1 //===-- HexagonISelDAGToDAG.cpp - A dag to dag inst selector for Hexagon --===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines an instruction selector for the Hexagon target.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "Hexagon.h"
15 #include "HexagonISelLowering.h"
16 #include "HexagonMachineFunctionInfo.h"
17 #include "HexagonTargetMachine.h"
18 #include "llvm/CodeGen/FunctionLoweringInfo.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/SelectionDAGISel.h"
21 #include "llvm/IR/Intrinsics.h"
22 #include "llvm/Support/CommandLine.h"
23 #include "llvm/Support/Debug.h"
24 using namespace llvm;
25
26 #define DEBUG_TYPE "hexagon-isel"
27
28 static
29 cl::opt<unsigned>
30 MaxNumOfUsesForConstExtenders("ga-max-num-uses-for-constant-extenders",
31 cl::Hidden, cl::init(2),
32 cl::desc("Maximum number of uses of a global address such that we still us a"
33 "constant extended instruction"));
34
35 //===----------------------------------------------------------------------===//
36 // Instruction Selector Implementation
37 //===----------------------------------------------------------------------===//
38
39 //===--------------------------------------------------------------------===//
40 /// HexagonDAGToDAGISel - Hexagon specific code to select Hexagon machine
41 /// instructions for SelectionDAG operations.
42 ///
43 namespace {
44 class HexagonDAGToDAGISel : public SelectionDAGISel {
45 const HexagonTargetMachine &HTM;
46 const HexagonSubtarget *HST;
47 const HexagonInstrInfo *HII;
48 const HexagonRegisterInfo *HRI;
49 public:
HexagonDAGToDAGISel(HexagonTargetMachine & tm,CodeGenOpt::Level OptLevel)50 explicit HexagonDAGToDAGISel(HexagonTargetMachine &tm,
51 CodeGenOpt::Level OptLevel)
52 : SelectionDAGISel(tm, OptLevel), HTM(tm), HST(nullptr), HII(nullptr),
53 HRI(nullptr) {}
54
runOnMachineFunction(MachineFunction & MF)55 bool runOnMachineFunction(MachineFunction &MF) override {
56 // Reset the subtarget each time through.
57 HST = &MF.getSubtarget<HexagonSubtarget>();
58 HII = HST->getInstrInfo();
59 HRI = HST->getRegisterInfo();
60 SelectionDAGISel::runOnMachineFunction(MF);
61 return true;
62 }
63
64 virtual void PreprocessISelDAG() override;
65 virtual void EmitFunctionEntryCode() override;
66
67 void Select(SDNode *N) override;
68
69 // Complex Pattern Selectors.
70 inline bool SelectAddrGA(SDValue &N, SDValue &R);
71 inline bool SelectAddrGP(SDValue &N, SDValue &R);
72 bool SelectGlobalAddress(SDValue &N, SDValue &R, bool UseGP);
73 bool SelectAddrFI(SDValue &N, SDValue &R);
74
getPassName() const75 const char *getPassName() const override {
76 return "Hexagon DAG->DAG Pattern Instruction Selection";
77 }
78
79 // Generate a machine instruction node corresponding to the circ/brev
80 // load intrinsic.
81 MachineSDNode *LoadInstrForLoadIntrinsic(SDNode *IntN);
82 // Given the circ/brev load intrinsic and the already generated machine
83 // instruction, generate the appropriate store (that is a part of the
84 // intrinsic's functionality).
85 SDNode *StoreInstrForLoadIntrinsic(MachineSDNode *LoadN, SDNode *IntN);
86
87 void SelectFrameIndex(SDNode *N);
88 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
89 /// inline asm expressions.
90 bool SelectInlineAsmMemoryOperand(const SDValue &Op,
91 unsigned ConstraintID,
92 std::vector<SDValue> &OutOps) override;
93 bool tryLoadOfLoadIntrinsic(LoadSDNode *N);
94 void SelectLoad(SDNode *N);
95 void SelectBaseOffsetLoad(LoadSDNode *LD, SDLoc dl);
96 void SelectIndexedLoad(LoadSDNode *LD, const SDLoc &dl);
97 void SelectIndexedStore(StoreSDNode *ST, const SDLoc &dl);
98 void SelectStore(SDNode *N);
99 void SelectSHL(SDNode *N);
100 void SelectMul(SDNode *N);
101 void SelectZeroExtend(SDNode *N);
102 void SelectIntrinsicWChain(SDNode *N);
103 void SelectIntrinsicWOChain(SDNode *N);
104 void SelectConstant(SDNode *N);
105 void SelectConstantFP(SDNode *N);
106 void SelectAdd(SDNode *N);
107 void SelectBitcast(SDNode *N);
108 void SelectBitOp(SDNode *N);
109
110 // XformMskToBitPosU5Imm - Returns the bit position which
111 // the single bit 32 bit mask represents.
112 // Used in Clr and Set bit immediate memops.
XformMskToBitPosU5Imm(uint32_t Imm,const SDLoc & DL)113 SDValue XformMskToBitPosU5Imm(uint32_t Imm, const SDLoc &DL) {
114 int32_t bitPos;
115 bitPos = Log2_32(Imm);
116 assert(bitPos >= 0 && bitPos < 32 &&
117 "Constant out of range for 32 BitPos Memops");
118 return CurDAG->getTargetConstant(bitPos, DL, MVT::i32);
119 }
120
121 // XformMskToBitPosU4Imm - Returns the bit position which the single-bit
122 // 16 bit mask represents. Used in Clr and Set bit immediate memops.
XformMskToBitPosU4Imm(uint16_t Imm,const SDLoc & DL)123 SDValue XformMskToBitPosU4Imm(uint16_t Imm, const SDLoc &DL) {
124 return XformMskToBitPosU5Imm(Imm, DL);
125 }
126
127 // XformMskToBitPosU3Imm - Returns the bit position which the single-bit
128 // 8 bit mask represents. Used in Clr and Set bit immediate memops.
XformMskToBitPosU3Imm(uint8_t Imm,const SDLoc & DL)129 SDValue XformMskToBitPosU3Imm(uint8_t Imm, const SDLoc &DL) {
130 return XformMskToBitPosU5Imm(Imm, DL);
131 }
132
133 // Return true if there is exactly one bit set in V, i.e., if V is one of the
134 // following integers: 2^0, 2^1, ..., 2^31.
ImmIsSingleBit(uint32_t v) const135 bool ImmIsSingleBit(uint32_t v) const {
136 return isPowerOf2_32(v);
137 }
138
139 // XformM5ToU5Imm - Return a target constant with the specified value, of
140 // type i32 where the negative literal is transformed into a positive literal
141 // for use in -= memops.
XformM5ToU5Imm(signed Imm,const SDLoc & DL)142 inline SDValue XformM5ToU5Imm(signed Imm, const SDLoc &DL) {
143 assert((Imm >= -31 && Imm <= -1) && "Constant out of range for Memops");
144 return CurDAG->getTargetConstant(-Imm, DL, MVT::i32);
145 }
146
147 // XformU7ToU7M1Imm - Return a target constant decremented by 1, in range
148 // [1..128], used in cmpb.gtu instructions.
XformU7ToU7M1Imm(signed Imm,const SDLoc & DL)149 inline SDValue XformU7ToU7M1Imm(signed Imm, const SDLoc &DL) {
150 assert((Imm >= 1 && Imm <= 128) && "Constant out of range for cmpb op");
151 return CurDAG->getTargetConstant(Imm - 1, DL, MVT::i8);
152 }
153
154 // XformS8ToS8M1Imm - Return a target constant decremented by 1.
XformSToSM1Imm(signed Imm,const SDLoc & DL)155 inline SDValue XformSToSM1Imm(signed Imm, const SDLoc &DL) {
156 return CurDAG->getTargetConstant(Imm - 1, DL, MVT::i32);
157 }
158
159 // XformU8ToU8M1Imm - Return a target constant decremented by 1.
XformUToUM1Imm(unsigned Imm,const SDLoc & DL)160 inline SDValue XformUToUM1Imm(unsigned Imm, const SDLoc &DL) {
161 assert((Imm >= 1) && "Cannot decrement unsigned int less than 1");
162 return CurDAG->getTargetConstant(Imm - 1, DL, MVT::i32);
163 }
164
165 // XformSToSM2Imm - Return a target constant decremented by 2.
XformSToSM2Imm(unsigned Imm,const SDLoc & DL)166 inline SDValue XformSToSM2Imm(unsigned Imm, const SDLoc &DL) {
167 return CurDAG->getTargetConstant(Imm - 2, DL, MVT::i32);
168 }
169
170 // XformSToSM3Imm - Return a target constant decremented by 3.
