• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young (eay@cryptsoft.com).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to.  The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  *    must display the following acknowledgement:
32  *    "This product includes cryptographic software written by
33  *     Eric Young (eay@cryptsoft.com)"
34  *    The word 'cryptographic' can be left out if the rouines from the library
35  *    being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  *    the apps directory (application code) you must include an acknowledgement:
38  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.] */
56 
57 #if !defined(__STDC_FORMAT_MACROS)
58 #define __STDC_FORMAT_MACROS
59 #endif
60 
61 #include <openssl/obj.h>
62 
63 #include <inttypes.h>
64 #include <limits.h>
65 #include <string.h>
66 
67 #include <openssl/asn1.h>
68 #include <openssl/buf.h>
69 #include <openssl/bytestring.h>
70 #include <openssl/err.h>
71 #include <openssl/lhash.h>
72 #include <openssl/mem.h>
73 #include <openssl/thread.h>
74 
75 #include "obj_dat.h"
76 #include "../internal.h"
77 
78 
79 static struct CRYPTO_STATIC_MUTEX global_added_lock = CRYPTO_STATIC_MUTEX_INIT;
80 /* These globals are protected by |global_added_lock|. */
81 static LHASH_OF(ASN1_OBJECT) *global_added_by_data = NULL;
82 static LHASH_OF(ASN1_OBJECT) *global_added_by_nid = NULL;
83 static LHASH_OF(ASN1_OBJECT) *global_added_by_short_name = NULL;
84 static LHASH_OF(ASN1_OBJECT) *global_added_by_long_name = NULL;
85 
86 static struct CRYPTO_STATIC_MUTEX global_next_nid_lock =
87     CRYPTO_STATIC_MUTEX_INIT;
88 static unsigned global_next_nid = NUM_NID;
89 
obj_next_nid(void)90 static int obj_next_nid(void) {
91   int ret;
92 
93   CRYPTO_STATIC_MUTEX_lock_write(&global_next_nid_lock);
94   ret = global_next_nid++;
95   CRYPTO_STATIC_MUTEX_unlock_write(&global_next_nid_lock);
96 
97   return ret;
98 }
99 
OBJ_dup(const ASN1_OBJECT * o)100 ASN1_OBJECT *OBJ_dup(const ASN1_OBJECT *o) {
101   ASN1_OBJECT *r;
102   unsigned char *data = NULL;
103   char *sn = NULL, *ln = NULL;
104 
105   if (o == NULL) {
106     return NULL;
107   }
108 
109   if (!(o->flags & ASN1_OBJECT_FLAG_DYNAMIC)) {
110     /* TODO(fork): this is a little dangerous. */
111     return (ASN1_OBJECT *)o;
112   }
113 
114   r = ASN1_OBJECT_new();
115   if (r == NULL) {
116     OPENSSL_PUT_ERROR(OBJ, ERR_R_ASN1_LIB);
117     return NULL;
118   }
119   r->ln = r->sn = NULL;
120 
121   data = OPENSSL_malloc(o->length);
122   if (data == NULL) {
123     goto err;
124   }
125   if (o->data != NULL) {
126     OPENSSL_memcpy(data, o->data, o->length);
127   }
128 
129   /* once data is attached to an object, it remains const */
130   r->data = data;
131   r->length = o->length;
132   r->nid = o->nid;
133 
134   if (o->ln != NULL) {
135     ln = OPENSSL_strdup(o->ln);
136     if (ln == NULL) {
137       goto err;
138     }
139   }
140 
141   if (o->sn != NULL) {
142     sn = OPENSSL_strdup(o->sn);
143     if (sn == NULL) {
144       goto err;
145     }
146   }
147 
148   r->sn = sn;
149   r->ln = ln;
150 
151   r->flags =
