1 //===- HexagonMCInstrInfo.cpp - Hexagon sub-class of MCInst ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This class extends MCInstrInfo to allow Hexagon specific MCInstr queries
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "HexagonMCInstrInfo.h"
15
16 #include "Hexagon.h"
17 #include "HexagonBaseInfo.h"
18 #include "HexagonMCChecker.h"
19
20 #include "llvm/MC/MCContext.h"
21 #include "llvm/MC/MCExpr.h"
22 #include "llvm/MC/MCInstrInfo.h"
23 #include "llvm/MC/MCSubtargetInfo.h"
24
25 namespace llvm {
addConstant(MCInst & MI,uint64_t Value,MCContext & Context)26 void HexagonMCInstrInfo::addConstant(MCInst &MI, uint64_t Value,
27 MCContext &Context) {
28 MI.addOperand(MCOperand::createExpr(MCConstantExpr::create(Value, Context)));
29 }
30
addConstExtender(MCContext & Context,MCInstrInfo const & MCII,MCInst & MCB,MCInst const & MCI)31 void HexagonMCInstrInfo::addConstExtender(MCContext &Context,
32 MCInstrInfo const &MCII, MCInst &MCB,
33 MCInst const &MCI) {
34 assert(HexagonMCInstrInfo::isBundle(MCB));
35 MCOperand const &exOp =
36 MCI.getOperand(HexagonMCInstrInfo::getExtendableOp(MCII, MCI));
37
38 // Create the extender.
39 MCInst *XMCI =
40 new (Context) MCInst(HexagonMCInstrInfo::deriveExtender(MCII, MCI, exOp));
41
42 MCB.addOperand(MCOperand::createInst(XMCI));
43 }
44
45 iterator_range<MCInst::const_iterator>
bundleInstructions(MCInst const & MCI)46 HexagonMCInstrInfo::bundleInstructions(MCInst const &MCI) {
47 assert(isBundle(MCI));
48 return make_range(MCI.begin() + bundleInstructionsOffset, MCI.end());
49 }
50
bundleSize(MCInst const & MCI)51 size_t HexagonMCInstrInfo::bundleSize(MCInst const &MCI) {
52 if (HexagonMCInstrInfo::isBundle(MCI))
53 return (MCI.size() - bundleInstructionsOffset);
54 else
55 return (1);
56 }
57
canonicalizePacket(MCInstrInfo const & MCII,MCSubtargetInfo const & STI,MCContext & Context,MCInst & MCB,HexagonMCChecker * Check)58 bool HexagonMCInstrInfo::canonicalizePacket(MCInstrInfo const &MCII,
59 MCSubtargetInfo const &STI,
60 MCContext &Context, MCInst &MCB,
61 HexagonMCChecker *Check) {
62 // Examine the packet and convert pairs of instructions to compound
63 // instructions when possible.
64 if (!HexagonDisableCompound)
65 HexagonMCInstrInfo::tryCompound(MCII, Context, MCB);
66 // Check the bundle for errors.
67 bool CheckOk = Check ? Check->check() : true;
68 if (!CheckOk)
69 return false;
70 HexagonMCShuffle(MCII, STI, MCB);
71 // Examine the packet and convert pairs of instructions to duplex
72 // instructions when possible.
73 MCInst InstBundlePreDuplex = MCInst(MCB);
74 if (!HexagonDisableDuplex) {
75 SmallVector<DuplexCandidate, 8> possibleDuplexes;
76 possibleDuplexes = HexagonMCInstrInfo::getDuplexPossibilties(MCII, MCB);
77 HexagonMCShuffle(MCII, STI, Context, MCB, possibleDuplexes);
78 }
79 // Examines packet and pad the packet, if needed, when an
80 // end-loop is in the bundle.
81 HexagonMCInstrInfo::padEndloop(Context, MCB);
82 // If compounding and duplexing didn't reduce the size below
83 // 4 or less we have a packet that is too big.
84 if (HexagonMCInstrInfo::bundleSize(MCB) > HEXAGON_PACKET_SIZE)
85 return false;
86 HexagonMCShuffle(MCII, STI, MCB);
87 return true;
88 }
89
clampExtended(MCInstrInfo const & MCII,MCContext & Context,MCInst & MCI)90 void HexagonMCInstrInfo::clampExtended(MCInstrInfo const &MCII,
91 MCContext &Context, MCInst &MCI) {
92 assert(HexagonMCInstrInfo::isExtendable(MCII, MCI) ||
93 HexagonMCInstrInfo::isExtended(MCII, MCI));
94 MCOperand &exOp =
95 MCI.getOperand(HexagonMCInstrInfo::getExtendableOp(MCII, MCI));
96 // If the extended value is a constant, then use it for the extended and
97 // for the extender instructions, masking off the lower 6 bits and
98 // including the assumed bits.
