1 //===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SelectionDAG::Legalize method.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/ADT/SetVector.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/ADT/SmallSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineJumpTableInfo.h"
21 #include "llvm/CodeGen/SelectionDAG.h"
22 #include "llvm/CodeGen/SelectionDAGNodes.h"
23 #include "llvm/IR/CallingConv.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/DebugInfo.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetFrameLowering.h"
35 #include "llvm/Target/TargetLowering.h"
36 #include "llvm/Target/TargetMachine.h"
37 #include "llvm/Target/TargetSubtargetInfo.h"
38 using namespace llvm;
39
40 #define DEBUG_TYPE "legalizedag"
41
42 namespace {
43
44 struct FloatSignAsInt;
45
46 //===----------------------------------------------------------------------===//
47 /// This takes an arbitrary SelectionDAG as input and
48 /// hacks on it until the target machine can handle it. This involves
49 /// eliminating value sizes the machine cannot handle (promoting small sizes to
50 /// large sizes or splitting up large values into small values) as well as
51 /// eliminating operations the machine cannot handle.
52 ///
53 /// This code also does a small amount of optimization and recognition of idioms
54 /// as part of its processing. For example, if a target does not support a
55 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
56 /// will attempt merge setcc and brc instructions into brcc's.
57 ///
58 class SelectionDAGLegalize {
59 const TargetMachine &TM;
60 const TargetLowering &TLI;
61 SelectionDAG &DAG;
62
63 /// \brief The set of nodes which have already been legalized. We hold a
64 /// reference to it in order to update as necessary on node deletion.
65 SmallPtrSetImpl<SDNode *> &LegalizedNodes;
66
67 /// \brief A set of all the nodes updated during legalization.
68 SmallSetVector<SDNode *, 16> *UpdatedNodes;
69
getSetCCResultType(EVT VT) const70 EVT getSetCCResultType(EVT VT) const {
71 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
72 }
73
74 // Libcall insertion helpers.
75
76 public:
SelectionDAGLegalize(SelectionDAG & DAG,SmallPtrSetImpl<SDNode * > & LegalizedNodes,SmallSetVector<SDNode *,16> * UpdatedNodes=nullptr)77 SelectionDAGLegalize(SelectionDAG &DAG,
78 SmallPtrSetImpl<SDNode *> &LegalizedNodes,
79 SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr)
80 : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG),
81 LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {}
82
83 /// \brief Legalizes the given operation.
84 void LegalizeOp(SDNode *Node);
85
86 private:
87 SDValue OptimizeFloatStore(StoreSDNode *ST);
88
89 void LegalizeLoadOps(SDNode *Node);
90 void LegalizeStoreOps(SDNode *Node);
91
92 /// Some targets cannot handle a variable
93 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it
94 /// is necessary to spill the vector being inserted into to memory, perform
95 /// the insert there, and then read the result back.
96 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
97 const SDLoc &dl);
98 SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx,
99 const SDLoc &dl);
100
101 /// Return a vector shuffle operation which
102 /// performs the same shuffe in terms of order or result bytes, but on a type
103 /// whose vector element type is narrower than the original shuffle type.
104 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
105 SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, const SDLoc &dl,
106 SDValue N1, SDValue N2,
107 ArrayRef<int> Mask) const;
108
109 bool LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
110 bool &NeedInvert, const SDLoc &dl);
111
112 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
113 SDValue ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, const SDValue *Ops,
114 unsigned NumOps, bool isSigned, const SDLoc &dl);
115
116 std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC,
117 SDNode *Node, bool isSigned);
118 SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
119 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
120 RTLIB::Libcall Call_F128,
121 RTLIB::Libcall Call_PPCF128);
122 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
123 RTLIB::Libcall Call_I8,
124 RTLIB::Libcall Call_I16,
125 RTLIB::Libcall Call_I32,
126 RTLIB::Libcall Call_I64,
127 RTLIB::Libcall Call_I128);
128 void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
129 void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
130
131 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT,
132 const SDLoc &dl);
133 SDValue ExpandBUILD_VECTOR(SDNode *Node);
134 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
135 void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
136 SmallVectorImpl<SDValue> &Results);
137 void getSignAsIntValue(FloatSignAsInt &State, const SDLoc &DL,
138 SDValue Value) const;
139 SDValue modifySignAsInt(const FloatSignAsInt &State, const SDLoc &DL,
140 SDValue NewIntValue) const;
141 SDValue ExpandFCOPYSIGN(SDNode *Node) const;
142 SDValue ExpandFABS(SDNode *Node) const;
143 SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT,
144 const SDLoc &dl);
145 SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned,
146 const SDLoc &dl);
147 SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned,
148 const SDLoc &dl);
149
150 SDValue ExpandBITREVERSE(SDValue Op, const SDLoc &dl);
151 SDValue ExpandBSWAP(SDValue Op, const SDLoc &dl);
152 SDValue ExpandBitCount(unsigned Opc, SDValue Op, const SDLoc &dl);
153
154 SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
155 SDValue ExpandInsertToVectorThroughStack(SDValue Op);
156 SDValue ExpandVectorBuildThroughStack(SDNode* Node);
157
158 SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP);
159 SDValue ExpandConstant(ConstantSDNode *CP);
160
161 // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall
162 bool ExpandNode(SDNode *Node);
163 void ConvertNodeToLibcall(SDNode *Node);
164 void PromoteNode(SDNode *Node);
165
166 public:
167 // Node replacement helpers
ReplacedNode(SDNode * N)168 void ReplacedNode(SDNode *N) {
169 LegalizedNodes.erase(N);
170 if (UpdatedNodes)
171 UpdatedNodes->insert(N);
172 }
ReplaceNode(SDNode * Old,SDNode * New)173 void ReplaceNode(SDNode *Old, SDNode *New) {
174 DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
175 dbgs() << " with: "; New->dump(&DAG));
176
177 assert(Old->getNumValues() == New->getNumValues() &&
178 "Replacing one node with another that produces a different number "
179 "of values!");
180 DAG.ReplaceAllUsesWith(Old, New);
181 if (UpdatedNodes)
182 UpdatedNodes->insert(New);
183 ReplacedNode(Old);
184 }
ReplaceNode(SDValue Old,SDValue New)185 void ReplaceNode(SDValue Old, SDValue New) {
186 DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
187 dbgs() << " with: "; New->dump(&DAG));
188
189 DAG.ReplaceAllUsesWith(Old, New);
190 if (UpdatedNodes)
191 UpdatedNodes->insert(New.getNode());
192 ReplacedNode(Old.getNode());
193 }
ReplaceNode(SDNode * Old,const SDValue * New)194 void ReplaceNode(SDNode *Old, const SDValue *New) {
195 DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG));
196
197 DAG.ReplaceAllUsesWith(Old, New);
198 for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) {
199 DEBUG(dbgs() << (i == 0 ? " with: "
200 : " and: ");
201 New[i]->dump(&DAG));
202 if (UpdatedNodes)
203 UpdatedNodes->insert(New[i].getNode());
204 }
205 ReplacedNode(Old);
206 }
207 };
208 }
209
210 /// Return a vector shuffle operation which
211 /// performs the same shuffe in terms of order or result bytes, but on a type
212 /// whose vector element type is narrower than the original shuffle type.
213 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
ShuffleWithNarrowerEltType(EVT NVT,EVT VT,const SDLoc & dl,SDValue N1,SDValue N2,ArrayRef<int> Mask) const214 SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType(
215 EVT NVT, EVT VT, const SDLoc &dl, SDValue N1, SDValue N2,
216 ArrayRef<int> Mask) const {
217 unsigned NumMaskElts = VT.getVectorNumElements();
218 unsigned NumDestElts = NVT.getVectorNumElements();
219 unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
220
221 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
222
223 if (NumEltsGrowth == 1)
224 return DAG.getVectorShuffle(NVT, dl, N1, N2, Mask);
225
226 SmallVector<int, 8> NewMask;
227 for (unsigned i = 0; i != NumMaskElts; ++i) {
228 int Idx = Mask[i];
229 for (unsigned j = 0; j != NumEltsGrowth; ++j) {
230 if (Idx < 0)
231 NewMask.push_back(-1);
232 else
233 NewMask.push_back(Idx * NumEltsGrowth + j);
234 }
235 }
236 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
237 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
238 return DAG.getVectorShuffle(NVT, dl, N1, N2, NewMask);
239 }
240
241 /// Expands the ConstantFP node to an integer constant or
242 /// a load from the constant pool.
243 SDValue
ExpandConstantFP(ConstantFPSDNode * CFP,bool UseCP)244 SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) {
245 bool Extend = false;
246 SDLoc dl(CFP);
247
248 // If a FP immediate is precise when represented as a float and if the
249 // target can do an extending load from float to double, we put it into
250 // the constant pool as a float, even if it's is statically typed as a
251 // double. This shrinks FP constants and canonicalizes them for targets where
252 // an FP extending load is the same cost as a normal load (such as on the x87
253 // fp stack or PPC FP unit).
254 EVT VT = CFP->getValueType(0);
255 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
256 if (!UseCP) {
257 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
258 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl,
259 (VT == MVT::f64) ? MVT::i64 : MVT::i32);
260 }
261
262 EVT OrigVT = VT;
263 EVT SVT = VT;
264 while (SVT != MVT::f32 && SVT != MVT::f16) {
265 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
266 if (ConstantFPSDNode::isValueValidForType(SVT, CFP->getValueAPF()) &&
267 // Only do this if the target has a native EXTLOAD instruction from
268 // smaller type.
269 TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) &&
270 TLI.ShouldShrinkFPConstant(OrigVT)) {
271 Type *SType = SVT.getTypeForEVT(*DAG.getContext());
272 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
273 VT = SVT;
274 Extend = true;
275 }
276 }
277
278 SDValue CPIdx =
279 DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout()));
280 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
281 if (Extend) {
282 SDValue Result = DAG.getExtLoad(
283 ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx,
284 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT,
285 false, false, false, Alignment);
286 return Result;
287 }
288 SDValue Result =
289 DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
290 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
291 false, false, false, Alignment);
292 return Result;
293 }
294
295 /// Expands the Constant node to a load from the constant pool.
ExpandConstant(ConstantSDNode * CP)296 SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) {
297 SDLoc dl(CP);
298 EVT VT = CP->getValueType(0);
299 SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(),
300 TLI.getPointerTy(DAG.getDataLayout()));
301 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
302 SDValue Result =
303 DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
304 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
305 false, false, false, Alignment);
306 return Result;
307 }
308
309 /// Some target cannot handle a variable insertion index for the
310 /// INSERT_VECTOR_ELT instruction. In this case, it
311 /// is necessary to spill the vector being inserted into to memory, perform
312 /// the insert there, and then read the result back.
PerformInsertVectorEltInMemory(SDValue Vec,SDValue Val,SDValue Idx,const SDLoc & dl)313 SDValue SelectionDAGLegalize::PerformInsertVectorEltInMemory(SDValue Vec,
314 SDValue Val,
315 SDValue Idx,
316 const SDLoc &dl) {
317 SDValue Tmp1 = Vec;
318 SDValue Tmp2 = Val;
319 SDValue Tmp3 = Idx;
320
321 // If the target doesn't support this, we have to spill the input vector
322 // to a temporary stack slot, update the element, then reload it. This is
323 // badness. We could also load the value into a vector register (either
324 // with a "move to register" or "extload into register" instruction, then
325 // permute it into place, if the idx is a constant and if the idx is
326 // supported by the target.
327 EVT VT = Tmp1.getValueType();
328 EVT EltVT = VT.getVectorElementType();
329 EVT IdxVT = Tmp3.getValueType();
330 EVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
331 SDValue StackPtr = DAG.CreateStackTemporary(VT);
332
333 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
334
335 // Store the vector.
336 SDValue Ch = DAG.getStore(
337 DAG.getEntryNode(), dl, Tmp1, StackPtr,
338 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI), false,
339 false, 0);
340
341 // Truncate or zero extend offset to target pointer type.
342 Tmp3 = DAG.getZExtOrTrunc(Tmp3, dl, PtrVT);
343 // Add the offset to the index.
344 unsigned EltSize = EltVT.getSizeInBits()/8;
345 Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,
346 DAG.getConstant(EltSize, dl, IdxVT));
347 SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
348 // Store the scalar value.
349 Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT,
350 false, false, 0);
351 // Load the updated vector.
352 return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack(
353 DAG.getMachineFunction(), SPFI),
354 false, false, false, 0);
355 }
356
ExpandINSERT_VECTOR_ELT(SDValue Vec,SDValue Val,SDValue Idx,const SDLoc & dl)357 SDValue SelectionDAGLegalize::ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
358 SDValue Idx,
359 const SDLoc &dl) {
360 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
361 // SCALAR_TO_VECTOR requires that the type of the value being inserted
362 // match the element type of the vector being created, except for
363 // integers in which case the inserted value can be over width.
364 EVT EltVT = Vec.getValueType().getVectorElementType();
365 if (Val.getValueType() == EltVT ||
366 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
367 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
368 Vec.getValueType(), Val);
369
370 unsigned NumElts = Vec.getValueType().getVectorNumElements();
371 // We generate a shuffle of InVec and ScVec, so the shuffle mask
372 // should be 0,1,2,3,4,5... with the appropriate element replaced with
373 // elt 0 of the RHS.
374 SmallVector<int, 8> ShufOps;
375 for (unsigned i = 0; i != NumElts; ++i)
376 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
377
378 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, ShufOps);
379 }
380 }
381 return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
382 }
383
OptimizeFloatStore(StoreSDNode * ST)384 SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
385 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
386 // FIXME: We shouldn't do this for TargetConstantFP's.
387 // FIXME: move this to the DAG Combiner! Note that we can't regress due
388 // to phase ordering between legalized code and the dag combiner. This
389 // probably means that we need to integrate dag combiner and legalizer
390 // together.
391 // We generally can't do this one for long doubles.
392 SDValue Chain = ST->getChain();
393 SDValue Ptr = ST->getBasePtr();
394 unsigned Alignment = ST->getAlignment();
395 bool isVolatile = ST->isVolatile();
396 bool isNonTemporal = ST->isNonTemporal();
397 AAMDNodes AAInfo = ST->getAAInfo();
398 SDLoc dl(ST);
399 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
400 if (CFP->getValueType(0) == MVT::f32 &&
401 TLI.isTypeLegal(MVT::i32)) {
402 SDValue Con = DAG.getConstant(CFP->getValueAPF().
403 bitcastToAPInt().zextOrTrunc(32),
404 SDLoc(CFP), MVT::i32);
405 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
406 isVolatile, isNonTemporal, Alignment, AAInfo);
407 }
408
409 if (CFP->getValueType(0) == MVT::f64) {
410 // If this target supports 64-bit registers, do a single 64-bit store.
411 if (TLI.isTypeLegal(MVT::i64)) {
412 SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
413 zextOrTrunc(64), SDLoc(CFP), MVT::i64);
414 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
415 isVolatile, isNonTemporal, Alignment, AAInfo);
416 }
417
418 if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) {
419 // Otherwise, if the target supports 32-bit registers, use 2 32-bit
420 // stores. If the target supports neither 32- nor 64-bits, this
421 // xform is certainly not worth it.
422 const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt();
423 SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32);
424 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32);
425 if (DAG.getDataLayout().isBigEndian())
426 std::swap(Lo, Hi);
427
428 Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), isVolatile,
429 isNonTemporal, Alignment, AAInfo);
430 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
431 DAG.getConstant(4, dl, Ptr.getValueType()));
432 Hi = DAG.getStore(Chain, dl, Hi, Ptr,
433 ST->getPointerInfo().getWithOffset(4),
434 isVolatile, isNonTemporal, MinAlign(Alignment, 4U),
435 AAInfo);
436
437 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
438 }
439 }
440 }
441 return SDValue(nullptr, 0);
442 }
443
LegalizeStoreOps(SDNode * Node)444 void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) {
445 StoreSDNode *ST = cast<StoreSDNode>(Node);
446 SDValue Chain = ST->getChain();
447 SDValue Ptr = ST->getBasePtr();
448 SDLoc dl(Node);
449
450 unsigned Alignment = ST->getAlignment();
451 bool isVolatile = ST->isVolatile();
452 bool isNonTemporal = ST->isNonTemporal();
453 AAMDNodes AAInfo = ST->getAAInfo();
454
455 if (!ST->isTruncatingStore()) {
456 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
457 ReplaceNode(ST, OptStore);
458 return;
459 }
460
461 {
462 SDValue Value = ST->getValue();
463 MVT VT = Value.getSimpleValueType();
464 switch (TLI.getOperationAction(ISD::STORE, VT)) {
465 default: llvm_unreachable("This action is not supported yet!");
466 case TargetLowering::Legal: {
467 // If this is an unaligned store and the target doesn't support it,
468 // expand it.