152       o->flags | (ASN1_OBJECT_FLAG_DYNAMIC | ASN1_OBJECT_FLAG_DYNAMIC_STRINGS |
153                   ASN1_OBJECT_FLAG_DYNAMIC_DATA);
154   return r;
155 
156 err:
157   OPENSSL_PUT_ERROR(OBJ, ERR_R_MALLOC_FAILURE);
158   OPENSSL_free(ln);
159   OPENSSL_free(sn);
160   OPENSSL_free(data);
161   OPENSSL_free(r);
162   return NULL;
163 }
164 
OBJ_cmp(const ASN1_OBJECT * a,const ASN1_OBJECT * b)165 int OBJ_cmp(const ASN1_OBJECT *a, const ASN1_OBJECT *b) {
166   int ret;
167 
168   ret = a->length - b->length;
169   if (ret) {
170     return ret;
171   }
172   return OPENSSL_memcmp(a->data, b->data, a->length);
173 }
174 
175 /* obj_cmp is called to search the kNIDsInOIDOrder array. The |key| argument is
176  * an |ASN1_OBJECT|* that we're looking for and |element| is a pointer to an
177  * unsigned int in the array. */
obj_cmp(const void * key,const void * element)178 static int obj_cmp(const void *key, const void *element) {
179   unsigned nid = *((const unsigned*) element);
180   const ASN1_OBJECT *a = key;
181   const ASN1_OBJECT *b = &kObjects[nid];
182 
183   if (a->length < b->length) {
184     return -1;
185   } else if (a->length > b->length) {
186     return 1;
187   }
188   return OPENSSL_memcmp(a->data, b->data, a->length);
189 }
190 
OBJ_obj2nid(const ASN1_OBJECT * obj)191 int OBJ_obj2nid(const ASN1_OBJECT *obj) {
192   const unsigned int *nid_ptr;
193 
194   if (obj == NULL) {
195     return NID_undef;
196   }
197 
198   if (obj->nid != 0) {
199     return obj->nid;
200   }
201 
202   CRYPTO_STATIC_MUTEX_lock_read(&global_added_lock);
203   if (global_added_by_data != NULL) {
204     ASN1_OBJECT *match;
205 
206     match = lh_ASN1_OBJECT_retrieve(global_added_by_data, obj);
207     if (match != NULL) {
208       CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock);
209       return match->nid;
210     }
211   }
212   CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock);
213 
214   nid_ptr = bsearch(obj, kNIDsInOIDOrder, OPENSSL_ARRAY_SIZE(kNIDsInOIDOrder),
215                     sizeof(kNIDsInOIDOrder[0]), obj_cmp);
216   if (nid_ptr == NULL) {
217     return NID_undef;
218   }
219 
220   return kObjects[*nid_ptr].nid;
221 }
222 
OBJ_cbs2nid(const CBS * cbs)223 int OBJ_cbs2nid(const CBS *cbs) {
224   if (CBS_len(cbs) > INT_MAX) {
225     return NID_undef;
226   }
227 
228   ASN1_OBJECT obj;
229   OPENSSL_memset(&obj, 0, sizeof(obj));
230   obj.data = CBS_data(cbs);
231   obj.length = (int)CBS_len(cbs);
232 
233   return OBJ_obj2nid(&obj);
234 }
235 
236 /* short_name_cmp is called to search the kNIDsInShortNameOrder array. The
237  * |key| argument is name that we're looking for and |element| is a pointer to
238  * an unsigned int in the array. */
short_name_cmp(const void * key,const void * element)239 static int short_name_cmp(const void *key, const void *element) {
240   const char *name = (const char *) key;
241   unsigned nid = *((unsigned*) element);
242 
243   return strcmp(name, kObjects[nid].sn);
244 }
245 
OBJ_sn2nid(const char * short_name)246 int OBJ_sn2nid(const char *short_name) {
247   const unsigned int *nid_ptr;
248 