XformSToSM3Imm(unsigned Imm,const SDLoc & DL)171 inline SDValue XformSToSM3Imm(unsigned Imm, const SDLoc &DL) {
172 return CurDAG->getTargetConstant(Imm - 3, DL, MVT::i32);
173 }
174
175 // Include the pieces autogenerated from the target description.
176 #include "HexagonGenDAGISel.inc"
177
178 private:
179 bool isValueExtension(const SDValue &Val, unsigned FromBits, SDValue &Src);
180 bool isAlignedMemNode(const MemSDNode *N) const;
181 }; // end HexagonDAGToDAGISel
182 } // end anonymous namespace
183
184
185 /// createHexagonISelDag - This pass converts a legalized DAG into a
186 /// Hexagon-specific DAG, ready for instruction scheduling.
187 ///
188 namespace llvm {
createHexagonISelDag(HexagonTargetMachine & TM,CodeGenOpt::Level OptLevel)189 FunctionPass *createHexagonISelDag(HexagonTargetMachine &TM,
190 CodeGenOpt::Level OptLevel) {
191 return new HexagonDAGToDAGISel(TM, OptLevel);
192 }
193 }
194
195 // Intrinsics that return a a predicate.
doesIntrinsicReturnPredicate(unsigned ID)196 static bool doesIntrinsicReturnPredicate(unsigned ID) {
197 switch (ID) {
198 default:
199 return false;
200 case Intrinsic::hexagon_C2_cmpeq:
201 case Intrinsic::hexagon_C2_cmpgt:
202 case Intrinsic::hexagon_C2_cmpgtu:
203 case Intrinsic::hexagon_C2_cmpgtup:
204 case Intrinsic::hexagon_C2_cmpgtp:
205 case Intrinsic::hexagon_C2_cmpeqp:
206 case Intrinsic::hexagon_C2_bitsset:
207 case Intrinsic::hexagon_C2_bitsclr:
208 case Intrinsic::hexagon_C2_cmpeqi:
209 case Intrinsic::hexagon_C2_cmpgti:
210 case Intrinsic::hexagon_C2_cmpgtui:
211 case Intrinsic::hexagon_C2_cmpgei:
212 case Intrinsic::hexagon_C2_cmpgeui:
213 case Intrinsic::hexagon_C2_cmplt:
214 case Intrinsic::hexagon_C2_cmpltu:
215 case Intrinsic::hexagon_C2_bitsclri:
216 case Intrinsic::hexagon_C2_and:
217 case Intrinsic::hexagon_C2_or:
218 case Intrinsic::hexagon_C2_xor:
219 case Intrinsic::hexagon_C2_andn:
220 case Intrinsic::hexagon_C2_not:
221 case Intrinsic::hexagon_C2_orn:
222 case Intrinsic::hexagon_C2_pxfer_map:
223 case Intrinsic::hexagon_C2_any8:
224 case Intrinsic::hexagon_C2_all8:
225 case Intrinsic::hexagon_A2_vcmpbeq:
226 case Intrinsic::hexagon_A2_vcmpbgtu:
227 case Intrinsic::hexagon_A2_vcmpheq:
228 case Intrinsic::hexagon_A2_vcmphgt:
229 case Intrinsic::hexagon_A2_vcmphgtu:
230 case Intrinsic::hexagon_A2_vcmpweq:
231 case Intrinsic::hexagon_A2_vcmpwgt:
232 case Intrinsic::hexagon_A2_vcmpwgtu:
233 case Intrinsic::hexagon_C2_tfrrp:
234 case Intrinsic::hexagon_S2_tstbit_i:
235 case Intrinsic::hexagon_S2_tstbit_r:
236 return true;
237 }
238 }
239
SelectIndexedLoad(LoadSDNode * LD,const SDLoc & dl)240 void HexagonDAGToDAGISel::SelectIndexedLoad(LoadSDNode *LD, const SDLoc &dl) {
241 SDValue Chain = LD->getChain();
242 SDValue Base = LD->getBasePtr();
243 SDValue Offset = LD->getOffset();
244 int32_t Inc = cast<ConstantSDNode>(Offset.getNode())->getSExtValue();
245 EVT LoadedVT = LD->getMemoryVT();
246 unsigned Opcode = 0;
247
248 // Check for zero extended loads. Treat any-extend loads as zero extended
249 // loads.
250 ISD::LoadExtType ExtType = LD->getExtensionType();
251 bool IsZeroExt = (ExtType == ISD::ZEXTLOAD || ExtType == ISD::EXTLOAD);
252 bool IsValidInc = HII->isValidAutoIncImm(LoadedVT, Inc);
253
254 assert(LoadedVT.isSimple());
255 switch (LoadedVT.getSimpleVT().SimpleTy) {
256 case MVT::i8:
257 if (IsZeroExt)
258 Opcode = IsValidInc ? Hexagon::L2_loadrub_pi : Hexagon::L2_loadrub_io;
259 else
260 Opcode = IsValidInc ? Hexagon::L2_loadrb_pi : Hexagon::L2_loadrb_io;
261 break;
262 case MVT::i16:
263 if (IsZeroExt)
264 Opcode = IsValidInc ? Hexagon::L2_loadruh_pi : Hexagon::L2_loadruh_io;
265 else
266 Opcode = IsValidInc ? Hexagon::L2_loadrh_pi : Hexagon::L2_loadrh_io;
267 break;
268 case MVT::i32:
269 Opcode = IsValidInc ? Hexagon::L2_loadri_pi : Hexagon::L2_loadri_io;
270 break;
271 case MVT::i64:
272 Opcode = IsValidInc ? Hexagon::L2_loadrd_pi : Hexagon::L2_loadrd_io;
273 break;
274 // 64B
275 case MVT::v64i8:
276 case MVT::v32i16:
277 case MVT::v16i32:
278 case MVT::v8i64:
279 if (isAlignedMemNode(LD))
280 Opcode = IsValidInc ? Hexagon::V6_vL32b_pi : Hexagon::V6_vL32b_ai;
281 else
282 Opcode = IsValidInc ? Hexagon::V6_vL32Ub_pi : Hexagon::V6_vL32Ub_ai;
283 break;
284 // 128B
285 case MVT::v128i8:
286 case MVT::v64i16:
287 case MVT::v32i32:
288 case MVT::v16i64:
289 if (isAlignedMemNode(LD))
290 Opcode = IsValidInc ? Hexagon::V6_vL32b_pi_128B
291 : Hexagon::V6_vL32b_ai_128B;
292 else
293 Opcode = IsValidInc ? Hexagon::V6_vL32Ub_pi_128B
294 : Hexagon::V6_vL32Ub_ai_128B;
295 break;
296 default:
297 llvm_unreachable("Unexpected memory type in indexed load");
298 }
299
300 SDValue IncV = CurDAG->getTargetConstant(Inc, dl, MVT::i32);
301 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
302 MemOp[0] = LD->getMemOperand();
303
304 auto getExt64 = [this,ExtType] (MachineSDNode *N, const SDLoc &dl)
305 -> MachineSDNode* {
306 if (ExtType == ISD::ZEXTLOAD || ExtType == ISD::EXTLOAD) {
307 SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32);
308 return CurDAG->getMachineNode(Hexagon::A4_combineir, dl, MVT::i64,
309 Zero, SDValue(N, 0));
310 }
311 if (ExtType == ISD::SEXTLOAD)
312 return CurDAG->getMachineNode(Hexagon::A2_sxtw, dl, MVT::i64,
313 SDValue(N, 0));
314 return N;
315 };
316
317 // Loaded value Next address Chain
318 SDValue From[3] = { SDValue(LD,0), SDValue(LD,1), SDValue(LD,2) };
319 SDValue To[3];
320
321 EVT ValueVT = LD->getValueType(0);
322 if (ValueVT == MVT::i64 && ExtType != ISD::NON_EXTLOAD) {
323 // A load extending to i64 will actually produce i32, which will then
324 // need to be extended to i64.
325 assert(LoadedVT.getSizeInBits() <= 32);
326 ValueVT = MVT::i32;
327 }
328
329 if (IsValidInc) {
330 MachineSDNode *L = CurDAG->getMachineNode(Opcode, dl, ValueVT,
331 MVT::i32, MVT::Other, Base,
332 IncV, Chain);
333 L->setMemRefs(MemOp, MemOp+1);
334 To[1] = SDValue(L, 1); // Next address.
335 To[2] = SDValue(L, 2); // Chain.
336 // Handle special case for extension to i64.
337 if (LD->getValueType(0) == MVT::i64)
338 L = getExt64(L, dl);
339 To[0] = SDValue(L, 0); // Loaded (extended) value.
340 } else {
341 SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32);
342 MachineSDNode *L = CurDAG->getMachineNode(Opcode, dl, ValueVT, MVT::Other,
343 Base, Zero, Chain);
344 L->setMemRefs(MemOp, MemOp+1);
345 To[2] = SDValue(L, 1); // Chain.
346 MachineSDNode *A = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32,
347 Base, IncV);
348 To[1] = SDValue(A, 0); // Next address.
349 // Handle special case for extension to i64.
