1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the PowerPC implementation of the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "PPCInstrInfo.h"
15 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPC.h"
17 #include "PPCHazardRecognizers.h"
18 #include "PPCInstrBuilder.h"
19 #include "PPCMachineFunctionInfo.h"
20 #include "PPCTargetMachine.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunctionPass.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/PseudoSourceValue.h"
30 #include "llvm/CodeGen/ScheduleDAG.h"
31 #include "llvm/CodeGen/SlotIndexes.h"
32 #include "llvm/CodeGen/StackMaps.h"
33 #include "llvm/MC/MCAsmInfo.h"
34 #include "llvm/MC/MCInst.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/TargetRegistry.h"
39 #include "llvm/Support/raw_ostream.h"
40
41 using namespace llvm;
42
43 #define DEBUG_TYPE "ppc-instr-info"
44
45 #define GET_INSTRMAP_INFO
46 #define GET_INSTRINFO_CTOR_DTOR
47 #include "PPCGenInstrInfo.inc"
48
49 static cl::
50 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
51 cl::desc("Disable analysis for CTR loops"));
52
53 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
54 cl::desc("Disable compare instruction optimization"), cl::Hidden);
55
56 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
57 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
58 cl::Hidden);
59
60 static cl::opt<bool>
61 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden,
62 cl::desc("Use the old (incorrect) instruction latency calculation"));
63
64 // Pin the vtable to this file.
anchor()65 void PPCInstrInfo::anchor() {}
66
PPCInstrInfo(PPCSubtarget & STI)67 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI)
68 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP),
69 Subtarget(STI), RI(STI.getTargetMachine()) {}
70
71 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
72 /// this target when scheduling the DAG.
73 ScheduleHazardRecognizer *
CreateTargetHazardRecognizer(const TargetSubtargetInfo * STI,const ScheduleDAG * DAG) const74 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
75 const ScheduleDAG *DAG) const {
76 unsigned Directive =
77 static_cast<const PPCSubtarget *>(STI)->getDarwinDirective();
78 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
79 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
80 const InstrItineraryData *II =
81 static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
82 return new ScoreboardHazardRecognizer(II, DAG);
83 }
84
85 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
86 }
87
88 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
89 /// to use for this target when scheduling the DAG.
90 ScheduleHazardRecognizer *
CreateTargetPostRAHazardRecognizer(const InstrItineraryData * II,const ScheduleDAG * DAG) const91 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
92 const ScheduleDAG *DAG) const {
93 unsigned Directive =
94 DAG->MF.getSubtarget<PPCSubtarget>().getDarwinDirective();
95
96 // FIXME: Leaving this as-is until we have POWER9 scheduling info
97 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8)
98 return new PPCDispatchGroupSBHazardRecognizer(II, DAG);
99
100 // Most subtargets use a PPC970 recognizer.
101 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
102 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
103 assert(DAG->TII && "No InstrInfo?");
104
105 return new PPCHazardRecognizer970(*DAG);
106 }
107
108 return new ScoreboardHazardRecognizer(II, DAG);
109 }
110
getInstrLatency(const InstrItineraryData * ItinData,const MachineInstr & MI,unsigned * PredCost) const111 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
112 const MachineInstr &MI,
113 unsigned *PredCost) const {
114 if (!ItinData || UseOldLatencyCalc)
115 return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost);
116
117 // The default implementation of getInstrLatency calls getStageLatency, but
118 // getStageLatency does not do the right thing for us. While we have
119 // itinerary, most cores are fully pipelined, and so the itineraries only
120 // express the first part of the pipeline, not every stage. Instead, we need
121 // to use the listed output operand cycle number (using operand 0 here, which
122 // is an output).
123
124 unsigned Latency = 1;
125 unsigned DefClass = MI.getDesc().getSchedClass();
126 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
127 const MachineOperand &MO = MI.getOperand(i);
128 if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
129 continue;
130
131 int Cycle = ItinData->getOperandCycle(DefClass, i);
132 if (Cycle < 0)
133 continue;
134
135 Latency = std::max(Latency, (unsigned) Cycle);
136 }
137
138 return Latency;
139 }
140
getOperandLatency(const InstrItineraryData * ItinData,const MachineInstr & DefMI,unsigned DefIdx,const MachineInstr & UseMI,unsigned UseIdx) const141 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
142 const MachineInstr &DefMI, unsigned DefIdx,
143 const MachineInstr &UseMI,
144 unsigned UseIdx) const {
145 int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
146 UseMI, UseIdx);
147
148 if (!DefMI.getParent())
149 return Latency;
150
151 const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
152 unsigned Reg = DefMO.getReg();
153
154 bool IsRegCR;
155 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
156 const MachineRegisterInfo *MRI =
157 &DefMI.getParent()->getParent()->getRegInfo();
158 IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
159 MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
160 } else {
161 IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
162 PPC::CRBITRCRegClass.contains(Reg);
163 }
164
165 if (UseMI.isBranch() && IsRegCR) {
166 if (Latency < 0)
167 Latency = getInstrLatency(ItinData, DefMI);
168
169 // On some cores, there is an additional delay between writing to a condition
170 // register, and using it from a branch.
171 unsigned Directive = Subtarget.getDarwinDirective();
172 switch (Directive) {
173 default: break;
174 case PPC::DIR_7400:
175 case PPC::DIR_750:
176 case PPC::DIR_970:
177 case PPC::DIR_E5500:
178 case PPC::DIR_PWR4:
179 case PPC::DIR_PWR5:
180 case PPC::DIR_PWR5X:
181 case PPC::DIR_PWR6:
182 case PPC::DIR_PWR6X:
183 case PPC::DIR_PWR7:
184 case PPC::DIR_PWR8:
185 // FIXME: Is this needed for POWER9?
186 Latency += 2;
187 break;
188 }
189 }
190
191 return Latency;
192 }
193
194 // This function does not list all associative and commutative operations, but
195 // only those worth feeding through the machine combiner in an attempt to
196 // reduce the critical path. Mostly, this means floating-point operations,
197 // because they have high latencies (compared to other operations, such and
198 // and/or, which are also associative and commutative, but have low latencies).
isAssociativeAndCommutative(const MachineInstr & Inst) const199 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
200 switch (Inst.getOpcode()) {
201 // FP Add:
202 case PPC::FADD:
203 case PPC::FADDS:
204 // FP Multiply:
205 case PPC::FMUL:
206 case PPC::FMULS:
207 // Altivec Add:
208 case PPC::VADDFP:
209 // VSX Add:
210 case PPC::XSADDDP:
211 case PPC::XVADDDP:
212 case PPC::XVADDSP:
213 case PPC::XSADDSP:
214 // VSX Multiply:
215 case PPC::XSMULDP:
216 case PPC::XVMULDP:
217 case PPC::XVMULSP:
218 case PPC::XSMULSP:
219 // QPX Add:
220 case PPC::QVFADD:
221 case PPC::QVFADDS:
222 case PPC::QVFADDSs:
223 // QPX Multiply:
224 case PPC::QVFMUL:
225 case PPC::QVFMULS:
226 case PPC::QVFMULSs:
227 return true;
228 default:
229 return false;
230 }
231 }
232
getMachineCombinerPatterns(MachineInstr & Root,SmallVectorImpl<MachineCombinerPattern> & Patterns) const233 bool PPCInstrInfo::getMachineCombinerPatterns(
234 MachineInstr &Root,
235 SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
236 // Using the machine combiner in this way is potentially expensive, so
237 // restrict to when aggressive optimizations are desired.
238 if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive)
239 return false;
240
241 // FP reassociation is only legal when we don't need strict IEEE semantics.
242 if (!Root.getParent()->getParent()->getTarget().Options.UnsafeFPMath)
243 return false;
244
245 return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns);
246 }
247
248 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
isCoalescableExtInstr(const MachineInstr & MI,unsigned & SrcReg,unsigned & DstReg,unsigned & SubIdx) const249 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
250 unsigned &SrcReg, unsigned &DstReg,
251 unsigned &SubIdx) const {
252 switch (MI.getOpcode()) {
253 default: return false;
254 case PPC::EXTSW:
255 case PPC::EXTSW_32_64:
256 SrcReg = MI.getOperand(1).getReg();
257 DstReg = MI.getOperand(0).getReg();
258 SubIdx = PPC::sub_32;
259 return true;
260 }
261 }
262
isLoadFromStackSlot(const MachineInstr & MI,int & FrameIndex) const263 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
264 int &FrameIndex) const {
265 // Note: This list must be kept consistent with LoadRegFromStackSlot.