249   CRYPTO_STATIC_MUTEX_lock_read(&global_added_lock);
250   if (global_added_by_short_name != NULL) {
251     ASN1_OBJECT *match, template;
252 
253     template.sn = short_name;
254     match = lh_ASN1_OBJECT_retrieve(global_added_by_short_name, &template);
255     if (match != NULL) {
256       CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock);
257       return match->nid;
258     }
259   }
260   CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock);
261 
262   nid_ptr = bsearch(short_name, kNIDsInShortNameOrder,
263                     OPENSSL_ARRAY_SIZE(kNIDsInShortNameOrder),
264                     sizeof(kNIDsInShortNameOrder[0]), short_name_cmp);
265   if (nid_ptr == NULL) {
266     return NID_undef;
267   }
268 
269   return kObjects[*nid_ptr].nid;
270 }
271 
272 /* long_name_cmp is called to search the kNIDsInLongNameOrder array. The
273  * |key| argument is name that we're looking for and |element| is a pointer to
274  * an unsigned int in the array. */
long_name_cmp(const void * key,const void * element)275 static int long_name_cmp(const void *key, const void *element) {
276   const char *name = (const char *) key;
277   unsigned nid = *((unsigned*) element);
278 
279   return strcmp(name, kObjects[nid].ln);
280 }
281 
OBJ_ln2nid(const char * long_name)282 int OBJ_ln2nid(const char *long_name) {
283   const unsigned int *nid_ptr;
284 
285   CRYPTO_STATIC_MUTEX_lock_read(&global_added_lock);
286   if (global_added_by_long_name != NULL) {
287     ASN1_OBJECT *match, template;
288 
289     template.ln = long_name;
290     match = lh_ASN1_OBJECT_retrieve(global_added_by_long_name, &template);
291     if (match != NULL) {
292       CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock);
293       return match->nid;
294     }
295   }
296   CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock);
297 
298   nid_ptr = bsearch(long_name, kNIDsInLongNameOrder,
299                     OPENSSL_ARRAY_SIZE(kNIDsInLongNameOrder),
300                     sizeof(kNIDsInLongNameOrder[0]), long_name_cmp);
301   if (nid_ptr == NULL) {
302     return NID_undef;
303   }
304 
305   return kObjects[*nid_ptr].nid;
306 }
307 
OBJ_txt2nid(const char * s)308 int OBJ_txt2nid(const char *s) {
309   ASN1_OBJECT *obj;
310   int nid;
311 
312   obj = OBJ_txt2obj(s, 0 /* search names */);
313   nid = OBJ_obj2nid(obj);
314   ASN1_OBJECT_free(obj);
315   return nid;
316 }
317 
OBJ_nid2cbb(CBB * out,int nid)318 OPENSSL_EXPORT int OBJ_nid2cbb(CBB *out, int nid) {
319   const ASN1_OBJECT *obj = OBJ_nid2obj(nid);
320   CBB oid;
321 
322   if (obj == NULL ||
323       !CBB_add_asn1(out, &oid, CBS_ASN1_OBJECT) ||
324       !CBB_add_bytes(&oid, obj->data, obj->length) ||
325       !CBB_flush(out)) {
326     return 0;
327   }
328 
329   return 1;
330 }
331 
OBJ_nid2obj(int nid)332 const ASN1_OBJECT *OBJ_nid2obj(int nid) {
333   if (nid >= 0 && nid < NUM_NID) {
334     if (nid != NID_undef && kObjects[nid].nid == NID_undef) {
335       goto err;
336     }
337     return &kObjects[nid];
338   }
339 
340   CRYPTO_STATIC_MUTEX_lock_read(&global_added_lock);
341   if (global_added_by_nid != NULL) {