350 if (LD->getValueType(0) == MVT::i64)
351 L = getExt64(L, dl);
352 To[0] = SDValue(L, 0); // Loaded (extended) value.
353 }
354 ReplaceUses(From, To, 3);
355 CurDAG->RemoveDeadNode(LD);
356 }
357
358
LoadInstrForLoadIntrinsic(SDNode * IntN)359 MachineSDNode *HexagonDAGToDAGISel::LoadInstrForLoadIntrinsic(SDNode *IntN) {
360 if (IntN->getOpcode() != ISD::INTRINSIC_W_CHAIN)
361 return nullptr;
362
363 SDLoc dl(IntN);
364 unsigned IntNo = cast<ConstantSDNode>(IntN->getOperand(1))->getZExtValue();
365
366 static std::map<unsigned,unsigned> LoadPciMap = {
367 { Intrinsic::hexagon_circ_ldb, Hexagon::L2_loadrb_pci },
368 { Intrinsic::hexagon_circ_ldub, Hexagon::L2_loadrub_pci },
369 { Intrinsic::hexagon_circ_ldh, Hexagon::L2_loadrh_pci },
370 { Intrinsic::hexagon_circ_lduh, Hexagon::L2_loadruh_pci },
371 { Intrinsic::hexagon_circ_ldw, Hexagon::L2_loadri_pci },
372 { Intrinsic::hexagon_circ_ldd, Hexagon::L2_loadrd_pci },
373 };
374 auto FLC = LoadPciMap.find(IntNo);
375 if (FLC != LoadPciMap.end()) {
376 SDNode *Mod = CurDAG->getMachineNode(Hexagon::A2_tfrrcr, dl, MVT::i32,
377 IntN->getOperand(4));
378 EVT ValTy = (IntNo == Intrinsic::hexagon_circ_ldd) ? MVT::i64 : MVT::i32;
379 EVT RTys[] = { ValTy, MVT::i32, MVT::Other };
380 // Operands: { Base, Increment, Modifier, Chain }
381 auto Inc = cast<ConstantSDNode>(IntN->getOperand(5));
382 SDValue I = CurDAG->getTargetConstant(Inc->getSExtValue(), dl, MVT::i32);
383 MachineSDNode *Res = CurDAG->getMachineNode(FLC->second, dl, RTys,
384 { IntN->getOperand(2), I, SDValue(Mod,0), IntN->getOperand(0) });
385 return Res;
386 }
387
388 static std::map<unsigned,unsigned> LoadPbrMap = {
389 { Intrinsic::hexagon_brev_ldb, Hexagon::L2_loadrb_pbr },
390 { Intrinsic::hexagon_brev_ldub, Hexagon::L2_loadrub_pbr },
391 { Intrinsic::hexagon_brev_ldh, Hexagon::L2_loadrh_pbr },
392 { Intrinsic::hexagon_brev_lduh, Hexagon::L2_loadruh_pbr },
393 { Intrinsic::hexagon_brev_ldw, Hexagon::L2_loadri_pbr },
394 { Intrinsic::hexagon_brev_ldd, Hexagon::L2_loadrd_pbr },
395 };
396 auto FLB = LoadPbrMap.find(IntNo);
397 if (FLB != LoadPbrMap.end()) {
398 SDNode *Mod = CurDAG->getMachineNode(Hexagon::A2_tfrrcr, dl, MVT::i32,
399 IntN->getOperand(4));
400 EVT ValTy = (IntNo == Intrinsic::hexagon_brev_ldd) ? MVT::i64 : MVT::i32;
401 EVT RTys[] = { ValTy, MVT::i32, MVT::Other };
402 // Operands: { Base, Modifier, Chain }
403 MachineSDNode *Res = CurDAG->getMachineNode(FLB->second, dl, RTys,
404 { IntN->getOperand(2), SDValue(Mod,0), IntN->getOperand(0) });
405 return Res;
406 }
407
408 return nullptr;
409 }
410
StoreInstrForLoadIntrinsic(MachineSDNode * LoadN,SDNode * IntN)411 SDNode *HexagonDAGToDAGISel::StoreInstrForLoadIntrinsic(MachineSDNode *LoadN,
412 SDNode *IntN) {
413 // The "LoadN" is just a machine load instruction. The intrinsic also
414 // involves storing it. Generate an appropriate store to the location
415 // given in the intrinsic's operand(3).
416 uint64_t F = HII->get(LoadN->getMachineOpcode()).TSFlags;
417 unsigned SizeBits = (F >> HexagonII::MemAccessSizePos) &
418 HexagonII::MemAccesSizeMask;
419 unsigned Size = 1U << (SizeBits-1);
420
421 SDLoc dl(IntN);
422 MachinePointerInfo PI;
423 SDValue TS;
424 SDValue Loc = IntN->getOperand(3);
425
426 if (Size >= 4)
427 TS = CurDAG->getStore(SDValue(LoadN,2), dl, SDValue(LoadN, 0), Loc, PI,
428 false, false, Size);
429 else
430 TS = CurDAG->getTruncStore(SDValue(LoadN,2), dl, SDValue(LoadN,0), Loc, PI,
431 MVT::getIntegerVT(Size*8), false, false, Size);
432
433 SDNode *StoreN;
434 {
435 HandleSDNode Handle(TS);
436 SelectStore(TS.getNode());
437 StoreN = Handle.getValue().getNode();
438 }
439
440 // Load's results are { Loaded value, Updated pointer, Chain }
441 ReplaceUses(SDValue(IntN, 0), SDValue(LoadN, 1));
442 ReplaceUses(SDValue(IntN, 1), SDValue(StoreN, 0));
443 return StoreN;
444 }
445
tryLoadOfLoadIntrinsic(LoadSDNode * N)446 bool HexagonDAGToDAGISel::tryLoadOfLoadIntrinsic(LoadSDNode *N) {
447 // The intrinsics for load circ/brev perform two operations:
448 // 1. Load a value V from the specified location, using the addressing
449 // mode corresponding to the intrinsic.
450 // 2. Store V into a specified location. This location is typically a
451 // local, temporary object.
452 // In many cases, the program using these intrinsics will immediately
453 // load V again from the local object. In those cases, when certain
454 // conditions are met, the last load can be removed.
455 // This function identifies and optimizes this pattern. If the pattern
456 // cannot be optimized, it returns nullptr, which will cause the load
457 // to be selected separately from the intrinsic (which will be handled
458 // in SelectIntrinsicWChain).
459
460 SDValue Ch = N->getOperand(0);
461 SDValue Loc = N->getOperand(1);
462
463 // Assume that the load and the intrinsic are connected directly with a
464 // chain:
465 // t1: i32,ch = int.load ..., ..., ..., Loc, ... // <-- C
466 // t2: i32,ch = load t1:1, Loc, ...
467 SDNode *C = Ch.getNode();
468
469 if (C->getOpcode() != ISD::INTRINSIC_W_CHAIN)
470 return false;
471
472 // The second load can only be eliminated if its extension type matches
473 // that of the load instruction corresponding to the intrinsic. The user
474 // can provide an address of an unsigned variable to store the result of
475 // a sign-extending intrinsic into (or the other way around).
476 ISD::LoadExtType IntExt;
477 switch (cast<ConstantSDNode>(C->getOperand(1))->getZExtValue()) {
478 case Intrinsic::hexagon_brev_ldub:
479 case Intrinsic::hexagon_brev_lduh:
480 case Intrinsic::hexagon_circ_ldub:
481 case Intrinsic::hexagon_circ_lduh:
482 IntExt = ISD::ZEXTLOAD;
483 break;
484 case Intrinsic::hexagon_brev_ldw:
485 case Intrinsic::hexagon_brev_ldd:
486 case Intrinsic::hexagon_circ_ldw:
487 case Intrinsic::hexagon_circ_ldd:
488 IntExt = ISD::NON_EXTLOAD;
489 break;
490 default:
491 IntExt = ISD::SEXTLOAD;
492 break;
493 }
494 if (N->getExtensionType() != IntExt)
495 return false;
496
497 // Make sure the target location for the loaded value in the load intrinsic
498 // is the location from which LD (or N) is loading.