266 switch (MI.getOpcode()) {
267 default: break;
268 case PPC::LD:
269 case PPC::LWZ:
270 case PPC::LFS:
271 case PPC::LFD:
272 case PPC::RESTORE_CR:
273 case PPC::RESTORE_CRBIT:
274 case PPC::LVX:
275 case PPC::LXVD2X:
276 case PPC::QVLFDX:
277 case PPC::QVLFSXs:
278 case PPC::QVLFDXb:
279 case PPC::RESTORE_VRSAVE:
280 // Check for the operands added by addFrameReference (the immediate is the
281 // offset which defaults to 0).
282 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
283 MI.getOperand(2).isFI()) {
284 FrameIndex = MI.getOperand(2).getIndex();
285 return MI.getOperand(0).getReg();
286 }
287 break;
288 }
289 return 0;
290 }
291
isStoreToStackSlot(const MachineInstr & MI,int & FrameIndex) const292 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
293 int &FrameIndex) const {
294 // Note: This list must be kept consistent with StoreRegToStackSlot.
295 switch (MI.getOpcode()) {
296 default: break;
297 case PPC::STD:
298 case PPC::STW:
299 case PPC::STFS:
300 case PPC::STFD:
301 case PPC::SPILL_CR:
302 case PPC::SPILL_CRBIT:
303 case PPC::STVX:
304 case PPC::STXVD2X:
305 case PPC::QVSTFDX:
306 case PPC::QVSTFSXs:
307 case PPC::QVSTFDXb:
308 case PPC::SPILL_VRSAVE:
309 // Check for the operands added by addFrameReference (the immediate is the
310 // offset which defaults to 0).
311 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
312 MI.getOperand(2).isFI()) {
313 FrameIndex = MI.getOperand(2).getIndex();
314 return MI.getOperand(0).getReg();
315 }
316 break;
317 }
318 return 0;
319 }
320
commuteInstructionImpl(MachineInstr & MI,bool NewMI,unsigned OpIdx1,unsigned OpIdx2) const321 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
322 unsigned OpIdx1,
323 unsigned OpIdx2) const {
324 MachineFunction &MF = *MI.getParent()->getParent();
325
326 // Normal instructions can be commuted the obvious way.
327 if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMIo)
328 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
329 // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
330 // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
331 // changing the relative order of the mask operands might change what happens
332 // to the high-bits of the mask (and, thus, the result).
333
334 // Cannot commute if it has a non-zero rotate count.
335 if (MI.getOperand(3).getImm() != 0)
336 return nullptr;
337
338 // If we have a zero rotate count, we have:
339 // M = mask(MB,ME)
340 // Op0 = (Op1 & ~M) | (Op2 & M)
341 // Change this to:
342 // M = mask((ME+1)&31, (MB-1)&31)
343 // Op0 = (Op2 & ~M) | (Op1 & M)
344
345 // Swap op1/op2
346 assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) &&
347 "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMIo.");
348 unsigned Reg0 = MI.getOperand(0).getReg();
349 unsigned Reg1 = MI.getOperand(1).getReg();
350 unsigned Reg2 = MI.getOperand(2).getReg();
351 unsigned SubReg1 = MI.getOperand(1).getSubReg();
352 unsigned SubReg2 = MI.getOperand(2).getSubReg();
353 bool Reg1IsKill = MI.getOperand(1).isKill();
354 bool Reg2IsKill = MI.getOperand(2).isKill();
355 bool ChangeReg0 = false;
356 // If machine instrs are no longer in two-address forms, update
357 // destination register as well.
358 if (Reg0 == Reg1) {
359 // Must be two address instruction!
360 assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
361 "Expecting a two-address instruction!");
362 assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch");
363 Reg2IsKill = false;
364 ChangeReg0 = true;
365 }
366
367 // Masks.
368 unsigned MB = MI.getOperand(4).getImm();
369 unsigned ME = MI.getOperand(5).getImm();
370
371 // We can't commute a trivial mask (there is no way to represent an all-zero
372 // mask).
373 if (MB == 0 && ME == 31)
374 return nullptr;
375
376 if (NewMI) {
377 // Create a new instruction.
378 unsigned Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg();
379 bool Reg0IsDead = MI.getOperand(0).isDead();
380 return BuildMI(MF, MI.getDebugLoc(), MI.getDesc())
381 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
382 .addReg(Reg2, getKillRegState(Reg2IsKill))
383 .addReg(Reg1, getKillRegState(Reg1IsKill))
384 .addImm((ME + 1) & 31)
385 .addImm((MB - 1) & 31);
386 }
387
388 if (ChangeReg0) {
389 MI.getOperand(0).setReg(Reg2);
390 MI.getOperand(0).setSubReg(SubReg2);
391 }
392 MI.getOperand(2).setReg(Reg1);
393 MI.getOperand(1).setReg(Reg2);
394 MI.getOperand(2).setSubReg(SubReg1);
395 MI.getOperand(1).setSubReg(SubReg2);
396 MI.getOperand(2).setIsKill(Reg1IsKill);
397 MI.getOperand(1).setIsKill(Reg2IsKill);
398
399 // Swap the mask around.
400 MI.getOperand(4).setImm((ME + 1) & 31);
401 MI.getOperand(5).setImm((MB - 1) & 31);
402 return &MI;
403 }
404
findCommutedOpIndices(MachineInstr & MI,unsigned & SrcOpIdx1,unsigned & SrcOpIdx2) const405 bool PPCInstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1,
406 unsigned &SrcOpIdx2) const {
407 // For VSX A-Type FMA instructions, it is the first two operands that can be
408 // commuted, however, because the non-encoded tied input operand is listed
409 // first, the operands to swap are actually the second and third.
410
411 int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode());
412 if (AltOpc == -1)
413 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
414
415 // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1
416 // and SrcOpIdx2.
417 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3);
418 }
419
insertNoop(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI) const420 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
421 MachineBasicBlock::iterator MI) const {
422 // This function is used for scheduling, and the nop wanted here is the type
423 // that terminates dispatch groups on the POWER cores.
424 unsigned Directive = Subtarget.getDarwinDirective();
425 unsigned Opcode;
426 switch (Directive) {
427 default: Opcode = PPC::NOP; break;
428 case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
429 case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
430 case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */
431 // FIXME: Update when POWER9 scheduling model is ready.
432 case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break;
433 }
434
435 DebugLoc DL;
436 BuildMI(MBB, MI, DL, get(Opcode));
437 }
438
439 /// getNoopForMachoTarget - Return the noop instruction to use for a noop.
getNoopForMachoTarget(MCInst & NopInst) const440 void PPCInstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
441 NopInst.setOpcode(PPC::NOP);
442 }
443
444 // Branch analysis.
445 // Note: If the condition register is set to CTR or CTR8 then this is a
446 // BDNZ (imm == 1) or BDZ (imm == 0) branch.
analyzeBranch(MachineBasicBlock & MBB,MachineBasicBlock * & TBB,MachineBasicBlock * & FBB,SmallVectorImpl<MachineOperand> & Cond,bool AllowModify) const447 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
448 MachineBasicBlock *&TBB,
449 MachineBasicBlock *&FBB,
450 SmallVectorImpl<MachineOperand> &Cond,
451 bool AllowModify) const {
452 bool isPPC64 = Subtarget.isPPC64();
453
454 // If the block has no terminators, it just falls into the block after it.
455 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
456 if (I == MBB.end())
457 return false;
458
459 if (!isUnpredicatedTerminator(*I))
460 return false;
461
462 // Get the last instruction in the block.
463 MachineInstr *LastInst = I;
464
465 // If there is only one terminator instruction, process it.
466 if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
467 if (LastInst->getOpcode() == PPC::B) {
468 if (!LastInst->getOperand(0).isMBB())
469 return true;
470 TBB = LastInst->getOperand(0).getMBB();
471 return false;
472 } else if (LastInst->getOpcode() == PPC::BCC) {
473 if (!LastInst->getOperand(2).isMBB())
474 return true;
475 // Block ends with fall-through condbranch.
476 TBB = LastInst->getOperand(2).getMBB();
477 Cond.push_back(LastInst->getOperand(0));
478 Cond.push_back(LastInst->getOperand(1));
479 return false;
480 } else if (LastInst->getOpcode() == PPC::BC) {
481 if (!LastInst->getOperand(1).isMBB())
482 return true;
483 // Block ends with fall-through condbranch.
484 TBB = LastInst->getOperand(1).getMBB();
485 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
486 Cond.push_back(LastInst->getOperand(0));
487 return false;
488 } else if (LastInst->getOpcode() == PPC::BCn) {
489 if (!LastInst->getOperand(1).isMBB())
490 return true;
491 // Block ends with fall-through condbranch.
