• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_COMPILER_NODE_H_
6 #define V8_COMPILER_NODE_H_
7 
8 #include "src/compiler/opcodes.h"
9 #include "src/compiler/operator.h"
10 #include "src/compiler/types.h"
11 #include "src/globals.h"
12 #include "src/zone/zone-containers.h"
13 
14 namespace v8 {
15 namespace internal {
16 namespace compiler {
17 
18 // Forward declarations.
19 class Edge;
20 class Graph;
21 
22 
23 // Marks are used during traversal of the graph to distinguish states of nodes.
24 // Each node has a mark which is a monotonically increasing integer, and a
25 // {NodeMarker} has a range of values that indicate states of a node.
26 typedef uint32_t Mark;
27 
28 
29 // NodeIds are identifying numbers for nodes that can be used to index auxiliary
30 // out-of-line data associated with each node.
31 typedef uint32_t NodeId;
32 
33 
34 // A Node is the basic primitive of graphs. Nodes are chained together by
35 // input/use chains but by default otherwise contain only an identifying number
36 // which specific applications of graphs and nodes can use to index auxiliary
37 // out-of-line data, especially transient data.
38 //
39 // In addition Nodes only contain a mutable Operator that may change during
40 // compilation, e.g. during lowering passes. Other information that needs to be
41 // associated with Nodes during compilation must be stored out-of-line indexed
42 // by the Node's id.
43 class V8_EXPORT_PRIVATE Node final {
44  public:
45   static Node* New(Zone* zone, NodeId id, const Operator* op, int input_count,
46                    Node* const* inputs, bool has_extensible_inputs);
47   static Node* Clone(Zone* zone, NodeId id, const Node* node);
48 
49   inline bool IsDead() const;
50   void Kill();
51 
op()52   const Operator* op() const { return op_; }
53 
opcode()54   IrOpcode::Value opcode() const {
55     DCHECK(op_->opcode() <= IrOpcode::kLast);
56     return static_cast<IrOpcode::Value>(op_->opcode());
57   }
58 
id()59   NodeId id() const { return IdField::decode(bit_field_); }
60 
InputCount()61   int InputCount() const {
62     return has_inline_inputs() ? InlineCountField::decode(bit_field_)
63                                : inputs_.outline_->count_;
64   }
65 
66 #if DEBUG
67   void Verify();
68 #define BOUNDS_CHECK(index)                                                  \
69   do {                                                                       \
70     if (index < 0 || index >= InputCount()) {                                \
71       V8_Fatal(__FILE__, __LINE__, "Node #%d:%s->InputAt(%d) out of bounds", \
72                id(), op()->mnemonic(), index);                               \
73     }                                                                        \
74   } while (false)
75 #else
76   // No bounds checks or verification in release mode.
Verify()77   inline void Verify() {}
78 #define BOUNDS_CHECK(index) \
79   do {                      \
80   } while (false)
81 #endif
82 
InputAt(int index)83   Node* InputAt(int index) const {
84     BOUNDS_CHECK(index);
85     return *GetInputPtrConst(index);
86   }
87 
ReplaceInput(int index,Node * new_to)88   void ReplaceInput(int index, Node* new_to) {
89     BOUNDS_CHECK(index);
90     Node** input_ptr = GetInputPtr(index);
91     Node* old_to = *input_ptr;
92     if (old_to != new_to) {
93       Use* use = GetUsePtr(index);
94       if (old_to) old_to->RemoveUse(use);
95       *input_ptr = new_to;
96       if (new_to) new_to->AppendUse(use);
97     }
98   }
99 
100 #undef BOUNDS_CHECK
101 
102   void AppendInput(Zone* zone, Node* new_to);
103   void InsertInput(Zone* zone, int index, Node* new_to);
104   void InsertInputs(Zone* zone, int index, int count);
105   void RemoveInput(int index);
106   void NullAllInputs();
107   void TrimInputCount(int new_input_count);
108 
109   int UseCount() const;
110   void ReplaceUses(Node* replace_to);
111 
112   class InputEdges;
113   inline InputEdges input_edges();
114 
115   class Inputs;
116   inline Inputs inputs() const;
117 
118   class UseEdges final {
119    public:
120     typedef Edge value_type;
121 
122     class iterator;
123     inline iterator begin() const;
124     inline iterator end() const;
125 
126     bool empty() const;
127 
UseEdges(Node * node)128     explicit UseEdges(Node* node) : node_(node) {}
129 
130    private:
131     Node* node_;
132   };
133 
use_edges()134   UseEdges use_edges() { return UseEdges(this); }
135 
136   class V8_EXPORT_PRIVATE Uses final {
137    public:
138     typedef Node* value_type;
139 
140     class const_iterator;
141     inline const_iterator begin() const;
142     inline const_iterator end() const;
143 
144     bool empty() const;
145 
Uses(Node * node)146     explicit Uses(Node* node) : node_(node) {}
147 
148    private:
149     Node* node_;
150   };
151 
uses()152   Uses uses() { return Uses(this); }
153 
154   // Returns true if {owner} is the user of {this} node.