499 if (C->getNumOperands() < 4 || Loc.getNode() != C->getOperand(3).getNode())
500 return false;
501
502 if (MachineSDNode *L = LoadInstrForLoadIntrinsic(C)) {
503 SDNode *S = StoreInstrForLoadIntrinsic(L, C);
504 SDValue F[] = { SDValue(N,0), SDValue(N,1), SDValue(C,0), SDValue(C,1) };
505 SDValue T[] = { SDValue(L,0), SDValue(S,0), SDValue(L,1), SDValue(S,0) };
506 ReplaceUses(F, T, array_lengthof(T));
507 // This transformation will leave the intrinsic dead. If it remains in
508 // the DAG, the selection code will see it again, but without the load,
509 // and it will generate a store that is normally required for it.
510 CurDAG->RemoveDeadNode(C);
511 return true;
512 }
513
514 return false;
515 }
516
SelectLoad(SDNode * N)517 void HexagonDAGToDAGISel::SelectLoad(SDNode *N) {
518 SDLoc dl(N);
519 LoadSDNode *LD = cast<LoadSDNode>(N);
520 ISD::MemIndexedMode AM = LD->getAddressingMode();
521
522 // Handle indexed loads.
523 if (AM != ISD::UNINDEXED) {
524 SelectIndexedLoad(LD, dl);
525 return;
526 }
527
528 // Handle patterns using circ/brev load intrinsics.
529 if (tryLoadOfLoadIntrinsic(LD))
530 return;
531
532 SelectCode(LD);
533 }
534
SelectIndexedStore(StoreSDNode * ST,const SDLoc & dl)535 void HexagonDAGToDAGISel::SelectIndexedStore(StoreSDNode *ST, const SDLoc &dl) {
536 SDValue Chain = ST->getChain();
537 SDValue Base = ST->getBasePtr();
538 SDValue Offset = ST->getOffset();
539 SDValue Value = ST->getValue();
540 // Get the constant value.
541 int32_t Inc = cast<ConstantSDNode>(Offset.getNode())->getSExtValue();
542 EVT StoredVT = ST->getMemoryVT();
543 EVT ValueVT = Value.getValueType();
544
545 bool IsValidInc = HII->isValidAutoIncImm(StoredVT, Inc);
546 unsigned Opcode = 0;
547
548 assert(StoredVT.isSimple());
549 switch (StoredVT.getSimpleVT().SimpleTy) {
550 case MVT::i8:
551 Opcode = IsValidInc ? Hexagon::S2_storerb_pi : Hexagon::S2_storerb_io;
552 break;
553 case MVT::i16:
554 Opcode = IsValidInc ? Hexagon::S2_storerh_pi : Hexagon::S2_storerh_io;
555 break;
556 case MVT::i32:
557 Opcode = IsValidInc ? Hexagon::S2_storeri_pi : Hexagon::S2_storeri_io;
558 break;
559 case MVT::i64:
560 Opcode = IsValidInc ? Hexagon::S2_storerd_pi : Hexagon::S2_storerd_io;
561 break;
562 // 64B
563 case MVT::v64i8:
564 case MVT::v32i16:
565 case MVT::v16i32:
566 case MVT::v8i64:
567 if (isAlignedMemNode(ST))
568 Opcode = IsValidInc ? Hexagon::V6_vS32b_pi : Hexagon::V6_vS32b_ai;
569 else
570 Opcode = IsValidInc ? Hexagon::V6_vS32Ub_pi : Hexagon::V6_vS32Ub_ai;
571 break;
572 // 128B
573 case MVT::v128i8:
574 case MVT::v64i16:
575 case MVT::v32i32:
576 case MVT::v16i64:
577 if (isAlignedMemNode(ST))
578 Opcode = IsValidInc ? Hexagon::V6_vS32b_pi_128B
579 : Hexagon::V6_vS32b_ai_128B;
580 else
581 Opcode = IsValidInc ? Hexagon::V6_vS32Ub_pi_128B
582 : Hexagon::V6_vS32Ub_ai_128B;
583 break;
584 default:
585 llvm_unreachable("Unexpected memory type in indexed store");
586 }
587
588 if (ST->isTruncatingStore() && ValueVT.getSizeInBits() == 64) {
589 assert(StoredVT.getSizeInBits() < 64 && "Not a truncating store");
590 Value = CurDAG->getTargetExtractSubreg(Hexagon::subreg_loreg,
591 dl, MVT::i32, Value);
592 }
593
594 SDValue IncV = CurDAG->getTargetConstant(Inc, dl, MVT::i32);
595 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
596 MemOp[0] = ST->getMemOperand();
597
598 // Next address Chain
599 SDValue From[2] = { SDValue(ST,0), SDValue(ST,1) };
600 SDValue To[2];
601
602 if (IsValidInc) {
603 // Build post increment store.
604 SDValue Ops[] = { Base, IncV, Value, Chain };
605 MachineSDNode *S = CurDAG->getMachineNode(Opcode, dl, MVT::i32, MVT::Other,
606 Ops);
607 S->setMemRefs(MemOp, MemOp + 1);
608 To[0] = SDValue(S, 0);
609 To[1] = SDValue(S, 1);
610 } else {
611 SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32);
612 SDValue Ops[] = { Base, Zero, Value, Chain };
613 MachineSDNode *S = CurDAG->getMachineNode(Opcode, dl, MVT::Other, Ops);
614 S->setMemRefs(MemOp, MemOp + 1);
615 To[1] = SDValue(S, 0);
616 MachineSDNode *A = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32,
617 Base, IncV);
618 To[0] = SDValue(A, 0);
619 }
620
621 ReplaceUses(From, To, 2);
622 CurDAG->RemoveDeadNode(ST);
623 }
624
SelectStore(SDNode * N)625 void HexagonDAGToDAGISel::SelectStore(SDNode *N) {
626 SDLoc dl(N);
627 StoreSDNode *ST = cast<StoreSDNode>(N);
628 ISD::MemIndexedMode AM = ST->getAddressingMode();
629
630 // Handle indexed stores.
631 if (AM != ISD::UNINDEXED) {
632 SelectIndexedStore(ST, dl);
633 return;
634 }
635
636 SelectCode(ST);
637 }
638
SelectMul(SDNode * N)639 void HexagonDAGToDAGISel::SelectMul(SDNode *N) {
640 SDLoc dl(N);
641
642 //
643 // %conv.i = sext i32 %tmp1 to i64
644 // %conv2.i = sext i32 %add to i64
645 // %mul.i = mul nsw i64 %conv2.i, %conv.i
646 //
647 // --- match with the following ---
648 //
649 // %mul.i = mpy (%tmp1, %add)
650 //
651
652 if (N->getValueType(0) == MVT::i64) {
653 // Shifting a i64 signed multiply.
654 SDValue MulOp0 = N->getOperand(0);
655 SDValue MulOp1 = N->getOperand(1);
656
657 SDValue OP0;
658 SDValue OP1;
659
660 // Handle sign_extend and sextload.
661 if (MulOp0.getOpcode() == ISD::SIGN_EXTEND) {
662 SDValue Sext0 = MulOp0.getOperand(0);
663 if (Sext0.getNode()->getValueType(0) != MVT::i32) {
664 SelectCode(N);
665 return;
666 }
667
668 OP0 = Sext0;
669 } else if (MulOp0.getOpcode() == ISD::LOAD) {
670 LoadSDNode *LD = cast<LoadSDNode>(MulOp0.getNode());
671 if (LD->getMemoryVT() != MVT::i32 ||
672 LD->getExtensionType() != ISD::SEXTLOAD ||
673 LD->getAddressingMode() != ISD::UNINDEXED) {
674 SelectCode(N);
675 return;
676 }
677
678 SDValue Chain = LD->getChain();
679 SDValue TargetConst0 = CurDAG->getTargetConstant(0, dl, MVT::i32);
680 OP0 = SDValue(CurDAG->getMachineNode(Hexagon::L2_loadri_io, dl, MVT::i32,
681 MVT::Other,
682 LD->getBasePtr(), TargetConst0,
683 Chain), 0);
684 } else {
685 SelectCode(N);
686 return;
687 }
688
689 // Same goes for the second operand.
690 if (MulOp1.getOpcode() == ISD::SIGN_EXTEND) {
691 SDValue Sext1 = MulOp1.getOperand(0);
692 if (Sext1.getNode()->getValueType(0) != MVT::i32) {
693 SelectCode(N);
694 return;
695 }
696
697 OP1 = Sext1;
698 } else if (MulOp1.getOpcode() == ISD::LOAD) {
699 LoadSDNode *LD = cast<LoadSDNode>(MulOp1.getNode());
700 if (LD->getMemoryVT() != MVT::i32 ||
701 LD->getExtensionType() != ISD::SEXTLOAD ||
702 LD->getAddressingMode() != ISD::UNINDEXED) {
703 SelectCode(N);
704 return;
705 }
706
707 SDValue Chain = LD->getChain();
708 SDValue TargetConst0 = CurDAG->getTargetConstant(0, dl, MVT::i32);
709 OP1 = SDValue(CurDAG->getMachineNode(Hexagon::L2_loadri_io, dl, MVT::i32,
710 MVT::Other,
711 LD->getBasePtr(), TargetConst0,
712 Chain), 0);
713 } else {
714 SelectCode(N);
715 return;
716 }
717
718 // Generate a mpy instruction.