492 TBB = LastInst->getOperand(1).getMBB();
493 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
494 Cond.push_back(LastInst->getOperand(0));
495 return false;
496 } else if (LastInst->getOpcode() == PPC::BDNZ8 ||
497 LastInst->getOpcode() == PPC::BDNZ) {
498 if (!LastInst->getOperand(0).isMBB())
499 return true;
500 if (DisableCTRLoopAnal)
501 return true;
502 TBB = LastInst->getOperand(0).getMBB();
503 Cond.push_back(MachineOperand::CreateImm(1));
504 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
505 true));
506 return false;
507 } else if (LastInst->getOpcode() == PPC::BDZ8 ||
508 LastInst->getOpcode() == PPC::BDZ) {
509 if (!LastInst->getOperand(0).isMBB())
510 return true;
511 if (DisableCTRLoopAnal)
512 return true;
513 TBB = LastInst->getOperand(0).getMBB();
514 Cond.push_back(MachineOperand::CreateImm(0));
515 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
516 true));
517 return false;
518 }
519
520 // Otherwise, don't know what this is.
521 return true;
522 }
523
524 // Get the instruction before it if it's a terminator.
525 MachineInstr *SecondLastInst = I;
526
527 // If there are three terminators, we don't know what sort of block this is.
528 if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(*--I))
529 return true;
530
531 // If the block ends with PPC::B and PPC:BCC, handle it.
532 if (SecondLastInst->getOpcode() == PPC::BCC &&
533 LastInst->getOpcode() == PPC::B) {
534 if (!SecondLastInst->getOperand(2).isMBB() ||
535 !LastInst->getOperand(0).isMBB())
536 return true;
537 TBB = SecondLastInst->getOperand(2).getMBB();
538 Cond.push_back(SecondLastInst->getOperand(0));
539 Cond.push_back(SecondLastInst->getOperand(1));
540 FBB = LastInst->getOperand(0).getMBB();
541 return false;
542 } else if (SecondLastInst->getOpcode() == PPC::BC &&
543 LastInst->getOpcode() == PPC::B) {
544 if (!SecondLastInst->getOperand(1).isMBB() ||
545 !LastInst->getOperand(0).isMBB())
546 return true;
547 TBB = SecondLastInst->getOperand(1).getMBB();
548 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
549 Cond.push_back(SecondLastInst->getOperand(0));
550 FBB = LastInst->getOperand(0).getMBB();
551 return false;
552 } else if (SecondLastInst->getOpcode() == PPC::BCn &&
553 LastInst->getOpcode() == PPC::B) {
554 if (!SecondLastInst->getOperand(1).isMBB() ||
555 !LastInst->getOperand(0).isMBB())
556 return true;
557 TBB = SecondLastInst->getOperand(1).getMBB();
558 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
559 Cond.push_back(SecondLastInst->getOperand(0));
560 FBB = LastInst->getOperand(0).getMBB();
561 return false;
562 } else if ((SecondLastInst->getOpcode() == PPC::BDNZ8 ||
563 SecondLastInst->getOpcode() == PPC::BDNZ) &&
564 LastInst->getOpcode() == PPC::B) {
565 if (!SecondLastInst->getOperand(0).isMBB() ||
566 !LastInst->getOperand(0).isMBB())
567 return true;
568 if (DisableCTRLoopAnal)
569 return true;
570 TBB = SecondLastInst->getOperand(0).getMBB();
571 Cond.push_back(MachineOperand::CreateImm(1));
572 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
573 true));
574 FBB = LastInst->getOperand(0).getMBB();
575 return false;
576 } else if ((SecondLastInst->getOpcode() == PPC::BDZ8 ||
577 SecondLastInst->getOpcode() == PPC::BDZ) &&
578 LastInst->getOpcode() == PPC::B) {
579 if (!SecondLastInst->getOperand(0).isMBB() ||
580 !LastInst->getOperand(0).isMBB())
581 return true;
582 if (DisableCTRLoopAnal)
583 return true;
584 TBB = SecondLastInst->getOperand(0).getMBB();
585 Cond.push_back(MachineOperand::CreateImm(0));
586 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
587 true));
588 FBB = LastInst->getOperand(0).getMBB();
589 return false;
590 }
591
592 // If the block ends with two PPC:Bs, handle it. The second one is not
593 // executed, so remove it.
594 if (SecondLastInst->getOpcode() == PPC::B &&
595 LastInst->getOpcode() == PPC::B) {
596 if (!SecondLastInst->getOperand(0).isMBB())
597 return true;
598 TBB = SecondLastInst->getOperand(0).getMBB();
599 I = LastInst;
600 if (AllowModify)
601 I->eraseFromParent();
602 return false;
603 }
604
605 // Otherwise, can't handle this.
606 return true;
607 }
608
RemoveBranch(MachineBasicBlock & MBB) const609 unsigned PPCInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
610 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
611 if (I == MBB.end())
612 return 0;
613
614 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
615 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
616 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
617 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ)
618 return 0;
619
620 // Remove the branch.
621 I->eraseFromParent();
622
623 I = MBB.end();
624
625 if (I == MBB.begin()) return 1;
626 --I;
627 if (I->getOpcode() != PPC::BCC &&
628 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
629 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
630 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ)
631 return 1;
632
633 // Remove the branch.
634 I->eraseFromParent();
635 return 2;
636 }
637
InsertBranch(MachineBasicBlock & MBB,MachineBasicBlock * TBB,MachineBasicBlock * FBB,ArrayRef<MachineOperand> Cond,const DebugLoc & DL) const638 unsigned PPCInstrInfo::InsertBranch(MachineBasicBlock &MBB,
639 MachineBasicBlock *TBB,
640 MachineBasicBlock *FBB,
641 ArrayRef<MachineOperand> Cond,
642 const DebugLoc &DL) const {
643 // Shouldn't be a fall through.
644 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
645 assert((Cond.size() == 2 || Cond.size() == 0) &&
646 "PPC branch conditions have two components!");
647
648 bool isPPC64 = Subtarget.isPPC64();
649
650 // One-way branch.
651 if (!FBB) {
652 if (Cond.empty()) // Unconditional branch
653 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
654 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
655 BuildMI(&MBB, DL, get(Cond[0].getImm() ?
656 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
657 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB);
658 else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
659 BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB);
660 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
661 BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB);
662 else // Conditional branch
663 BuildMI(&MBB, DL, get(PPC::BCC))
664 .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB);
665 return 1;
666 }
667
668 // Two-way Conditional Branch.
669 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
670 BuildMI(&MBB, DL, get(Cond[0].getImm() ?
671 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
672 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB);
673 else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
674 BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB);
675 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
676 BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB);
677 else
678 BuildMI(&MBB, DL, get(PPC::BCC))
679 .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB);
680 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
681 return 2;
682 }
683
684 // Select analysis.
canInsertSelect(const MachineBasicBlock & MBB,ArrayRef<MachineOperand> Cond,unsigned TrueReg,unsigned FalseReg,int & CondCycles,int & TrueCycles,int & FalseCycles) const685 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
686 ArrayRef<MachineOperand> Cond,
687 unsigned TrueReg, unsigned FalseReg,
688 int &CondCycles, int &TrueCycles, int &FalseCycles) const {
689 if (!Subtarget.hasISEL())
690 return false;
691
692 if (Cond.size() != 2)
693 return false;
694
695 // If this is really a bdnz-like condition, then it cannot be turned into a
696 // select.
697 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
698 return false;
699
700 // Check register classes.
701 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
702 const TargetRegisterClass *RC =
703 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
704 if (!RC)
705 return false;
706
707 // isel is for regular integer GPRs only.
708 if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
709 !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
710 !PPC::G8RCRegClass.hasSubClassEq(RC) &&
711 !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
712 return false;
713
714 // FIXME: These numbers are for the A2, how well they work for other cores is
715 // an open question. On the A2, the isel instruction has a 2-cycle latency
716 // but single-cycle throughput. These numbers are used in combination with
717 // the MispredictPenalty setting from the active SchedMachineModel.
718 CondCycles = 1;
719 TrueCycles = 1;
720 FalseCycles = 1;
721
722 return true;
723 }
724
insertSelect(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,const DebugLoc & dl,unsigned DestReg,ArrayRef<MachineOperand> Cond,unsigned TrueReg,unsigned FalseReg) const725 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
726 MachineBasicBlock::iterator MI,
727 const DebugLoc &dl, unsigned DestReg,
728 ArrayRef<MachineOperand> Cond, unsigned TrueReg,
729 unsigned FalseReg) const {
730 assert(Cond.size() == 2 &&
731 "PPC branch conditions have two components!");
732
733 assert(Subtarget.hasISEL() &&
734 "Cannot insert select on target without ISEL support");
735
736 // Get the register classes.