99 int64_t Value;
100 if (exOp.getExpr()->evaluateAsAbsolute(Value)) {
101 unsigned Shift = HexagonMCInstrInfo::getExtentAlignment(MCII, MCI);
102 exOp.setExpr(HexagonMCExpr::create(
103 MCConstantExpr::create((Value & 0x3f) << Shift, Context), Context));
104 }
105 }
106
createBundle()107 MCInst HexagonMCInstrInfo::createBundle() {
108 MCInst Result;
109 Result.setOpcode(Hexagon::BUNDLE);
110 Result.addOperand(MCOperand::createImm(0));
111 return Result;
112 }
113
deriveDuplex(MCContext & Context,unsigned iClass,MCInst const & inst0,MCInst const & inst1)114 MCInst *HexagonMCInstrInfo::deriveDuplex(MCContext &Context, unsigned iClass,
115 MCInst const &inst0,
116 MCInst const &inst1) {
117 assert((iClass <= 0xf) && "iClass must have range of 0 to 0xf");
118 MCInst *duplexInst = new (Context) MCInst;
119 duplexInst->setOpcode(Hexagon::DuplexIClass0 + iClass);
120
121 MCInst *SubInst0 = new (Context) MCInst(deriveSubInst(inst0));
122 MCInst *SubInst1 = new (Context) MCInst(deriveSubInst(inst1));
123 duplexInst->addOperand(MCOperand::createInst(SubInst0));
124 duplexInst->addOperand(MCOperand::createInst(SubInst1));
125 return duplexInst;
126 }
127
deriveExtender(MCInstrInfo const & MCII,MCInst const & Inst,MCOperand const & MO)128 MCInst HexagonMCInstrInfo::deriveExtender(MCInstrInfo const &MCII,
129 MCInst const &Inst,
130 MCOperand const &MO) {
131 assert(HexagonMCInstrInfo::isExtendable(MCII, Inst) ||
132 HexagonMCInstrInfo::isExtended(MCII, Inst));
133
134 MCInstrDesc const &Desc = HexagonMCInstrInfo::getDesc(MCII, Inst);
135 MCInst XMI;
136 XMI.setOpcode((Desc.isBranch() || Desc.isCall() ||
137 HexagonMCInstrInfo::getType(MCII, Inst) == HexagonII::TypeCR)
138 ? Hexagon::A4_ext_b
139 : Hexagon::A4_ext);
140 if (MO.isImm())
141 XMI.addOperand(MCOperand::createImm(MO.getImm() & (~0x3f)));
142 else if (MO.isExpr())
143 XMI.addOperand(MCOperand::createExpr(MO.getExpr()));
144 else
145 llvm_unreachable("invalid extendable operand");
146 return XMI;
147 }
148
extenderForIndex(MCInst const & MCB,size_t Index)149 MCInst const *HexagonMCInstrInfo::extenderForIndex(MCInst const &MCB,
150 size_t Index) {
151 assert(Index <= bundleSize(MCB));
152 if (Index == 0)
153 return nullptr;
154 MCInst const *Inst =
155 MCB.getOperand(Index + bundleInstructionsOffset - 1).getInst();
156 if (isImmext(*Inst))
157 return Inst;
158 return nullptr;
159 }
160
extendIfNeeded(MCContext & Context,MCInstrInfo const & MCII,MCInst & MCB,MCInst const & MCI)161 void HexagonMCInstrInfo::extendIfNeeded(MCContext &Context,
162 MCInstrInfo const &MCII, MCInst &MCB,
163 MCInst const &MCI) {
164 if (isConstExtended(MCII, MCI))
165 addConstExtender(Context, MCII, MCB, MCI);
166 }
167
168 HexagonII::MemAccessSize
getAccessSize(MCInstrInfo const & MCII,MCInst const & MCI)169 HexagonMCInstrInfo::getAccessSize(MCInstrInfo const &MCII, MCInst const &MCI) {
170 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
171
172 return (HexagonII::MemAccessSize((F >> HexagonII::MemAccessSizePos) &
173 HexagonII::MemAccesSizeMask));
174 }
175
getBitCount(MCInstrInfo const & MCII,MCInst const & MCI)176 unsigned HexagonMCInstrInfo::getBitCount(MCInstrInfo const &MCII,
177 MCInst const &MCI) {
178 uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
179 return ((F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask);
180 }
181
182 // Return constant extended operand number.