719 SDNode *Result = CurDAG->getMachineNode(Hexagon::M2_dpmpyss_s0, dl, MVT::i64,
720 OP0, OP1);
721 ReplaceNode(N, Result);
722 return;
723 }
724
725 SelectCode(N);
726 }
727
SelectSHL(SDNode * N)728 void HexagonDAGToDAGISel::SelectSHL(SDNode *N) {
729 SDLoc dl(N);
730 if (N->getValueType(0) == MVT::i32) {
731 SDValue Shl_0 = N->getOperand(0);
732 SDValue Shl_1 = N->getOperand(1);
733 // RHS is const.
734 if (Shl_1.getOpcode() == ISD::Constant) {
735 if (Shl_0.getOpcode() == ISD::MUL) {
736 SDValue Mul_0 = Shl_0.getOperand(0); // Val
737 SDValue Mul_1 = Shl_0.getOperand(1); // Const
738 // RHS of mul is const.
739 if (Mul_1.getOpcode() == ISD::Constant) {
740 int32_t ShlConst =
741 cast<ConstantSDNode>(Shl_1.getNode())->getSExtValue();
742 int32_t MulConst =
743 cast<ConstantSDNode>(Mul_1.getNode())->getSExtValue();
744 int32_t ValConst = MulConst << ShlConst;
745 SDValue Val = CurDAG->getTargetConstant(ValConst, dl,
746 MVT::i32);
747 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val.getNode()))
748 if (isInt<9>(CN->getSExtValue())) {
749 SDNode* Result =
750 CurDAG->getMachineNode(Hexagon::M2_mpysmi, dl,
751 MVT::i32, Mul_0, Val);
752 ReplaceNode(N, Result);
753 return;
754 }
755
756 }
757 } else if (Shl_0.getOpcode() == ISD::SUB) {
758 SDValue Sub_0 = Shl_0.getOperand(0); // Const 0
759 SDValue Sub_1 = Shl_0.getOperand(1); // Val
760 if (Sub_0.getOpcode() == ISD::Constant) {
761 int32_t SubConst =
762 cast<ConstantSDNode>(Sub_0.getNode())->getSExtValue();
763 if (SubConst == 0) {
764 if (Sub_1.getOpcode() == ISD::SHL) {
765 SDValue Shl2_0 = Sub_1.getOperand(0); // Val
766 SDValue Shl2_1 = Sub_1.getOperand(1); // Const
767 if (Shl2_1.getOpcode() == ISD::Constant) {
768 int32_t ShlConst =
769 cast<ConstantSDNode>(Shl_1.getNode())->getSExtValue();
770 int32_t Shl2Const =
771 cast<ConstantSDNode>(Shl2_1.getNode())->getSExtValue();
772 int32_t ValConst = 1 << (ShlConst+Shl2Const);
773 SDValue Val = CurDAG->getTargetConstant(-ValConst, dl,
774 MVT::i32);
775 if (ConstantSDNode *CN =
776 dyn_cast<ConstantSDNode>(Val.getNode()))
777 if (isInt<9>(CN->getSExtValue())) {
778 SDNode* Result =
779 CurDAG->getMachineNode(Hexagon::M2_mpysmi, dl, MVT::i32,
780 Shl2_0, Val);
781 ReplaceNode(N, Result);
782 return;
783 }
784 }
785 }
786 }
787 }
788 }
789 }
790 }
791 SelectCode(N);
792 }
793
794
795 //
796 // If there is an zero_extend followed an intrinsic in DAG (this means - the
797 // result of the intrinsic is predicate); convert the zero_extend to
798 // transfer instruction.
799 //
800 // Zero extend -> transfer is lowered here. Otherwise, zero_extend will be
801 // converted into a MUX as predicate registers defined as 1 bit in the
802 // compiler. Architecture defines them as 8-bit registers.
803 // We want to preserve all the lower 8-bits and, not just 1 LSB bit.
804 //
SelectZeroExtend(SDNode * N)805 void HexagonDAGToDAGISel::SelectZeroExtend(SDNode *N) {
806 SDLoc dl(N);
807
808 SDValue Op0 = N->getOperand(0);
809 EVT OpVT = Op0.getValueType();
810 unsigned OpBW = OpVT.getSizeInBits();
811
812 // Special handling for zero-extending a vector of booleans.
813 if (OpVT.isVector() && OpVT.getVectorElementType() == MVT::i1 && OpBW <= 64) {
814 SDNode *Mask = CurDAG->getMachineNode(Hexagon::C2_mask, dl, MVT::i64, Op0);
815 unsigned NE = OpVT.getVectorNumElements();
816 EVT ExVT = N->getValueType(0);
817 unsigned ES = ExVT.getVectorElementType().getSizeInBits();
818 uint64_t MV = 0, Bit = 1;
819 for (unsigned i = 0; i < NE; ++i) {
820 MV |= Bit;
821 Bit <<= ES;
822 }
823 SDValue Ones = CurDAG->getTargetConstant(MV, dl, MVT::i64);
824 SDNode *OnesReg = CurDAG->getMachineNode(Hexagon::CONST64_Int_Real, dl,
825 MVT::i64, Ones);
826 if (ExVT.getSizeInBits() == 32) {
827 SDNode *And = CurDAG->getMachineNode(Hexagon::A2_andp, dl, MVT::i64,
828 SDValue(Mask,0), SDValue(OnesReg,0));
829 SDValue SubR = CurDAG->getTargetConstant(Hexagon::subreg_loreg, dl,
830 MVT::i32);
831 ReplaceNode(N, CurDAG->getMachineNode(Hexagon::EXTRACT_SUBREG, dl, ExVT,
832 SDValue(And, 0), SubR));
833 return;
834 }
835 ReplaceNode(N,
836 CurDAG->getMachineNode(Hexagon::A2_andp, dl, ExVT,
837 SDValue(Mask, 0), SDValue(OnesReg, 0)));
838 return;
839 }
840
841 SDNode *IsIntrinsic = N->getOperand(0).getNode();
842 if ((IsIntrinsic->getOpcode() == ISD::INTRINSIC_WO_CHAIN)) {
843 unsigned ID =
844 cast<ConstantSDNode>(IsIntrinsic->getOperand(0))->getZExtValue();
845 if (doesIntrinsicReturnPredicate(ID)) {
846 // Now we need to differentiate target data types.
847 if (N->getValueType(0) == MVT::i64) {
848 // Convert the zero_extend to Rs = Pd followed by A2_combinew(0,Rs).
849 SDValue TargetConst0 = CurDAG->getTargetConstant(0, dl, MVT::i32);
850 SDNode *Result_1 = CurDAG->getMachineNode(Hexagon::C2_tfrpr, dl,
851 MVT::i32,
852 SDValue(IsIntrinsic, 0));
853 SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl,
854 MVT::i32,
855 TargetConst0);
856 SDNode *Result_3 = CurDAG->getMachineNode(Hexagon::A2_combinew, dl,
857 MVT::i64, MVT::Other,
858 SDValue(Result_2, 0),
859 SDValue(Result_1, 0));
860 ReplaceNode(N, Result_3);
861 return;
862 }
863 if (N->getValueType(0) == MVT::i32) {
864 // Convert the zero_extend to Rs = Pd
865 SDNode* RsPd = CurDAG->getMachineNode(Hexagon::C2_tfrpr, dl,
866 MVT::i32,
867 SDValue(IsIntrinsic, 0));
868 ReplaceNode(N, RsPd);
869 return;
870 }
871 llvm_unreachable("Unexpected value type");
872 }
873 }
874 SelectCode(N);
875 }
876
877
878 //
879 // Handling intrinsics for circular load and bitreverse load.
880 //
SelectIntrinsicWChain(SDNode * N)881 void HexagonDAGToDAGISel::SelectIntrinsicWChain(SDNode *N) {
882 if (MachineSDNode *L = LoadInstrForLoadIntrinsic(N)) {
883 StoreInstrForLoadIntrinsic(L, N);
884 CurDAG->RemoveDeadNode(N);
885 return;
886 }
887 SelectCode(N);
888 }
889
SelectIntrinsicWOChain(SDNode * N)890 void HexagonDAGToDAGISel::SelectIntrinsicWOChain(SDNode *N) {
891 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
892 unsigned Bits;
893 switch (IID) {
894 case Intrinsic::hexagon_S2_vsplatrb:
895 Bits = 8;
896 break;
897 case Intrinsic::hexagon_S2_vsplatrh:
898 Bits = 16;
899 break;
900 default:
901 SelectCode(N);
902 return;
903 }
904
905 SDValue V = N->getOperand(1);
906 SDValue U;
907 if (isValueExtension(V, Bits, U)) {
908 SDValue R = CurDAG->getNode(N->getOpcode(), SDLoc(N), N->getValueType(0),
909 N->getOperand(0), U);
910 ReplaceNode(N, R.getNode());
911 SelectCode(R.getNode());
912 return;
913 }
914 SelectCode(N);
915 }
916
917 //
918 // Map floating point constant values.