737 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
738 const TargetRegisterClass *RC =
739 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
740 assert(RC && "TrueReg and FalseReg must have overlapping register classes");
741
742 bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
743 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
744 assert((Is64Bit ||
745 PPC::GPRCRegClass.hasSubClassEq(RC) ||
746 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
747 "isel is for regular integer GPRs only");
748
749 unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
750 auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm());
751
752 unsigned SubIdx = 0;
753 bool SwapOps = false;
754 switch (SelectPred) {
755 case PPC::PRED_EQ:
756 case PPC::PRED_EQ_MINUS:
757 case PPC::PRED_EQ_PLUS:
758 SubIdx = PPC::sub_eq; SwapOps = false; break;
759 case PPC::PRED_NE:
760 case PPC::PRED_NE_MINUS:
761 case PPC::PRED_NE_PLUS:
762 SubIdx = PPC::sub_eq; SwapOps = true; break;
763 case PPC::PRED_LT:
764 case PPC::PRED_LT_MINUS:
765 case PPC::PRED_LT_PLUS:
766 SubIdx = PPC::sub_lt; SwapOps = false; break;
767 case PPC::PRED_GE:
768 case PPC::PRED_GE_MINUS:
769 case PPC::PRED_GE_PLUS:
770 SubIdx = PPC::sub_lt; SwapOps = true; break;
771 case PPC::PRED_GT:
772 case PPC::PRED_GT_MINUS:
773 case PPC::PRED_GT_PLUS:
774 SubIdx = PPC::sub_gt; SwapOps = false; break;
775 case PPC::PRED_LE:
776 case PPC::PRED_LE_MINUS:
777 case PPC::PRED_LE_PLUS:
778 SubIdx = PPC::sub_gt; SwapOps = true; break;
779 case PPC::PRED_UN:
780 case PPC::PRED_UN_MINUS:
781 case PPC::PRED_UN_PLUS:
782 SubIdx = PPC::sub_un; SwapOps = false; break;
783 case PPC::PRED_NU:
784 case PPC::PRED_NU_MINUS:
785 case PPC::PRED_NU_PLUS:
786 SubIdx = PPC::sub_un; SwapOps = true; break;
787 case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break;
788 case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
789 }
790
791 unsigned FirstReg = SwapOps ? FalseReg : TrueReg,
792 SecondReg = SwapOps ? TrueReg : FalseReg;
793
794 // The first input register of isel cannot be r0. If it is a member
795 // of a register class that can be r0, then copy it first (the
796 // register allocator should eliminate the copy).
797 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
798 MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
799 const TargetRegisterClass *FirstRC =
800 MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
801 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
802 unsigned OldFirstReg = FirstReg;
803 FirstReg = MRI.createVirtualRegister(FirstRC);
804 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
805 .addReg(OldFirstReg);
806 }
807
808 BuildMI(MBB, MI, dl, get(OpCode), DestReg)
809 .addReg(FirstReg).addReg(SecondReg)
810 .addReg(Cond[1].getReg(), 0, SubIdx);
811 }
812
getCRBitValue(unsigned CRBit)813 static unsigned getCRBitValue(unsigned CRBit) {
814 unsigned Ret = 4;
815 if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT ||
816 CRBit == PPC::CR2LT || CRBit == PPC::CR3LT ||
817 CRBit == PPC::CR4LT || CRBit == PPC::CR5LT ||
818 CRBit == PPC::CR6LT || CRBit == PPC::CR7LT)
819 Ret = 3;
820 if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT ||
821 CRBit == PPC::CR2GT || CRBit == PPC::CR3GT ||
822 CRBit == PPC::CR4GT || CRBit == PPC::CR5GT ||
823 CRBit == PPC::CR6GT || CRBit == PPC::CR7GT)
824 Ret = 2;
825 if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ ||
826 CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ ||
827 CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ ||
828 CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ)
829 Ret = 1;
830 if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN ||
831 CRBit == PPC::CR2UN || CRBit == PPC::CR3UN ||
832 CRBit == PPC::CR4UN || CRBit == PPC::CR5UN ||
833 CRBit == PPC::CR6UN || CRBit == PPC::CR7UN)
834 Ret = 0;
835
836 assert(Ret != 4 && "Invalid CR bit register");
837 return Ret;
838 }
839
copyPhysReg(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,const DebugLoc & DL,unsigned DestReg,unsigned SrcReg,bool KillSrc) const840 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
841 MachineBasicBlock::iterator I,
842 const DebugLoc &DL, unsigned DestReg,
843 unsigned SrcReg, bool KillSrc) const {
844 // We can end up with self copies and similar things as a result of VSX copy
845 // legalization. Promote them here.
846 const TargetRegisterInfo *TRI = &getRegisterInfo();
847 if (PPC::F8RCRegClass.contains(DestReg) &&
848 PPC::VSRCRegClass.contains(SrcReg)) {
849 unsigned SuperReg =
850 TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);
851
852 if (VSXSelfCopyCrash && SrcReg == SuperReg)
853 llvm_unreachable("nop VSX copy");
854
855 DestReg = SuperReg;
856 } else if (PPC::VRRCRegClass.contains(DestReg) &&
857 PPC::VSRCRegClass.contains(SrcReg)) {
858 unsigned SuperReg =
859 TRI->getMatchingSuperReg(DestReg, PPC::sub_128, &PPC::VSRCRegClass);
860
861 if (VSXSelfCopyCrash && SrcReg == SuperReg)
862 llvm_unreachable("nop VSX copy");
863
864 DestReg = SuperReg;
865 } else if (PPC::F8RCRegClass.contains(SrcReg) &&
866 PPC::VSRCRegClass.contains(DestReg)) {
867 unsigned SuperReg =
868 TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);
869
870 if (VSXSelfCopyCrash && DestReg == SuperReg)
871 llvm_unreachable("nop VSX copy");
872
873 SrcReg = SuperReg;
874 } else if (PPC::VRRCRegClass.contains(SrcReg) &&
875 PPC::VSRCRegClass.contains(DestReg)) {
876 unsigned SuperReg =
877 TRI->getMatchingSuperReg(SrcReg, PPC::sub_128, &PPC::VSRCRegClass);
878
879 if (VSXSelfCopyCrash && DestReg == SuperReg)
880 llvm_unreachable("nop VSX copy");
881
882 SrcReg = SuperReg;
883 }
884
885 // Different class register copy
886 if (PPC::CRBITRCRegClass.contains(SrcReg) &&
887 PPC::GPRCRegClass.contains(DestReg)) {
888 unsigned CRReg = getCRFromCRBit(SrcReg);
889 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg);
890 getKillRegState(KillSrc);
891 // Rotate the CR bit in the CR fields to be the least significant bit and
892 // then mask with 0x1 (MB = ME = 31).
893 BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg)
894 .addReg(DestReg, RegState::Kill)
895 .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg)))
896 .addImm(31)
897 .addImm(31);
898 return;
899 } else if (PPC::CRRCRegClass.contains(SrcReg) &&
900 PPC::G8RCRegClass.contains(DestReg)) {
901 BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg);
902 getKillRegState(KillSrc);
903 return;
904 } else if (PPC::CRRCRegClass.contains(SrcReg) &&
905 PPC::GPRCRegClass.contains(DestReg)) {
906 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg);
907 getKillRegState(KillSrc);
908 return;
909 }
910
911 unsigned Opc;
912 if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
913 Opc = PPC::OR;
914 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
915 Opc = PPC::OR8;
916 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
917 Opc = PPC::FMR;
918 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
919 Opc = PPC::MCRF;
920 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
921 Opc = PPC::VOR;
922 else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
923 // There are two different ways this can be done:
924 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
925 // issue in VSU pipeline 0.
926 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
927 // can go to either pipeline.
928 // We'll always use xxlor here, because in practically all cases where
929 // copies are generated, they are close enough to some use that the
930 // lower-latency form is preferable.