OwnedBy(Node * owner)155   bool OwnedBy(Node* owner) const {
156     return first_use_ && first_use_->from() == owner && !first_use_->next;
157   }
158 
159   // Returns true if {owner1} and {owner2} are the only users of {this} node.
160   bool OwnedBy(Node const* owner1, Node const* owner2) const;
161 
162   // Returns true if addressing related operands (such as load, store, lea)
163   // are the only users of {this} node.
164   bool OwnedByAddressingOperand() const;
165   void Print() const;
166 
167  private:
168   struct Use;
169   // Out of line storage for inputs when the number of inputs overflowed the
170   // capacity of the inline-allocated space.
171   struct OutOfLineInputs {
172     Node* node_;
173     int count_;
174     int capacity_;
175     Node* inputs_[1];
176 
177     static OutOfLineInputs* New(Zone* zone, int capacity);
178     void ExtractFrom(Use* use_ptr, Node** input_ptr, int count);
179   };
180 
181   // A link in the use chain for a node. Every input {i} to a node {n} has an
182   // associated {Use} which is linked into the use chain of the {i} node.
183   struct Use {
184     Use* next;
185     Use* prev;
186     uint32_t bit_field_;
187 
input_indexUse188     int input_index() const { return InputIndexField::decode(bit_field_); }
is_inline_useUse189     bool is_inline_use() const { return InlineField::decode(bit_field_); }
input_ptrUse190     Node** input_ptr() {
191       int index = input_index();
192       Use* start = this + 1 + index;
193       Node** inputs = is_inline_use()
194                           ? reinterpret_cast<Node*>(start)->inputs_.inline_
195                           : reinterpret_cast<OutOfLineInputs*>(start)->inputs_;
196       return &inputs[index];
197     }
198 
fromUse199     Node* from() {
200       Use* start = this + 1 + input_index();
201       return is_inline_use() ? reinterpret_cast<Node*>(start)
202                              : reinterpret_cast<OutOfLineInputs*>(start)->node_;
203     }
204 
205     typedef BitField<bool, 0, 1> InlineField;
206     typedef BitField<unsigned, 1, 17> InputIndexField;
207     // Leaving some space in the bitset in case we ever decide to record
208     // the output index.
209   };
210 
211   //============================================================================
212   //== Memory layout ===========================================================
213   //============================================================================
214   // Saving space for big graphs is important. We use a memory layout trick to
215   // be able to map {Node} objects to {Use} objects and vice-versa in a
216   // space-efficient manner.
217   //
218   // {Use} links are laid out in memory directly before a {Node}, followed by
219   // direct pointers to input {Nodes}.
220   //
221   // inline case:
222   // |Use #N  |Use #N-1|...|Use #1  |Use #0  |Node xxxx |I#0|I#1|...|I#N-1|I#N|
223   //          ^                              ^                  ^
224   //          + Use                          + Node             + Input
225   //
226   // Since every {Use} instance records its {input_index}, pointer arithmetic
227   // can compute the {Node}.
228   //
229   // out-of-line case:
230   //     |Node xxxx |
231   //     ^       + outline ------------------+
232   //     +----------------------------------------+
233   //                                         |    |
234   //                                         v    | node
235   // |Use #N  |Use #N-1|...|Use #1  |Use #0  |OOL xxxxx |I#0|I#1|...|I#N-1|I#N|
236   //          ^                                                 ^
237   //          + Use                                             + Input
238   //
239   // Out-of-line storage of input lists is needed if appending an input to
240   // a node exceeds the maximum inline capacity.