469 EVT MemVT = ST->getMemoryVT();
470 unsigned AS = ST->getAddressSpace();
471 unsigned Align = ST->getAlignment();
472 const DataLayout &DL = DAG.getDataLayout();
473 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) {
474 SDValue Result = TLI.expandUnalignedStore(ST, DAG);
475 ReplaceNode(SDValue(ST, 0), Result);
476 }
477 break;
478 }
479 case TargetLowering::Custom: {
480 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
481 if (Res && Res != SDValue(Node, 0))
482 ReplaceNode(SDValue(Node, 0), Res);
483 return;
484 }
485 case TargetLowering::Promote: {
486 MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT);
487 assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
488 "Can only promote stores to same size type");
489 Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value);
490 SDValue Result =
491 DAG.getStore(Chain, dl, Value, Ptr,
492 ST->getPointerInfo(), isVolatile,
493 isNonTemporal, Alignment, AAInfo);
494 ReplaceNode(SDValue(Node, 0), Result);
495 break;
496 }
497 }
498 return;
499 }
500 } else {
501 SDValue Value = ST->getValue();
502
503 EVT StVT = ST->getMemoryVT();
504 unsigned StWidth = StVT.getSizeInBits();
505 auto &DL = DAG.getDataLayout();
506
507 if (StWidth != StVT.getStoreSizeInBits()) {
508 // Promote to a byte-sized store with upper bits zero if not
509 // storing an integral number of bytes. For example, promote
510 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
511 EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
512 StVT.getStoreSizeInBits());
513 Value = DAG.getZeroExtendInReg(Value, dl, StVT);
514 SDValue Result =
515 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
516 NVT, isVolatile, isNonTemporal, Alignment, AAInfo);
517 ReplaceNode(SDValue(Node, 0), Result);
518 } else if (StWidth & (StWidth - 1)) {
519 // If not storing a power-of-2 number of bits, expand as two stores.
520 assert(!StVT.isVector() && "Unsupported truncstore!");
521 unsigned RoundWidth = 1 << Log2_32(StWidth);
522 assert(RoundWidth < StWidth);
523 unsigned ExtraWidth = StWidth - RoundWidth;
524 assert(ExtraWidth < RoundWidth);
525 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
526 "Store size not an integral number of bytes!");
527 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
528 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
529 SDValue Lo, Hi;
530 unsigned IncrementSize;
531
532 if (DL.isLittleEndian()) {
533 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
534 // Store the bottom RoundWidth bits.
535 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
536 RoundVT,
537 isVolatile, isNonTemporal, Alignment,
538 AAInfo);
539
540 // Store the remaining ExtraWidth bits.
541 IncrementSize = RoundWidth / 8;
542 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
543 DAG.getConstant(IncrementSize, dl,
544 Ptr.getValueType()));
545 Hi = DAG.getNode(
546 ISD::SRL, dl, Value.getValueType(), Value,
547 DAG.getConstant(RoundWidth, dl,
548 TLI.getShiftAmountTy(Value.getValueType(), DL)));
549 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr,
550 ST->getPointerInfo().getWithOffset(IncrementSize),
551 ExtraVT, isVolatile, isNonTemporal,
552 MinAlign(Alignment, IncrementSize), AAInfo);
553 } else {
554 // Big endian - avoid unaligned stores.
555 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
556 // Store the top RoundWidth bits.
557 Hi = DAG.getNode(
558 ISD::SRL, dl, Value.getValueType(), Value,
559 DAG.getConstant(ExtraWidth, dl,
560 TLI.getShiftAmountTy(Value.getValueType(), DL)));
561 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(),
562 RoundVT, isVolatile, isNonTemporal, Alignment,
563 AAInfo);
564
565 // Store the remaining ExtraWidth bits.
566 IncrementSize = RoundWidth / 8;
567 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
568 DAG.getConstant(IncrementSize, dl,
569 Ptr.getValueType()));
570 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr,
571 ST->getPointerInfo().getWithOffset(IncrementSize),
572 ExtraVT, isVolatile, isNonTemporal,
573 MinAlign(Alignment, IncrementSize), AAInfo);
574 }
575
576 // The order of the stores doesn't matter.
577 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
578 ReplaceNode(SDValue(Node, 0), Result);
579 } else {
580 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
581 default: llvm_unreachable("This action is not supported yet!");
582 case TargetLowering::Legal: {
583 EVT MemVT = ST->getMemoryVT();
584 unsigned AS = ST->getAddressSpace();
585 unsigned Align = ST->getAlignment();
586 // If this is an unaligned store and the target doesn't support it,
587 // expand it.
588 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) {
589 SDValue Result = TLI.expandUnalignedStore(ST, DAG);
590 ReplaceNode(SDValue(ST, 0), Result);
591 }
592 break;
593 }
594 case TargetLowering::Custom: {
595 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
596 if (Res && Res != SDValue(Node, 0))
597 ReplaceNode(SDValue(Node, 0), Res);
598 return;
599 }
600 case TargetLowering::Expand:
601 assert(!StVT.isVector() &&
602 "Vector Stores are handled in LegalizeVectorOps");
603
604 // TRUNCSTORE:i16 i32 -> STORE i16
605 assert(TLI.isTypeLegal(StVT) &&
606 "Do not know how to expand this store!");
607 Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value);
608 SDValue Result =
609 DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
610 isVolatile, isNonTemporal, Alignment, AAInfo);
611 ReplaceNode(SDValue(Node, 0), Result);
612 break;
613 }
614 }
615 }
616 }
617
LegalizeLoadOps(SDNode * Node)618 void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) {
619 LoadSDNode *LD = cast<LoadSDNode>(Node);
620 SDValue Chain = LD->getChain(); // The chain.
621 SDValue Ptr = LD->getBasePtr(); // The base pointer.
622 SDValue Value; // The value returned by the load op.
623 SDLoc dl(Node);
624
625 ISD::LoadExtType ExtType = LD->getExtensionType();
626 if (ExtType == ISD::NON_EXTLOAD) {
627 MVT VT = Node->getSimpleValueType(0);
628 SDValue RVal = SDValue(Node, 0);
629 SDValue RChain = SDValue(Node, 1);
630
631 switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
632 default: llvm_unreachable("This action is not supported yet!");
633 case TargetLowering::Legal: {
634 EVT MemVT = LD->getMemoryVT();
635 unsigned AS = LD->getAddressSpace();
636 unsigned Align = LD->getAlignment();
637 const DataLayout &DL = DAG.getDataLayout();
638 // If this is an unaligned load and the target doesn't support it,
639 // expand it.
640 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) {
641 std::tie(RVal, RChain) = TLI.expandUnalignedLoad(LD, DAG);
642 }
643 break;
644 }
645 case TargetLowering::Custom: {
646 if (SDValue Res = TLI.LowerOperation(RVal, DAG)) {
647 RVal = Res;
648 RChain = Res.getValue(1);
649 }
650 break;
651 }
652 case TargetLowering::Promote: {
653 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
654 assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
655 "Can only promote loads to same size type");
656
657 SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand());
658 RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res);
659 RChain = Res.getValue(1);
660 break;
661 }
662 }
663 if (RChain.getNode() != Node) {
664 assert(RVal.getNode() != Node && "Load must be completely replaced");
665 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal);
666 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain);
667 if (UpdatedNodes) {
668 UpdatedNodes->insert(RVal.getNode());
669 UpdatedNodes->insert(RChain.getNode());
670 }
671 ReplacedNode(Node);
672 }
673 return;
674 }
675
676 EVT SrcVT = LD->getMemoryVT();
677 unsigned SrcWidth = SrcVT.getSizeInBits();
678 unsigned Alignment = LD->getAlignment();
679 bool isVolatile = LD->isVolatile();
680 bool isNonTemporal = LD->isNonTemporal();
681 bool isInvariant = LD->isInvariant();
682 AAMDNodes AAInfo = LD->getAAInfo();
683
684 if (SrcWidth != SrcVT.getStoreSizeInBits() &&
685 // Some targets pretend to have an i1 loading operation, and actually
686 // load an i8. This trick is correct for ZEXTLOAD because the top 7
687 // bits are guaranteed to be zero; it helps the optimizers understand
688 // that these bits are zero. It is also useful for EXTLOAD, since it
689 // tells the optimizers that those bits are undefined. It would be
690 // nice to have an effective generic way of getting these benefits...
691 // Until such a way is found, don't insist on promoting i1 here.
692 (SrcVT != MVT::i1 ||
693 TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) ==
694 TargetLowering::Promote)) {
695 // Promote to a byte-sized load if not loading an integral number of
696 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
697 unsigned NewWidth = SrcVT.getStoreSizeInBits();
698 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
699 SDValue Ch;
700
701 // The extra bits are guaranteed to be zero, since we stored them that
702 // way. A zext load from NVT thus automatically gives zext from SrcVT.
703
704 ISD::LoadExtType NewExtType =
705 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
706
707 SDValue Result =
708 DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
709 Chain, Ptr, LD->getPointerInfo(),
710 NVT, isVolatile, isNonTemporal, isInvariant, Alignment,
711 AAInfo);
712
713 Ch = Result.getValue(1); // The chain.
714
715 if (ExtType == ISD::SEXTLOAD)
716 // Having the top bits zero doesn't help when sign extending.
717 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
718 Result.getValueType(),
719 Result, DAG.getValueType(SrcVT));
720 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
721 // All the top bits are guaranteed to be zero - inform the optimizers.
722 Result = DAG.getNode(ISD::AssertZext, dl,
723 Result.getValueType(), Result,
724 DAG.getValueType(SrcVT));
725
726 Value = Result;
727 Chain = Ch;
728 } else if (SrcWidth & (SrcWidth - 1)) {
729 // If not loading a power-of-2 number of bits, expand as two loads.
730 assert(!SrcVT.isVector() && "Unsupported extload!");
731 unsigned RoundWidth = 1 << Log2_32(SrcWidth);
732 assert(RoundWidth < SrcWidth);
733 unsigned ExtraWidth = SrcWidth - RoundWidth;
734 assert(ExtraWidth < RoundWidth);
735 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
736 "Load size not an integral number of bytes!");
737 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
738 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
739 SDValue Lo, Hi, Ch;
740 unsigned IncrementSize;
741 auto &DL = DAG.getDataLayout();
742
743 if (DL.isLittleEndian()) {
744 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
745 // Load the bottom RoundWidth bits.
746 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0),
747 Chain, Ptr,
748 LD->getPointerInfo(), RoundVT, isVolatile,
749 isNonTemporal, isInvariant, Alignment, AAInfo);
750
751 // Load the remaining ExtraWidth bits.
752 IncrementSize = RoundWidth / 8;
753 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
754 DAG.getConstant(IncrementSize, dl,
755 Ptr.getValueType()));
756 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
757 LD->getPointerInfo().getWithOffset(IncrementSize),
758 ExtraVT, isVolatile, isNonTemporal, isInvariant,
759 MinAlign(Alignment, IncrementSize), AAInfo);
760
761 // Build a factor node to remember that this load is independent of
762 // the other one.
763 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
764 Hi.getValue(1));
765
766 // Move the top bits to the right place.
767 Hi = DAG.getNode(
768 ISD::SHL, dl, Hi.getValueType(), Hi,
769 DAG.getConstant(RoundWidth, dl,
770 TLI.getShiftAmountTy(Hi.getValueType(), DL)));
771
772 // Join the hi and lo parts.
773 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
774 } else {
775 // Big endian - avoid unaligned loads.
776 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
777 // Load the top RoundWidth bits.
778 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
779 LD->getPointerInfo(), RoundVT, isVolatile,
780 isNonTemporal, isInvariant, Alignment, AAInfo);
781
782 // Load the remaining ExtraWidth bits.
783 IncrementSize = RoundWidth / 8;
784 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
785 DAG.getConstant(IncrementSize, dl,
786 Ptr.getValueType()));
787 Lo = DAG.getExtLoad(ISD::ZEXTLOAD,
788 dl, Node->getValueType(0), Chain, Ptr,
789 LD->getPointerInfo().getWithOffset(IncrementSize),
790 ExtraVT, isVolatile, isNonTemporal, isInvariant,
791 MinAlign(Alignment, IncrementSize), AAInfo);
792
793 // Build a factor node to remember that this load is independent of
794 // the other one.
795 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
796 Hi.getValue(1));
797
798 // Move the top bits to the right place.
799 Hi = DAG.getNode(
800 ISD::SHL, dl, Hi.getValueType(), Hi,
801 DAG.getConstant(ExtraWidth, dl,
802 TLI.getShiftAmountTy(Hi.getValueType(), DL)));
803
804 // Join the hi and lo parts.
805 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
806 }
807
808 Chain = Ch;
809 } else {
810 bool isCustom = false;
811 switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0),
812 SrcVT.getSimpleVT())) {
813 default: llvm_unreachable("This action is not supported yet!");
814 case TargetLowering::Custom:
815 isCustom = true;
816 // FALLTHROUGH
817 case TargetLowering::Legal: {
818 Value = SDValue(Node, 0);
819 Chain = SDValue(Node, 1);
820
821 if (isCustom) {
822 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) {
823 Value = Res;
824 Chain = Res.getValue(1);
825 }
826 } else {
827 // If this is an unaligned load and the target doesn't support it,
828 // expand it.
829 EVT MemVT = LD->getMemoryVT();
830 unsigned AS = LD->getAddressSpace();
831 unsigned Align = LD->getAlignment();
832 const DataLayout &DL = DAG.getDataLayout();
833 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) {
834 std::tie(Value, Chain) = TLI.expandUnalignedLoad(LD, DAG);
835 }
836 }
837 break;
838 }
839 case TargetLowering::Expand:
840 EVT DestVT = Node->getValueType(0);
841 if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) {
842 // If the source type is not legal, see if there is a legal extload to
843 // an intermediate type that we can then extend further.
844 EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT());
845 if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT?
846 TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) {
847 // If we are loading a legal type, this is a non-extload followed by a
848 // full extend.
849 ISD::LoadExtType MidExtType =
850 (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType;
851
852 SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr,
853 SrcVT, LD->getMemOperand());
854 unsigned ExtendOp =
855 ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType);
856 Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load);
857 Chain = Load.getValue(1);
858 break;
859 }
860
861 // Handle the special case of fp16 extloads. EXTLOAD doesn't have the
862 // normal undefined upper bits behavior to allow using an in-reg extend
863 // with the illegal FP type, so load as an integer and do the
864 // from-integer conversion.
865 if (SrcVT.getScalarType() == MVT::f16) {
866 EVT ISrcVT = SrcVT.changeTypeToInteger();
867 EVT IDestVT = DestVT.changeTypeToInteger();
868 EVT LoadVT = TLI.getRegisterType(IDestVT.getSimpleVT());
869
870 SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, LoadVT,
871 Chain, Ptr, ISrcVT,
872 LD->getMemOperand());
873 Value = DAG.getNode(ISD::FP16_TO_FP, dl, DestVT, Result);
874 Chain = Result.getValue(1);
875 break;
876 }
877 }
878
879 assert(!SrcVT.isVector() &&
880 "Vector Loads are handled in LegalizeVectorOps");
881
882 // FIXME: This does not work for vectors on most targets. Sign-
883 // and zero-extend operations are currently folded into extending
884 // loads, whether they are legal or not, and then we end up here
885 // without any support for legalizing them.
886 assert(ExtType != ISD::EXTLOAD &&
887 "EXTLOAD should always be supported!");
888 // Turn the unsupported load into an EXTLOAD followed by an
889 // explicit zero/sign extend inreg.
890 SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl,
891 Node->getValueType(0),
892 Chain, Ptr, SrcVT,
893 LD->getMemOperand());
894 SDValue ValRes;
895 if (ExtType == ISD::SEXTLOAD)
896 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
897 Result.getValueType(),
898 Result, DAG.getValueType(SrcVT));
899 else
900 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType());
901 Value = ValRes;
902 Chain = Result.getValue(1);
903 break;
904 }
905 }
906
907 // Since loads produce two values, make sure to remember that we legalized
908 // both of them.
909 if (Chain.getNode() != Node) {
910 assert(Value.getNode() != Node && "Load must be completely replaced");
911 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value);
912 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
913 if (UpdatedNodes) {
914 UpdatedNodes->insert(Value.getNode());
915 UpdatedNodes->insert(Chain.getNode());
916 }
917 ReplacedNode(Node);
918 }
919 }
920
921 /// Return a legal replacement for the given operation, with all legal operands.
LegalizeOp(SDNode * Node)922 void SelectionDAGLegalize::LegalizeOp(SDNode *Node) {
923 DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG));
924
925 if (Node->getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
926 return;
927
928 #ifndef NDEBUG
929 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
930 assert((TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) ==
931 TargetLowering::TypeLegal ||
932 TLI.isTypeLegal(Node->getValueType(i))) &&
933 "Unexpected illegal type!");
934
935 for (const SDValue &Op : Node->op_values())
936 assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) ==
937 TargetLowering::TypeLegal ||
938 TLI.isTypeLegal(Op.getValueType()) ||
939 Op.getOpcode() == ISD::TargetConstant) &&
940 "Unexpected illegal type!");
941 #endif
942
943 // Figure out the correct action; the way to query this varies by opcode
944 TargetLowering::LegalizeAction Action = TargetLowering::Legal;
945 bool SimpleFinishLegalizing = true;
946 switch (Node->getOpcode()) {
947 case ISD::INTRINSIC_W_CHAIN:
948 case ISD::INTRINSIC_WO_CHAIN:
949 case ISD::INTRINSIC_VOID:
950 case ISD::STACKSAVE:
951 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
952 break;
953 case ISD::GET_DYNAMIC_AREA_OFFSET:
954 Action = TLI.getOperationAction(Node->getOpcode(),
955 Node->getValueType(0));
956 break;
957 case ISD::VAARG:
958 Action = TLI.getOperationAction(Node->getOpcode(),
959 Node->getValueType(0));
960 if (Action != TargetLowering::Promote)
961 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
962 break;
963 case ISD::FP_TO_FP16:
964 case ISD::SINT_TO_FP:
965 case ISD::UINT_TO_FP:
966 case ISD::EXTRACT_VECTOR_ELT:
967 Action = TLI.getOperationAction(Node->getOpcode(),
968 Node->getOperand(0).getValueType());
969 break;
970 case ISD::FP_ROUND_INREG:
971 case ISD::SIGN_EXTEND_INREG: {
972 EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
973 Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
974 break;
975 }
976 case ISD::ATOMIC_STORE: {
977 Action = TLI.getOperationAction(Node->getOpcode(),
978 Node->getOperand(2).getValueType());
979 break;
980 }
981 case ISD::SELECT_CC:
982 case ISD::SETCC:
983 case ISD::BR_CC: {
984 unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
985 Node->getOpcode() == ISD::SETCC ? 2 :
986 Node->getOpcode() == ISD::SETCCE ? 3 : 1;
987 unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
988 MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType();
989 ISD::CondCode CCCode =
990 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
991 Action = TLI.getCondCodeAction(CCCode, OpVT);
992 if (Action == TargetLowering::Legal) {
993 if (Node->getOpcode() == ISD::SELECT_CC)
994 Action = TLI.getOperationAction(Node->getOpcode(),
995 Node->getValueType(0));
996 else
997 Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
998 }
999 break;
1000 }
1001 case ISD::LOAD:
1002 case ISD::STORE:
1003 // FIXME: Model these properly. LOAD and STORE are complicated, and
1004 // STORE expects the unlegalized operand in some cases.