342     ASN1_OBJECT *match, template;
343 
344     template.nid = nid;
345     match = lh_ASN1_OBJECT_retrieve(global_added_by_nid, &template);
346     if (match != NULL) {
347       CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock);
348       return match;
349     }
350   }
351   CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock);
352 
353 err:
354   OPENSSL_PUT_ERROR(OBJ, OBJ_R_UNKNOWN_NID);
355   return NULL;
356 }
357 
OBJ_nid2sn(int nid)358 const char *OBJ_nid2sn(int nid) {
359   const ASN1_OBJECT *obj = OBJ_nid2obj(nid);
360   if (obj == NULL) {
361     return NULL;
362   }
363 
364   return obj->sn;
365 }
366 
OBJ_nid2ln(int nid)367 const char *OBJ_nid2ln(int nid) {
368   const ASN1_OBJECT *obj = OBJ_nid2obj(nid);
369   if (obj == NULL) {
370     return NULL;
371   }
372 
373   return obj->ln;
374 }
375 
OBJ_txt2obj(const char * s,int dont_search_names)376 ASN1_OBJECT *OBJ_txt2obj(const char *s, int dont_search_names) {
377   int nid = NID_undef;
378   ASN1_OBJECT *op = NULL;
379   unsigned char *buf;
380   unsigned char *p;
381   const unsigned char *bufp;
382   int contents_len, total_len;
383 
384   if (!dont_search_names) {
385     nid = OBJ_sn2nid(s);
386     if (nid == NID_undef) {
387       nid = OBJ_ln2nid(s);
388     }
389 
390     if (nid != NID_undef) {
391       return (ASN1_OBJECT*) OBJ_nid2obj(nid);
392     }
393   }
394 
395   /* Work out size of content octets */
396   contents_len = a2d_ASN1_OBJECT(NULL, 0, s, -1);
397   if (contents_len <= 0) {
398     return NULL;
399   }
400   /* Work out total size */
401   total_len = ASN1_object_size(0, contents_len, V_ASN1_OBJECT);
402 
403   buf = OPENSSL_malloc(total_len);
404   if (buf == NULL) {
405     OPENSSL_PUT_ERROR(OBJ, ERR_R_MALLOC_FAILURE);
406     return NULL;
407   }
408 
409   p = buf;
410   /* Write out tag+length */
411   ASN1_put_object(&p, 0, contents_len, V_ASN1_OBJECT, V_ASN1_UNIVERSAL);
412   /* Write out contents */
413   a2d_ASN1_OBJECT(p, contents_len, s, -1);
414 
415   bufp = buf;
416   op = d2i_ASN1_OBJECT(NULL, &bufp, total_len);
417   OPENSSL_free(buf);
418 
419   return op;
420 }
421 
strlcpy_int(char * dst,const char * src,int dst_size)422 static int strlcpy_int(char *dst, const char *src, int dst_size) {
423   size_t ret = BUF_strlcpy(dst, src, dst_size < 0 ? 0 : (size_t)dst_size);
424   if (ret > INT_MAX) {
425     OPENSSL_PUT_ERROR(OBJ, ERR_R_OVERFLOW);
426     return -1;
427   }
428   return (int)ret;
429 }
430 
parse_oid_component(CBS * cbs,uint64_t * out)431 static int parse_oid_component(CBS *cbs, uint64_t *out) {
432   uint64_t v = 0;
433   uint8_t b;
434   do {
435     if (!CBS_get_u8(cbs, &b)) {
436       return 0;
437     }
438     if ((v >> (64 - 7)) != 0) {
439       /* The component is too large. */
440       return 0;
441     }
442     if (v == 0 && b == 0x80) {
443       /* The component must be minimally encoded. */
444       return 0;
445     }
446     v = (v << 7) | (b & 0x7f);
447 
448     /* Components end at an octet with the high bit cleared. */
449   } while (b & 0x80);
450 
451   *out = v;
452   return 1;
453 }
454 