getCExtOpNum(MCInstrInfo const & MCII,MCInst const & MCI)183 unsigned short HexagonMCInstrInfo::getCExtOpNum(MCInstrInfo const &MCII,
184 MCInst const &MCI) {
185 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
186 return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask);
187 }
188
getDesc(MCInstrInfo const & MCII,MCInst const & MCI)189 MCInstrDesc const &HexagonMCInstrInfo::getDesc(MCInstrInfo const &MCII,
190 MCInst const &MCI) {
191 return (MCII.get(MCI.getOpcode()));
192 }
193
getDuplexRegisterNumbering(unsigned Reg)194 unsigned HexagonMCInstrInfo::getDuplexRegisterNumbering(unsigned Reg) {
195 using namespace Hexagon;
196 switch (Reg) {
197 default:
198 llvm_unreachable("unknown duplex register");
199 // Rs Rss
200 case R0:
201 case D0:
202 return 0;
203 case R1:
204 case D1:
205 return 1;
206 case R2:
207 case D2:
208 return 2;
209 case R3:
210 case D3:
211 return 3;
212 case R4:
213 case D8:
214 return 4;
215 case R5:
216 case D9:
217 return 5;
218 case R6:
219 case D10:
220 return 6;
221 case R7:
222 case D11:
223 return 7;
224 case R16:
225 return 8;
226 case R17:
227 return 9;
228 case R18:
229 return 10;
230 case R19:
231 return 11;
232 case R20:
233 return 12;
234 case R21:
235 return 13;
236 case R22:
237 return 14;
238 case R23:
239 return 15;
240 }
241 }
242
getExpr(MCExpr const & Expr)243 MCExpr const &HexagonMCInstrInfo::getExpr(MCExpr const &Expr) {
244 const auto &HExpr = cast<HexagonMCExpr>(Expr);
245 assert(HExpr.getExpr());
246 return *HExpr.getExpr();
247 }
248
getExtendableOp(MCInstrInfo const & MCII,MCInst const & MCI)249 unsigned short HexagonMCInstrInfo::getExtendableOp(MCInstrInfo const &MCII,
250 MCInst const &MCI) {
251 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
252 return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask);
253 }
254
255 MCOperand const &
getExtendableOperand(MCInstrInfo const & MCII,MCInst const & MCI)256 HexagonMCInstrInfo::getExtendableOperand(MCInstrInfo const &MCII,
257 MCInst const &MCI) {
258 unsigned O = HexagonMCInstrInfo::getExtendableOp(MCII, MCI);
259 MCOperand const &MO = MCI.getOperand(O);
260
261 assert((HexagonMCInstrInfo::isExtendable(MCII, MCI) ||
262 HexagonMCInstrInfo::isExtended(MCII, MCI)) &&
263 (MO.isImm() || MO.isExpr()));
264 return (MO);
265 }
266
getExtentAlignment(MCInstrInfo const & MCII,MCInst const & MCI)267 unsigned HexagonMCInstrInfo::getExtentAlignment(MCInstrInfo const &MCII,
268 MCInst const &MCI) {
269 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
270 return ((F >> HexagonII::ExtentAlignPos) & HexagonII::ExtentAlignMask);
271 }
272
getExtentBits(MCInstrInfo const & MCII,MCInst const & MCI)273 unsigned HexagonMCInstrInfo::getExtentBits(MCInstrInfo const &MCII,
274 MCInst const &MCI) {
275 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
276 return ((F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask);
277 }
278
279 // Return the max value that a constant extendable operand can have
280 // without being extended.
getMaxValue(MCInstrInfo const & MCII,MCInst const & MCI)281 int HexagonMCInstrInfo::getMaxValue(MCInstrInfo const &MCII,
282 MCInst const &MCI) {
283 uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
284 unsigned isSigned =
285 (F >> HexagonII::ExtentSignedPos) & HexagonII::ExtentSignedMask;
286 unsigned bits = (F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask;
287
288 if (isSigned) // if value is signed
289 return ~(-1U << (bits - 1));
290 else
291 return ~(-1U << bits);
292 }
293
294 // Return the min value that a constant extendable operand can have
295 // without being extended.
getMinValue(MCInstrInfo const & MCII,MCInst const & MCI)296 int HexagonMCInstrInfo::getMinValue(MCInstrInfo const &MCII,
297 MCInst const &MCI) {
298 uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
299 unsigned isSigned =
300 (F >> HexagonII::ExtentSignedPos) & HexagonII::ExtentSignedMask;
301 unsigned bits = (F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask;
302
303 if (isSigned) // if value is signed
304 return -1U << (bits - 1);
305 else
306 return 0;
307 }
308
getName(MCInstrInfo const & MCII,MCInst const & MCI)309 char const *HexagonMCInstrInfo::getName(MCInstrInfo const &MCII,
310 MCInst const &MCI) {
311 return MCII.getName(MCI.getOpcode());
312 }
313
getNewValueOp(MCInstrInfo const & MCII,MCInst const & MCI)314 unsigned short HexagonMCInstrInfo::getNewValueOp(MCInstrInfo const &MCII,
315 MCInst const &MCI) {
316 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
317 return ((F >> HexagonII::NewValueOpPos) & HexagonII::NewValueOpMask);
318 }
319
getNewValueOperand(MCInstrInfo const & MCII,MCInst const & MCI)320 MCOperand const &HexagonMCInstrInfo::getNewValueOperand(MCInstrInfo const &MCII,
321 MCInst const &MCI) {
322 uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
323 unsigned const O =
324 (F >> HexagonII::NewValueOpPos) & HexagonII::NewValueOpMask;
325 MCOperand const &MCO = MCI.getOperand(O);
326
327 assert((HexagonMCInstrInfo::isNewValue(MCII, MCI) ||
328 HexagonMCInstrInfo::hasNewValue(MCII, MCI)) &&
329 MCO.isReg());
330 return (MCO);
331 }
332
333 /// Return the new value or the newly produced value.