1005 SimpleFinishLegalizing = false;
1006 break;
1007 case ISD::CALLSEQ_START:
1008 case ISD::CALLSEQ_END:
1009 // FIXME: This shouldn't be necessary. These nodes have special properties
1010 // dealing with the recursive nature of legalization. Removing this
1011 // special case should be done as part of making LegalizeDAG non-recursive.
1012 SimpleFinishLegalizing = false;
1013 break;
1014 case ISD::EXTRACT_ELEMENT:
1015 case ISD::FLT_ROUNDS_:
1016 case ISD::FPOWI:
1017 case ISD::MERGE_VALUES:
1018 case ISD::EH_RETURN:
1019 case ISD::FRAME_TO_ARGS_OFFSET:
1020 case ISD::EH_SJLJ_SETJMP:
1021 case ISD::EH_SJLJ_LONGJMP:
1022 case ISD::EH_SJLJ_SETUP_DISPATCH:
1023 // These operations lie about being legal: when they claim to be legal,
1024 // they should actually be expanded.
1025 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1026 if (Action == TargetLowering::Legal)
1027 Action = TargetLowering::Expand;
1028 break;
1029 case ISD::INIT_TRAMPOLINE:
1030 case ISD::ADJUST_TRAMPOLINE:
1031 case ISD::FRAMEADDR:
1032 case ISD::RETURNADDR:
1033 // These operations lie about being legal: when they claim to be legal,
1034 // they should actually be custom-lowered.
1035 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1036 if (Action == TargetLowering::Legal)
1037 Action = TargetLowering::Custom;
1038 break;
1039 case ISD::READCYCLECOUNTER:
1040 // READCYCLECOUNTER returns an i64, even if type legalization might have
1041 // expanded that to several smaller types.
1042 Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64);
1043 break;
1044 case ISD::READ_REGISTER:
1045 case ISD::WRITE_REGISTER:
1046 // Named register is legal in the DAG, but blocked by register name
1047 // selection if not implemented by target (to chose the correct register)
1048 // They'll be converted to Copy(To/From)Reg.
1049 Action = TargetLowering::Legal;
1050 break;
1051 case ISD::DEBUGTRAP:
1052 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1053 if (Action == TargetLowering::Expand) {
1054 // replace ISD::DEBUGTRAP with ISD::TRAP
1055 SDValue NewVal;
1056 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(),
1057 Node->getOperand(0));
1058 ReplaceNode(Node, NewVal.getNode());
1059 LegalizeOp(NewVal.getNode());
1060 return;
1061 }
1062 break;
1063
1064 default:
1065 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
1066 Action = TargetLowering::Legal;
1067 } else {
1068 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1069 }
1070 break;
1071 }
1072
1073 if (SimpleFinishLegalizing) {
1074 SDNode *NewNode = Node;
1075 switch (Node->getOpcode()) {
1076 default: break;
1077 case ISD::SHL:
1078 case ISD::SRL:
1079 case ISD::SRA:
1080 case ISD::ROTL:
1081 case ISD::ROTR:
1082 // Legalizing shifts/rotates requires adjusting the shift amount
1083 // to the appropriate width.
1084 if (!Node->getOperand(1).getValueType().isVector()) {
1085 SDValue SAO =
1086 DAG.getShiftAmountOperand(Node->getOperand(0).getValueType(),
1087 Node->getOperand(1));
1088 HandleSDNode Handle(SAO);
1089 LegalizeOp(SAO.getNode());
1090 NewNode = DAG.UpdateNodeOperands(Node, Node->getOperand(0),
1091 Handle.getValue());
1092 }
1093 break;
1094 case ISD::SRL_PARTS:
1095 case ISD::SRA_PARTS:
1096 case ISD::SHL_PARTS:
1097 // Legalizing shifts/rotates requires adjusting the shift amount
1098 // to the appropriate width.
1099 if (!Node->getOperand(2).getValueType().isVector()) {
1100 SDValue SAO =
1101 DAG.getShiftAmountOperand(Node->getOperand(0).getValueType(),
1102 Node->getOperand(2));
1103 HandleSDNode Handle(SAO);
1104 LegalizeOp(SAO.getNode());
1105 NewNode = DAG.UpdateNodeOperands(Node, Node->getOperand(0),
1106 Node->getOperand(1),
1107 Handle.getValue());
1108 }
1109 break;
1110 }
1111
1112 if (NewNode != Node) {
1113 ReplaceNode(Node, NewNode);
1114 Node = NewNode;
1115 }
1116 switch (Action) {
1117 case TargetLowering::Legal:
1118 return;
1119 case TargetLowering::Custom: {
1120 // FIXME: The handling for custom lowering with multiple results is
1121 // a complete mess.
1122 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) {
1123 if (!(Res.getNode() != Node || Res.getResNo() != 0))
1124 return;
1125
1126 if (Node->getNumValues() == 1) {
1127 // We can just directly replace this node with the lowered value.
1128 ReplaceNode(SDValue(Node, 0), Res);
1129 return;
1130 }
1131
1132 SmallVector<SDValue, 8> ResultVals;
1133 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
1134 ResultVals.push_back(Res.getValue(i));
1135 ReplaceNode(Node, ResultVals.data());
1136 return;
1137 }
1138 }
1139 // FALL THROUGH
1140 case TargetLowering::Expand:
1141 if (ExpandNode(Node))
1142 return;
1143 // FALL THROUGH
1144 case TargetLowering::LibCall:
1145 ConvertNodeToLibcall(Node);
1146 return;
1147 case TargetLowering::Promote:
1148 PromoteNode(Node);
1149 return;
1150 }
1151 }
1152
1153 switch (Node->getOpcode()) {
1154 default:
1155 #ifndef NDEBUG
1156 dbgs() << "NODE: ";
1157 Node->dump( &DAG);
1158 dbgs() << "\n";
1159 #endif
1160 llvm_unreachable("Do not know how to legalize this operator!");
1161
1162 case ISD::CALLSEQ_START:
1163 case ISD::CALLSEQ_END:
1164 break;
1165 case ISD::LOAD: {
1166 return LegalizeLoadOps(Node);
1167 }
1168 case ISD::STORE: {
1169 return LegalizeStoreOps(Node);
1170 }
1171 }
1172 }
1173
ExpandExtractFromVectorThroughStack(SDValue Op)1174 SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1175 SDValue Vec = Op.getOperand(0);
1176 SDValue Idx = Op.getOperand(1);
1177 SDLoc dl(Op);
1178
1179 // Before we generate a new store to a temporary stack slot, see if there is
1180 // already one that we can use. There often is because when we scalarize
1181 // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole
1182 // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in
1183 // the vector. If all are expanded here, we don't want one store per vector
1184 // element.
1185
1186 // Caches for hasPredecessorHelper
1187 SmallPtrSet<const SDNode *, 32> Visited;
1188 SmallVector<const SDNode *, 16> Worklist;
1189 Worklist.push_back(Idx.getNode());
1190 SDValue StackPtr, Ch;
1191 for (SDNode::use_iterator UI = Vec.getNode()->use_begin(),
1192 UE = Vec.getNode()->use_end(); UI != UE; ++UI) {
1193 SDNode *User = *UI;
1194 if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) {
1195 if (ST->isIndexed() || ST->isTruncatingStore() ||
1196 ST->getValue() != Vec)
1197 continue;
1198
1199 // Make sure that nothing else could have stored into the destination of
1200 // this store.
1201 if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode()))
1202 continue;
1203
1204 // If the index is dependent on the store we will introduce a cycle when
1205 // creating the load (the load uses the index, and by replacing the chain
1206 // we will make the index dependent on the load).
1207 if (SDNode::hasPredecessorHelper(ST, Visited, Worklist))
1208 continue;
1209
1210 StackPtr = ST->getBasePtr();
1211 Ch = SDValue(ST, 0);
1212 break;
1213 }
1214 }
1215
1216 if (!Ch.getNode()) {
1217 // Store the value to a temporary stack slot, then LOAD the returned part.
1218 StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1219 Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
1220 MachinePointerInfo(), false, false, 0);
1221 }
1222
1223 // Add the offset to the index.
1224 unsigned EltSize =
1225 Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1226 Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1227 DAG.getConstant(EltSize, SDLoc(Vec), Idx.getValueType()));
1228
1229 Idx = DAG.getZExtOrTrunc(Idx, dl, TLI.getPointerTy(DAG.getDataLayout()));
1230 StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
1231
1232 SDValue NewLoad;
1233
1234 if (Op.getValueType().isVector())
1235 NewLoad = DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr,
1236 MachinePointerInfo(), false, false, false, 0);
1237 else
1238 NewLoad = DAG.getExtLoad(
1239 ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr, MachinePointerInfo(),
1240 Vec.getValueType().getVectorElementType(), false, false, false, 0);
1241
1242 // Replace the chain going out of the store, by the one out of the load.
1243 DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1));
1244
1245 // We introduced a cycle though, so update the loads operands, making sure
1246 // to use the original store's chain as an incoming chain.
1247 SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(),
1248 NewLoad->op_end());
1249 NewLoadOperands[0] = Ch;
1250 NewLoad =
1251 SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0);
1252 return NewLoad;
1253 }
1254
ExpandInsertToVectorThroughStack(SDValue Op)1255 SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) {
1256 assert(Op.getValueType().isVector() && "Non-vector insert subvector!");
1257
1258 SDValue Vec = Op.getOperand(0);
1259 SDValue Part = Op.getOperand(1);
1260 SDValue Idx = Op.getOperand(2);
1261 SDLoc dl(Op);
1262
1263 // Store the value to a temporary stack slot, then LOAD the returned part.
1264
1265 SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1266 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1267 MachinePointerInfo PtrInfo =
1268 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
1269
1270 // First store the whole vector.
1271 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo,
1272 false, false, 0);
1273
1274 // Then store the inserted part.
1275
1276 // Add the offset to the index.
1277 unsigned EltSize =
1278 Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1279
1280 Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1281 DAG.getConstant(EltSize, SDLoc(Vec), Idx.getValueType()));
1282 Idx = DAG.getZExtOrTrunc(Idx, dl, TLI.getPointerTy(DAG.getDataLayout()));
1283
1284 SDValue SubStackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx,
1285 StackPtr);
1286
1287 // Store the subvector.
1288 Ch = DAG.getStore(Ch, dl, Part, SubStackPtr,
1289 MachinePointerInfo(), false, false, 0);
1290
1291 // Finally, load the updated vector.
1292 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo,
1293 false, false, false, 0);
1294 }
1295
ExpandVectorBuildThroughStack(SDNode * Node)1296 SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1297 // We can't handle this case efficiently. Allocate a sufficiently
1298 // aligned object on the stack, store each element into it, then load
1299 // the result as a vector.
1300 // Create the stack frame object.
1301 EVT VT = Node->getValueType(0);
1302 EVT EltVT = VT.getVectorElementType();
1303 SDLoc dl(Node);
1304 SDValue FIPtr = DAG.CreateStackTemporary(VT);
1305 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1306 MachinePointerInfo PtrInfo =
1307 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
1308
1309 // Emit a store of each element to the stack slot.
1310 SmallVector<SDValue, 8> Stores;
1311 unsigned TypeByteSize = EltVT.getSizeInBits() / 8;
1312 // Store (in the right endianness) the elements to memory.
1313 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1314 // Ignore undef elements.
1315 if (Node->getOperand(i).isUndef()) continue;
1316
1317 unsigned Offset = TypeByteSize*i;
1318
1319 SDValue Idx = DAG.getConstant(Offset, dl, FIPtr.getValueType());
1320 Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1321
1322 // If the destination vector element type is narrower than the source
1323 // element type, only store the bits necessary.
1324 if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) {
1325 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
1326 Node->getOperand(i), Idx,
1327 PtrInfo.getWithOffset(Offset),
1328 EltVT, false, false, 0));
1329 } else
1330 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl,
1331 Node->getOperand(i), Idx,
1332 PtrInfo.getWithOffset(Offset),
1333 false, false, 0));
1334 }
1335
1336 SDValue StoreChain;
1337 if (!Stores.empty()) // Not all undef elements?
1338 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
1339 else
1340 StoreChain = DAG.getEntryNode();
1341
1342 // Result is a load from the stack slot.
1343 return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo,
1344 false, false, false, 0);
1345 }
1346
1347 namespace {
1348 /// Keeps track of state when getting the sign of a floating-point value as an
1349 /// integer.
1350 struct FloatSignAsInt {
1351 EVT FloatVT;
1352 SDValue Chain;
1353 SDValue FloatPtr;
1354 SDValue IntPtr;
1355 MachinePointerInfo IntPointerInfo;
1356 MachinePointerInfo FloatPointerInfo;
1357 SDValue IntValue;
1358 APInt SignMask;
1359 uint8_t SignBit;
1360 };
1361 }
1362
1363 /// Bitcast a floating-point value to an integer value. Only bitcast the part
1364 /// containing the sign bit if the target has no integer value capable of
1365 /// holding all bits of the floating-point value.
getSignAsIntValue(FloatSignAsInt & State,const SDLoc & DL,SDValue Value) const1366 void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State,
1367 const SDLoc &DL,
1368 SDValue Value) const {
1369 EVT FloatVT = Value.getValueType();
1370 unsigned NumBits = FloatVT.getSizeInBits();
1371 State.FloatVT = FloatVT;
1372 EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
1373 // Convert to an integer of the same size.
1374 if (TLI.isTypeLegal(IVT)) {
1375 State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value);
1376 State.SignMask = APInt::getSignBit(NumBits);
1377 State.SignBit = NumBits - 1;
1378 return;
1379 }
1380
1381 auto &DataLayout = DAG.getDataLayout();
1382 // Store the float to memory, then load the sign part out as an integer.
1383 MVT LoadTy = TLI.getRegisterType(*DAG.getContext(), MVT::i8);
1384 // First create a temporary that is aligned for both the load and store.
1385 SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
1386 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1387 // Then store the float to it.
1388 State.FloatPtr = StackPtr;
1389 MachineFunction &MF = DAG.getMachineFunction();
1390 State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI);
1391 State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr,
1392 State.FloatPointerInfo, false, false, 0);
1393
1394 SDValue IntPtr;
1395 if (DataLayout.isBigEndian()) {
1396 assert(FloatVT.isByteSized() && "Unsupported floating point type!");
1397 // Load out a legal integer with the same sign bit as the float.
1398 IntPtr = StackPtr;
1399 State.IntPointerInfo = State.FloatPointerInfo;
1400 } else {
1401 // Advance the pointer so that the loaded byte will contain the sign bit.
1402 unsigned ByteOffset = (FloatVT.getSizeInBits() / 8) - 1;
1403 IntPtr = DAG.getNode(ISD::ADD, DL, StackPtr.getValueType(), StackPtr,
1404 DAG.getConstant(ByteOffset, DL, StackPtr.getValueType()));
1405 State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI,
1406 ByteOffset);
1407 }
1408
1409 State.IntPtr = IntPtr;
1410 State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain,
1411 IntPtr, State.IntPointerInfo, MVT::i8,
1412 false, false, false, 0);
1413 State.SignMask = APInt::getOneBitSet(LoadTy.getSizeInBits(), 7);
1414 State.SignBit = 7;
1415 }
1416
1417 /// Replace the integer value produced by getSignAsIntValue() with a new value
1418 /// and cast the result back to a floating-point type.
modifySignAsInt(const FloatSignAsInt & State,const SDLoc & DL,SDValue NewIntValue) const1419 SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State,
1420 const SDLoc &DL,
1421 SDValue NewIntValue) const {
1422 if (!State.Chain)
1423 return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue);
1424
1425 // Override the part containing the sign bit in the value stored on the stack.
1426 SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr,
1427 State.IntPointerInfo, MVT::i8, false, false,
1428 0);
1429 return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr,
1430 State.FloatPointerInfo, false, false, false, 0);
1431 }
1432
ExpandFCOPYSIGN(SDNode * Node) const1433 SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const {
1434 SDLoc DL(Node);
1435 SDValue Mag = Node->getOperand(0);
1436 SDValue Sign = Node->getOperand(1);
1437
1438 // Get sign bit into an integer value.