add_decimal(CBB * out,uint64_t v)455 static int add_decimal(CBB *out, uint64_t v) {
456   char buf[DECIMAL_SIZE(uint64_t) + 1];
457   BIO_snprintf(buf, sizeof(buf), "%" PRIu64, v);
458   return CBB_add_bytes(out, (const uint8_t *)buf, strlen(buf));
459 }
460 
OBJ_obj2txt(char * out,int out_len,const ASN1_OBJECT * obj,int always_return_oid)461 int OBJ_obj2txt(char *out, int out_len, const ASN1_OBJECT *obj,
462                 int always_return_oid) {
463   /* Python depends on the empty OID successfully encoding as the empty
464    * string. */
465   if (obj == NULL || obj->length == 0) {
466     return strlcpy_int(out, "", out_len);
467   }
468 
469   if (!always_return_oid) {
470     int nid = OBJ_obj2nid(obj);
471     if (nid != NID_undef) {
472       const char *name = OBJ_nid2ln(nid);
473       if (name == NULL) {
474         name = OBJ_nid2sn(nid);
475       }
476       if (name != NULL) {
477         return strlcpy_int(out, name, out_len);
478       }
479     }
480   }
481 
482   CBB cbb;
483   if (!CBB_init(&cbb, 32)) {
484     goto err;
485   }
486 
487   CBS cbs;
488   CBS_init(&cbs, obj->data, obj->length);
489 
490   /* The first component is 40 * value1 + value2, where value1 is 0, 1, or 2. */
491   uint64_t v;
492   if (!parse_oid_component(&cbs, &v)) {
493     goto err;
494   }
495 
496   if (v >= 80) {
497     if (!CBB_add_bytes(&cbb, (const uint8_t *)"2.", 2) ||
498         !add_decimal(&cbb, v - 80)) {
499       goto err;
500     }
501   } else if (!add_decimal(&cbb, v / 40) ||
502              !CBB_add_u8(&cbb, '.') ||
503              !add_decimal(&cbb, v % 40)) {
504     goto err;
505   }
506 
507   while (CBS_len(&cbs) != 0) {
508     if (!parse_oid_component(&cbs, &v) ||
509         !CBB_add_u8(&cbb, '.') ||
510         !add_decimal(&cbb, v)) {
511       goto err;
512     }
513   }
514 
515   uint8_t *txt;
516   size_t txt_len;
517   if (!CBB_add_u8(&cbb, '\0') ||
518       !CBB_finish(&cbb, &txt, &txt_len)) {
519     goto err;
520   }
521 
522   int ret = strlcpy_int(out, (const char *)txt, out_len);
523   OPENSSL_free(txt);
524   return ret;
525 
526 err:
527   CBB_cleanup(&cbb);
528   if (out_len > 0) {
529     out[0] = '\0';
530   }
531   return -1;
532 }
533 
hash_nid(const ASN1_OBJECT * obj)534 static uint32_t hash_nid(const ASN1_OBJECT *obj) {
535   return obj->nid;
536 }
537 
cmp_nid(const ASN1_OBJECT * a,const ASN1_OBJECT * b)538 static int cmp_nid(const ASN1_OBJECT *a, const ASN1_OBJECT *b) {
539   return a->nid - b->nid;
540 }
541 
hash_data(const ASN1_OBJECT * obj)542 static uint32_t hash_data(const ASN1_OBJECT *obj) {
543   return OPENSSL_hash32(obj->data, obj->length);
544 }
545 
cmp_data(const ASN1_OBJECT * a,const ASN1_OBJECT * b)546 static int cmp_data(const ASN1_OBJECT *a, const ASN1_OBJECT *b) {
547   int i = a->length - b->length;
548   if (i) {
549     return i;
550   }
551   return OPENSSL_memcmp(a->data, b->data, a->length);
552 }
553 
hash_short_name(const ASN1_OBJECT * obj)554 static uint32_t hash_short_name(const ASN1_OBJECT *obj) {
555   return lh_strhash(obj->sn);
556 }
557 
cmp_short_name(const ASN1_OBJECT * a,const ASN1_OBJECT * b)558 static int cmp_short_name(const ASN1_OBJECT *a, const ASN1_OBJECT *b) {