getNewValueOp2(MCInstrInfo const & MCII,MCInst const & MCI)334 unsigned short HexagonMCInstrInfo::getNewValueOp2(MCInstrInfo const &MCII,
335 MCInst const &MCI) {
336 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
337 return ((F >> HexagonII::NewValueOpPos2) & HexagonII::NewValueOpMask2);
338 }
339
340 MCOperand const &
getNewValueOperand2(MCInstrInfo const & MCII,MCInst const & MCI)341 HexagonMCInstrInfo::getNewValueOperand2(MCInstrInfo const &MCII,
342 MCInst const &MCI) {
343 unsigned O = HexagonMCInstrInfo::getNewValueOp2(MCII, MCI);
344 MCOperand const &MCO = MCI.getOperand(O);
345
346 assert((HexagonMCInstrInfo::isNewValue(MCII, MCI) ||
347 HexagonMCInstrInfo::hasNewValue2(MCII, MCI)) &&
348 MCO.isReg());
349 return (MCO);
350 }
351
getSubTarget(MCInstrInfo const & MCII,MCInst const & MCI)352 int HexagonMCInstrInfo::getSubTarget(MCInstrInfo const &MCII,
353 MCInst const &MCI) {
354 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
355
356 HexagonII::SubTarget Target = static_cast<HexagonII::SubTarget>(
357 (F >> HexagonII::validSubTargetPos) & HexagonII::validSubTargetMask);
358
359 switch (Target) {
360 default:
361 return Hexagon::ArchV4;
362 case HexagonII::HasV5SubT:
363 return Hexagon::ArchV5;
364 }
365 }
366
367 // Return the Hexagon ISA class for the insn.
getType(MCInstrInfo const & MCII,MCInst const & MCI)368 unsigned HexagonMCInstrInfo::getType(MCInstrInfo const &MCII,
369 MCInst const &MCI) {
370 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
371
372 return ((F >> HexagonII::TypePos) & HexagonII::TypeMask);
373 }
374
getUnits(MCInstrInfo const & MCII,MCSubtargetInfo const & STI,MCInst const & MCI)375 unsigned HexagonMCInstrInfo::getUnits(MCInstrInfo const &MCII,
376 MCSubtargetInfo const &STI,
377 MCInst const &MCI) {
378
379 const InstrItinerary *II = STI.getSchedModel().InstrItineraries;
380 int SchedClass = HexagonMCInstrInfo::getDesc(MCII, MCI).getSchedClass();
381 return ((II[SchedClass].FirstStage + HexagonStages)->getUnits());
382 }
383
hasImmExt(MCInst const & MCI)384 bool HexagonMCInstrInfo::hasImmExt(MCInst const &MCI) {
385 if (!HexagonMCInstrInfo::isBundle(MCI))
386 return false;
387
388 for (const auto &I : HexagonMCInstrInfo::bundleInstructions(MCI)) {
389 auto MI = I.getInst();
390 if (isImmext(*MI))
391 return true;
392 }
393
394 return false;
395 }
396
hasExtenderForIndex(MCInst const & MCB,size_t Index)397 bool HexagonMCInstrInfo::hasExtenderForIndex(MCInst const &MCB, size_t Index) {
398 return extenderForIndex(MCB, Index) != nullptr;
399 }
400
401 // Return whether the instruction is a legal new-value producer.
hasNewValue(MCInstrInfo const & MCII,MCInst const & MCI)402 bool HexagonMCInstrInfo::hasNewValue(MCInstrInfo const &MCII,
403 MCInst const &MCI) {
404 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
405 return ((F >> HexagonII::hasNewValuePos) & HexagonII::hasNewValueMask);
406 }
407
408 /// Return whether the insn produces a second value.
hasNewValue2(MCInstrInfo const & MCII,MCInst const & MCI)409 bool HexagonMCInstrInfo::hasNewValue2(MCInstrInfo const &MCII,
410 MCInst const &MCI) {
411 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
412 return ((F >> HexagonII::hasNewValuePos2) & HexagonII::hasNewValueMask2);
413 }
414
instruction(MCInst const & MCB,size_t Index)415 MCInst const &HexagonMCInstrInfo::instruction(MCInst const &MCB, size_t Index) {
416 assert(isBundle(MCB));
417 assert(Index < HEXAGON_PACKET_SIZE);
418 return *MCB.getOperand(bundleInstructionsOffset + Index).getInst();
419 }
420
isBundle(MCInst const & MCI)421 bool HexagonMCInstrInfo::isBundle(MCInst const &MCI) {
422 auto Result = Hexagon::BUNDLE == MCI.getOpcode();
423 assert(!Result || (MCI.size() > 0 && MCI.getOperand(0).isImm()));
424 return Result;
425 }
426
427 // Return whether the insn is an actual insn.