1439 FloatSignAsInt SignAsInt;
1440 getSignAsIntValue(SignAsInt, DL, Sign);
1441
1442 EVT IntVT = SignAsInt.IntValue.getValueType();
1443 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT);
1444 SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue,
1445 SignMask);
1446
1447 // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X)
1448 EVT FloatVT = Mag.getValueType();
1449 if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) &&
1450 TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) {
1451 SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag);
1452 SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue);
1453 SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit,
1454 DAG.getConstant(0, DL, IntVT), ISD::SETNE);
1455 return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue);
1456 }
1457
1458 // Transform Mag value to integer, and clear the sign bit.
1459 FloatSignAsInt MagAsInt;
1460 getSignAsIntValue(MagAsInt, DL, Mag);
1461 EVT MagVT = MagAsInt.IntValue.getValueType();
1462 SDValue ClearSignMask = DAG.getConstant(~MagAsInt.SignMask, DL, MagVT);
1463 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, MagVT, MagAsInt.IntValue,
1464 ClearSignMask);
1465
1466 // Get the signbit at the right position for MagAsInt.
1467 int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit;
1468 if (SignBit.getValueSizeInBits() > ClearedSign.getValueSizeInBits()) {
1469 if (ShiftAmount > 0) {
1470 SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, IntVT);
1471 SignBit = DAG.getNode(ISD::SRL, DL, IntVT, SignBit, ShiftCnst);
1472 } else if (ShiftAmount < 0) {
1473 SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, IntVT);
1474 SignBit = DAG.getNode(ISD::SHL, DL, IntVT, SignBit, ShiftCnst);
1475 }
1476 SignBit = DAG.getNode(ISD::TRUNCATE, DL, MagVT, SignBit);
1477 } else if (SignBit.getValueSizeInBits() < ClearedSign.getValueSizeInBits()) {
1478 SignBit = DAG.getNode(ISD::ZERO_EXTEND, DL, MagVT, SignBit);
1479 if (ShiftAmount > 0) {
1480 SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, MagVT);
1481 SignBit = DAG.getNode(ISD::SRL, DL, MagVT, SignBit, ShiftCnst);
1482 } else if (ShiftAmount < 0) {
1483 SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, MagVT);
1484 SignBit = DAG.getNode(ISD::SHL, DL, MagVT, SignBit, ShiftCnst);
1485 }
1486 }
1487
1488 // Store the part with the modified sign and convert back to float.
1489 SDValue CopiedSign = DAG.getNode(ISD::OR, DL, MagVT, ClearedSign, SignBit);
1490 return modifySignAsInt(MagAsInt, DL, CopiedSign);
1491 }
1492
ExpandFABS(SDNode * Node) const1493 SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const {
1494 SDLoc DL(Node);
1495 SDValue Value = Node->getOperand(0);
1496
1497 // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal.
1498 EVT FloatVT = Value.getValueType();
1499 if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) {
1500 SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT);
1501 return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero);
1502 }
1503
1504 // Transform value to integer, clear the sign bit and transform back.
1505 FloatSignAsInt ValueAsInt;
1506 getSignAsIntValue(ValueAsInt, DL, Value);
1507 EVT IntVT = ValueAsInt.IntValue.getValueType();
1508 SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT);
1509 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue,
1510 ClearSignMask);
1511 return modifySignAsInt(ValueAsInt, DL, ClearedSign);
1512 }
1513
ExpandDYNAMIC_STACKALLOC(SDNode * Node,SmallVectorImpl<SDValue> & Results)1514 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1515 SmallVectorImpl<SDValue> &Results) {
1516 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1517 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1518 " not tell us which reg is the stack pointer!");
1519 SDLoc dl(Node);
1520 EVT VT = Node->getValueType(0);
1521 SDValue Tmp1 = SDValue(Node, 0);
1522 SDValue Tmp2 = SDValue(Node, 1);
1523 SDValue Tmp3 = Node->getOperand(2);
1524 SDValue Chain = Tmp1.getOperand(0);
1525
1526 // Chain the dynamic stack allocation so that it doesn't modify the stack
1527 // pointer when other instructions are using the stack.
1528 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, dl, true), dl);
1529
1530 SDValue Size = Tmp2.getOperand(1);
1531 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1532 Chain = SP.getValue(1);
1533 unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1534 unsigned StackAlign =
1535 DAG.getSubtarget().getFrameLowering()->getStackAlignment();
1536 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value
1537 if (Align > StackAlign)
1538 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1,
1539 DAG.getConstant(-(uint64_t)Align, dl, VT));
1540 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain
1541
1542 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true),
1543 DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);
1544
1545 Results.push_back(Tmp1);
1546 Results.push_back(Tmp2);
1547 }
1548
1549 /// Legalize a SETCC with given LHS and RHS and condition code CC on the current
1550 /// target.
1551 ///
1552 /// If the SETCC has been legalized using AND / OR, then the legalized node
1553 /// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert
1554 /// will be set to false.
1555 ///
1556 /// If the SETCC has been legalized by using getSetCCSwappedOperands(),
1557 /// then the values of LHS and RHS will be swapped, CC will be set to the
1558 /// new condition, and NeedInvert will be set to false.
1559 ///
1560 /// If the SETCC has been legalized using the inverse condcode, then LHS and
1561 /// RHS will be unchanged, CC will set to the inverted condcode, and NeedInvert
1562 /// will be set to true. The caller must invert the result of the SETCC with
1563 /// SelectionDAG::getLogicalNOT() or take equivalent action to swap the effect
1564 /// of a true/false result.
1565 ///
1566 /// \returns true if the SetCC has been legalized, false if it hasn't.
LegalizeSetCCCondCode(EVT VT,SDValue & LHS,SDValue & RHS,SDValue & CC,bool & NeedInvert,const SDLoc & dl)1567 bool SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT, SDValue &LHS,
1568 SDValue &RHS, SDValue &CC,
1569 bool &NeedInvert,
1570 const SDLoc &dl) {
1571 MVT OpVT = LHS.getSimpleValueType();
1572 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1573 NeedInvert = false;
1574 switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1575 default: llvm_unreachable("Unknown condition code action!");
1576 case TargetLowering::Legal:
1577 // Nothing to do.
1578 break;
1579 case TargetLowering::Expand: {
1580 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
1581 if (TLI.isCondCodeLegal(InvCC, OpVT)) {
1582 std::swap(LHS, RHS);
1583 CC = DAG.getCondCode(InvCC);
1584 return true;
1585 }
1586 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1587 unsigned Opc = 0;
1588 switch (CCCode) {
1589 default: llvm_unreachable("Don't know how to expand this condition!");
1590 case ISD::SETO:
1591 assert(TLI.getCondCodeAction(ISD::SETOEQ, OpVT)
1592 == TargetLowering::Legal
1593 && "If SETO is expanded, SETOEQ must be legal!");
1594 CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break;
1595 case ISD::SETUO:
1596 assert(TLI.getCondCodeAction(ISD::SETUNE, OpVT)
1597 == TargetLowering::Legal
1598 && "If SETUO is expanded, SETUNE must be legal!");
1599 CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR; break;
1600 case ISD::SETOEQ:
1601 case ISD::SETOGT:
1602 case ISD::SETOGE:
1603 case ISD::SETOLT:
1604 case ISD::SETOLE:
1605 case ISD::SETONE:
1606 case ISD::SETUEQ:
1607 case ISD::SETUNE:
1608 case ISD::SETUGT:
1609 case ISD::SETUGE:
1610 case ISD::SETULT:
1611 case ISD::SETULE:
1612 // If we are floating point, assign and break, otherwise fall through.
1613 if (!OpVT.isInteger()) {
1614 // We can use the 4th bit to tell if we are the unordered
1615 // or ordered version of the opcode.
1616 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
1617 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
1618 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
1619 break;
1620 }
1621 // Fallthrough if we are unsigned integer.
1622 case ISD::SETLE:
1623 case ISD::SETGT:
1624 case ISD::SETGE:
1625 case ISD::SETLT:
1626 // We only support using the inverted operation, which is computed above
1627 // and not a different manner of supporting expanding these cases.
1628 llvm_unreachable("Don't know how to expand this condition!");
1629 case ISD::SETNE:
1630 case ISD::SETEQ:
1631 // Try inverting the result of the inverse condition.
1632 InvCC = CCCode == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ;
1633 if (TLI.isCondCodeLegal(InvCC, OpVT)) {
1634 CC = DAG.getCondCode(InvCC);
1635 NeedInvert = true;
1636 return true;
1637 }
1638 // If inverting the condition didn't work then we have no means to expand
1639 // the condition.
1640 llvm_unreachable("Don't know how to expand this condition!");
1641 }
1642
1643 SDValue SetCC1, SetCC2;
1644 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
1645 // If we aren't the ordered or unorder operation,
1646 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
1647 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1648 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1649 } else {
1650 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
1651 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1);
1652 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2);
1653 }
1654 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1655 RHS = SDValue();
1656 CC = SDValue();
1657 return true;
1658 }
1659 }
1660 return false;
1661 }
1662
1663 /// Emit a store/load combination to the stack. This stores
1664 /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does
1665 /// a load from the stack slot to DestVT, extending it if needed.
1666 /// The resultant code need not be legal.
EmitStackConvert(SDValue SrcOp,EVT SlotVT,EVT DestVT,const SDLoc & dl)1667 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT,
1668 EVT DestVT, const SDLoc &dl) {
1669 // Create the stack frame object.
1670 unsigned SrcAlign = DAG.getDataLayout().getPrefTypeAlignment(
1671 SrcOp.getValueType().getTypeForEVT(*DAG.getContext()));
1672 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1673
1674 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1675 int SPFI = StackPtrFI->getIndex();
1676 MachinePointerInfo PtrInfo =
1677 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
1678
1679 unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
1680 unsigned SlotSize = SlotVT.getSizeInBits();
1681 unsigned DestSize = DestVT.getSizeInBits();
1682 Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
1683 unsigned DestAlign = DAG.getDataLayout().getPrefTypeAlignment(DestType);
1684
1685 // Emit a store to the stack slot. Use a truncstore if the input value is
1686 // later than DestVT.
1687 SDValue Store;
1688
1689 if (SrcSize > SlotSize)
1690 Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1691 PtrInfo, SlotVT, false, false, SrcAlign);
1692 else {
1693 assert(SrcSize == SlotSize && "Invalid store");
1694 Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1695 PtrInfo, false, false, SrcAlign);
1696 }
1697
1698 // Result is a load from the stack slot.
1699 if (SlotSize == DestSize)
1700 return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo,
1701 false, false, false, DestAlign);
1702
1703 assert(SlotSize < DestSize && "Unknown extension!");
1704 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr,
1705 PtrInfo, SlotVT, false, false, false, DestAlign);
1706 }
1707
ExpandSCALAR_TO_VECTOR(SDNode * Node)1708 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1709 SDLoc dl(Node);
1710 // Create a vector sized/aligned stack slot, store the value to element #0,
1711 // then load the whole vector back out.
1712 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1713
1714 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1715 int SPFI = StackPtrFI->getIndex();
1716
1717 SDValue Ch = DAG.getTruncStore(
1718 DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr,
1719 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI),
1720 Node->getValueType(0).getVectorElementType(), false, false, 0);
1721 return DAG.getLoad(
1722 Node->getValueType(0), dl, Ch, StackPtr,
1723 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI), false,
1724 false, false, 0);
1725 }
1726
1727 static bool
ExpandBVWithShuffles(SDNode * Node,SelectionDAG & DAG,const TargetLowering & TLI,SDValue & Res)1728 ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG,
1729 const TargetLowering &TLI, SDValue &Res) {
1730 unsigned NumElems = Node->getNumOperands();
1731 SDLoc dl(Node);
1732 EVT VT = Node->getValueType(0);
1733
1734 // Try to group the scalars into pairs, shuffle the pairs together, then
1735 // shuffle the pairs of pairs together, etc. until the vector has
1736 // been built. This will work only if all of the necessary shuffle masks
1737 // are legal.
1738
1739 // We do this in two phases; first to check the legality of the shuffles,
1740 // and next, assuming that all shuffles are legal, to create the new nodes.
1741 for (int Phase = 0; Phase < 2; ++Phase) {
1742 SmallVector<std::pair<SDValue, SmallVector<int, 16> >, 16> IntermedVals,
1743 NewIntermedVals;
1744 for (unsigned i = 0; i < NumElems; ++i) {
1745 SDValue V = Node->getOperand(i);
1746 if (V.isUndef())
1747 continue;
1748
1749 SDValue Vec;
1750 if (Phase)
1751 Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V);
1752 IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i)));
1753 }
1754
1755 while (IntermedVals.size() > 2) {
1756 NewIntermedVals.clear();
1757 for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) {
1758 // This vector and the next vector are shuffled together (simply to
1759 // append the one to the other).
1760 SmallVector<int, 16> ShuffleVec(NumElems, -1);
1761
1762 SmallVector<int, 16> FinalIndices;
1763 FinalIndices.reserve(IntermedVals[i].second.size() +
1764 IntermedVals[i+1].second.size());
1765
1766 int k = 0;
1767 for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f;
1768 ++j, ++k) {
1769 ShuffleVec[k] = j;
1770 FinalIndices.push_back(IntermedVals[i].second[j]);
1771 }
1772 for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f;
1773 ++j, ++k) {
1774 ShuffleVec[k] = NumElems + j;
1775 FinalIndices.push_back(IntermedVals[i+1].second[j]);
1776 }
1777
1778 SDValue Shuffle;
1779 if (Phase)
1780 Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first,
1781 IntermedVals[i+1].first,
1782 ShuffleVec);
1783 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT))
1784 return false;
1785 NewIntermedVals.push_back(
1786 std::make_pair(Shuffle, std::move(FinalIndices)));
1787 }
1788
1789 // If we had an odd number of defined values, then append the last
1790 // element to the array of new vectors.
1791 if ((IntermedVals.size() & 1) != 0)
1792 NewIntermedVals.push_back(IntermedVals.back());
1793
1794 IntermedVals.swap(NewIntermedVals);
1795 }
1796
1797 assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 &&
1798 "Invalid number of intermediate vectors");
1799 SDValue Vec1 = IntermedVals[0].first;
1800 SDValue Vec2;
1801 if (IntermedVals.size() > 1)
1802 Vec2 = IntermedVals[1].first;
1803 else if (Phase)
1804 Vec2 = DAG.getUNDEF(VT);
1805
1806 SmallVector<int, 16> ShuffleVec(NumElems, -1);
1807 for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i)
1808 ShuffleVec[IntermedVals[0].second[i]] = i;
1809 for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i)
1810 ShuffleVec[IntermedVals[1].second[i]] = NumElems + i;
1811
1812 if (Phase)
1813 Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec);
1814 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT))
1815 return false;
1816 }
1817
1818 return true;
1819 }
1820
1821 /// Expand a BUILD_VECTOR node on targets that don't
1822 /// support the operation, but do support the resultant vector type.
ExpandBUILD_VECTOR(SDNode * Node)1823 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1824 unsigned NumElems = Node->getNumOperands();
1825 SDValue Value1, Value2;
1826 SDLoc dl(Node);
1827 EVT VT = Node->getValueType(0);
1828 EVT OpVT = Node->getOperand(0).getValueType();
1829 EVT EltVT = VT.getVectorElementType();
1830
1831 // If the only non-undef value is the low element, turn this into a
1832 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X.
1833 bool isOnlyLowElement = true;
1834 bool MoreThanTwoValues = false;
1835 bool isConstant = true;
1836 for (unsigned i = 0; i < NumElems; ++i) {
1837 SDValue V = Node->getOperand(i);
1838 if (V.isUndef())
1839 continue;
1840 if (i > 0)
1841 isOnlyLowElement = false;
1842 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1843 isConstant = false;
1844
1845 if (!Value1.getNode()) {
1846 Value1 = V;
1847 } else if (!Value2.getNode()) {
1848 if (V != Value1)
1849 Value2 = V;
1850 } else if (V != Value1 && V != Value2) {
1851 MoreThanTwoValues = true;
1852 }
1853 }
1854
1855 if (!Value1.getNode())
1856 return DAG.getUNDEF(VT);
1857
1858 if (isOnlyLowElement)
1859 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1860
1861 // If all elements are constants, create a load from the constant pool.
1862 if (isConstant) {
1863 SmallVector<Constant*, 16> CV;
1864 for (unsigned i = 0, e = NumElems; i != e; ++i) {
1865 if (ConstantFPSDNode *V =
1866 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1867 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1868 } else if (ConstantSDNode *V =
1869 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1870 if (OpVT==EltVT)
1871 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1872 else {
1873 // If OpVT and EltVT don't match, EltVT is not legal and the
1874 // element values have been promoted/truncated earlier. Undo this;
1875 // we don't want a v16i8 to become a v16i32 for example.
1876 const ConstantInt *CI = V->getConstantIntValue();
1877 CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
1878 CI->getZExtValue()));
1879 }
1880 } else {
1881 assert(Node->getOperand(i).isUndef());
1882 Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
1883 CV.push_back(UndefValue::get(OpNTy));
1884 }
1885 }
1886 Constant *CP = ConstantVector::get(CV);
1887 SDValue CPIdx =
1888 DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout()));
1889 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
1890 return DAG.getLoad(
1891 VT, dl, DAG.getEntryNode(), CPIdx,
1892 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
1893 false, false, Alignment);
1894 }
1895
1896 SmallSet<SDValue, 16> DefinedValues;
1897 for (unsigned i = 0; i < NumElems; ++i) {
1898 if (Node->getOperand(i).isUndef())
1899 continue;
1900 DefinedValues.insert(Node->getOperand(i));
1901 }
1902
1903 if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) {
1904 if (!MoreThanTwoValues) {
1905 SmallVector<int, 8> ShuffleVec(NumElems, -1);
1906 for (unsigned i = 0; i < NumElems; ++i) {
1907 SDValue V = Node->getOperand(i);
1908 if (V.isUndef())
1909 continue;
1910 ShuffleVec[i] = V == Value1 ? 0 : NumElems;
1911 }
1912 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
1913 // Get the splatted value into the low element of a vector register.