241 
242   Node(NodeId id, const Operator* op, int inline_count, int inline_capacity);
243 
GetInputPtrConst(int input_index)244   Node* const* GetInputPtrConst(int input_index) const {
245     return has_inline_inputs() ? &(inputs_.inline_[input_index])
246                                : &inputs_.outline_->inputs_[input_index];
247   }
GetInputPtr(int input_index)248   Node** GetInputPtr(int input_index) {
249     return has_inline_inputs() ? &(inputs_.inline_[input_index])
250                                : &inputs_.outline_->inputs_[input_index];
251   }
GetUsePtr(int input_index)252   Use* GetUsePtr(int input_index) {
253     Use* ptr = has_inline_inputs() ? reinterpret_cast<Use*>(this)
254                                    : reinterpret_cast<Use*>(inputs_.outline_);
255     return &ptr[-1 - input_index];
256   }
257 
258   void AppendUse(Use* use);
259   void RemoveUse(Use* use);
260 
new(size_t,void * location)261   void* operator new(size_t, void* location) { return location; }
262 
263   // Only NodeProperties should manipulate the op.
set_op(const Operator * op)264   void set_op(const Operator* op) { op_ = op; }
265 
266   // Only NodeProperties should manipulate the type.
type()267   Type* type() const { return type_; }
set_type(Type * type)268   void set_type(Type* type) { type_ = type; }
269 
270   // Only NodeMarkers should manipulate the marks on nodes.
mark()271   Mark mark() const { return mark_; }
set_mark(Mark mark)272   void set_mark(Mark mark) { mark_ = mark; }
273 
has_inline_inputs()274   inline bool has_inline_inputs() const {
275     return InlineCountField::decode(bit_field_) != kOutlineMarker;
276   }
277 
278   void ClearInputs(int start, int count);
279 
280   typedef BitField<NodeId, 0, 24> IdField;
281   typedef BitField<unsigned, 24, 4> InlineCountField;
282   typedef BitField<unsigned, 28, 4> InlineCapacityField;
283   static const int kOutlineMarker = InlineCountField::kMax;
284   static const int kMaxInlineCount = InlineCountField::kMax - 1;
285   static const int kMaxInlineCapacity = InlineCapacityField::kMax - 1;
286 
287   const Operator* op_;
288   Type* type_;
289   Mark mark_;
290   uint32_t bit_field_;
291   Use* first_use_;
292   union {
293     // Inline storage for inputs or out-of-line storage.
294     Node* inline_[1];
295     OutOfLineInputs* outline_;
296   } inputs_;
297 
298   friend class Edge;
299   friend class NodeMarkerBase;
300   friend class NodeProperties;
301 
302   DISALLOW_COPY_AND_ASSIGN(Node);
303 };
304 
305 
306 std::ostream& operator<<(std::ostream& os, const Node& n);
307 
308 
309 // Typedefs to shorten commonly used Node containers.
310 typedef ZoneDeque<Node*> NodeDeque;
311 typedef ZoneSet<Node*> NodeSet;
312 typedef ZoneVector<Node*> NodeVector;
313 typedef ZoneVector<NodeVector> NodeVectorVector;
314 
315 
316 // Helper to extract parameters from Operator1<*> nodes.
317 template <typename T>
OpParameter(const Node * node)318 static inline const T& OpParameter(const Node* node) {
319   return OpParameter<T>(node->op());
320 }
321 
322 class Node::InputEdges final {
323  public:
324   typedef Edge value_type;
325 
326   class iterator;
327   inline iterator begin() const;
328   inline iterator end() const;
329 
empty()330   bool empty() const { return count_ == 0; }
count()331   int count() const { return count_; }
332 
333   inline value_type operator[](int index) const;
334 
InputEdges(Node ** input_root,Use * use_root,int count)335   InputEdges(Node** input_root, Use* use_root, int count)
336       : input_root_(input_root), use_root_(use_root), count_(count) {}
337 
338  private:
339   Node** input_root_;
340   Use* use_root_;
341   int count_;
342 };
343 
344 class V8_EXPORT_PRIVATE Node::Inputs final {
345  public:
346   typedef Node* value_type;
347 
348   class const_iterator;
349   inline const_iterator begin() const;
350   inline const_iterator end() const;
351 
empty()352   bool empty() const { return count_ == 0; }
count()353   int count() const { return count_; }
354 
355   inline value_type operator[](int index) const;
356 
Inputs(Node * const * input_root,int count)357   explicit Inputs(Node* const* input_root, int count)
358       : input_root_(input_root), count_(count) {}
359 
360  private:
361   Node* const* input_root_;
362   int count_;
363 };
364 
365 // An encapsulation for information associated with a single use of node as a
366 // input from another node, allowing access to both the defining node and
367 // the node having the input.