isCanon(MCInstrInfo const & MCII,MCInst const & MCI)428 bool HexagonMCInstrInfo::isCanon(MCInstrInfo const &MCII, MCInst const &MCI) {
429 return (!HexagonMCInstrInfo::getDesc(MCII, MCI).isPseudo() &&
430 !HexagonMCInstrInfo::isPrefix(MCII, MCI) &&
431 HexagonMCInstrInfo::getType(MCII, MCI) != HexagonII::TypeENDLOOP);
432 }
433
isCompound(MCInstrInfo const & MCII,MCInst const & MCI)434 bool HexagonMCInstrInfo::isCompound(MCInstrInfo const &MCII,
435 MCInst const &MCI) {
436 return (getType(MCII, MCI) == HexagonII::TypeCOMPOUND);
437 }
438
isDblRegForSubInst(unsigned Reg)439 bool HexagonMCInstrInfo::isDblRegForSubInst(unsigned Reg) {
440 return ((Reg >= Hexagon::D0 && Reg <= Hexagon::D3) ||
441 (Reg >= Hexagon::D8 && Reg <= Hexagon::D11));
442 }
443
isDuplex(MCInstrInfo const & MCII,MCInst const & MCI)444 bool HexagonMCInstrInfo::isDuplex(MCInstrInfo const &MCII, MCInst const &MCI) {
445 return HexagonII::TypeDUPLEX == HexagonMCInstrInfo::getType(MCII, MCI);
446 }
447
448 // Return whether the instruction needs to be constant extended.
449 // 1) Always return true if the instruction has 'isExtended' flag set.
450 //
451 // isExtendable:
452 // 2) For immediate extended operands, return true only if the value is
453 // out-of-range.
454 // 3) For global address, always return true.
455
isConstExtended(MCInstrInfo const & MCII,MCInst const & MCI)456 bool HexagonMCInstrInfo::isConstExtended(MCInstrInfo const &MCII,
457 MCInst const &MCI) {
458 if (HexagonMCInstrInfo::isExtended(MCII, MCI))
459 return true;
460 if (!HexagonMCInstrInfo::isExtendable(MCII, MCI))
461 return false;
462 MCOperand const &MO = HexagonMCInstrInfo::getExtendableOperand(MCII, MCI);
463 if (isa<HexagonMCExpr>(MO.getExpr()) &&
464 HexagonMCInstrInfo::mustExtend(*MO.getExpr()))
465 return true;
466 // Branch insns are handled as necessary by relaxation.
467 if ((HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeJ) ||
468 (HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeCOMPOUND &&
469 HexagonMCInstrInfo::getDesc(MCII, MCI).isBranch()) ||
470 (HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeNV &&
471 HexagonMCInstrInfo::getDesc(MCII, MCI).isBranch()))
472 return false;
473 // Otherwise loop instructions and other CR insts are handled by relaxation
474 else if ((HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeCR) &&
475 (MCI.getOpcode() != Hexagon::C4_addipc))
476 return false;
477
478 assert(!MO.isImm());
479 if (isa<HexagonMCExpr>(MO.getExpr()) &&
480 HexagonMCInstrInfo::mustNotExtend(*MO.getExpr()))
481 return false;
482 int64_t Value;
483 if (!MO.getExpr()->evaluateAsAbsolute(Value))
484 return true;
485 int MinValue = HexagonMCInstrInfo::getMinValue(MCII, MCI);
486 int MaxValue = HexagonMCInstrInfo::getMaxValue(MCII, MCI);
487 return (MinValue > Value || Value > MaxValue);
488 }
489
isExtendable(MCInstrInfo const & MCII,MCInst const & MCI)490 bool HexagonMCInstrInfo::isExtendable(MCInstrInfo const &MCII,
491 MCInst const &MCI) {
492 uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
493 return (F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask;
494 }
495
isExtended(MCInstrInfo const & MCII,MCInst const & MCI)496 bool HexagonMCInstrInfo::isExtended(MCInstrInfo const &MCII,
497 MCInst const &MCI) {
498 uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
499 return (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask;
500 }
501
isFloat(MCInstrInfo const & MCII,MCInst const & MCI)502 bool HexagonMCInstrInfo::isFloat(MCInstrInfo const &MCII, MCInst const &MCI) {
503 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
504 return ((F >> HexagonII::FPPos) & HexagonII::FPMask);
505 }
506
isImmext(MCInst const & MCI)507 bool HexagonMCInstrInfo::isImmext(MCInst const &MCI) {
508 auto Op = MCI.getOpcode();
509 return (Op == Hexagon::A4_ext_b || Op == Hexagon::A4_ext_c ||
510 Op == Hexagon::A4_ext_g || Op == Hexagon::A4_ext);
511 }
512
isInnerLoop(MCInst const & MCI)513 bool HexagonMCInstrInfo::isInnerLoop(MCInst const &MCI) {
514 assert(isBundle(MCI));
515 int64_t Flags = MCI.getOperand(0).getImm();
516 return (Flags & innerLoopMask) != 0;
517 }
518
isIntReg(unsigned Reg)519 bool HexagonMCInstrInfo::isIntReg(unsigned Reg) {
520 return (Reg >= Hexagon::R0 && Reg <= Hexagon::R31);
521 }
522
isIntRegForSubInst(unsigned Reg)523 bool HexagonMCInstrInfo::isIntRegForSubInst(unsigned Reg) {
524 return ((Reg >= Hexagon::R0 && Reg <= Hexagon::R7) ||
525 (Reg >= Hexagon::R16 && Reg <= Hexagon::R23));
526 }
527
528 // Return whether the insn is a new-value consumer.