931 Opc = PPC::XXLOR;
932 else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) ||
933 PPC::VSSRCRegClass.contains(DestReg, SrcReg))
934 Opc = PPC::XXLORf;
935 else if (PPC::QFRCRegClass.contains(DestReg, SrcReg))
936 Opc = PPC::QVFMR;
937 else if (PPC::QSRCRegClass.contains(DestReg, SrcReg))
938 Opc = PPC::QVFMRs;
939 else if (PPC::QBRCRegClass.contains(DestReg, SrcReg))
940 Opc = PPC::QVFMRb;
941 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
942 Opc = PPC::CROR;
943 else
944 llvm_unreachable("Impossible reg-to-reg copy");
945
946 const MCInstrDesc &MCID = get(Opc);
947 if (MCID.getNumOperands() == 3)
948 BuildMI(MBB, I, DL, MCID, DestReg)
949 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
950 else
951 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
952 }
953
954 // This function returns true if a CR spill is necessary and false otherwise.
955 bool
StoreRegToStackSlot(MachineFunction & MF,unsigned SrcReg,bool isKill,int FrameIdx,const TargetRegisterClass * RC,SmallVectorImpl<MachineInstr * > & NewMIs,bool & NonRI,bool & SpillsVRS) const956 PPCInstrInfo::StoreRegToStackSlot(MachineFunction &MF,
957 unsigned SrcReg, bool isKill,
958 int FrameIdx,
959 const TargetRegisterClass *RC,
960 SmallVectorImpl<MachineInstr*> &NewMIs,
961 bool &NonRI, bool &SpillsVRS) const{
962 // Note: If additional store instructions are added here,
963 // update isStoreToStackSlot.
964
965 DebugLoc DL;
966 if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
967 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
968 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW))
969 .addReg(SrcReg,
970 getKillRegState(isKill)),
971 FrameIdx));
972 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
973 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
974 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD))
975 .addReg(SrcReg,
976 getKillRegState(isKill)),
977 FrameIdx));
978 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
979 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFD))
980 .addReg(SrcReg,
981 getKillRegState(isKill)),
982 FrameIdx));
983 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
984 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFS))
985 .addReg(SrcReg,
986 getKillRegState(isKill)),
987 FrameIdx));
988 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
989 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CR))
990 .addReg(SrcReg,
991 getKillRegState(isKill)),
992 FrameIdx));
993 return true;
994 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
995 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CRBIT))
996 .addReg(SrcReg,
997 getKillRegState(isKill)),
998 FrameIdx));
999 return true;
1000 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1001 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STVX))
1002 .addReg(SrcReg,
1003 getKillRegState(isKill)),
1004 FrameIdx));
1005 NonRI = true;
1006 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1007 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXVD2X))
1008 .addReg(SrcReg,
1009 getKillRegState(isKill)),
1010 FrameIdx));
1011 NonRI = true;
1012 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1013 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXSDX))
1014 .addReg(SrcReg,
1015 getKillRegState(isKill)),
1016 FrameIdx));
1017 NonRI = true;
1018 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1019 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXSSPX))
1020 .addReg(SrcReg,
1021 getKillRegState(isKill)),
1022 FrameIdx));
1023 NonRI = true;
1024 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
1025 assert(Subtarget.isDarwin() &&
1026 "VRSAVE only needs spill/restore on Darwin");
1027 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_VRSAVE))
1028 .addReg(SrcReg,
1029 getKillRegState(isKill)),
1030 FrameIdx));
1031 SpillsVRS = true;
1032 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
1033 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFDX))
1034 .addReg(SrcReg,
1035 getKillRegState(isKill)),
1036 FrameIdx));
1037 NonRI = true;
1038 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
1039 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFSXs))
1040 .addReg(SrcReg,
1041 getKillRegState(isKill)),
1042 FrameIdx));
1043 NonRI = true;
1044 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
1045 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFDXb))
1046 .addReg(SrcReg,
1047 getKillRegState(isKill)),
1048 FrameIdx));
1049 NonRI = true;
1050 } else {
1051 llvm_unreachable("Unknown regclass!");
1052 }
1053
1054 return false;
1055 }
1056
1057 void
storeRegToStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,unsigned SrcReg,bool isKill,int FrameIdx,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI) const1058 PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1059 MachineBasicBlock::iterator MI,
1060 unsigned SrcReg, bool isKill, int FrameIdx,
1061 const TargetRegisterClass *RC,
1062 const TargetRegisterInfo *TRI) const {
1063 MachineFunction &MF = *MBB.getParent();
1064 SmallVector<MachineInstr*, 4> NewMIs;
1065
1066 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1067 FuncInfo->setHasSpills();
1068
1069 bool NonRI = false, SpillsVRS = false;
1070 if (StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs,
1071 NonRI, SpillsVRS))
1072 FuncInfo->setSpillsCR();
1073
1074 if (SpillsVRS)
1075 FuncInfo->setSpillsVRSAVE();
1076
1077 if (NonRI)
1078 FuncInfo->setHasNonRISpills();
1079
1080 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1081 MBB.insert(MI, NewMIs[i]);
1082
1083 const MachineFrameInfo &MFI = *MF.getFrameInfo();
1084 MachineMemOperand *MMO = MF.getMachineMemOperand(
1085 MachinePointerInfo::getFixedStack(MF, FrameIdx),
1086 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
1087 MFI.getObjectAlignment(FrameIdx));
1088 NewMIs.back()->addMemOperand(MF, MMO);
1089 }
1090
LoadRegFromStackSlot(MachineFunction & MF,const DebugLoc & DL,unsigned DestReg,int FrameIdx,const TargetRegisterClass * RC,SmallVectorImpl<MachineInstr * > & NewMIs,bool & NonRI,bool & SpillsVRS) const1091 bool PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
1092 unsigned DestReg, int FrameIdx,
1093 const TargetRegisterClass *RC,
1094 SmallVectorImpl<MachineInstr *> &NewMIs,
1095 bool &NonRI, bool &SpillsVRS) const {
1096 // Note: If additional load instructions are added here,
1097 // update isLoadFromStackSlot.
1098
1099 if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1100 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1101 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ),
1102 DestReg), FrameIdx));
1103 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1104 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1105 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), DestReg),
1106 FrameIdx));
1107 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1108 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFD), DestReg),
1109 FrameIdx));
1110 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1111 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFS), DestReg),
1112 FrameIdx));
1113 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1114 NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
1115 get(PPC::RESTORE_CR), DestReg),
1116 FrameIdx));
1117 return true;
1118 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1119 NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
1120 get(PPC::RESTORE_CRBIT), DestReg),
1121 FrameIdx));
1122 return true;
1123 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1124 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LVX), DestReg),
1125 FrameIdx));
1126 NonRI = true;
1127 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1128 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXVD2X), DestReg),
1129 FrameIdx));
1130 NonRI = true;
1131 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1132 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXSDX), DestReg),
1133 FrameIdx));
1134 NonRI = true;
1135 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1136 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXSSPX), DestReg),
1137 FrameIdx));
1138 NonRI = true;
1139 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
1140 assert(Subtarget.isDarwin() &&
1141 "VRSAVE only needs spill/restore on Darwin");
1142 NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
1143 get(PPC::RESTORE_VRSAVE),
1144 DestReg),
1145 FrameIdx));
1146 SpillsVRS = true;
1147 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
1148 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFDX), DestReg),
1149 FrameIdx));
1150 NonRI = true;
1151 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
1152 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFSXs), DestReg),
1153 FrameIdx));
1154 NonRI = true;
1155 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
1156 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFDXb), DestReg),
1157 FrameIdx));
1158 NonRI = true;
1159 } else {
1160 llvm_unreachable("Unknown regclass!");
1161 }
1162
1163 return false;
1164 }
1165
1166 void
loadRegFromStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,unsigned DestReg,int FrameIdx,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI) const1167 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1168 MachineBasicBlock::iterator MI,
1169 unsigned DestReg, int FrameIdx,
1170 const TargetRegisterClass *RC,
1171 const TargetRegisterInfo *TRI) const {
1172 MachineFunction &MF = *MBB.getParent();
1173 SmallVector<MachineInstr*, 4> NewMIs;
1174 DebugLoc DL;
1175 if (MI != MBB.end()) DL = MI->getDebugLoc();
1176
1177 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1178 FuncInfo->setHasSpills();
1179
1180 bool NonRI = false, SpillsVRS = false;
1181 if (LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs,
1182 NonRI, SpillsVRS))
1183 FuncInfo->setSpillsCR();
1184
1185 if (SpillsVRS)
1186 FuncInfo->setSpillsVRSAVE();
1187
1188 if (NonRI)
1189 FuncInfo->setHasNonRISpills();
1190
1191 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1192 MBB.insert(MI, NewMIs[i]);
1193
1194 const MachineFrameInfo &MFI = *MF.getFrameInfo();
1195 MachineMemOperand *MMO = MF.getMachineMemOperand(
1196 MachinePointerInfo::getFixedStack(MF, FrameIdx),
1197 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
1198 MFI.getObjectAlignment(FrameIdx));
1199 NewMIs.back()->addMemOperand(MF, MMO);
1200 }
1201
1202 bool PPCInstrInfo::
ReverseBranchCondition(SmallVectorImpl<MachineOperand> & Cond) const1203 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1204 assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
1205 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
1206 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
1207 else
1208 // Leave the CR# the same, but invert the condition.