368 class Edge final {
369  public:
from()370   Node* from() const { return use_->from(); }
to()371   Node* to() const { return *input_ptr_; }
index()372   int index() const {
373     int const index = use_->input_index();
374     DCHECK_LT(index, use_->from()->InputCount());
375     return index;
376   }
377 
378   bool operator==(const Edge& other) { return input_ptr_ == other.input_ptr_; }
379   bool operator!=(const Edge& other) { return !(*this == other); }
380 
UpdateTo(Node * new_to)381   void UpdateTo(Node* new_to) {
382     Node* old_to = *input_ptr_;
383     if (old_to != new_to) {
384       if (old_to) old_to->RemoveUse(use_);
385       *input_ptr_ = new_to;
386       if (new_to) new_to->AppendUse(use_);
387     }
388   }
389 
390  private:
391   friend class Node::UseEdges::iterator;
392   friend class Node::InputEdges;
393   friend class Node::InputEdges::iterator;
394 
Edge(Node::Use * use,Node ** input_ptr)395   Edge(Node::Use* use, Node** input_ptr) : use_(use), input_ptr_(input_ptr) {
396     DCHECK_NOT_NULL(use);
397     DCHECK_NOT_NULL(input_ptr);
398     DCHECK_EQ(input_ptr, use->input_ptr());
399   }
400 
401   Node::Use* use_;
402   Node** input_ptr_;
403 };
404 
IsDead()405 bool Node::IsDead() const {
406   Node::Inputs inputs = this->inputs();
407   return inputs.count() > 0 && inputs[0] == nullptr;
408 }
409 
input_edges()410 Node::InputEdges Node::input_edges() {
411   int inline_count = InlineCountField::decode(bit_field_);
412   if (inline_count != kOutlineMarker) {
413     return InputEdges(inputs_.inline_, reinterpret_cast<Use*>(this) - 1,
414                       inline_count);
415   } else {
416     return InputEdges(inputs_.outline_->inputs_,
417                       reinterpret_cast<Use*>(inputs_.outline_) - 1,
418                       inputs_.outline_->count_);
419   }
420 }
421 
inputs()422 Node::Inputs Node::inputs() const {
423   int inline_count = InlineCountField::decode(bit_field_);
424   if (inline_count != kOutlineMarker) {
425     return Inputs(inputs_.inline_, inline_count);
426   } else {
427     return Inputs(inputs_.outline_->inputs_, inputs_.outline_->count_);
428   }
429 }
430 
431 // A forward iterator to visit the edges for the input dependencies of a node.
432 class Node::InputEdges::iterator final {
433  public:
434   typedef std::forward_iterator_tag iterator_category;
435   typedef std::ptrdiff_t difference_type;
436   typedef Edge value_type;
437   typedef Edge* pointer;
438   typedef Edge& reference;
439 
iterator()440   iterator() : use_(nullptr), input_ptr_(nullptr) {}
iterator(const iterator & other)441   iterator(const iterator& other)
442       : use_(other.use_), input_ptr_(other.input_ptr_) {}
443 
444   Edge operator*() const { return Edge(use_, input_ptr_); }
445   bool operator==(const iterator& other) const {
446     return input_ptr_ == other.input_ptr_;
447   }
448   bool operator!=(const iterator& other) const { return !(*this == other); }
449   iterator& operator++() {
450     input_ptr_++;
451     use_--;
452     return *this;
453   }
454   iterator operator++(int);
455   iterator& operator+=(difference_type offset) {
456     input_ptr_ += offset;
457     use_ -= offset;
458     return *this;
459   }
460   iterator operator+(difference_type offset) const {
461     return iterator(use_ - offset, input_ptr_ + offset);
462   }
463   difference_type operator-(const iterator& other) const {
464     return input_ptr_ - other.input_ptr_;
465   }
466 
467  private:
468   friend class Node;
469 
iterator(Use * use,Node ** input_ptr)470   explicit iterator(Use* use, Node** input_ptr)
471       : use_(use), input_ptr_(input_ptr) {}
472 
473   Use* use_;
474   Node** input_ptr_;
475 };
476 
477 
begin()478 Node::InputEdges::iterator Node::InputEdges::begin() const {
479   return Node::InputEdges::iterator(use_root_, input_root_);
480 }
481 
482 
end()483 Node::InputEdges::iterator Node::InputEdges::end() const {
484   return Node::InputEdges::iterator(use_root_ - count_, input_root_ + count_);
485 }
486 
487 Edge Node::InputEdges::operator[](int index) const {
488   return Edge(use_root_ + index, input_root_ + index);
489 }
490 
491 // A forward iterator to visit the inputs of a node.