919 //
SelectConstantFP(SDNode * N)920 void HexagonDAGToDAGISel::SelectConstantFP(SDNode *N) {
921 SDLoc dl(N);
922 ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N);
923 const APFloat &APF = CN->getValueAPF();
924 if (N->getValueType(0) == MVT::f32) {
925 ReplaceNode(
926 N, CurDAG->getMachineNode(Hexagon::TFRI_f, dl, MVT::f32,
927 CurDAG->getTargetConstantFP(
928 APF.convertToFloat(), dl, MVT::f32)));
929 return;
930 }
931 else if (N->getValueType(0) == MVT::f64) {
932 ReplaceNode(
933 N, CurDAG->getMachineNode(Hexagon::CONST64_Float_Real, dl, MVT::f64,
934 CurDAG->getTargetConstantFP(
935 APF.convertToDouble(), dl, MVT::f64)));
936 return;
937 }
938
939 SelectCode(N);
940 }
941
942 //
943 // Map predicate true (encoded as -1 in LLVM) to a XOR.
944 //
SelectConstant(SDNode * N)945 void HexagonDAGToDAGISel::SelectConstant(SDNode *N) {
946 SDLoc dl(N);
947 if (N->getValueType(0) == MVT::i1) {
948 SDNode* Result = 0;
949 int32_t Val = cast<ConstantSDNode>(N)->getSExtValue();
950 if (Val == -1) {
951 Result = CurDAG->getMachineNode(Hexagon::TFR_PdTrue, dl, MVT::i1);
952 } else if (Val == 0) {
953 Result = CurDAG->getMachineNode(Hexagon::TFR_PdFalse, dl, MVT::i1);
954 }
955 if (Result) {
956 ReplaceNode(N, Result);
957 return;
958 }
959 }
960
961 SelectCode(N);
962 }
963
964
965 //
966 // Map add followed by a asr -> asr +=.
967 //
SelectAdd(SDNode * N)968 void HexagonDAGToDAGISel::SelectAdd(SDNode *N) {
969 SDLoc dl(N);
970 if (N->getValueType(0) != MVT::i32) {
971 SelectCode(N);
972 return;
973 }
974 // Identify nodes of the form: add(asr(...)).
975 SDNode* Src1 = N->getOperand(0).getNode();
976 if (Src1->getOpcode() != ISD::SRA || !Src1->hasOneUse()
977 || Src1->getValueType(0) != MVT::i32) {
978 SelectCode(N);
979 return;
980 }
981
982 // Build Rd = Rd' + asr(Rs, Rt). The machine constraints will ensure that
983 // Rd and Rd' are assigned to the same register
984 SDNode* Result = CurDAG->getMachineNode(Hexagon::S2_asr_r_r_acc, dl, MVT::i32,
985 N->getOperand(1),
986 Src1->getOperand(0),
987 Src1->getOperand(1));
988 ReplaceNode(N, Result);
989 }
990
991 //
992 // Map the following, where possible.
993 // AND/FABS -> clrbit
994 // OR -> setbit
995 // XOR/FNEG ->toggle_bit.
996 //
SelectBitOp(SDNode * N)997 void HexagonDAGToDAGISel::SelectBitOp(SDNode *N) {
998 SDLoc dl(N);
999 EVT ValueVT = N->getValueType(0);
1000
1001 // We handle only 32 and 64-bit bit ops.
1002 if (!(ValueVT == MVT::i32 || ValueVT == MVT::i64 ||
1003 ValueVT == MVT::f32 || ValueVT == MVT::f64)) {
1004 SelectCode(N);
1005 return;
1006 }
1007
1008 // We handly only fabs and fneg for V5.
1009 unsigned Opc = N->getOpcode();
1010 if ((Opc == ISD::FABS || Opc == ISD::FNEG) && !HST->hasV5TOps()) {
1011 SelectCode(N);
1012 return;
1013 }
1014
1015 int64_t Val = 0;
1016 if (Opc != ISD::FABS && Opc != ISD::FNEG) {
1017 if (N->getOperand(1).getOpcode() == ISD::Constant)
1018 Val = cast<ConstantSDNode>((N)->getOperand(1))->getSExtValue();
1019 else {
1020 SelectCode(N);
1021 return;
1022 }
1023 }
1024
1025 if (Opc == ISD::AND) {
1026 // Check if this is a bit-clearing AND, if not select code the usual way.
1027 if ((ValueVT == MVT::i32 && isPowerOf2_32(~Val)) ||
1028 (ValueVT == MVT::i64 && isPowerOf2_64(~Val)))
1029 Val = ~Val;
1030 else {
1031 SelectCode(N);
1032 return;
1033 }
1034 }
1035
1036 // If OR or AND is being fed by shl, srl and, sra don't do this change,
1037 // because Hexagon provide |= &= on shl, srl, and sra.
1038 // Traverse the DAG to see if there is shl, srl and sra.
1039 if (Opc == ISD::OR || Opc == ISD::AND) {
1040 switch (N->getOperand(0)->getOpcode()) {
1041 default:
1042 break;
1043 case ISD::SRA:
1044 case ISD::SRL:
1045 case ISD::SHL:
1046 SelectCode(N);
1047 return;
1048 }
1049 }
1050
1051 // Make sure it's power of 2.
1052 unsigned BitPos = 0;
1053 if (Opc != ISD::FABS && Opc != ISD::FNEG) {
1054 if ((ValueVT == MVT::i32 && !isPowerOf2_32(Val)) ||
1055 (ValueVT == MVT::i64 && !isPowerOf2_64(Val))) {
1056 SelectCode(N);
1057 return;
1058 }
1059
1060 // Get the bit position.
1061 BitPos = countTrailingZeros(uint64_t(Val));
1062 } else {
1063 // For fabs and fneg, it's always the 31st bit.
1064 BitPos = 31;
1065 }
1066
1067 unsigned BitOpc = 0;
1068 // Set the right opcode for bitwise operations.
1069 switch (Opc) {
1070 default:
1071 llvm_unreachable("Only bit-wise/abs/neg operations are allowed.");
1072 case ISD::AND:
1073 case ISD::FABS:
1074 BitOpc = Hexagon::S2_clrbit_i;
1075 break;
1076 case ISD::OR:
1077 BitOpc = Hexagon::S2_setbit_i;
1078 break;
1079 case ISD::XOR:
1080 case ISD::FNEG:
1081 BitOpc = Hexagon::S2_togglebit_i;
1082 break;
1083 }
1084
1085 SDNode *Result;
1086 // Get the right SDVal for the opcode.
1087 SDValue SDVal = CurDAG->getTargetConstant(BitPos, dl, MVT::i32);
1088
1089 if (ValueVT == MVT::i32 || ValueVT == MVT::f32) {
1090 Result = CurDAG->getMachineNode(BitOpc, dl, ValueVT,
1091 N->getOperand(0), SDVal);
1092 } else {
1093 // 64-bit gymnastic to use REG_SEQUENCE. But it's worth it.
1094 EVT SubValueVT;
1095 if (ValueVT == MVT::i64)
1096 SubValueVT = MVT::i32;
1097 else
1098 SubValueVT = MVT::f32;
1099
1100 SDNode *Reg = N->getOperand(0).getNode();
1101 SDValue RegClass = CurDAG->getTargetConstant(Hexagon::DoubleRegsRegClassID,
1102 dl, MVT::i64);
1103
1104 SDValue SubregHiIdx = CurDAG->getTargetConstant(Hexagon::subreg_hireg, dl,
1105 MVT::i32);
1106 SDValue SubregLoIdx = CurDAG->getTargetConstant(Hexagon::subreg_loreg, dl,
1107 MVT::i32);
1108
1109 SDValue SubregHI = CurDAG->getTargetExtractSubreg(Hexagon::subreg_hireg, dl,
1110 MVT::i32, SDValue(Reg, 0));
1111
1112 SDValue SubregLO = CurDAG->getTargetExtractSubreg(Hexagon::subreg_loreg, dl,
1113 MVT::i32, SDValue(Reg, 0));
1114
1115 // Clear/set/toggle hi or lo registers depending on the bit position.