1914 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
1915 SDValue Vec2;
1916 if (Value2.getNode())
1917 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
1918 else
1919 Vec2 = DAG.getUNDEF(VT);
1920
1921 // Return shuffle(LowValVec, undef, <0,0,0,0>)
1922 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec);
1923 }
1924 } else {
1925 SDValue Res;
1926 if (ExpandBVWithShuffles(Node, DAG, TLI, Res))
1927 return Res;
1928 }
1929 }
1930
1931 // Otherwise, we can't handle this case efficiently.
1932 return ExpandVectorBuildThroughStack(Node);
1933 }
1934
1935 // Expand a node into a call to a libcall. If the result value
1936 // does not fit into a register, return the lo part and set the hi part to the
1937 // by-reg argument. If it does fit into a single register, return the result
1938 // and leave the Hi part unset.
ExpandLibCall(RTLIB::Libcall LC,SDNode * Node,bool isSigned)1939 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
1940 bool isSigned) {
1941 TargetLowering::ArgListTy Args;
1942 TargetLowering::ArgListEntry Entry;
1943 for (const SDValue &Op : Node->op_values()) {
1944 EVT ArgVT = Op.getValueType();
1945 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1946 Entry.Node = Op;
1947 Entry.Ty = ArgTy;
1948 Entry.isSExt = isSigned;
1949 Entry.isZExt = !isSigned;
1950 Args.push_back(Entry);
1951 }
1952 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1953 TLI.getPointerTy(DAG.getDataLayout()));
1954
1955 Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1956
1957 // By default, the input chain to this libcall is the entry node of the
1958 // function. If the libcall is going to be emitted as a tail call then
1959 // TLI.isUsedByReturnOnly will change it to the right chain if the return
1960 // node which is being folded has a non-entry input chain.
1961 SDValue InChain = DAG.getEntryNode();
1962
1963 // isTailCall may be true since the callee does not reference caller stack
1964 // frame. Check if it's in the right position and that the return types match.
1965 SDValue TCChain = InChain;
1966 const Function *F = DAG.getMachineFunction().getFunction();
1967 bool isTailCall =
1968 TLI.isInTailCallPosition(DAG, Node, TCChain) &&
1969 (RetTy == F->getReturnType() || F->getReturnType()->isVoidTy());
1970 if (isTailCall)
1971 InChain = TCChain;
1972
1973 TargetLowering::CallLoweringInfo CLI(DAG);
1974 CLI.setDebugLoc(SDLoc(Node)).setChain(InChain)
1975 .setCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
1976 .setTailCall(isTailCall).setSExtResult(isSigned).setZExtResult(!isSigned);
1977
1978 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
1979
1980 if (!CallInfo.second.getNode())
1981 // It's a tailcall, return the chain (which is the DAG root).
1982 return DAG.getRoot();
1983
1984 return CallInfo.first;
1985 }
1986
1987 /// Generate a libcall taking the given operands as arguments
1988 /// and returning a result of type RetVT.
ExpandLibCall(RTLIB::Libcall LC,EVT RetVT,const SDValue * Ops,unsigned NumOps,bool isSigned,const SDLoc & dl)1989 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, EVT RetVT,
1990 const SDValue *Ops, unsigned NumOps,
1991 bool isSigned, const SDLoc &dl) {
1992 TargetLowering::ArgListTy Args;
1993 Args.reserve(NumOps);
1994
1995 TargetLowering::ArgListEntry Entry;
1996 for (unsigned i = 0; i != NumOps; ++i) {
1997 Entry.Node = Ops[i];
1998 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
1999 Entry.isSExt = isSigned;
2000 Entry.isZExt = !isSigned;
2001 Args.push_back(Entry);
2002 }
2003 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2004 TLI.getPointerTy(DAG.getDataLayout()));
2005
2006 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2007
2008 TargetLowering::CallLoweringInfo CLI(DAG);
2009 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
2010 .setCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
2011 .setSExtResult(isSigned).setZExtResult(!isSigned);
2012
2013 std::pair<SDValue,SDValue> CallInfo = TLI.LowerCallTo(CLI);
2014
2015 return CallInfo.first;
2016 }
2017
2018 // Expand a node into a call to a libcall. Similar to
2019 // ExpandLibCall except that the first operand is the in-chain.
2020 std::pair<SDValue, SDValue>
ExpandChainLibCall(RTLIB::Libcall LC,SDNode * Node,bool isSigned)2021 SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC,
2022 SDNode *Node,
2023 bool isSigned) {
2024 SDValue InChain = Node->getOperand(0);
2025
2026 TargetLowering::ArgListTy Args;
2027 TargetLowering::ArgListEntry Entry;
2028 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) {
2029 EVT ArgVT = Node->getOperand(i).getValueType();
2030 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2031 Entry.Node = Node->getOperand(i);
2032 Entry.Ty = ArgTy;
2033 Entry.isSExt = isSigned;
2034 Entry.isZExt = !isSigned;
2035 Args.push_back(Entry);
2036 }
2037 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2038 TLI.getPointerTy(DAG.getDataLayout()));
2039
2040 Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
2041
2042 TargetLowering::CallLoweringInfo CLI(DAG);
2043 CLI.setDebugLoc(SDLoc(Node)).setChain(InChain)
2044 .setCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
2045 .setSExtResult(isSigned).setZExtResult(!isSigned);
2046
2047 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2048
2049 return CallInfo;
2050 }
2051
ExpandFPLibCall(SDNode * Node,RTLIB::Libcall Call_F32,RTLIB::Libcall Call_F64,RTLIB::Libcall Call_F80,RTLIB::Libcall Call_F128,RTLIB::Libcall Call_PPCF128)2052 SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
2053 RTLIB::Libcall Call_F32,
2054 RTLIB::Libcall Call_F64,
2055 RTLIB::Libcall Call_F80,
2056 RTLIB::Libcall Call_F128,
2057 RTLIB::Libcall Call_PPCF128) {
2058 RTLIB::Libcall LC;
2059 switch (Node->getSimpleValueType(0).SimpleTy) {
2060 default: llvm_unreachable("Unexpected request for libcall!");
2061 case MVT::f32: LC = Call_F32; break;
2062 case MVT::f64: LC = Call_F64; break;
2063 case MVT::f80: LC = Call_F80; break;
2064 case MVT::f128: LC = Call_F128; break;
2065 case MVT::ppcf128: LC = Call_PPCF128; break;
2066 }
2067 return ExpandLibCall(LC, Node, false);
2068 }
2069
ExpandIntLibCall(SDNode * Node,bool isSigned,RTLIB::Libcall Call_I8,RTLIB::Libcall Call_I16,RTLIB::Libcall Call_I32,RTLIB::Libcall Call_I64,RTLIB::Libcall Call_I128)2070 SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
2071 RTLIB::Libcall Call_I8,
2072 RTLIB::Libcall Call_I16,
2073 RTLIB::Libcall Call_I32,
2074 RTLIB::Libcall Call_I64,
2075 RTLIB::Libcall Call_I128) {
2076 RTLIB::Libcall LC;
2077 switch (Node->getSimpleValueType(0).SimpleTy) {
2078 default: llvm_unreachable("Unexpected request for libcall!");
2079 case MVT::i8: LC = Call_I8; break;
2080 case MVT::i16: LC = Call_I16; break;
2081 case MVT::i32: LC = Call_I32; break;
2082 case MVT::i64: LC = Call_I64; break;
2083 case MVT::i128: LC = Call_I128; break;
2084 }
2085 return ExpandLibCall(LC, Node, isSigned);
2086 }
2087
2088 /// Issue libcalls to __{u}divmod to compute div / rem pairs.
2089 void
ExpandDivRemLibCall(SDNode * Node,SmallVectorImpl<SDValue> & Results)2090 SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node,
2091 SmallVectorImpl<SDValue> &Results) {
2092 unsigned Opcode = Node->getOpcode();
2093 bool isSigned = Opcode == ISD::SDIVREM;
2094
2095 RTLIB::Libcall LC;
2096 switch (Node->getSimpleValueType(0).SimpleTy) {
2097 default: llvm_unreachable("Unexpected request for libcall!");
2098 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break;
2099 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
2100 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
2101 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
2102 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
2103 }
2104
2105 // The input chain to this libcall is the entry node of the function.
2106 // Legalizing the call will automatically add the previous call to the
2107 // dependence.
2108 SDValue InChain = DAG.getEntryNode();
2109
2110 EVT RetVT = Node->getValueType(0);
2111 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2112
2113 TargetLowering::ArgListTy Args;
2114 TargetLowering::ArgListEntry Entry;
2115 for (const SDValue &Op : Node->op_values()) {
2116 EVT ArgVT = Op.getValueType();
2117 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2118 Entry.Node = Op;
2119 Entry.Ty = ArgTy;
2120 Entry.isSExt = isSigned;
2121 Entry.isZExt = !isSigned;
2122 Args.push_back(Entry);
2123 }
2124
2125 // Also pass the return address of the remainder.
2126 SDValue FIPtr = DAG.CreateStackTemporary(RetVT);
2127 Entry.Node = FIPtr;
2128 Entry.Ty = RetTy->getPointerTo();
2129 Entry.isSExt = isSigned;
2130 Entry.isZExt = !isSigned;
2131 Args.push_back(Entry);
2132
2133 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2134 TLI.getPointerTy(DAG.getDataLayout()));
2135
2136 SDLoc dl(Node);
2137 TargetLowering::CallLoweringInfo CLI(DAG);
2138 CLI.setDebugLoc(dl).setChain(InChain)
2139 .setCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
2140 .setSExtResult(isSigned).setZExtResult(!isSigned);
2141
2142 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2143
2144 // Remainder is loaded back from the stack frame.
2145 SDValue Rem = DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr,
2146 MachinePointerInfo(), false, false, false, 0);
2147 Results.push_back(CallInfo.first);
2148 Results.push_back(Rem);
2149 }
2150
2151 /// Return true if sincos libcall is available.
isSinCosLibcallAvailable(SDNode * Node,const TargetLowering & TLI)2152 static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) {
2153 RTLIB::Libcall LC;
2154 switch (Node->getSimpleValueType(0).SimpleTy) {
2155 default: llvm_unreachable("Unexpected request for libcall!");
2156 case MVT::f32: LC = RTLIB::SINCOS_F32; break;
2157 case MVT::f64: LC = RTLIB::SINCOS_F64; break;
2158 case MVT::f80: LC = RTLIB::SINCOS_F80; break;
2159 case MVT::f128: LC = RTLIB::SINCOS_F128; break;
2160 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
2161 }
2162 return TLI.getLibcallName(LC) != nullptr;
2163 }
2164
2165 /// Return true if sincos libcall is available and can be used to combine sin
2166 /// and cos.
canCombineSinCosLibcall(SDNode * Node,const TargetLowering & TLI,const TargetMachine & TM)2167 static bool canCombineSinCosLibcall(SDNode *Node, const TargetLowering &TLI,
2168 const TargetMachine &TM) {
2169 if (!isSinCosLibcallAvailable(Node, TLI))
2170 return false;
2171 // GNU sin/cos functions set errno while sincos does not. Therefore
2172 // combining sin and cos is only safe if unsafe-fpmath is enabled.
2173 if (TM.getTargetTriple().isGNUEnvironment() && !TM.Options.UnsafeFPMath)
2174 return false;
2175 return true;
2176 }
2177
2178 /// Only issue sincos libcall if both sin and cos are needed.
useSinCos(SDNode * Node)2179 static bool useSinCos(SDNode *Node) {
2180 unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN
2181 ? ISD::FCOS : ISD::FSIN;
2182
2183 SDValue Op0 = Node->getOperand(0);
2184 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
2185 UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
2186 SDNode *User = *UI;
2187 if (User == Node)
2188 continue;
2189 // The other user might have been turned into sincos already.
2190 if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS)
2191 return true;
2192 }
2193 return false;
2194 }
2195
2196 /// Issue libcalls to sincos to compute sin / cos pairs.
2197 void
ExpandSinCosLibCall(SDNode * Node,SmallVectorImpl<SDValue> & Results)2198 SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node,
2199 SmallVectorImpl<SDValue> &Results) {
2200 RTLIB::Libcall LC;
2201 switch (Node->getSimpleValueType(0).SimpleTy) {
2202 default: llvm_unreachable("Unexpected request for libcall!");
2203 case MVT::f32: LC = RTLIB::SINCOS_F32; break;
2204 case MVT::f64: LC = RTLIB::SINCOS_F64; break;
2205 case MVT::f80: LC = RTLIB::SINCOS_F80; break;
2206 case MVT::f128: LC = RTLIB::SINCOS_F128; break;
2207 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
2208 }
2209
2210 // The input chain to this libcall is the entry node of the function.
2211 // Legalizing the call will automatically add the previous call to the
2212 // dependence.
2213 SDValue InChain = DAG.getEntryNode();
2214
2215 EVT RetVT = Node->getValueType(0);
2216 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2217
2218 TargetLowering::ArgListTy Args;
2219 TargetLowering::ArgListEntry Entry;
2220
2221 // Pass the argument.
2222 Entry.Node = Node->getOperand(0);
2223 Entry.Ty = RetTy;
2224 Entry.isSExt = false;
2225 Entry.isZExt = false;
2226 Args.push_back(Entry);
2227
2228 // Pass the return address of sin.
2229 SDValue SinPtr = DAG.CreateStackTemporary(RetVT);
2230 Entry.Node = SinPtr;
2231 Entry.Ty = RetTy->getPointerTo();
2232 Entry.isSExt = false;
2233 Entry.isZExt = false;
2234 Args.push_back(Entry);
2235
2236 // Also pass the return address of the cos.
2237 SDValue CosPtr = DAG.CreateStackTemporary(RetVT);
2238 Entry.Node = CosPtr;
2239 Entry.Ty = RetTy->getPointerTo();
2240 Entry.isSExt = false;
2241 Entry.isZExt = false;
2242 Args.push_back(Entry);
2243
2244 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2245 TLI.getPointerTy(DAG.getDataLayout()));
2246
2247 SDLoc dl(Node);
2248 TargetLowering::CallLoweringInfo CLI(DAG);
2249 CLI.setDebugLoc(dl).setChain(InChain)
2250 .setCallee(TLI.getLibcallCallingConv(LC),
2251 Type::getVoidTy(*DAG.getContext()), Callee, std::move(Args));
2252
2253 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2254
2255 Results.push_back(DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr,
2256 MachinePointerInfo(), false, false, false, 0));
2257 Results.push_back(DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr,
2258 MachinePointerInfo(), false, false, false, 0));
2259 }
2260
2261 /// This function is responsible for legalizing a
2262 /// INT_TO_FP operation of the specified operand when the target requests that
2263 /// we expand it. At this point, we know that the result and operand types are
2264 /// legal for the target.
ExpandLegalINT_TO_FP(bool isSigned,SDValue Op0,EVT DestVT,const SDLoc & dl)2265 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned, SDValue Op0,
2266 EVT DestVT,
2267 const SDLoc &dl) {
2268 // TODO: Should any fast-math-flags be set for the created nodes?
2269
2270 if (Op0.getValueType() == MVT::i32 && TLI.isTypeLegal(MVT::f64)) {
2271 // simple 32-bit [signed|unsigned] integer to float/double expansion
2272
2273 // Get the stack frame index of a 8 byte buffer.
2274 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
2275
2276 // word offset constant for Hi/Lo address computation
2277 SDValue WordOff = DAG.getConstant(sizeof(int), dl,
2278 StackSlot.getValueType());
2279 // set up Hi and Lo (into buffer) address based on endian
2280 SDValue Hi = StackSlot;
2281 SDValue Lo = DAG.getNode(ISD::ADD, dl, StackSlot.getValueType(),
2282 StackSlot, WordOff);
2283 if (DAG.getDataLayout().isLittleEndian())
2284 std::swap(Hi, Lo);
2285
2286 // if signed map to unsigned space
2287 SDValue Op0Mapped;
2288 if (isSigned) {
2289 // constant used to invert sign bit (signed to unsigned mapping)
2290 SDValue SignBit = DAG.getConstant(0x80000000u, dl, MVT::i32);
2291 Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
2292 } else {
2293 Op0Mapped = Op0;
2294 }
2295 // store the lo of the constructed double - based on integer input
2296 SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
2297 Op0Mapped, Lo, MachinePointerInfo(),
2298 false, false, 0);
2299 // initial hi portion of constructed double
2300 SDValue InitialHi = DAG.getConstant(0x43300000u, dl, MVT::i32);
2301 // store the hi of the constructed double - biased exponent
2302 SDValue Store2 = DAG.getStore(Store1, dl, InitialHi, Hi,
2303 MachinePointerInfo(),
2304 false, false, 0);
2305 // load the constructed double
2306 SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot,
2307 MachinePointerInfo(), false, false, false, 0);
2308 // FP constant to bias correct the final result
2309 SDValue Bias = DAG.getConstantFP(isSigned ?
2310 BitsToDouble(0x4330000080000000ULL) :
2311 BitsToDouble(0x4330000000000000ULL),
2312 dl, MVT::f64);
2313 // subtract the bias
2314 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2315 // final result
2316 SDValue Result;
2317 // handle final rounding
2318 if (DestVT == MVT::f64) {
2319 // do nothing
2320 Result = Sub;
2321 } else if (DestVT.bitsLT(MVT::f64)) {
2322 Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
2323 DAG.getIntPtrConstant(0, dl));
2324 } else if (DestVT.bitsGT(MVT::f64)) {
2325 Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
2326 }
2327 return Result;
2328 }
2329 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2330 // Code below here assumes !isSigned without checking again.