492 class Node::Inputs::const_iterator final {
493  public:
494   typedef std::forward_iterator_tag iterator_category;
495   typedef std::ptrdiff_t difference_type;
496   typedef Node* value_type;
497   typedef const value_type* pointer;
498   typedef value_type& reference;
499 
const_iterator(const const_iterator & other)500   const_iterator(const const_iterator& other) : input_ptr_(other.input_ptr_) {}
501 
502   Node* operator*() const { return *input_ptr_; }
503   bool operator==(const const_iterator& other) const {
504     return input_ptr_ == other.input_ptr_;
505   }
506   bool operator!=(const const_iterator& other) const {
507     return !(*this == other);
508   }
509   const_iterator& operator++() {
510     ++input_ptr_;
511     return *this;
512   }
513   const_iterator operator++(int);
514   const_iterator& operator+=(difference_type offset) {
515     input_ptr_ += offset;
516     return *this;
517   }
518   const_iterator operator+(difference_type offset) const {
519     return const_iterator(input_ptr_ + offset);
520   }
521   difference_type operator-(const const_iterator& other) const {
522     return input_ptr_ - other.input_ptr_;
523   }
524 
525  private:
526   friend class Node::Inputs;
527 
const_iterator(Node * const * input_ptr)528   explicit const_iterator(Node* const* input_ptr) : input_ptr_(input_ptr) {}
529 
530   Node* const* input_ptr_;
531 };
532 
533 
begin()534 Node::Inputs::const_iterator Node::Inputs::begin() const {
535   return const_iterator(input_root_);
536 }
537 
538 
end()539 Node::Inputs::const_iterator Node::Inputs::end() const {
540   return const_iterator(input_root_ + count_);
541 }
542 
543 Node* Node::Inputs::operator[](int index) const { return input_root_[index]; }
544 
545 // A forward iterator to visit the uses edges of a node.
546 class Node::UseEdges::iterator final {
547  public:
iterator(const iterator & other)548   iterator(const iterator& other)
549       : current_(other.current_), next_(other.next_) {}
550 
551   Edge operator*() const { return Edge(current_, current_->input_ptr()); }
552   bool operator==(const iterator& other) const {
553     return current_ == other.current_;
554   }
555   bool operator!=(const iterator& other) const { return !(*this == other); }
556   iterator& operator++() {
557     DCHECK_NOT_NULL(current_);
558     current_ = next_;
559     next_ = current_ ? current_->next : nullptr;
560     return *this;
561   }
562   iterator operator++(int);
563 
564  private:
565   friend class Node::UseEdges;
566 
iterator()567   iterator() : current_(nullptr), next_(nullptr) {}
iterator(Node * node)568   explicit iterator(Node* node)
569       : current_(node->first_use_),
570         next_(current_ ? current_->next : nullptr) {}
571 
572   Node::Use* current_;
573   Node::Use* next_;
574 };
575 
576 
begin()577 Node::UseEdges::iterator Node::UseEdges::begin() const {
578   return Node::UseEdges::iterator(this->node_);
579 }
580 
581 
end()582 Node::UseEdges::iterator Node::UseEdges::end() const {
583   return Node::UseEdges::iterator();
584 }
585 
586 
587 // A forward iterator to visit the uses of a node.
588 class Node::Uses::const_iterator final {
589  public:
590   typedef std::forward_iterator_tag iterator_category;
591   typedef int difference_type;
592   typedef Node* value_type;
593   typedef Node** pointer;
594   typedef Node*& reference;
595 
const_iterator(const const_iterator & other)596   const_iterator(const const_iterator& other) : current_(other.current_) {}
597 
598   Node* operator*() const { return current_->from(); }
599   bool operator==(const const_iterator& other) const {
600     return other.current_ == current_;
601   }
602   bool operator!=(const const_iterator& other) const {
603     return other.current_ != current_;
604   }
605   const_iterator& operator++() {
606     DCHECK_NOT_NULL(current_);
607     current_ = current_->next;
608     return *this;
609   }
610   const_iterator operator++(int);
611 
612  private:
613   friend class Node::Uses;
614 
const_iterator()615   const_iterator() : current_(nullptr) {}
const_iterator(Node * node)616   explicit const_iterator(Node* node) : current_(node->first_use_) {}
617 
618   Node::Use* current_;
619 };
620 
621 
begin()622 Node::Uses::const_iterator Node::Uses::begin() const {
623   return const_iterator(this->node_);
624 }
625 
626 
end()627 Node::Uses::const_iterator Node::Uses::end() const { return const_iterator(); }
628 
629 }  // namespace compiler
630 }  // namespace internal
631 }  // namespace v8
632 
633 #endif  // V8_COMPILER_NODE_H_
634