1209 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
1210 return false;
1211 }
1212
FoldImmediate(MachineInstr & UseMI,MachineInstr & DefMI,unsigned Reg,MachineRegisterInfo * MRI) const1213 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
1214 unsigned Reg, MachineRegisterInfo *MRI) const {
1215 // For some instructions, it is legal to fold ZERO into the RA register field.
1216 // A zero immediate should always be loaded with a single li.
1217 unsigned DefOpc = DefMI.getOpcode();
1218 if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
1219 return false;
1220 if (!DefMI.getOperand(1).isImm())
1221 return false;
1222 if (DefMI.getOperand(1).getImm() != 0)
1223 return false;
1224
1225 // Note that we cannot here invert the arguments of an isel in order to fold
1226 // a ZERO into what is presented as the second argument. All we have here
1227 // is the condition bit, and that might come from a CR-logical bit operation.
1228
1229 const MCInstrDesc &UseMCID = UseMI.getDesc();
1230
1231 // Only fold into real machine instructions.
1232 if (UseMCID.isPseudo())
1233 return false;
1234
1235 unsigned UseIdx;
1236 for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx)
1237 if (UseMI.getOperand(UseIdx).isReg() &&
1238 UseMI.getOperand(UseIdx).getReg() == Reg)
1239 break;
1240
1241 assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI");
1242 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
1243
1244 const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx];
1245
1246 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
1247 // register (which might also be specified as a pointer class kind).
1248 if (UseInfo->isLookupPtrRegClass()) {
1249 if (UseInfo->RegClass /* Kind */ != 1)
1250 return false;
1251 } else {
1252 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
1253 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
1254 return false;
1255 }
1256
1257 // Make sure this is not tied to an output register (or otherwise
1258 // constrained). This is true for ST?UX registers, for example, which
1259 // are tied to their output registers.
1260 if (UseInfo->Constraints != 0)
1261 return false;
1262
1263 unsigned ZeroReg;
1264 if (UseInfo->isLookupPtrRegClass()) {
1265 bool isPPC64 = Subtarget.isPPC64();
1266 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
1267 } else {
1268 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
1269 PPC::ZERO8 : PPC::ZERO;
1270 }
1271
1272 bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
1273 UseMI.getOperand(UseIdx).setReg(ZeroReg);
1274
1275 if (DeleteDef)
1276 DefMI.eraseFromParent();
1277
1278 return true;
1279 }
1280
MBBDefinesCTR(MachineBasicBlock & MBB)1281 static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
1282 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
1283 I != IE; ++I)
1284 if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8))
1285 return true;
1286 return false;
1287 }
1288
1289 // We should make sure that, if we're going to predicate both sides of a
1290 // condition (a diamond), that both sides don't define the counter register. We
1291 // can predicate counter-decrement-based branches, but while that predicates
1292 // the branching, it does not predicate the counter decrement. If we tried to
1293 // merge the triangle into one predicated block, we'd decrement the counter
1294 // twice.
isProfitableToIfCvt(MachineBasicBlock & TMBB,unsigned NumT,unsigned ExtraT,MachineBasicBlock & FMBB,unsigned NumF,unsigned ExtraF,BranchProbability Probability) const1295 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
1296 unsigned NumT, unsigned ExtraT,
1297 MachineBasicBlock &FMBB,
1298 unsigned NumF, unsigned ExtraF,
1299 BranchProbability Probability) const {
1300 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
1301 }
1302
1303
isPredicated(const MachineInstr & MI) const1304 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const {
1305 // The predicated branches are identified by their type, not really by the
1306 // explicit presence of a predicate. Furthermore, some of them can be
1307 // predicated more than once. Because if conversion won't try to predicate
1308 // any instruction which already claims to be predicated (by returning true
1309 // here), always return false. In doing so, we let isPredicable() be the
1310 // final word on whether not the instruction can be (further) predicated.
1311
1312 return false;
1313 }
1314
isUnpredicatedTerminator(const MachineInstr & MI) const1315 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
1316 if (!MI.isTerminator())
1317 return false;
1318
1319 // Conditional branch is a special case.
1320 if (MI.isBranch() && !MI.isBarrier())
1321 return true;
1322
1323 return !isPredicated(MI);
1324 }
1325
PredicateInstruction(MachineInstr & MI,ArrayRef<MachineOperand> Pred) const1326 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI,
1327 ArrayRef<MachineOperand> Pred) const {
1328 unsigned OpC = MI.getOpcode();
1329 if (OpC == PPC::BLR || OpC == PPC::BLR8) {
1330 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1331 bool isPPC64 = Subtarget.isPPC64();
1332 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR)
1333 : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR)));
1334 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1335 MI.setDesc(get(PPC::BCLR));
1336 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1337 .addReg(Pred[1].getReg());
1338 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1339 MI.setDesc(get(PPC::BCLRn));
1340 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1341 .addReg(Pred[1].getReg());
1342 } else {
1343 MI.setDesc(get(PPC::BCCLR));
1344 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1345 .addImm(Pred[0].getImm())
1346 .addReg(Pred[1].getReg());
1347 }
1348
1349 return true;
1350 } else if (OpC == PPC::B) {
1351 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1352 bool isPPC64 = Subtarget.isPPC64();
1353 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
1354 : (isPPC64 ? PPC::BDZ8 : PPC::BDZ)));
1355 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1356 MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1357 MI.RemoveOperand(0);
1358
1359 MI.setDesc(get(PPC::BC));
1360 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1361 .addReg(Pred[1].getReg())
1362 .addMBB(MBB);
1363 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1364 MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1365 MI.RemoveOperand(0);
1366
1367 MI.setDesc(get(PPC::BCn));
1368 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1369 .addReg(Pred[1].getReg())
1370 .addMBB(MBB);
1371 } else {
1372 MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1373 MI.RemoveOperand(0);
1374
1375 MI.setDesc(get(PPC::BCC));
1376 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1377 .addImm(Pred[0].getImm())
1378 .addReg(Pred[1].getReg())
1379 .addMBB(MBB);
1380 }
1381
1382 return true;
1383 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 ||
1384 OpC == PPC::BCTRL || OpC == PPC::BCTRL8) {
1385 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
1386 llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
1387
1388 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8;
1389 bool isPPC64 = Subtarget.isPPC64();
1390
1391 if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1392 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8)
1393 : (setLR ? PPC::BCCTRL : PPC::BCCTR)));
1394 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1395 .addReg(Pred[1].getReg());
1396 return true;
1397 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1398 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n)
1399 : (setLR ? PPC::BCCTRLn : PPC::BCCTRn)));
1400 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1401 .addReg(Pred[1].getReg());
1402 return true;
1403 }
1404
1405 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8)
1406 : (setLR ? PPC::BCCCTRL : PPC::BCCCTR)));
1407 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1408 .addImm(Pred[0].getImm())
1409 .addReg(Pred[1].getReg());
1410 return true;
1411 }
1412
1413 return false;
1414 }
1415
SubsumesPredicate(ArrayRef<MachineOperand> Pred1,ArrayRef<MachineOperand> Pred2) const1416 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1417 ArrayRef<MachineOperand> Pred2) const {
1418 assert(Pred1.size() == 2 && "Invalid PPC first predicate");
1419 assert(Pred2.size() == 2 && "Invalid PPC second predicate");
1420
1421 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
1422 return false;
1423 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
1424 return false;
1425
1426 // P1 can only subsume P2 if they test the same condition register.
1427 if (Pred1[1].getReg() != Pred2[1].getReg())
1428 return false;
1429
1430 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
1431 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
1432
1433 if (P1 == P2)
1434 return true;
1435
1436 // Does P1 subsume P2, e.g. GE subsumes GT.
1437 if (P1 == PPC::PRED_LE &&
1438 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
1439 return true;
1440 if (P1 == PPC::PRED_GE &&
1441 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
1442 return true;
1443
1444 return false;
1445 }
1446
DefinesPredicate(MachineInstr & MI,std::vector<MachineOperand> & Pred) const1447 bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI,
1448 std::vector<MachineOperand> &Pred) const {
1449 // Note: At the present time, the contents of Pred from this function is
1450 // unused by IfConversion. This implementation follows ARM by pushing the
1451 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
1452 // predicate, instructions defining CTR or CTR8 are also included as
1453 // predicate-defining instructions.