2331
2332 // Implementation of unsigned i64 to f64 following the algorithm in
2333 // __floatundidf in compiler_rt. This implementation has the advantage
2334 // of performing rounding correctly, both in the default rounding mode
2335 // and in all alternate rounding modes.
2336 // TODO: Generalize this for use with other types.
2337 if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) {
2338 SDValue TwoP52 =
2339 DAG.getConstant(UINT64_C(0x4330000000000000), dl, MVT::i64);
2340 SDValue TwoP84PlusTwoP52 =
2341 DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), dl,
2342 MVT::f64);
2343 SDValue TwoP84 =
2344 DAG.getConstant(UINT64_C(0x4530000000000000), dl, MVT::i64);
2345
2346 SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32);
2347 SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0,
2348 DAG.getConstant(32, dl, MVT::i64));
2349 SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52);
2350 SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84);
2351 SDValue LoFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, LoOr);
2352 SDValue HiFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, HiOr);
2353 SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt,
2354 TwoP84PlusTwoP52);
2355 return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub);
2356 }
2357
2358 // Implementation of unsigned i64 to f32.
2359 // TODO: Generalize this for use with other types.
2360 if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) {
2361 // For unsigned conversions, convert them to signed conversions using the
2362 // algorithm from the x86_64 __floatundidf in compiler_rt.
2363 if (!isSigned) {
2364 SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Op0);
2365
2366 SDValue ShiftConst = DAG.getConstant(
2367 1, dl, TLI.getShiftAmountTy(Op0.getValueType(), DAG.getDataLayout()));
2368 SDValue Shr = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, ShiftConst);
2369 SDValue AndConst = DAG.getConstant(1, dl, MVT::i64);
2370 SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, AndConst);
2371 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, Shr);
2372
2373 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Or);
2374 SDValue Slow = DAG.getNode(ISD::FADD, dl, MVT::f32, SignCvt, SignCvt);
2375
2376 // TODO: This really should be implemented using a branch rather than a
2377 // select. We happen to get lucky and machinesink does the right
2378 // thing most of the time. This would be a good candidate for a
2379 //pseudo-op, or, even better, for whole-function isel.
2380 SDValue SignBitTest = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
2381 Op0, DAG.getConstant(0, dl, MVT::i64), ISD::SETLT);
2382 return DAG.getSelect(dl, MVT::f32, SignBitTest, Slow, Fast);
2383 }
2384
2385 // Otherwise, implement the fully general conversion.
2386
2387 SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2388 DAG.getConstant(UINT64_C(0xfffffffffffff800), dl, MVT::i64));
2389 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And,
2390 DAG.getConstant(UINT64_C(0x800), dl, MVT::i64));
2391 SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2392 DAG.getConstant(UINT64_C(0x7ff), dl, MVT::i64));
2393 SDValue Ne = DAG.getSetCC(dl, getSetCCResultType(MVT::i64), And2,
2394 DAG.getConstant(UINT64_C(0), dl, MVT::i64),
2395 ISD::SETNE);
2396 SDValue Sel = DAG.getSelect(dl, MVT::i64, Ne, Or, Op0);
2397 SDValue Ge = DAG.getSetCC(dl, getSetCCResultType(MVT::i64), Op0,
2398 DAG.getConstant(UINT64_C(0x0020000000000000), dl,
2399 MVT::i64),
2400 ISD::SETUGE);
2401 SDValue Sel2 = DAG.getSelect(dl, MVT::i64, Ge, Sel, Op0);
2402 EVT SHVT = TLI.getShiftAmountTy(Sel2.getValueType(), DAG.getDataLayout());
2403
2404 SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2,
2405 DAG.getConstant(32, dl, SHVT));
2406 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh);
2407 SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc);
2408 SDValue TwoP32 =
2409 DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), dl,
2410 MVT::f64);
2411 SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt);
2412 SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2);
2413 SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo);
2414 SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2);
2415 return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd,
2416 DAG.getIntPtrConstant(0, dl));
2417 }
2418
2419 SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2420
2421 SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(Op0.getValueType()),
2422 Op0,
2423 DAG.getConstant(0, dl, Op0.getValueType()),
2424 ISD::SETLT);
2425 SDValue Zero = DAG.getIntPtrConstant(0, dl),
2426 Four = DAG.getIntPtrConstant(4, dl);
2427 SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(),
2428 SignSet, Four, Zero);
2429
2430 // If the sign bit of the integer is set, the large number will be treated
2431 // as a negative number. To counteract this, the dynamic code adds an
2432 // offset depending on the data type.
2433 uint64_t FF;
2434 switch (Op0.getSimpleValueType().SimpleTy) {
2435 default: llvm_unreachable("Unsupported integer type!");
2436 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float)
2437 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float)
2438 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float)
2439 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float)
2440 }
2441 if (DAG.getDataLayout().isLittleEndian())
2442 FF <<= 32;
2443 Constant *FudgeFactor = ConstantInt::get(
2444 Type::getInt64Ty(*DAG.getContext()), FF);
2445
2446 SDValue CPIdx =
2447 DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout()));
2448 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2449 CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset);
2450 Alignment = std::min(Alignment, 4u);
2451 SDValue FudgeInReg;
2452 if (DestVT == MVT::f32)
2453 FudgeInReg = DAG.getLoad(
2454 MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2455 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
2456 false, false, Alignment);
2457 else {
2458 SDValue Load = DAG.getExtLoad(
2459 ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx,
2460 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32,
2461 false, false, false, Alignment);
2462 HandleSDNode Handle(Load);
2463 LegalizeOp(Load.getNode());
2464 FudgeInReg = Handle.getValue();
2465 }
2466
2467 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2468 }
2469
2470 /// This function is responsible for legalizing a
2471 /// *INT_TO_FP operation of the specified operand when the target requests that
2472 /// we promote it. At this point, we know that the result and operand types are
2473 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2474 /// operation that takes a larger input.
PromoteLegalINT_TO_FP(SDValue LegalOp,EVT DestVT,bool isSigned,const SDLoc & dl)2475 SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT,
2476 bool isSigned,
2477 const SDLoc &dl) {
2478 // First step, figure out the appropriate *INT_TO_FP operation to use.
2479 EVT NewInTy = LegalOp.getValueType();
2480
2481 unsigned OpToUse = 0;
2482
2483 // Scan for the appropriate larger type to use.
2484 while (1) {
2485 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2486 assert(NewInTy.isInteger() && "Ran out of possibilities!");
2487
2488 // If the target supports SINT_TO_FP of this type, use it.
2489 if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2490 OpToUse = ISD::SINT_TO_FP;
2491 break;
2492 }
2493 if (isSigned) continue;
2494
2495 // If the target supports UINT_TO_FP of this type, use it.
2496 if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2497 OpToUse = ISD::UINT_TO_FP;
2498 break;
2499 }
2500
2501 // Otherwise, try a larger type.
2502 }
2503
2504 // Okay, we found the operation and type to use. Zero extend our input to the
2505 // desired type then run the operation on it.
2506 return DAG.getNode(OpToUse, dl, DestVT,
2507 DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2508 dl, NewInTy, LegalOp));
2509 }
2510
2511 /// This function is responsible for legalizing a
2512 /// FP_TO_*INT operation of the specified operand when the target requests that
2513 /// we promote it. At this point, we know that the result and operand types are
2514 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2515 /// operation that returns a larger result.
PromoteLegalFP_TO_INT(SDValue LegalOp,EVT DestVT,bool isSigned,const SDLoc & dl)2516 SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT,
2517 bool isSigned,
2518 const SDLoc &dl) {
2519 // First step, figure out the appropriate FP_TO*INT operation to use.
2520 EVT NewOutTy = DestVT;
2521
2522 unsigned OpToUse = 0;
2523
2524 // Scan for the appropriate larger type to use.
2525 while (1) {
2526 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2527 assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2528
2529 // A larger signed type can hold all unsigned values of the requested type,
2530 // so using FP_TO_SINT is valid
2531 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2532 OpToUse = ISD::FP_TO_SINT;
2533 break;
2534 }
2535
2536 // However, if the value may be < 0.0, we *must* use some FP_TO_SINT.
2537 if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2538 OpToUse = ISD::FP_TO_UINT;
2539 break;
2540 }
2541
2542 // Otherwise, try a larger type.
2543 }
2544
2545
2546 // Okay, we found the operation and type to use.
2547 SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2548
2549 // Truncate the result of the extended FP_TO_*INT operation to the desired
2550 // size.
2551 return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2552 }
2553
2554 /// Open code the operations for BITREVERSE.
ExpandBITREVERSE(SDValue Op,const SDLoc & dl)2555 SDValue SelectionDAGLegalize::ExpandBITREVERSE(SDValue Op, const SDLoc &dl) {
2556 EVT VT = Op.getValueType();
2557 EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
2558 unsigned Sz = VT.getScalarSizeInBits();
2559
2560 SDValue Tmp, Tmp2;
2561 Tmp = DAG.getConstant(0, dl, VT);
2562 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
2563 if (I < J)
2564 Tmp2 =
2565 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
2566 else
2567 Tmp2 =
2568 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
2569
2570 APInt Shift(Sz, 1);
2571 Shift = Shift.shl(J);
2572 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
2573 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
2574 }
2575
2576 return Tmp;
2577 }
2578
2579 /// Open code the operations for BSWAP of the specified operation.
ExpandBSWAP(SDValue Op,const SDLoc & dl)2580 SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, const SDLoc &dl) {
2581 EVT VT = Op.getValueType();
2582 EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
2583 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2584 switch (VT.getSimpleVT().SimpleTy) {
2585 default: llvm_unreachable("Unhandled Expand type in BSWAP!");
2586 case MVT::i16:
2587 Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2588 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2589 return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2590 case MVT::i32:
2591 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2592 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2593 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2594 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2595 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
2596 DAG.getConstant(0xFF0000, dl, VT));
2597 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
2598 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2599 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2600 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2601 case MVT::i64:
2602 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
2603 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
2604 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2605 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2606 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2607 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2608 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
2609 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
2610 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
2611 DAG.getConstant(255ULL<<48, dl, VT));
2612 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
2613 DAG.getConstant(255ULL<<40, dl, VT));
2614 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
2615 DAG.getConstant(255ULL<<32, dl, VT));
2616 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
2617 DAG.getConstant(255ULL<<24, dl, VT));
2618 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
2619 DAG.getConstant(255ULL<<16, dl, VT));
2620 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
2621 DAG.getConstant(255ULL<<8 , dl, VT));
2622 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2623 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2624 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2625 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2626 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2627 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2628 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2629 }
2630 }
2631
2632 /// Expand the specified bitcount instruction into operations.
ExpandBitCount(unsigned Opc,SDValue Op,const SDLoc & dl)2633 SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
2634 const SDLoc &dl) {
2635 switch (Opc) {
2636 default: llvm_unreachable("Cannot expand this yet!");
2637 case ISD::CTPOP: {
2638 EVT VT = Op.getValueType();
2639 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
2640 unsigned Len = VT.getSizeInBits();
2641
2642 assert(VT.isInteger() && Len <= 128 && Len % 8 == 0 &&
2643 "CTPOP not implemented for this type.");
2644
2645 // This is the "best" algorithm from
2646 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
2647
2648 SDValue Mask55 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)),
2649 dl, VT);
2650 SDValue Mask33 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)),
2651 dl, VT);
2652 SDValue Mask0F = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)),
2653 dl, VT);
2654 SDValue Mask01 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)),
2655 dl, VT);
2656
2657 // v = v - ((v >> 1) & 0x55555555...)
2658 Op = DAG.getNode(ISD::SUB, dl, VT, Op,
2659 DAG.getNode(ISD::AND, dl, VT,
2660 DAG.getNode(ISD::SRL, dl, VT, Op,
2661 DAG.getConstant(1, dl, ShVT)),
2662 Mask55));
2663 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
2664 Op = DAG.getNode(ISD::ADD, dl, VT,
2665 DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
2666 DAG.getNode(ISD::AND, dl, VT,
2667 DAG.getNode(ISD::SRL, dl, VT, Op,
2668 DAG.getConstant(2, dl, ShVT)),
2669 Mask33));
2670 // v = (v + (v >> 4)) & 0x0F0F0F0F...
2671 Op = DAG.getNode(ISD::AND, dl, VT,
2672 DAG.getNode(ISD::ADD, dl, VT, Op,
2673 DAG.getNode(ISD::SRL, dl, VT, Op,
2674 DAG.getConstant(4, dl, ShVT))),
2675 Mask0F);
2676 // v = (v * 0x01010101...) >> (Len - 8)
2677 Op = DAG.getNode(ISD::SRL, dl, VT,
2678 DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
2679 DAG.getConstant(Len - 8, dl, ShVT));
2680
2681 return Op;
2682 }
2683 case ISD::CTLZ_ZERO_UNDEF:
2684 // This trivially expands to CTLZ.
2685 return DAG.getNode(ISD::CTLZ, dl, Op.getValueType(), Op);
2686 case ISD::CTLZ: {
2687 EVT VT = Op.getValueType();
2688 unsigned len = VT.getSizeInBits();
2689
2690 if (TLI.isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
2691 EVT SetCCVT = getSetCCResultType(VT);
2692 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
2693 SDValue Zero = DAG.getConstant(0, dl, VT);
2694 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
2695 return DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
2696 DAG.getConstant(len, dl, VT), CTLZ);
2697 }
2698
2699 // for now, we do this:
2700 // x = x | (x >> 1);
2701 // x = x | (x >> 2);
2702 // ...
2703 // x = x | (x >>16);
2704 // x = x | (x >>32); // for 64-bit input
2705 // return popcount(~x);
2706 //
2707 // Ref: "Hacker's Delight" by Henry Warren
2708 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
2709 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2710 SDValue Tmp3 = DAG.getConstant(1ULL << i, dl, ShVT);
2711 Op = DAG.getNode(ISD::OR, dl, VT, Op,
2712 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
2713 }
2714 Op = DAG.getNOT(dl, Op, VT);
2715 return DAG.getNode(ISD::CTPOP, dl, VT, Op);
2716 }
2717 case ISD::CTTZ_ZERO_UNDEF:
2718 // This trivially expands to CTTZ.
2719 return DAG.getNode(ISD::CTTZ, dl, Op.getValueType(), Op);
2720 case ISD::CTTZ: {
2721 // for now, we use: { return popcount(~x & (x - 1)); }
2722 // unless the target has ctlz but not ctpop, in which case we use:
2723 // { return 32 - nlz(~x & (x-1)); }
2724 // Ref: "Hacker's Delight" by Henry Warren
2725 EVT VT = Op.getValueType();
2726 SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
2727 DAG.getNOT(dl, Op, VT),
2728 DAG.getNode(ISD::SUB, dl, VT, Op,
2729 DAG.getConstant(1, dl, VT)));
2730 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
2731 if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
2732 TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
2733 return DAG.getNode(ISD::SUB, dl, VT,
2734 DAG.getConstant(VT.getSizeInBits(), dl, VT),
2735 DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
2736 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
2737 }
2738 }
2739 }
2740
ExpandNode(SDNode * Node)2741 bool SelectionDAGLegalize::ExpandNode(SDNode *Node) {
2742 SmallVector<SDValue, 8> Results;
2743 SDLoc dl(Node);
2744 SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2745 bool NeedInvert;
2746 switch (Node->getOpcode()) {
2747 case ISD::CTPOP:
2748 case ISD::CTLZ:
2749 case ISD::CTLZ_ZERO_UNDEF:
2750 case ISD::CTTZ:
2751 case ISD::CTTZ_ZERO_UNDEF:
2752 Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
2753 Results.push_back(Tmp1);
2754 break;
2755 case ISD::BITREVERSE:
2756 Results.push_back(ExpandBITREVERSE(Node->getOperand(0), dl));
2757 break;
2758 case ISD::BSWAP:
2759 Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2760 break;
2761 case ISD::FRAMEADDR:
2762 case ISD::RETURNADDR:
2763 case ISD::FRAME_TO_ARGS_OFFSET:
2764 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0)));
2765 break;
2766 case ISD::FLT_ROUNDS_:
2767 Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0)));
2768 break;
2769 case ISD::EH_RETURN:
2770 case ISD::EH_LABEL:
2771 case ISD::PREFETCH:
2772 case ISD::VAEND:
2773 case ISD::EH_SJLJ_LONGJMP:
2774 // If the target didn't expand these, there's nothing to do, so just
2775 // preserve the chain and be done.
2776 Results.push_back(Node->getOperand(0));
2777 break;
2778 case ISD::READCYCLECOUNTER:
2779 // If the target didn't expand this, just return 'zero' and preserve the
2780 // chain.
2781 Results.append(Node->getNumValues() - 1,
2782 DAG.getConstant(0, dl, Node->getValueType(0)));
2783 Results.push_back(Node->getOperand(0));
2784 break;
2785 case ISD::EH_SJLJ_SETJMP:
2786 // If the target didn't expand this, just return 'zero' and preserve the
2787 // chain.