1116 if (SubValueVT != MVT::f32 && BitPos < 32) {
1117 SDNode *Result0 = CurDAG->getMachineNode(BitOpc, dl, SubValueVT,
1118 SubregLO, SDVal);
1119 const SDValue Ops[] = { RegClass, SubregHI, SubregHiIdx,
1120 SDValue(Result0, 0), SubregLoIdx };
1121 Result = CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE,
1122 dl, ValueVT, Ops);
1123 } else {
1124 if (Opc != ISD::FABS && Opc != ISD::FNEG)
1125 SDVal = CurDAG->getTargetConstant(BitPos-32, dl, MVT::i32);
1126 SDNode *Result0 = CurDAG->getMachineNode(BitOpc, dl, SubValueVT,
1127 SubregHI, SDVal);
1128 const SDValue Ops[] = { RegClass, SDValue(Result0, 0), SubregHiIdx,
1129 SubregLO, SubregLoIdx };
1130 Result = CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE,
1131 dl, ValueVT, Ops);
1132 }
1133 }
1134
1135 ReplaceNode(N, Result);
1136 }
1137
1138
SelectFrameIndex(SDNode * N)1139 void HexagonDAGToDAGISel::SelectFrameIndex(SDNode *N) {
1140 MachineFrameInfo *MFI = MF->getFrameInfo();
1141 const HexagonFrameLowering *HFI = HST->getFrameLowering();
1142 int FX = cast<FrameIndexSDNode>(N)->getIndex();
1143 unsigned StkA = HFI->getStackAlignment();
1144 unsigned MaxA = MFI->getMaxAlignment();
1145 SDValue FI = CurDAG->getTargetFrameIndex(FX, MVT::i32);
1146 SDLoc DL(N);
1147 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
1148 SDNode *R = 0;
1149
1150 // Use TFR_FI when:
1151 // - the object is fixed, or
1152 // - there are no objects with higher-than-default alignment, or
1153 // - there are no dynamically allocated objects.
1154 // Otherwise, use TFR_FIA.
1155 if (FX < 0 || MaxA <= StkA || !MFI->hasVarSizedObjects()) {
1156 R = CurDAG->getMachineNode(Hexagon::TFR_FI, DL, MVT::i32, FI, Zero);
1157 } else {
1158 auto &HMFI = *MF->getInfo<HexagonMachineFunctionInfo>();
1159 unsigned AR = HMFI.getStackAlignBaseVReg();
1160 SDValue CH = CurDAG->getEntryNode();
1161 SDValue Ops[] = { CurDAG->getCopyFromReg(CH, DL, AR, MVT::i32), FI, Zero };
1162 R = CurDAG->getMachineNode(Hexagon::TFR_FIA, DL, MVT::i32, Ops);
1163 }
1164
1165 ReplaceNode(N, R);
1166 }
1167
1168
SelectBitcast(SDNode * N)1169 void HexagonDAGToDAGISel::SelectBitcast(SDNode *N) {
1170 EVT SVT = N->getOperand(0).getValueType();
1171 EVT DVT = N->getValueType(0);
1172 if (!SVT.isVector() || !DVT.isVector() ||
1173 SVT.getVectorElementType() == MVT::i1 ||
1174 DVT.getVectorElementType() == MVT::i1 ||
1175 SVT.getSizeInBits() != DVT.getSizeInBits()) {
1176 SelectCode(N);
1177 return;
1178 }
1179
1180 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N,0), N->getOperand(0));
1181 CurDAG->RemoveDeadNode(N);
1182 }
1183
1184
Select(SDNode * N)1185 void HexagonDAGToDAGISel::Select(SDNode *N) {
1186 if (N->isMachineOpcode()) {
1187 N->setNodeId(-1);
1188 return; // Already selected.
1189 }
1190
1191 switch (N->getOpcode()) {
1192 case ISD::Constant:
1193 SelectConstant(N);
1194 return;
1195
1196 case ISD::ConstantFP:
1197 SelectConstantFP(N);
1198 return;
1199
1200 case ISD::FrameIndex:
1201 SelectFrameIndex(N);
1202 return;
1203
1204 case ISD::ADD:
1205 SelectAdd(N);
1206 return;
1207
1208 case ISD::BITCAST:
1209 SelectBitcast(N);
1210 return;
1211
1212 case ISD::SHL:
1213 SelectSHL(N);
1214 return;
1215
1216 case ISD::LOAD:
1217 SelectLoad(N);
1218 return;
1219
1220 case ISD::STORE:
1221 SelectStore(N);
1222 return;
1223
1224 case ISD::MUL:
1225 SelectMul(N);
1226 return;
1227
1228 case ISD::AND:
1229 case ISD::OR:
1230 case ISD::XOR:
1231 case ISD::FABS:
1232 case ISD::FNEG:
1233 SelectBitOp(N);
1234 return;
1235
1236 case ISD::ZERO_EXTEND:
1237 SelectZeroExtend(N);
1238 return;
1239
1240 case ISD::INTRINSIC_W_CHAIN:
1241 SelectIntrinsicWChain(N);
1242 return;
1243
1244 case ISD::INTRINSIC_WO_CHAIN:
1245 SelectIntrinsicWOChain(N);
1246 return;
1247 }
1248
1249 SelectCode(N);
1250 }
1251
1252 bool HexagonDAGToDAGISel::
SelectInlineAsmMemoryOperand(const SDValue & Op,unsigned ConstraintID,std::vector<SDValue> & OutOps)1253 SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
1254 std::vector<SDValue> &OutOps) {
1255 SDValue Inp = Op, Res;
1256
1257 switch (ConstraintID) {
1258 default:
1259 return true;
1260 case InlineAsm::Constraint_i:
1261 case InlineAsm::Constraint_o: // Offsetable.
1262 case InlineAsm::Constraint_v: // Not offsetable.
1263 case InlineAsm::Constraint_m: // Memory.
1264 if (SelectAddrFI(Inp, Res))
1265 OutOps.push_back(Res);
1266 else
1267 OutOps.push_back(Inp);
1268 break;
1269 }
1270
1271 OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
1272 return false;
1273 }
1274
1275
PreprocessISelDAG()1276 void HexagonDAGToDAGISel::PreprocessISelDAG() {
1277 SelectionDAG &DAG = *CurDAG;
1278 std::vector<SDNode*> Nodes;
1279 for (SDNode &Node : DAG.allnodes())
1280 Nodes.push_back(&Node);
1281
1282 // Simplify: (or (select c x 0) z) -> (select c (or x z) z)
1283 // (or (select c 0 y) z) -> (select c z (or y z))
1284 // This may not be the right thing for all targets, so do it here.
1285 for (auto I : Nodes) {
1286 if (I->getOpcode() != ISD::OR)
1287 continue;
1288
1289 auto IsZero = [] (const SDValue &V) -> bool {
1290 if (ConstantSDNode *SC = dyn_cast<ConstantSDNode>(V.getNode()))
1291 return SC->isNullValue();
1292 return false;
1293 };
1294 auto IsSelect0 = [IsZero] (const SDValue &Op) -> bool {
1295 if (Op.getOpcode() != ISD::SELECT)
1296 return false;
1297 return IsZero(Op.getOperand(1)) || IsZero(Op.getOperand(2));
1298 };
1299
1300 SDValue N0 = I->getOperand(0), N1 = I->getOperand(1);
1301 EVT VT = I->getValueType(0);
1302 bool SelN0 = IsSelect0(N0);
1303 SDValue SOp = SelN0 ? N0 : N1;
1304 SDValue VOp = SelN0 ? N1 : N0;
1305
1306 if (SOp.getOpcode() == ISD::SELECT && SOp.getNode()->hasOneUse()) {
1307 SDValue SC = SOp.getOperand(0);
1308 SDValue SX = SOp.getOperand(1);
1309 SDValue SY = SOp.getOperand(2);
1310 SDLoc DLS = SOp;
1311 if (IsZero(SY)) {
1312 SDValue NewOr = DAG.getNode(ISD::OR, DLS, VT, SX, VOp);
1313 SDValue NewSel = DAG.getNode(ISD::SELECT, DLS, VT, SC, NewOr, VOp);
1314 DAG.ReplaceAllUsesWith(I, NewSel.getNode());
1315 } else if (IsZero(SX)) {
1316 SDValue NewOr = DAG.getNode(ISD::OR, DLS, VT, SY, VOp);
1317 SDValue NewSel = DAG.getNode(ISD::SELECT, DLS, VT, SC, VOp, NewOr);
1318 DAG.ReplaceAllUsesWith(I, NewSel.getNode());
1319 }
1320 }
1321 }
1322
1323 // Transform: (store ch addr (add x (add (shl y c) e)))
1324 // to: (store ch addr (add x (shl (add y d) c))),
1325 // where e = (shl d c) for some integer d.