1454
1455 const TargetRegisterClass *RCs[] =
1456 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
1457 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
1458
1459 bool Found = false;
1460 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1461 const MachineOperand &MO = MI.getOperand(i);
1462 for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) {
1463 const TargetRegisterClass *RC = RCs[c];
1464 if (MO.isReg()) {
1465 if (MO.isDef() && RC->contains(MO.getReg())) {
1466 Pred.push_back(MO);
1467 Found = true;
1468 }
1469 } else if (MO.isRegMask()) {
1470 for (TargetRegisterClass::iterator I = RC->begin(),
1471 IE = RC->end(); I != IE; ++I)
1472 if (MO.clobbersPhysReg(*I)) {
1473 Pred.push_back(MO);
1474 Found = true;
1475 }
1476 }
1477 }
1478 }
1479
1480 return Found;
1481 }
1482
isPredicable(MachineInstr & MI) const1483 bool PPCInstrInfo::isPredicable(MachineInstr &MI) const {
1484 unsigned OpC = MI.getOpcode();
1485 switch (OpC) {
1486 default:
1487 return false;
1488 case PPC::B:
1489 case PPC::BLR:
1490 case PPC::BLR8:
1491 case PPC::BCTR:
1492 case PPC::BCTR8:
1493 case PPC::BCTRL:
1494 case PPC::BCTRL8:
1495 return true;
1496 }
1497 }
1498
analyzeCompare(const MachineInstr & MI,unsigned & SrcReg,unsigned & SrcReg2,int & Mask,int & Value) const1499 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
1500 unsigned &SrcReg2, int &Mask,
1501 int &Value) const {
1502 unsigned Opc = MI.getOpcode();
1503
1504 switch (Opc) {
1505 default: return false;
1506 case PPC::CMPWI:
1507 case PPC::CMPLWI:
1508 case PPC::CMPDI:
1509 case PPC::CMPLDI:
1510 SrcReg = MI.getOperand(1).getReg();
1511 SrcReg2 = 0;
1512 Value = MI.getOperand(2).getImm();
1513 Mask = 0xFFFF;
1514 return true;
1515 case PPC::CMPW:
1516 case PPC::CMPLW:
1517 case PPC::CMPD:
1518 case PPC::CMPLD:
1519 case PPC::FCMPUS:
1520 case PPC::FCMPUD:
1521 SrcReg = MI.getOperand(1).getReg();
1522 SrcReg2 = MI.getOperand(2).getReg();
1523 return true;
1524 }
1525 }
1526
optimizeCompareInstr(MachineInstr & CmpInstr,unsigned SrcReg,unsigned SrcReg2,int Mask,int Value,const MachineRegisterInfo * MRI) const1527 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
1528 unsigned SrcReg2, int Mask, int Value,
1529 const MachineRegisterInfo *MRI) const {
1530 if (DisableCmpOpt)
1531 return false;
1532
1533 int OpC = CmpInstr.getOpcode();
1534 unsigned CRReg = CmpInstr.getOperand(0).getReg();
1535
1536 // FP record forms set CR1 based on the execption status bits, not a
1537 // comparison with zero.
1538 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
1539 return false;
1540
1541 // The record forms set the condition register based on a signed comparison
1542 // with zero (so says the ISA manual). This is not as straightforward as it
1543 // seems, however, because this is always a 64-bit comparison on PPC64, even
1544 // for instructions that are 32-bit in nature (like slw for example).
1545 // So, on PPC32, for unsigned comparisons, we can use the record forms only
1546 // for equality checks (as those don't depend on the sign). On PPC64,
1547 // we are restricted to equality for unsigned 64-bit comparisons and for
1548 // signed 32-bit comparisons the applicability is more restricted.
1549 bool isPPC64 = Subtarget.isPPC64();
1550 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW;
1551 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
1552 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
1553
1554 // Get the unique definition of SrcReg.
1555 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
1556 if (!MI) return false;
1557 int MIOpC = MI->getOpcode();
1558
1559 bool equalityOnly = false;
1560 bool noSub = false;
1561 if (isPPC64) {
1562 if (is32BitSignedCompare) {
1563 // We can perform this optimization only if MI is sign-extending.
1564 if (MIOpC == PPC::SRAW || MIOpC == PPC::SRAWo ||
1565 MIOpC == PPC::SRAWI || MIOpC == PPC::SRAWIo ||
1566 MIOpC == PPC::EXTSB || MIOpC == PPC::EXTSBo ||
1567 MIOpC == PPC::EXTSH || MIOpC == PPC::EXTSHo ||
1568 MIOpC == PPC::EXTSW || MIOpC == PPC::EXTSWo) {
1569 noSub = true;
1570 } else
1571 return false;
1572 } else if (is32BitUnsignedCompare) {
1573 // 32-bit rotate and mask instructions are zero extending only if MB <= ME
1574 bool isZeroExtendingRotate =
1575 (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINMo ||
1576 MIOpC == PPC::RLWNM || MIOpC == PPC::RLWNMo)
1577 && MI->getOperand(3).getImm() <= MI->getOperand(4).getImm();
1578
1579 // We can perform this optimization, equality only, if MI is
1580 // zero-extending.
1581 if (MIOpC == PPC::CNTLZW || MIOpC == PPC::CNTLZWo ||
1582 MIOpC == PPC::SLW || MIOpC == PPC::SLWo ||
1583 MIOpC == PPC::SRW || MIOpC == PPC::SRWo ||
1584 isZeroExtendingRotate) {
1585 noSub = true;
1586 equalityOnly = true;
1587 } else
1588 return false;
1589 } else
1590 equalityOnly = is64BitUnsignedCompare;
1591 } else
1592 equalityOnly = is32BitUnsignedCompare;
1593
1594 if (equalityOnly) {
1595 // We need to check the uses of the condition register in order to reject
1596 // non-equality comparisons.
1597 for (MachineRegisterInfo::use_instr_iterator I =MRI->use_instr_begin(CRReg),
1598 IE = MRI->use_instr_end(); I != IE; ++I) {
1599 MachineInstr *UseMI = &*I;
1600 if (UseMI->getOpcode() == PPC::BCC) {
1601 unsigned Pred = UseMI->getOperand(0).getImm();
1602 if (Pred != PPC::PRED_EQ && Pred != PPC::PRED_NE)
1603 return false;
1604 } else if (UseMI->getOpcode() == PPC::ISEL ||
1605 UseMI->getOpcode() == PPC::ISEL8) {
1606 unsigned SubIdx = UseMI->getOperand(3).getSubReg();
1607 if (SubIdx != PPC::sub_eq)
1608 return false;
1609 } else
1610 return false;
1611 }
1612 }
1613
1614 MachineBasicBlock::iterator I = CmpInstr;
1615
1616 // Scan forward to find the first use of the compare.
1617 for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL;
1618 ++I) {
1619 bool FoundUse = false;
1620 for (MachineRegisterInfo::use_instr_iterator J =MRI->use_instr_begin(CRReg),
1621 JE = MRI->use_instr_end(); J != JE; ++J)
1622 if (&*J == &*I) {
1623 FoundUse = true;
1624 break;
1625 }
1626
1627 if (FoundUse)
1628 break;
1629 }
1630
1631 // There are two possible candidates which can be changed to set CR[01].
1632 // One is MI, the other is a SUB instruction.
1633 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
1634 MachineInstr *Sub = nullptr;
1635 if (SrcReg2 != 0)
1636 // MI is not a candidate for CMPrr.
1637 MI = nullptr;
1638 // FIXME: Conservatively refuse to convert an instruction which isn't in the
1639 // same BB as the comparison. This is to allow the check below to avoid calls
1640 // (and other explicit clobbers); instead we should really check for these
1641 // more explicitly (in at least a few predecessors).
1642 else if (MI->getParent() != CmpInstr.getParent() || Value != 0) {
1643 // PPC does not have a record-form SUBri.
1644 return false;
1645 }
1646
1647 // Search for Sub.
1648 const TargetRegisterInfo *TRI = &getRegisterInfo();
1649 --I;
1650
1651 // Get ready to iterate backward from CmpInstr.
1652 MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin();
1653
1654 for (; I != E && !noSub; --I) {
1655 const MachineInstr &Instr = *I;
1656 unsigned IOpC = Instr.getOpcode();
1657
1658 if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) ||
1659 Instr.readsRegister(PPC::CR0, TRI)))
1660 // This instruction modifies or uses the record condition register after
1661 // the one we want to change. While we could do this transformation, it
1662 // would likely not be profitable. This transformation removes one
1663 // instruction, and so even forcing RA to generate one move probably
1664 // makes it unprofitable.