2788 Results.push_back(DAG.getConstant(0, dl, MVT::i32));
2789 Results.push_back(Node->getOperand(0));
2790 break;
2791 case ISD::ATOMIC_LOAD: {
2792 // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP.
2793 SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0));
2794 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other);
2795 SDValue Swap = DAG.getAtomicCmpSwap(
2796 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs,
2797 Node->getOperand(0), Node->getOperand(1), Zero, Zero,
2798 cast<AtomicSDNode>(Node)->getMemOperand(),
2799 cast<AtomicSDNode>(Node)->getOrdering(),
2800 cast<AtomicSDNode>(Node)->getOrdering(),
2801 cast<AtomicSDNode>(Node)->getSynchScope());
2802 Results.push_back(Swap.getValue(0));
2803 Results.push_back(Swap.getValue(1));
2804 break;
2805 }
2806 case ISD::ATOMIC_STORE: {
2807 // There is no libcall for atomic store; fake it with ATOMIC_SWAP.
2808 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
2809 cast<AtomicSDNode>(Node)->getMemoryVT(),
2810 Node->getOperand(0),
2811 Node->getOperand(1), Node->getOperand(2),
2812 cast<AtomicSDNode>(Node)->getMemOperand(),
2813 cast<AtomicSDNode>(Node)->getOrdering(),
2814 cast<AtomicSDNode>(Node)->getSynchScope());
2815 Results.push_back(Swap.getValue(1));
2816 break;
2817 }
2818 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
2819 // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and
2820 // splits out the success value as a comparison. Expanding the resulting
2821 // ATOMIC_CMP_SWAP will produce a libcall.
2822 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other);
2823 SDValue Res = DAG.getAtomicCmpSwap(
2824 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs,
2825 Node->getOperand(0), Node->getOperand(1), Node->getOperand(2),
2826 Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand(),
2827 cast<AtomicSDNode>(Node)->getSuccessOrdering(),
2828 cast<AtomicSDNode>(Node)->getFailureOrdering(),
2829 cast<AtomicSDNode>(Node)->getSynchScope());
2830
2831 SDValue ExtRes = Res;
2832 SDValue LHS = Res;
2833 SDValue RHS = Node->getOperand(1);
2834
2835 EVT AtomicType = cast<AtomicSDNode>(Node)->getMemoryVT();
2836 EVT OuterType = Node->getValueType(0);
2837 switch (TLI.getExtendForAtomicOps()) {
2838 case ISD::SIGN_EXTEND:
2839 LHS = DAG.getNode(ISD::AssertSext, dl, OuterType, Res,
2840 DAG.getValueType(AtomicType));
2841 RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, OuterType,
2842 Node->getOperand(2), DAG.getValueType(AtomicType));
2843 ExtRes = LHS;
2844 break;
2845 case ISD::ZERO_EXTEND:
2846 LHS = DAG.getNode(ISD::AssertZext, dl, OuterType, Res,
2847 DAG.getValueType(AtomicType));
2848 RHS = DAG.getNode(ISD::ZERO_EXTEND, dl, OuterType, Node->getOperand(2));
2849 ExtRes = LHS;
2850 break;
2851 case ISD::ANY_EXTEND:
2852 LHS = DAG.getZeroExtendInReg(Res, dl, AtomicType);
2853 RHS = DAG.getNode(ISD::ZERO_EXTEND, dl, OuterType, Node->getOperand(2));
2854 break;
2855 default:
2856 llvm_unreachable("Invalid atomic op extension");
2857 }
2858
2859 SDValue Success =
2860 DAG.getSetCC(dl, Node->getValueType(1), LHS, RHS, ISD::SETEQ);
2861
2862 Results.push_back(ExtRes.getValue(0));
2863 Results.push_back(Success);
2864 Results.push_back(Res.getValue(1));
2865 break;
2866 }
2867 case ISD::DYNAMIC_STACKALLOC:
2868 ExpandDYNAMIC_STACKALLOC(Node, Results);
2869 break;
2870 case ISD::MERGE_VALUES:
2871 for (unsigned i = 0; i < Node->getNumValues(); i++)
2872 Results.push_back(Node->getOperand(i));
2873 break;
2874 case ISD::UNDEF: {
2875 EVT VT = Node->getValueType(0);
2876 if (VT.isInteger())
2877 Results.push_back(DAG.getConstant(0, dl, VT));
2878 else {
2879 assert(VT.isFloatingPoint() && "Unknown value type!");
2880 Results.push_back(DAG.getConstantFP(0, dl, VT));
2881 }
2882 break;
2883 }
2884 case ISD::FP_ROUND:
2885 case ISD::BITCAST:
2886 Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
2887 Node->getValueType(0), dl);
2888 Results.push_back(Tmp1);
2889 break;
2890 case ISD::FP_EXTEND:
2891 Tmp1 = EmitStackConvert(Node->getOperand(0),
2892 Node->getOperand(0).getValueType(),
2893 Node->getValueType(0), dl);
2894 Results.push_back(Tmp1);
2895 break;
2896 case ISD::SIGN_EXTEND_INREG: {
2897 // NOTE: we could fall back on load/store here too for targets without
2898 // SAR. However, it is doubtful that any exist.
2899 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2900 EVT VT = Node->getValueType(0);
2901 EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
2902 if (VT.isVector())
2903 ShiftAmountTy = VT;
2904 unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
2905 ExtraVT.getScalarType().getSizeInBits();
2906 SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy);
2907 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
2908 Node->getOperand(0), ShiftCst);
2909 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
2910 Results.push_back(Tmp1);
2911 break;
2912 }
2913 case ISD::FP_ROUND_INREG: {
2914 // The only way we can lower this is to turn it into a TRUNCSTORE,
2915 // EXTLOAD pair, targeting a temporary location (a stack slot).
2916
2917 // NOTE: there is a choice here between constantly creating new stack
2918 // slots and always reusing the same one. We currently always create
2919 // new ones, as reuse may inhibit scheduling.
2920 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2921 Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
2922 Node->getValueType(0), dl);
2923 Results.push_back(Tmp1);
2924 break;
2925 }
2926 case ISD::SINT_TO_FP:
2927 case ISD::UINT_TO_FP:
2928 Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
2929 Node->getOperand(0), Node->getValueType(0), dl);
2930 Results.push_back(Tmp1);
2931 break;
2932 case ISD::FP_TO_SINT:
2933 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG))
2934 Results.push_back(Tmp1);
2935 break;
2936 case ISD::FP_TO_UINT: {
2937 SDValue True, False;
2938 EVT VT = Node->getOperand(0).getValueType();
2939 EVT NVT = Node->getValueType(0);
2940 APFloat apf(DAG.EVTToAPFloatSemantics(VT),
2941 APInt::getNullValue(VT.getSizeInBits()));
2942 APInt x = APInt::getSignBit(NVT.getSizeInBits());
2943 (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
2944 Tmp1 = DAG.getConstantFP(apf, dl, VT);
2945 Tmp2 = DAG.getSetCC(dl, getSetCCResultType(VT),
2946 Node->getOperand(0),
2947 Tmp1, ISD::SETLT);
2948 True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
2949 // TODO: Should any fast-math-flags be set for the FSUB?
2950 False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
2951 DAG.getNode(ISD::FSUB, dl, VT,
2952 Node->getOperand(0), Tmp1));
2953 False = DAG.getNode(ISD::XOR, dl, NVT, False,
2954 DAG.getConstant(x, dl, NVT));
2955 Tmp1 = DAG.getSelect(dl, NVT, Tmp2, True, False);
2956 Results.push_back(Tmp1);
2957 break;
2958 }
2959 case ISD::VAARG:
2960 Results.push_back(DAG.expandVAArg(Node));
2961 Results.push_back(Results[0].getValue(1));
2962 break;
2963 case ISD::VACOPY:
2964 Results.push_back(DAG.expandVACopy(Node));
2965 break;
2966 case ISD::EXTRACT_VECTOR_ELT:
2967 if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
2968 // This must be an access of the only element. Return it.
2969 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0),
2970 Node->getOperand(0));
2971 else
2972 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
2973 Results.push_back(Tmp1);
2974 break;
2975 case ISD::EXTRACT_SUBVECTOR:
2976 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
2977 break;
2978 case ISD::INSERT_SUBVECTOR:
2979 Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0)));
2980 break;
2981 case ISD::CONCAT_VECTORS: {
2982 Results.push_back(ExpandVectorBuildThroughStack(Node));
2983 break;
2984 }
2985 case ISD::SCALAR_TO_VECTOR:
2986 Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
2987 break;
2988 case ISD::INSERT_VECTOR_ELT:
2989 Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
2990 Node->getOperand(1),
2991 Node->getOperand(2), dl));
2992 break;
2993 case ISD::VECTOR_SHUFFLE: {
2994 SmallVector<int, 32> NewMask;
2995 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
2996
2997 EVT VT = Node->getValueType(0);
2998 EVT EltVT = VT.getVectorElementType();
2999 SDValue Op0 = Node->getOperand(0);
3000 SDValue Op1 = Node->getOperand(1);
3001 if (!TLI.isTypeLegal(EltVT)) {
3002
3003 EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT);
3004
3005 // BUILD_VECTOR operands are allowed to be wider than the element type.
3006 // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept
3007 // it.
3008 if (NewEltVT.bitsLT(EltVT)) {
3009
3010 // Convert shuffle node.
3011 // If original node was v4i64 and the new EltVT is i32,
3012 // cast operands to v8i32 and re-build the mask.
3013
3014 // Calculate new VT, the size of the new VT should be equal to original.
3015 EVT NewVT =
3016 EVT::getVectorVT(*DAG.getContext(), NewEltVT,
3017 VT.getSizeInBits() / NewEltVT.getSizeInBits());
3018 assert(NewVT.bitsEq(VT));
3019
3020 // cast operands to new VT
3021 Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0);
3022 Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1);
3023
3024 // Convert the shuffle mask
3025 unsigned int factor =
3026 NewVT.getVectorNumElements()/VT.getVectorNumElements();
3027
3028 // EltVT gets smaller
3029 assert(factor > 0);
3030
3031 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
3032 if (Mask[i] < 0) {
3033 for (unsigned fi = 0; fi < factor; ++fi)
3034 NewMask.push_back(Mask[i]);
3035 }
3036 else {
3037 for (unsigned fi = 0; fi < factor; ++fi)
3038 NewMask.push_back(Mask[i]*factor+fi);
3039 }
3040 }
3041 Mask = NewMask;
3042 VT = NewVT;
3043 }
3044 EltVT = NewEltVT;
3045 }
3046 unsigned NumElems = VT.getVectorNumElements();
3047 SmallVector<SDValue, 16> Ops;
3048 for (unsigned i = 0; i != NumElems; ++i) {
3049 if (Mask[i] < 0) {
3050 Ops.push_back(DAG.getUNDEF(EltVT));
3051 continue;
3052 }
3053 unsigned Idx = Mask[i];
3054 if (Idx < NumElems)
3055 Ops.push_back(DAG.getNode(
3056 ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
3057 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))));
3058 else
3059 Ops.push_back(DAG.getNode(
3060 ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1,
3061 DAG.getConstant(Idx - NumElems, dl,
3062 TLI.getVectorIdxTy(DAG.getDataLayout()))));
3063 }
3064
3065 Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
3066 // We may have changed the BUILD_VECTOR type. Cast it back to the Node type.
3067 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1);
3068 Results.push_back(Tmp1);
3069 break;
3070 }
3071 case ISD::EXTRACT_ELEMENT: {
3072 EVT OpTy = Node->getOperand(0).getValueType();
3073 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
3074 // 1 -> Hi
3075 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
3076 DAG.getConstant(OpTy.getSizeInBits() / 2, dl,
3077 TLI.getShiftAmountTy(
3078 Node->getOperand(0).getValueType(),
3079 DAG.getDataLayout())));
3080 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
3081 } else {
3082 // 0 -> Lo
3083 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
3084 Node->getOperand(0));
3085 }
3086 Results.push_back(Tmp1);
3087 break;
3088 }
3089 case ISD::STACKSAVE:
3090 // Expand to CopyFromReg if the target set
3091 // StackPointerRegisterToSaveRestore.
3092 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
3093 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
3094 Node->getValueType(0)));
3095 Results.push_back(Results[0].getValue(1));
3096 } else {
3097 Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
3098 Results.push_back(Node->getOperand(0));
3099 }
3100 break;
3101 case ISD::STACKRESTORE:
3102 // Expand to CopyToReg if the target set
3103 // StackPointerRegisterToSaveRestore.
3104 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
3105 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
3106 Node->getOperand(1)));
3107 } else {
3108 Results.push_back(Node->getOperand(0));
3109 }
3110 break;
3111 case ISD::GET_DYNAMIC_AREA_OFFSET:
3112 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0)));
3113 Results.push_back(Results[0].getValue(0));
3114 break;
3115 case ISD::FCOPYSIGN:
3116 Results.push_back(ExpandFCOPYSIGN(Node));
3117 break;
3118 case ISD::FNEG:
3119 // Expand Y = FNEG(X) -> Y = SUB -0.0, X
3120 Tmp1 = DAG.getConstantFP(-0.0, dl, Node->getValueType(0));
3121 // TODO: If FNEG has fast-math-flags, propagate them to the FSUB.
3122 Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
3123 Node->getOperand(0));
3124 Results.push_back(Tmp1);
3125 break;
3126 case ISD::FABS:
3127 Results.push_back(ExpandFABS(Node));
3128 break;
3129 case ISD::SMIN:
3130 case ISD::SMAX:
3131 case ISD::UMIN:
3132 case ISD::UMAX: {
3133 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
3134 ISD::CondCode Pred;
3135 switch (Node->getOpcode()) {
3136 default: llvm_unreachable("How did we get here?");
3137 case ISD::SMAX: Pred = ISD::SETGT; break;
3138 case ISD::SMIN: Pred = ISD::SETLT; break;
3139 case ISD::UMAX: Pred = ISD::SETUGT; break;
3140 case ISD::UMIN: Pred = ISD::SETULT; break;
3141 }
3142 Tmp1 = Node->getOperand(0);
3143 Tmp2 = Node->getOperand(1);
3144 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred);
3145 Results.push_back(Tmp1);
3146 break;
3147 }
3148
3149 case ISD::FSIN:
3150 case ISD::FCOS: {
3151 EVT VT = Node->getValueType(0);
3152 // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin /
3153 // fcos which share the same operand and both are used.
3154 if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) ||
3155 canCombineSinCosLibcall(Node, TLI, TM))
3156 && useSinCos(Node)) {
3157 SDVTList VTs = DAG.getVTList(VT, VT);
3158 Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0));
3159 if (Node->getOpcode() == ISD::FCOS)
3160 Tmp1 = Tmp1.getValue(1);
3161 Results.push_back(Tmp1);
3162 }
3163 break;
3164 }
3165 case ISD::FMAD:
3166 llvm_unreachable("Illegal fmad should never be formed");
3167
3168 case ISD::FP16_TO_FP:
3169 if (Node->getValueType(0) != MVT::f32) {
3170 // We can extend to types bigger than f32 in two steps without changing
3171 // the result. Since "f16 -> f32" is much more commonly available, give
3172 // CodeGen the option of emitting that before resorting to a libcall.
3173 SDValue Res =
3174 DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0));
3175 Results.push_back(
3176 DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res));
3177 }
3178 break;
3179 case ISD::FP_TO_FP16:
3180 if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) {
3181 SDValue Op = Node->getOperand(0);
3182 MVT SVT = Op.getSimpleValueType();
3183 if ((SVT == MVT::f64 || SVT == MVT::f80) &&
3184 TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) {
3185 // Under fastmath, we can expand this node into a fround followed by
3186 // a float-half conversion.
3187 SDValue FloatVal = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op,
3188 DAG.getIntPtrConstant(0, dl));
3189 Results.push_back(
3190 DAG.getNode(ISD::FP_TO_FP16, dl, Node->getValueType(0), FloatVal));
3191 }
3192 }
3193 break;
3194 case ISD::ConstantFP: {
3195 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
3196 // Check to see if this FP immediate is already legal.
3197 // If this is a legal constant, turn it into a TargetConstantFP node.
3198 if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0)))
3199 Results.push_back(ExpandConstantFP(CFP, true));
3200 break;
3201 }
3202 case ISD::Constant: {
3203 ConstantSDNode *CP = cast<ConstantSDNode>(Node);
3204 Results.push_back(ExpandConstant(CP));
3205 break;
3206 }
3207 case ISD::FSUB: {
3208 EVT VT = Node->getValueType(0);
3209 if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) &&
3210 TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) {
3211 const SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(Node)->Flags;
3212 Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1));
3213 Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags);
3214 Results.push_back(Tmp1);
3215 }
3216 break;
3217 }
3218 case ISD::SUB: {
3219 EVT VT = Node->getValueType(0);
3220 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
3221 TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
3222 "Don't know how to expand this subtraction!");
3223 Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
3224 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl,
3225 VT));
3226 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT));
3227 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
3228 break;
3229 }
3230 case ISD::UREM:
3231 case ISD::SREM: {
3232 EVT VT = Node->getValueType(0);
3233 bool isSigned = Node->getOpcode() == ISD::SREM;
3234 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
3235 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3236 Tmp2 = Node->getOperand(0);
3237 Tmp3 = Node->getOperand(1);
3238 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
3239 SDVTList VTs = DAG.getVTList(VT, VT);
3240 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
3241 Results.push_back(Tmp1);
3242 } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
3243 // X % Y -> X-X/Y*Y
3244 Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
3245 Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
3246 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
3247 Results.push_back(Tmp1);
3248 }
3249 break;
3250 }
3251 case ISD::UDIV:
3252 case ISD::SDIV: {
3253 bool isSigned = Node->getOpcode() == ISD::SDIV;
3254 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3255 EVT VT = Node->getValueType(0);
3256 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
3257 SDVTList VTs = DAG.getVTList(VT, VT);
3258 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
3259 Node->getOperand(1));
3260 Results.push_back(Tmp1);
3261 }
3262 break;
3263 }
3264 case ISD::MULHU:
3265 case ISD::MULHS: {
3266 unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
3267 ISD::SMUL_LOHI;
3268 EVT VT = Node->getValueType(0);
3269 SDVTList VTs = DAG.getVTList(VT, VT);
3270 assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
3271 "If this wasn't legal, it shouldn't have been created!");
3272 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
3273 Node->getOperand(1));
3274 Results.push_back(Tmp1.getValue(1));
3275 break;
3276 }
3277 case ISD::MUL: {
3278 EVT VT = Node->getValueType(0);
3279 SDVTList VTs = DAG.getVTList(VT, VT);
3280 // See if multiply or divide can be lowered using two-result operations.