559   return strcmp(a->sn, b->sn);
560 }
561 
hash_long_name(const ASN1_OBJECT * obj)562 static uint32_t hash_long_name(const ASN1_OBJECT *obj) {
563   return lh_strhash(obj->ln);
564 }
565 
cmp_long_name(const ASN1_OBJECT * a,const ASN1_OBJECT * b)566 static int cmp_long_name(const ASN1_OBJECT *a, const ASN1_OBJECT *b) {
567   return strcmp(a->ln, b->ln);
568 }
569 
570 /* obj_add_object inserts |obj| into the various global hashes for run-time
571  * added objects. It returns one on success or zero otherwise. */
obj_add_object(ASN1_OBJECT * obj)572 static int obj_add_object(ASN1_OBJECT *obj) {
573   int ok;
574   ASN1_OBJECT *old_object;
575 
576   obj->flags &= ~(ASN1_OBJECT_FLAG_DYNAMIC | ASN1_OBJECT_FLAG_DYNAMIC_STRINGS |
577                   ASN1_OBJECT_FLAG_DYNAMIC_DATA);
578 
579   CRYPTO_STATIC_MUTEX_lock_write(&global_added_lock);
580   if (global_added_by_nid == NULL) {
581     global_added_by_nid = lh_ASN1_OBJECT_new(hash_nid, cmp_nid);
582     global_added_by_data = lh_ASN1_OBJECT_new(hash_data, cmp_data);
583     global_added_by_short_name = lh_ASN1_OBJECT_new(hash_short_name, cmp_short_name);
584     global_added_by_long_name = lh_ASN1_OBJECT_new(hash_long_name, cmp_long_name);
585   }
586 
587   /* We don't pay attention to |old_object| (which contains any previous object
588    * that was evicted from the hashes) because we don't have a reference count
589    * on ASN1_OBJECT values. Also, we should never have duplicates nids and so
590    * should always have objects in |global_added_by_nid|. */
591 
592   ok = lh_ASN1_OBJECT_insert(global_added_by_nid, &old_object, obj);
593   if (obj->length != 0 && obj->data != NULL) {
594     ok &= lh_ASN1_OBJECT_insert(global_added_by_data, &old_object, obj);
595   }
596   if (obj->sn != NULL) {
597     ok &= lh_ASN1_OBJECT_insert(global_added_by_short_name, &old_object, obj);
598   }
599   if (obj->ln != NULL) {
600     ok &= lh_ASN1_OBJECT_insert(global_added_by_long_name, &old_object, obj);
601   }
602   CRYPTO_STATIC_MUTEX_unlock_write(&global_added_lock);
603 
604   return ok;
605 }
606 
OBJ_create(const char * oid,const char * short_name,const char * long_name)607 int OBJ_create(const char *oid, const char *short_name, const char *long_name) {
608   int ret = NID_undef;
609   ASN1_OBJECT *op = NULL;
610   unsigned char *buf = NULL;
611   int len;
612 
613   len = a2d_ASN1_OBJECT(NULL, 0, oid, -1);
614   if (len <= 0) {
615     goto err;
616   }
617 
618   buf = OPENSSL_malloc(len);
619   if (buf == NULL) {
620     OPENSSL_PUT_ERROR(OBJ, ERR_R_MALLOC_FAILURE);
621     goto err;
622   }
623 
624   len = a2d_ASN1_OBJECT(buf, len, oid, -1);
625   if (len == 0) {
626     goto err;
627   }
628 
629   op = (ASN1_OBJECT *)ASN1_OBJECT_create(obj_next_nid(), buf, len, short_name,
630                                          long_name);
631   if (op == NULL) {
632     goto err;
633   }
634 
635   if (obj_add_object(op)) {
636     ret = op->nid;
637   }
638   op = NULL;
639 
640 err:
641   ASN1_OBJECT_free(op);
642   OPENSSL_free(buf);
643 
644   return ret;
645 }
646