1665 return false;
1666
1667 // Check whether CmpInstr can be made redundant by the current instruction.
1668 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
1669 OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
1670 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
1671 ((Instr.getOperand(1).getReg() == SrcReg &&
1672 Instr.getOperand(2).getReg() == SrcReg2) ||
1673 (Instr.getOperand(1).getReg() == SrcReg2 &&
1674 Instr.getOperand(2).getReg() == SrcReg))) {
1675 Sub = &*I;
1676 break;
1677 }
1678
1679 if (I == B)
1680 // The 'and' is below the comparison instruction.
1681 return false;
1682 }
1683
1684 // Return false if no candidates exist.
1685 if (!MI && !Sub)
1686 return false;
1687
1688 // The single candidate is called MI.
1689 if (!MI) MI = Sub;
1690
1691 int NewOpC = -1;
1692 MIOpC = MI->getOpcode();
1693 if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8)
1694 NewOpC = MIOpC;
1695 else {
1696 NewOpC = PPC::getRecordFormOpcode(MIOpC);
1697 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
1698 NewOpC = MIOpC;
1699 }
1700
1701 // FIXME: On the non-embedded POWER architectures, only some of the record
1702 // forms are fast, and we should use only the fast ones.
1703
1704 // The defining instruction has a record form (or is already a record
1705 // form). It is possible, however, that we'll need to reverse the condition
1706 // code of the users.
1707 if (NewOpC == -1)
1708 return false;
1709
1710 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
1711 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
1712
1713 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
1714 // needs to be updated to be based on SUB. Push the condition code
1715 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the
1716 // condition code of these operands will be modified.
1717 bool ShouldSwap = false;
1718 if (Sub) {
1719 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
1720 Sub->getOperand(2).getReg() == SrcReg;
1721
1722 // The operands to subf are the opposite of sub, so only in the fixed-point
1723 // case, invert the order.
1724 ShouldSwap = !ShouldSwap;
1725 }
1726
1727 if (ShouldSwap)
1728 for (MachineRegisterInfo::use_instr_iterator
1729 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
1730 I != IE; ++I) {
1731 MachineInstr *UseMI = &*I;
1732 if (UseMI->getOpcode() == PPC::BCC) {
1733 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
1734 assert((!equalityOnly ||
1735 Pred == PPC::PRED_EQ || Pred == PPC::PRED_NE) &&
1736 "Invalid predicate for equality-only optimization");
1737 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
1738 PPC::getSwappedPredicate(Pred)));
1739 } else if (UseMI->getOpcode() == PPC::ISEL ||
1740 UseMI->getOpcode() == PPC::ISEL8) {
1741 unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
1742 assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
1743 "Invalid CR bit for equality-only optimization");
1744
1745 if (NewSubReg == PPC::sub_lt)
1746 NewSubReg = PPC::sub_gt;
1747 else if (NewSubReg == PPC::sub_gt)
1748 NewSubReg = PPC::sub_lt;
1749
1750 SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
1751 NewSubReg));
1752 } else // We need to abort on a user we don't understand.
1753 return false;
1754 }
1755
1756 // Create a new virtual register to hold the value of the CR set by the
1757 // record-form instruction. If the instruction was not previously in
1758 // record form, then set the kill flag on the CR.
1759 CmpInstr.eraseFromParent();
1760
1761 MachineBasicBlock::iterator MII = MI;
1762 BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
1763 get(TargetOpcode::COPY), CRReg)
1764 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
1765
1766 // Even if CR0 register were dead before, it is alive now since the
1767 // instruction we just built uses it.
1768 MI->clearRegisterDeads(PPC::CR0);
1769
1770 if (MIOpC != NewOpC) {
1771 // We need to be careful here: we're replacing one instruction with
1772 // another, and we need to make sure that we get all of the right
1773 // implicit uses and defs. On the other hand, the caller may be holding
1774 // an iterator to this instruction, and so we can't delete it (this is
1775 // specifically the case if this is the instruction directly after the
1776 // compare).
1777
1778 const MCInstrDesc &NewDesc = get(NewOpC);
1779 MI->setDesc(NewDesc);
1780
1781 if (NewDesc.ImplicitDefs)
1782 for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs();
1783 *ImpDefs; ++ImpDefs)
1784 if (!MI->definesRegister(*ImpDefs))
1785 MI->addOperand(*MI->getParent()->getParent(),
1786 MachineOperand::CreateReg(*ImpDefs, true, true));
1787 if (NewDesc.ImplicitUses)
1788 for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses();
1789 *ImpUses; ++ImpUses)
1790 if (!MI->readsRegister(*ImpUses))
1791 MI->addOperand(*MI->getParent()->getParent(),
1792 MachineOperand::CreateReg(*ImpUses, false, true));
1793 }
1794 assert(MI->definesRegister(PPC::CR0) &&
1795 "Record-form instruction does not define cr0?");
1796
1797 // Modify the condition code of operands in OperandsToUpdate.
1798 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
1799 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
1800 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
1801 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
1802
1803 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
1804 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
1805
1806 return true;
1807 }
1808
1809 /// GetInstSize - Return the number of bytes of code the specified
1810 /// instruction may be. This returns the maximum number of bytes.
1811 ///
GetInstSizeInBytes(const MachineInstr & MI) const1812 unsigned PPCInstrInfo::GetInstSizeInBytes(const MachineInstr &MI) const {
1813 unsigned Opcode = MI.getOpcode();
1814
1815 if (Opcode == PPC::INLINEASM) {
1816 const MachineFunction *MF = MI.getParent()->getParent();
1817 const char *AsmStr = MI.getOperand(0).getSymbolName();
1818 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
1819 } else if (Opcode == TargetOpcode::STACKMAP) {
1820 return MI.getOperand(1).getImm();
1821 } else if (Opcode == TargetOpcode::PATCHPOINT) {
1822 PatchPointOpers Opers(&MI);
1823 return Opers.getMetaOper(PatchPointOpers::NBytesPos).getImm();
1824 } else {
1825 const MCInstrDesc &Desc = get(Opcode);
1826 return Desc.getSize();
1827 }
1828 }
1829
1830 std::pair<unsigned, unsigned>
decomposeMachineOperandsTargetFlags(unsigned TF) const1831 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
1832 const unsigned Mask = PPCII::MO_ACCESS_MASK;
1833 return std::make_pair(TF & Mask, TF & ~Mask);
1834 }
1835
1836 ArrayRef<std::pair<unsigned, const char *>>
getSerializableDirectMachineOperandTargetFlags() const1837 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
1838 using namespace PPCII;
1839 static const std::pair<unsigned, const char *> TargetFlags[] = {
1840 {MO_LO, "ppc-lo"},
1841 {MO_HA, "ppc-ha"},
1842 {MO_TPREL_LO, "ppc-tprel-lo"},
1843 {MO_TPREL_HA, "ppc-tprel-ha"},
1844 {MO_DTPREL_LO, "ppc-dtprel-lo"},
1845 {MO_TLSLD_LO, "ppc-tlsld-lo"},
1846 {MO_TOC_LO, "ppc-toc-lo"},
1847 {MO_TLS, "ppc-tls"}};
1848 return makeArrayRef(TargetFlags);
1849 }
1850
1851 ArrayRef<std::pair<unsigned, const char *>>
getSerializableBitmaskMachineOperandTargetFlags() const1852 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
1853 using namespace PPCII;
1854 static const std::pair<unsigned, const char *> TargetFlags[] = {
1855 {MO_PLT, "ppc-plt"},
1856 {MO_PIC_FLAG, "ppc-pic"},
1857 {MO_NLP_FLAG, "ppc-nlp"},
1858 {MO_NLP_HIDDEN_FLAG, "ppc-nlp-hidden"}};
1859 return makeArrayRef(TargetFlags);
1860 }
1861
expandPostRAPseudo(MachineInstr & MI) const1862 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1863 switch (MI.getOpcode()) {
1864 case TargetOpcode::LOAD_STACK_GUARD: {
1865 assert(Subtarget.isTargetLinux() &&
1866 "Only Linux target is expected to contain LOAD_STACK_GUARD");
1867 const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008;
1868 const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2;
1869 MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ));
1870 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1871 .addImm(Offset)
1872 .addReg(Reg);
1873 return true;
1874 }
1875 }
1876 return false;
1877 }
1878