1326 // The purpose of this is to enable generation of loads/stores with
1327 // shifted addressing mode, i.e. mem(x+y<<#c). For that, the shift
1328 // value c must be 0, 1 or 2.
1329 for (auto I : Nodes) {
1330 if (I->getOpcode() != ISD::STORE)
1331 continue;
1332
1333 // I matched: (store ch addr Off)
1334 SDValue Off = I->getOperand(2);
1335 // Off needs to match: (add x (add (shl y c) (shl d c))))
1336 if (Off.getOpcode() != ISD::ADD)
1337 continue;
1338 // Off matched: (add x T0)
1339 SDValue T0 = Off.getOperand(1);
1340 // T0 needs to match: (add T1 T2):
1341 if (T0.getOpcode() != ISD::ADD)
1342 continue;
1343 // T0 matched: (add T1 T2)
1344 SDValue T1 = T0.getOperand(0);
1345 SDValue T2 = T0.getOperand(1);
1346 // T1 needs to match: (shl y c)
1347 if (T1.getOpcode() != ISD::SHL)
1348 continue;
1349 SDValue C = T1.getOperand(1);
1350 ConstantSDNode *CN = dyn_cast<ConstantSDNode>(C.getNode());
1351 if (CN == nullptr)
1352 continue;
1353 unsigned CV = CN->getZExtValue();
1354 if (CV > 2)
1355 continue;
1356 // T2 needs to match e, where e = (shl d c) for some d.
1357 ConstantSDNode *EN = dyn_cast<ConstantSDNode>(T2.getNode());
1358 if (EN == nullptr)
1359 continue;
1360 unsigned EV = EN->getZExtValue();
1361 if (EV % (1 << CV) != 0)
1362 continue;
1363 unsigned DV = EV / (1 << CV);
1364
1365 // Replace T0 with: (shl (add y d) c)
1366 SDLoc DL = SDLoc(I);
1367 EVT VT = T0.getValueType();
1368 SDValue D = DAG.getConstant(DV, DL, VT);
1369 // NewAdd = (add y d)
1370 SDValue NewAdd = DAG.getNode(ISD::ADD, DL, VT, T1.getOperand(0), D);
1371 // NewShl = (shl NewAdd c)
1372 SDValue NewShl = DAG.getNode(ISD::SHL, DL, VT, NewAdd, C);
1373 ReplaceNode(T0.getNode(), NewShl.getNode());
1374 }
1375 }
1376
EmitFunctionEntryCode()1377 void HexagonDAGToDAGISel::EmitFunctionEntryCode() {
1378 auto &HST = static_cast<const HexagonSubtarget&>(MF->getSubtarget());
1379 auto &HFI = *HST.getFrameLowering();
1380 if (!HFI.needsAligna(*MF))
1381 return;
1382
1383 MachineFrameInfo *MFI = MF->getFrameInfo();
1384 MachineBasicBlock *EntryBB = &MF->front();
1385 unsigned AR = FuncInfo->CreateReg(MVT::i32);
1386 unsigned MaxA = MFI->getMaxAlignment();
1387 BuildMI(EntryBB, DebugLoc(), HII->get(Hexagon::ALIGNA), AR)
1388 .addImm(MaxA);
1389 MF->getInfo<HexagonMachineFunctionInfo>()->setStackAlignBaseVReg(AR);
1390 }
1391
1392 // Match a frame index that can be used in an addressing mode.
SelectAddrFI(SDValue & N,SDValue & R)1393 bool HexagonDAGToDAGISel::SelectAddrFI(SDValue& N, SDValue &R) {
1394 if (N.getOpcode() != ISD::FrameIndex)
1395 return false;
1396 auto &HFI = *HST->getFrameLowering();
1397 MachineFrameInfo *MFI = MF->getFrameInfo();
1398 int FX = cast<FrameIndexSDNode>(N)->getIndex();
1399 if (!MFI->isFixedObjectIndex(FX) && HFI.needsAligna(*MF))
1400 return false;
1401 R = CurDAG->getTargetFrameIndex(FX, MVT::i32);
1402 return true;
1403 }
1404
SelectAddrGA(SDValue & N,SDValue & R)1405 inline bool HexagonDAGToDAGISel::SelectAddrGA(SDValue &N, SDValue &R) {
1406 return SelectGlobalAddress(N, R, false);
1407 }
1408
SelectAddrGP(SDValue & N,SDValue & R)1409 inline bool HexagonDAGToDAGISel::SelectAddrGP(SDValue &N, SDValue &R) {
1410 return SelectGlobalAddress(N, R, true);
1411 }
1412
SelectGlobalAddress(SDValue & N,SDValue & R,bool UseGP)1413 bool HexagonDAGToDAGISel::SelectGlobalAddress(SDValue &N, SDValue &R,
1414 bool UseGP) {
1415 switch (N.getOpcode()) {
1416 case ISD::ADD: {
1417 SDValue N0 = N.getOperand(0);
1418 SDValue N1 = N.getOperand(1);
1419 unsigned GAOpc = N0.getOpcode();
1420 if (UseGP && GAOpc != HexagonISD::CONST32_GP)
1421 return false;
1422 if (!UseGP && GAOpc != HexagonISD::CONST32)
1423 return false;
1424 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N1)) {
1425 SDValue Addr = N0.getOperand(0);
1426 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Addr)) {
1427 if (GA->getOpcode() == ISD::TargetGlobalAddress) {
1428 uint64_t NewOff = GA->getOffset() + (uint64_t)Const->getSExtValue();
1429 R = CurDAG->getTargetGlobalAddress(GA->getGlobal(), SDLoc(Const),
1430 N.getValueType(), NewOff);
1431 return true;
1432 }
1433 }
1434 }
1435 break;
1436 }
1437 case HexagonISD::CONST32:
1438 // The operand(0) of CONST32 is TargetGlobalAddress, which is what we
1439 // want in the instruction.
1440 if (!UseGP)
1441 R = N.getOperand(0);
1442 return !UseGP;
1443 case HexagonISD::CONST32_GP:
1444 if (UseGP)
1445 R = N.getOperand(0);
1446 return UseGP;
1447 default:
1448 return false;
1449 }
1450
1451 return false;
1452 }
1453
isValueExtension(const SDValue & Val,unsigned FromBits,SDValue & Src)1454 bool HexagonDAGToDAGISel::isValueExtension(const SDValue &Val,
1455 unsigned FromBits, SDValue &Src) {
1456 unsigned Opc = Val.getOpcode();
1457 switch (Opc) {
1458 case ISD::SIGN_EXTEND:
1459 case ISD::ZERO_EXTEND:
1460 case ISD::ANY_EXTEND: {
1461 SDValue const &Op0 = Val.getOperand(0);
1462 EVT T = Op0.getValueType();
1463 if (T.isInteger() && T.getSizeInBits() == FromBits) {
1464 Src = Op0;
1465 return true;
1466 }
1467 break;
1468 }
1469 case ISD::SIGN_EXTEND_INREG:
1470 case ISD::AssertSext:
1471 case ISD::AssertZext:
1472 if (Val.getOperand(0).getValueType().isInteger()) {
1473 VTSDNode *T = cast<VTSDNode>(Val.getOperand(1));
1474 if (T->getVT().getSizeInBits() == FromBits) {
1475 Src = Val.getOperand(0);
1476 return true;
1477 }
1478 }
1479 break;
1480 case ISD::AND: {
1481 // Check if this is an AND with "FromBits" of lower bits set to 1.
1482 uint64_t FromMask = (1 << FromBits) - 1;
1483 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(0))) {
1484 if (C->getZExtValue() == FromMask) {
1485 Src = Val.getOperand(1);
1486 return true;
1487 }
1488 }
1489 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(1))) {
1490 if (C->getZExtValue() == FromMask) {
1491 Src = Val.getOperand(0);
1492 return true;
1493 }
1494 }
1495 break;
1496 }
1497 case ISD::OR:
1498 case ISD::XOR: {
1499 // OR/XOR with the lower "FromBits" bits set to 0.
1500 uint64_t FromMask = (1 << FromBits) - 1;
1501 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(0))) {
1502 if ((C->getZExtValue() & FromMask) == 0) {
1503 Src = Val.getOperand(1);
1504 return true;
1505 }
1506 }
1507 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(1))) {
1508 if ((C->getZExtValue() & FromMask) == 0) {
1509 Src = Val.getOperand(0);
1510 return true;
1511 }
1512 }
1513 }
1514 default:
1515 break;
1516 }
1517 return false;
1518 }
1519
isAlignedMemNode(const MemSDNode * N) const1520 bool HexagonDAGToDAGISel::isAlignedMemNode(const MemSDNode *N) const {
1521 return N->getAlignment() >= N->getMemoryVT().getStoreSize();
1522 }
1523