isNewValue(MCInstrInfo const & MCII,MCInst const & MCI)529 bool HexagonMCInstrInfo::isNewValue(MCInstrInfo const &MCII,
530 MCInst const &MCI) {
531 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
532 return ((F >> HexagonII::NewValuePos) & HexagonII::NewValueMask);
533 }
534
535 // Return whether the operand can be constant extended.
isOperandExtended(MCInstrInfo const & MCII,MCInst const & MCI,unsigned short OperandNum)536 bool HexagonMCInstrInfo::isOperandExtended(MCInstrInfo const &MCII,
537 MCInst const &MCI,
538 unsigned short OperandNum) {
539 uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
540 return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask) ==
541 OperandNum;
542 }
543
isOuterLoop(MCInst const & MCI)544 bool HexagonMCInstrInfo::isOuterLoop(MCInst const &MCI) {
545 assert(isBundle(MCI));
546 int64_t Flags = MCI.getOperand(0).getImm();
547 return (Flags & outerLoopMask) != 0;
548 }
549
isPredicated(MCInstrInfo const & MCII,MCInst const & MCI)550 bool HexagonMCInstrInfo::isPredicated(MCInstrInfo const &MCII,
551 MCInst const &MCI) {
552 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
553 return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
554 }
555
isPredicateLate(MCInstrInfo const & MCII,MCInst const & MCI)556 bool HexagonMCInstrInfo::isPredicateLate(MCInstrInfo const &MCII,
557 MCInst const &MCI) {
558 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
559 return (F >> HexagonII::PredicateLatePos & HexagonII::PredicateLateMask);
560 }
561
562 /// Return whether the insn is newly predicated.
isPredicatedNew(MCInstrInfo const & MCII,MCInst const & MCI)563 bool HexagonMCInstrInfo::isPredicatedNew(MCInstrInfo const &MCII,
564 MCInst const &MCI) {
565 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
566 return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask);
567 }
568
isPredicatedTrue(MCInstrInfo const & MCII,MCInst const & MCI)569 bool HexagonMCInstrInfo::isPredicatedTrue(MCInstrInfo const &MCII,
570 MCInst const &MCI) {
571 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
572 return (
573 !((F >> HexagonII::PredicatedFalsePos) & HexagonII::PredicatedFalseMask));
574 }
575
isPredReg(unsigned Reg)576 bool HexagonMCInstrInfo::isPredReg(unsigned Reg) {
577 return (Reg >= Hexagon::P0 && Reg <= Hexagon::P3_0);
578 }
579
isPrefix(MCInstrInfo const & MCII,MCInst const & MCI)580 bool HexagonMCInstrInfo::isPrefix(MCInstrInfo const &MCII, MCInst const &MCI) {
581 return (HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypePREFIX);
582 }
583
isSolo(MCInstrInfo const & MCII,MCInst const & MCI)584 bool HexagonMCInstrInfo::isSolo(MCInstrInfo const &MCII, MCInst const &MCI) {
585 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
586 return ((F >> HexagonII::SoloPos) & HexagonII::SoloMask);
587 }
588
isMemReorderDisabled(MCInst const & MCI)589 bool HexagonMCInstrInfo::isMemReorderDisabled(MCInst const &MCI) {
590 assert(isBundle(MCI));
591 auto Flags = MCI.getOperand(0).getImm();
592 return (Flags & memReorderDisabledMask) != 0;
593 }
594
isMemStoreReorderEnabled(MCInst const & MCI)595 bool HexagonMCInstrInfo::isMemStoreReorderEnabled(MCInst const &MCI) {
596 assert(isBundle(MCI));
597 auto Flags = MCI.getOperand(0).getImm();
598 return (Flags & memStoreReorderEnabledMask) != 0;
599 }
600
isSubInstruction(MCInst const & MCI)601 bool HexagonMCInstrInfo::isSubInstruction(MCInst const &MCI) {
602 switch (MCI.getOpcode()) {
603 default:
604 return false;
605 case Hexagon::V4_SA1_addi:
606 case Hexagon::V4_SA1_addrx:
607 case Hexagon::V4_SA1_addsp:
608 case Hexagon::V4_SA1_and1:
609 case Hexagon::V4_SA1_clrf:
610 case Hexagon::V4_SA1_clrfnew:
611 case Hexagon::V4_SA1_clrt:
612 case Hexagon::V4_SA1_clrtnew:
613 case Hexagon::V4_SA1_cmpeqi:
614 case Hexagon::V4_SA1_combine0i:
615 case Hexagon::V4_SA1_combine1i:
616 case Hexagon::V4_SA1_combine2i:
617 case Hexagon::V4_SA1_combine3i:
618 case Hexagon::V4_SA1_combinerz:
619 case Hexagon::V4_SA1_combinezr:
620 case Hexagon::V4_SA1_dec:
621 case Hexagon::V4_SA1_inc:
622 case Hexagon::V4_SA1_seti:
623 case Hexagon::V4_SA1_setin1:
624 case Hexagon::V4_SA1_sxtb:
625 case Hexagon::V4_SA1_sxth:
626 case Hexagon::V4_SA1_tfr:
627 case Hexagon::V4_SA1_zxtb:
628 case Hexagon::V4_SA1_zxth:
629 case Hexagon::V4_SL1_loadri_io:
630 case Hexagon::V4_SL1_loadrub_io:
631 case Hexagon::V4_SL2_deallocframe:
632 case Hexagon::V4_SL2_jumpr31:
633 case Hexagon::V4_SL2_jumpr31_f:
634 case Hexagon::V4_SL2_jumpr31_fnew:
635 case Hexagon::V4_SL2_jumpr31_t:
636 case Hexagon::V4_SL2_jumpr31_tnew:
637 case Hexagon::V4_SL2_loadrb_io:
638 case Hexagon::V4_SL2_loadrd_sp:
639 case Hexagon::V4_SL2_loadrh_io:
640 case Hexagon::V4_SL2_loadri_sp:
641 case Hexagon::V4_SL2_loadruh_io:
642 case Hexagon::V4_SL2_return:
643 case Hexagon::V4_SL2_return_f:
644 case Hexagon::V4_SL2_return_fnew:
645 case Hexagon::V4_SL2_return_t:
646 case Hexagon::V4_SL2_return_tnew:
647 case Hexagon::V4_SS1_storeb_io:
648 case Hexagon::V4_SS1_storew_io:
649 case Hexagon::V4_SS2_allocframe:
650 case Hexagon::V4_SS2_storebi0:
651 case Hexagon::V4_SS2_storebi1:
652 case Hexagon::V4_SS2_stored_sp:
653 case Hexagon::V4_SS2_storeh_io:
654 case Hexagon::V4_SS2_storew_sp:
655 case Hexagon::V4_SS2_storewi0:
656 case Hexagon::V4_SS2_storewi1:
657 return true;
658 }
659 }
660
isSoloAX(MCInstrInfo const & MCII,MCInst const & MCI)661 bool HexagonMCInstrInfo::isSoloAX(MCInstrInfo const &MCII, MCInst const &MCI) {
662 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
663 return ((F >> HexagonII::SoloAXPos) & HexagonII::SoloAXMask);
664 }
665
isSoloAin1(MCInstrInfo const & MCII,MCInst const & MCI)666 bool HexagonMCInstrInfo::isSoloAin1(MCInstrInfo const &MCII,
667 MCInst const &MCI) {
668 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
669 return ((F >> HexagonII::SoloAin1Pos) & HexagonII::SoloAin1Mask);
670 }
671
isVector(MCInstrInfo const & MCII,MCInst const & MCI)672 bool HexagonMCInstrInfo::isVector(MCInstrInfo const &MCII, MCInst const &MCI) {
673 if ((getType(MCII, MCI) <= HexagonII::TypeCVI_LAST) &&
674 (getType(MCII, MCI) >= HexagonII::TypeCVI_FIRST))
675 return true;
676 return false;
677 }
678
minConstant(MCInst const & MCI,size_t Index)679 int64_t HexagonMCInstrInfo::minConstant(MCInst const &MCI, size_t Index) {
680 auto Sentinal = static_cast<int64_t>(std::numeric_limits<uint32_t>::max())
681 << 8;
682 if (MCI.size() <= Index)
683 return Sentinal;
684 MCOperand const &MCO = MCI.getOperand(Index);
685 if (!MCO.isExpr())
686 return Sentinal;
687 int64_t Value;
688 if (!MCO.getExpr()->evaluateAsAbsolute(Value))
689 return Sentinal;
690 return Value;
691 }
692
setMustExtend(MCExpr const & Expr,bool Val)693 void HexagonMCInstrInfo::setMustExtend(MCExpr const &Expr, bool Val) {
694 HexagonMCExpr &HExpr = const_cast<HexagonMCExpr &>(cast<HexagonMCExpr>(Expr));
695 HExpr.setMustExtend(Val);
696 }
697
mustExtend(MCExpr const & Expr)698 bool HexagonMCInstrInfo::mustExtend(MCExpr const &Expr) {
699 HexagonMCExpr const &HExpr = cast<HexagonMCExpr>(Expr);
700 return HExpr.mustExtend();
701 }
setMustNotExtend(MCExpr const & Expr,bool Val)702 void HexagonMCInstrInfo::setMustNotExtend(MCExpr const &Expr, bool Val) {
703 HexagonMCExpr &HExpr =
704 const_cast<HexagonMCExpr &>(cast<HexagonMCExpr>(Expr));
705 HExpr.setMustNotExtend(Val);
706 }
mustNotExtend(MCExpr const & Expr)707 bool HexagonMCInstrInfo::mustNotExtend(MCExpr const &Expr) {
708 HexagonMCExpr const &HExpr = cast<HexagonMCExpr>(Expr);
709 return HExpr.mustNotExtend();
710 }
711
padEndloop(MCContext & Context,MCInst & MCB)712 void HexagonMCInstrInfo::padEndloop(MCContext &Context, MCInst &MCB) {
713 MCInst Nop;
