// The purpose is to present the linear-scan register allocator with smaller
459 /// live ranges, to help mitigate its "all or nothing" allocation strategy,
460 /// while counting on its preference mechanism to keep the split versions in the
461 /// same register when possible.
462 ///
463 /// When creating new Variables, A2 is linked to A1 which is linked to A, and
464 /// similar for the other Variable linked-to chains. Rewrites apply only to
465 /// Variables where mayHaveReg() is true.
466 ///
467 /// At code emission time, redundant linked-to stack assignments will be
468 /// recognized and elided. To illustrate using the above example, if A1 gets a
469 /// register but A and A2 are on the stack, the "A2=A1" store instruction is
470 /// redundant since A and A2 share the same stack slot and A1 originated from A.
471 ///
472 /// Simple assignment instructions are rewritten slightly differently, to take
473 /// maximal advantage of Variables known to have registers.
474 ///
475 /// In general, there may be several valid ways to rewrite an instruction: add
476 /// the new assignment instruction either before or after the original
477 /// instruction, and rewrite the original instruction with either the old or the
478 /// new variable mapping. We try to pick a strategy most likely to avoid
479 /// potential performance problems. For example, try to avoid storing to the
480 /// stack and then immediately reloading from the same location. One
481 /// consequence is that code might be generated that loads a register from a
482 /// stack location, followed almost immediately by another use of the same stack
483 /// location, despite its value already being available in a register as a
484 /// result of the first instruction. However, the performance impact here is
485 /// likely to be negligible, and a simple availability peephole optimization
486 /// could clean it up.
487 ///
488 /// This pass potentially adds a lot of new instructions and variables, and as
489 /// such there are compile-time performance concerns, particularly with liveness
490 /// analysis and register allocation. Note that for liveness analysis, the new
491 /// variables have single-block liveness, so they don't increase the size of the
492 /// liveness bit vectors that need to be merged across blocks. As a result, the
493 /// performance impact is likely to be linearly related to the number of new
494 /// instructions, rather than number of new variables times number of blocks
495 /// which would be the case if they were multi-block variables.
splitBlockLocalVariables(Cfg * Func)496 void splitBlockLocalVariables(Cfg *Func) {
497 if (!getFlags().getSplitLocalVars())
498 return;
499 TimerMarker _(TimerStack::TT_splitLocalVars, Func);
500 LocalVariableSplitter Splitter(Func);
501 // TODO(stichnot): Fix this mechanism for LinkedTo variables and stack slot
502 // assignment.
503 //
504 // To work around shortcomings with stack frame mapping, we want to arrange
505 // LinkedTo structure such that within one block, the LinkedTo structure
506 // leading to a root forms a list, not a tree. A LinkedTo root can have
507 // multiple children linking to it, but only one per block. Furthermore,
508 // because stack slot mapping processes variables in numerical order, the
509 // LinkedTo chain needs to be ordered such that when A->getLinkedTo() == B,
510 // then A->getIndex() > B->getIndex().
511 //
512 // To effect this, while processing a block we keep track of preexisting
513 // LinkedTo relationships via the LinkedToFixups vector, and at the end of the
514 // block we splice them in such that the block has a single chain for each
515 // root, ordered by getIndex() value.
516 CfgVector<Variable *> LinkedToFixups;
517 for (CfgNode *Node : Func->getNodes()) {
518 // Clear the VarMap and LinkedToFixups at the start of every block.
519 LinkedToFixups.clear();
520 Splitter.setNode(Node);
521 auto &Insts = Node->getInsts();
522 auto Iter = Insts.begin();
523 auto IterEnd = Insts.end();
524 // TODO(stichnot): Figure out why Phi processing usually degrades
525 // performance. Disable for now.
526 static constexpr bool ProcessPhis = false;
527 if (ProcessPhis) {
528 for (Inst &Instr : Node->getPhis()) {
529 if (Instr.isDeleted())
530 continue;
531 Splitter.setInst(&Instr, Iter, Iter);
532 Splitter.handlePhi();
533 }
534 }
535 InstList::iterator NextIter;
536 for (; Iter != IterEnd && !Splitter.shouldSkipRemainingInstructions();
537 Iter = NextIter) {
538 NextIter = Iter;
539 ++NextIter;
540 Inst *Instr = iteratorToInst(Iter);
541 if (Instr->isDeleted())
542 continue;
543 Splitter.setInst(Instr, Iter, NextIter);
544
545 // Before doing any transformations, take care of the bookkeeping for
546 // intra-block branching.
547 //
548 // This is tricky because the transformation for one instruction may
549 // depend on a transformation for a previous instruction, but if that
550 // previous instruction is not dynamically executed due to intra-block
551 // control flow, it may lead to an inconsistent state and incorrect code.
552 //
553 // We want to handle some simple cases, and reject some others:
554 //
555 // 1. For something like a select instruction, we could have:
556 // test cond
557 // dest = src_false
558 // branch conditionally to label
559 // dest = src_true
560 // label:
561 //
562 // Between the conditional branch and the label, we need to treat dest and
563 // src variables specially, specifically not creating any new state.
564 //
565 // 2. Some 64-bit atomic instructions may be lowered to a loop:
566 // label:
567 // ...
568 // branch conditionally to label
569 //
570 // No special treatment is needed, but it's worth tracking so that case #1
571 // above can also be handled.
572 //
573 // 3. Advanced switch lowering can create really complex intra-block
574 // control flow, so when we recognize this, we should just stop splitting
575 // for the remainder of the block (which isn't much since a switch
576 // instruction is a terminator).
577 //
578 // 4. Other complex lowering, e.g. an i64 icmp on a 32-bit architecture,
579 // can result in an if/then/else like structure with two labels. One
580 // possibility would be to suspect splitting for the remainder of the
581 // lowered instruction, and then resume for the remainder of the block,
582 // but since we don't have high-level instruction markers, we might as
583 // well just stop splitting for the remainder of the block.
584 if (Splitter.handleLabel())
585 continue;
586 if (Splitter.handleIntraBlockBranch())
587 continue;
588 if (Splitter.handleUnwantedInstruction())
589 continue;
590
591 // Intra-block bookkeeping is complete, now do the transformations.
592
593 // Determine the transformation based on the kind of instruction, and
594 // whether its Variables are infinite-weight. New instructions can be
595 // inserted before the current instruction via Iter, or after the current
596 // instruction via NextIter.
597 if (Splitter.handleSimpleVarAssign())
598 continue;
599 if (Splitter.handleGeneralInst())
600 continue;
601 }
602 Splitter.finalizeNode();
603 }
604
605 Func->dump("After splitting local variables");
606 }
607
608 } // end of namespace Ice
609