714 Nop.setOpcode(Hexagon::A2_nop);
715 assert(isBundle(MCB));
716 while ((HexagonMCInstrInfo::isInnerLoop(MCB) &&
717 (HexagonMCInstrInfo::bundleSize(MCB) < HEXAGON_PACKET_INNER_SIZE)) ||
718 ((HexagonMCInstrInfo::isOuterLoop(MCB) &&
719 (HexagonMCInstrInfo::bundleSize(MCB) < HEXAGON_PACKET_OUTER_SIZE))))
720 MCB.addOperand(MCOperand::createInst(new (Context) MCInst(Nop)));
721 }
722
prefersSlot3(MCInstrInfo const & MCII,MCInst const & MCI)723 bool HexagonMCInstrInfo::prefersSlot3(MCInstrInfo const &MCII,
724 MCInst const &MCI) {
725 if (HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeCR)
726 return false;
727
728 unsigned SchedClass = HexagonMCInstrInfo::getDesc(MCII, MCI).getSchedClass();
729 switch (SchedClass) {
730 case Hexagon::Sched::ALU32_3op_tc_2_SLOT0123:
731 case Hexagon::Sched::ALU64_tc_2_SLOT23:
732 case Hexagon::Sched::ALU64_tc_3x_SLOT23:
733 case Hexagon::Sched::M_tc_2_SLOT23:
734 case Hexagon::Sched::M_tc_3x_SLOT23:
735 case Hexagon::Sched::S_2op_tc_2_SLOT23:
736 case Hexagon::Sched::S_3op_tc_2_SLOT23:
737 case Hexagon::Sched::S_3op_tc_3x_SLOT23:
738 return true;
739 }
740 return false;
741 }
742
replaceDuplex(MCContext & Context,MCInst & MCB,DuplexCandidate Candidate)743 void HexagonMCInstrInfo::replaceDuplex(MCContext &Context, MCInst &MCB,
744 DuplexCandidate Candidate) {
745 assert(Candidate.packetIndexI < MCB.size());
746 assert(Candidate.packetIndexJ < MCB.size());
747 assert(isBundle(MCB));
748 MCInst *Duplex =
749 deriveDuplex(Context, Candidate.iClass,
750 *MCB.getOperand(Candidate.packetIndexJ).getInst(),
751 *MCB.getOperand(Candidate.packetIndexI).getInst());
752 assert(Duplex != nullptr);
753 MCB.getOperand(Candidate.packetIndexI).setInst(Duplex);
754 MCB.erase(MCB.begin() + Candidate.packetIndexJ);
755 }
756
setInnerLoop(MCInst & MCI)757 void HexagonMCInstrInfo::setInnerLoop(MCInst &MCI) {
758 assert(isBundle(MCI));
759 MCOperand &Operand = MCI.getOperand(0);
760 Operand.setImm(Operand.getImm() | innerLoopMask);
761 }
762
setMemReorderDisabled(MCInst & MCI)763 void HexagonMCInstrInfo::setMemReorderDisabled(MCInst &MCI) {
764 assert(isBundle(MCI));
765 MCOperand &Operand = MCI.getOperand(0);
766 Operand.setImm(Operand.getImm() | memReorderDisabledMask);
767 assert(isMemReorderDisabled(MCI));
768 }
769
setMemStoreReorderEnabled(MCInst & MCI)770 void HexagonMCInstrInfo::setMemStoreReorderEnabled(MCInst &MCI) {
771 assert(isBundle(MCI));
772 MCOperand &Operand = MCI.getOperand(0);
773 Operand.setImm(Operand.getImm() | memStoreReorderEnabledMask);
774 assert(isMemStoreReorderEnabled(MCI));
775 }
setS23_2_reloc(MCExpr const & Expr,bool Val)776 void HexagonMCInstrInfo::setS23_2_reloc(MCExpr const &Expr, bool Val) {
777 HexagonMCExpr &HExpr =
778 const_cast<HexagonMCExpr &>(*llvm::cast<HexagonMCExpr>(&Expr));
779 HExpr.setS23_2_reloc(Val);
780 }
s23_2_reloc(MCExpr const & Expr)781 bool HexagonMCInstrInfo::s23_2_reloc(MCExpr const &Expr) {
782 HexagonMCExpr const &HExpr = *llvm::cast<HexagonMCExpr>(&Expr);
783 return HExpr.s23_2_reloc();
784 }
785
setOuterLoop(MCInst & MCI)786 void HexagonMCInstrInfo::setOuterLoop(MCInst &MCI) {
787 assert(isBundle(MCI));
788 MCOperand &Operand = MCI.getOperand(0);
789 Operand.setImm(Operand.getImm() | outerLoopMask);
790 }
791
SubregisterBit(unsigned Consumer,unsigned Producer,unsigned Producer2)792 unsigned HexagonMCInstrInfo::SubregisterBit(unsigned Consumer,
793 unsigned Producer,
794 unsigned Producer2) {
795 // If we're a single vector consumer of a double producer, set subreg bit
796 // based on if we're accessing the lower or upper register component
797 if (Producer >= Hexagon::W0 && Producer <= Hexagon::W15)
798 if (Consumer >= Hexagon::V0 && Consumer <= Hexagon::V31)
799 return (Consumer - Hexagon::V0) & 0x1;
800 if (Consumer == Producer2)
801 return 0x1;
802 return 0;
803 }
804 }
805