3281 // We just need the low half of the multiply; try both the signed
3282 // and unsigned forms. If the target supports both SMUL_LOHI and
3283 // UMUL_LOHI, form a preference by checking which forms of plain
3284 // MULH it supports.
3285 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
3286 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
3287 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
3288 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
3289 unsigned OpToUse = 0;
3290 if (HasSMUL_LOHI && !HasMULHS) {
3291 OpToUse = ISD::SMUL_LOHI;
3292 } else if (HasUMUL_LOHI && !HasMULHU) {
3293 OpToUse = ISD::UMUL_LOHI;
3294 } else if (HasSMUL_LOHI) {
3295 OpToUse = ISD::SMUL_LOHI;
3296 } else if (HasUMUL_LOHI) {
3297 OpToUse = ISD::UMUL_LOHI;
3298 }
3299 if (OpToUse) {
3300 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
3301 Node->getOperand(1)));
3302 break;
3303 }
3304
3305 SDValue Lo, Hi;
3306 EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext());
3307 if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) &&
3308 TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) &&
3309 TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
3310 TLI.isOperationLegalOrCustom(ISD::OR, VT) &&
3311 TLI.expandMUL(Node, Lo, Hi, HalfType, DAG)) {
3312 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
3313 Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi);
3314 SDValue Shift =
3315 DAG.getConstant(HalfType.getSizeInBits(), dl,
3316 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout()));
3317 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
3318 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi));
3319 }
3320 break;
3321 }
3322 case ISD::SADDO:
3323 case ISD::SSUBO: {
3324 SDValue LHS = Node->getOperand(0);
3325 SDValue RHS = Node->getOperand(1);
3326 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
3327 ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3328 LHS, RHS);
3329 Results.push_back(Sum);
3330 EVT ResultType = Node->getValueType(1);
3331 EVT OType = getSetCCResultType(Node->getValueType(0));
3332
3333 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
3334
3335 // LHSSign -> LHS >= 0
3336 // RHSSign -> RHS >= 0
3337 // SumSign -> Sum >= 0
3338 //
3339 // Add:
3340 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
3341 // Sub:
3342 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
3343 //
3344 SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
3345 SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
3346 SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
3347 Node->getOpcode() == ISD::SADDO ?
3348 ISD::SETEQ : ISD::SETNE);
3349
3350 SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
3351 SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
3352
3353 SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
3354 Results.push_back(DAG.getBoolExtOrTrunc(Cmp, dl, ResultType, ResultType));
3355 break;
3356 }
3357 case ISD::UADDO:
3358 case ISD::USUBO: {
3359 SDValue LHS = Node->getOperand(0);
3360 SDValue RHS = Node->getOperand(1);
3361 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
3362 ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3363 LHS, RHS);
3364 Results.push_back(Sum);
3365
3366 EVT ResultType = Node->getValueType(1);
3367 EVT SetCCType = getSetCCResultType(Node->getValueType(0));
3368 ISD::CondCode CC
3369 = Node->getOpcode() == ISD::UADDO ? ISD::SETULT : ISD::SETUGT;
3370 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC);
3371
3372 Results.push_back(DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType));
3373 break;
3374 }
3375 case ISD::UMULO:
3376 case ISD::SMULO: {
3377 EVT VT = Node->getValueType(0);
3378 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
3379 SDValue LHS = Node->getOperand(0);
3380 SDValue RHS = Node->getOperand(1);
3381 SDValue BottomHalf;
3382 SDValue TopHalf;
3383 static const unsigned Ops[2][3] =
3384 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
3385 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
3386 bool isSigned = Node->getOpcode() == ISD::SMULO;
3387 if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
3388 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
3389 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
3390 } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
3391 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
3392 RHS);
3393 TopHalf = BottomHalf.getValue(1);
3394 } else if (TLI.isTypeLegal(WideVT)) {
3395 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
3396 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
3397 Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
3398 BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3399 DAG.getIntPtrConstant(0, dl));
3400 TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3401 DAG.getIntPtrConstant(1, dl));
3402 } else {
3403 // We can fall back to a libcall with an illegal type for the MUL if we
3404 // have a libcall big enough.
3405 // Also, we can fall back to a division in some cases, but that's a big
3406 // performance hit in the general case.
3407 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
3408 if (WideVT == MVT::i16)
3409 LC = RTLIB::MUL_I16;
3410 else if (WideVT == MVT::i32)
3411 LC = RTLIB::MUL_I32;
3412 else if (WideVT == MVT::i64)
3413 LC = RTLIB::MUL_I64;
3414 else if (WideVT == MVT::i128)
3415 LC = RTLIB::MUL_I128;
3416 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
3417
3418 // The high part is obtained by SRA'ing all but one of the bits of low
3419 // part.
3420 unsigned LoSize = VT.getSizeInBits();
3421 SDValue HiLHS =
3422 DAG.getNode(ISD::SRA, dl, VT, RHS,
3423 DAG.getConstant(LoSize - 1, dl,
3424 TLI.getPointerTy(DAG.getDataLayout())));
3425 SDValue HiRHS =
3426 DAG.getNode(ISD::SRA, dl, VT, LHS,
3427 DAG.getConstant(LoSize - 1, dl,
3428 TLI.getPointerTy(DAG.getDataLayout())));
3429
3430 // Here we're passing the 2 arguments explicitly as 4 arguments that are
3431 // pre-lowered to the correct types. This all depends upon WideVT not
3432 // being a legal type for the architecture and thus has to be split to
3433 // two arguments.
3434 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
3435 SDValue Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl);
3436 BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret,
3437 DAG.getIntPtrConstant(0, dl));
3438 TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret,
3439 DAG.getIntPtrConstant(1, dl));
3440 // Ret is a node with an illegal type. Because such things are not
3441 // generally permitted during this phase of legalization, make sure the
3442 // node has no more uses. The above EXTRACT_ELEMENT nodes should have been
3443 // folded.
3444 assert(Ret->use_empty() &&
3445 "Unexpected uses of illegally type from expanded lib call.");
3446 }
3447
3448 if (isSigned) {
3449 Tmp1 = DAG.getConstant(
3450 VT.getSizeInBits() - 1, dl,
3451 TLI.getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
3452 Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1);
3453 TopHalf = DAG.getSetCC(dl, getSetCCResultType(VT), TopHalf, Tmp1,
3454 ISD::SETNE);
3455 } else {
3456 TopHalf = DAG.getSetCC(dl, getSetCCResultType(VT), TopHalf,
3457 DAG.getConstant(0, dl, VT), ISD::SETNE);
3458 }
3459 Results.push_back(BottomHalf);
3460 Results.push_back(TopHalf);
3461 break;
3462 }
3463 case ISD::BUILD_PAIR: {
3464 EVT PairTy = Node->getValueType(0);
3465 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
3466 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
3467 Tmp2 = DAG.getNode(
3468 ISD::SHL, dl, PairTy, Tmp2,
3469 DAG.getConstant(PairTy.getSizeInBits() / 2, dl,
3470 TLI.getShiftAmountTy(PairTy, DAG.getDataLayout())));
3471 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
3472 break;
3473 }
3474 case ISD::SELECT:
3475 Tmp1 = Node->getOperand(0);
3476 Tmp2 = Node->getOperand(1);
3477 Tmp3 = Node->getOperand(2);
3478 if (Tmp1.getOpcode() == ISD::SETCC) {
3479 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
3480 Tmp2, Tmp3,
3481 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
3482 } else {
3483 Tmp1 = DAG.getSelectCC(dl, Tmp1,
3484 DAG.getConstant(0, dl, Tmp1.getValueType()),
3485 Tmp2, Tmp3, ISD::SETNE);
3486 }
3487 Results.push_back(Tmp1);
3488 break;
3489 case ISD::BR_JT: {
3490 SDValue Chain = Node->getOperand(0);
3491 SDValue Table = Node->getOperand(1);
3492 SDValue Index = Node->getOperand(2);
3493
3494 EVT PTy = TLI.getPointerTy(DAG.getDataLayout());
3495
3496 const DataLayout &TD = DAG.getDataLayout();
3497 unsigned EntrySize =
3498 DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
3499
3500 Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index,
3501 DAG.getConstant(EntrySize, dl, Index.getValueType()));
3502 SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(),
3503 Index, Table);
3504
3505 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
3506 SDValue LD = DAG.getExtLoad(
3507 ISD::SEXTLOAD, dl, PTy, Chain, Addr,
3508 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT,
3509 false, false, false, 0);
3510 Addr = LD;
3511 if (TM.isPositionIndependent()) {
3512 // For PIC, the sequence is:
3513 // BRIND(load(Jumptable + index) + RelocBase)
3514 // RelocBase can be JumpTable, GOT or some sort of global base.
3515 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
3516 TLI.getPICJumpTableRelocBase(Table, DAG));
3517 }
3518 Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
3519 Results.push_back(Tmp1);
3520 break;
3521 }
3522 case ISD::BRCOND:
3523 // Expand brcond's setcc into its constituent parts and create a BR_CC
3524 // Node.
3525 Tmp1 = Node->getOperand(0);
3526 Tmp2 = Node->getOperand(1);
3527 if (Tmp2.getOpcode() == ISD::SETCC) {
3528 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
3529 Tmp1, Tmp2.getOperand(2),
3530 Tmp2.getOperand(0), Tmp2.getOperand(1),
3531 Node->getOperand(2));
3532 } else {
3533 // We test only the i1 bit. Skip the AND if UNDEF.
3534 Tmp3 = (Tmp2.isUndef()) ? Tmp2 :
3535 DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2,
3536 DAG.getConstant(1, dl, Tmp2.getValueType()));
3537 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
3538 DAG.getCondCode(ISD::SETNE), Tmp3,
3539 DAG.getConstant(0, dl, Tmp3.getValueType()),
3540 Node->getOperand(2));
3541 }
3542 Results.push_back(Tmp1);
3543 break;
3544 case ISD::SETCC: {
3545 Tmp1 = Node->getOperand(0);
3546 Tmp2 = Node->getOperand(1);
3547 Tmp3 = Node->getOperand(2);
3548 bool Legalized = LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2,
3549 Tmp3, NeedInvert, dl);
3550
3551 if (Legalized) {
3552 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
3553 // condition code, create a new SETCC node.
3554 if (Tmp3.getNode())
3555 Tmp1 = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3556 Tmp1, Tmp2, Tmp3);
3557
3558 // If we expanded the SETCC by inverting the condition code, then wrap
3559 // the existing SETCC in a NOT to restore the intended condition.
3560 if (NeedInvert)
3561 Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0));
3562
3563 Results.push_back(Tmp1);
3564 break;
3565 }
3566
3567 // Otherwise, SETCC for the given comparison type must be completely
3568 // illegal; expand it into a SELECT_CC.
3569 EVT VT = Node->getValueType(0);
3570 int TrueValue;
3571 switch (TLI.getBooleanContents(Tmp1->getValueType(0))) {
3572 case TargetLowering::ZeroOrOneBooleanContent:
3573 case TargetLowering::UndefinedBooleanContent:
3574 TrueValue = 1;
3575 break;
3576 case TargetLowering::ZeroOrNegativeOneBooleanContent:
3577 TrueValue = -1;
3578 break;
3579 }
3580 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
3581 DAG.getConstant(TrueValue, dl, VT),
3582 DAG.getConstant(0, dl, VT),
3583 Tmp3);
3584 Results.push_back(Tmp1);
3585 break;
3586 }
3587 case ISD::SELECT_CC: {
3588 Tmp1 = Node->getOperand(0); // LHS
3589 Tmp2 = Node->getOperand(1); // RHS
3590 Tmp3 = Node->getOperand(2); // True
3591 Tmp4 = Node->getOperand(3); // False
3592 EVT VT = Node->getValueType(0);
3593 SDValue CC = Node->getOperand(4);
3594 ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get();
3595
3596 if (TLI.isCondCodeLegal(CCOp, Tmp1.getSimpleValueType())) {
3597 // If the condition code is legal, then we need to expand this
3598 // node using SETCC and SELECT.
3599 EVT CmpVT = Tmp1.getValueType();
3600 assert(!TLI.isOperationExpand(ISD::SELECT, VT) &&
3601 "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be "
3602 "expanded.");
3603 EVT CCVT =
3604 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT);
3605 SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC);
3606 Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4));
3607 break;
3608 }
3609
3610 // SELECT_CC is legal, so the condition code must not be.
3611 bool Legalized = false;
3612 // Try to legalize by inverting the condition. This is for targets that
3613 // might support an ordered version of a condition, but not the unordered
3614 // version (or vice versa).
3615 ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp,
3616 Tmp1.getValueType().isInteger());
3617 if (TLI.isCondCodeLegal(InvCC, Tmp1.getSimpleValueType())) {
3618 // Use the new condition code and swap true and false
3619 Legalized = true;
3620 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC);
3621 } else {
3622 // If The inverse is not legal, then try to swap the arguments using
3623 // the inverse condition code.
3624 ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC);
3625 if (TLI.isCondCodeLegal(SwapInvCC, Tmp1.getSimpleValueType())) {
3626 // The swapped inverse condition is legal, so swap true and false,
3627 // lhs and rhs.
3628 Legalized = true;
3629 Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC);
3630 }
3631 }
3632
3633 if (!Legalized) {
3634 Legalized = LegalizeSetCCCondCode(
3635 getSetCCResultType(Tmp1.getValueType()), Tmp1, Tmp2, CC, NeedInvert,
3636 dl);
3637
3638 assert(Legalized && "Can't legalize SELECT_CC with legal condition!");
3639
3640 // If we expanded the SETCC by inverting the condition code, then swap
3641 // the True/False operands to match.
3642 if (NeedInvert)
3643 std::swap(Tmp3, Tmp4);
3644
3645 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
3646 // condition code, create a new SELECT_CC node.
3647 if (CC.getNode()) {
3648 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0),
3649 Tmp1, Tmp2, Tmp3, Tmp4, CC);
3650 } else {
3651 Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType());
3652 CC = DAG.getCondCode(ISD::SETNE);
3653 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1,
3654 Tmp2, Tmp3, Tmp4, CC);
3655 }
3656 }
3657 Results.push_back(Tmp1);
3658 break;
3659 }
3660 case ISD::BR_CC: {
3661 Tmp1 = Node->getOperand(0); // Chain
3662 Tmp2 = Node->getOperand(2); // LHS
3663 Tmp3 = Node->getOperand(3); // RHS
3664 Tmp4 = Node->getOperand(1); // CC
3665
3666 bool Legalized = LegalizeSetCCCondCode(getSetCCResultType(
3667 Tmp2.getValueType()), Tmp2, Tmp3, Tmp4, NeedInvert, dl);
3668 (void)Legalized;
3669 assert(Legalized && "Can't legalize BR_CC with legal condition!");
3670
3671 // If we expanded the SETCC by inverting the condition code, then wrap
3672 // the existing SETCC in a NOT to restore the intended condition.
3673 if (NeedInvert)
3674 Tmp4 = DAG.getNOT(dl, Tmp4, Tmp4->getValueType(0));
3675
3676 // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC
3677 // node.
3678 if (Tmp4.getNode()) {
3679 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1,
3680 Tmp4, Tmp2, Tmp3, Node->getOperand(4));
3681 } else {
3682 Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType());
3683 Tmp4 = DAG.getCondCode(ISD::SETNE);
3684 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4,
3685 Tmp2, Tmp3, Node->getOperand(4));
3686 }
3687 Results.push_back(Tmp1);
3688 break;
3689 }
3690 case ISD::BUILD_VECTOR:
3691 Results.push_back(ExpandBUILD_VECTOR(Node));
3692 break;
3693 case ISD::SRA:
3694 case ISD::SRL:
3695 case ISD::SHL: {
3696 // Scalarize vector SRA/SRL/SHL.
3697 EVT VT = Node->getValueType(0);
3698 assert(VT.isVector() && "Unable to legalize non-vector shift");
3699 assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal");
3700 unsigned NumElem = VT.getVectorNumElements();
3701
3702 SmallVector<SDValue, 8> Scalars;
3703 for (unsigned Idx = 0; Idx < NumElem; Idx++) {
3704 SDValue Ex = DAG.getNode(
3705 ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(0),
3706 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
3707 SDValue Sh = DAG.getNode(
3708 ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(1),
3709 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
3710 Scalars.push_back(DAG.getNode(Node->getOpcode(), dl,
3711 VT.getScalarType(), Ex, Sh));
3712 }
3713 SDValue Result =
3714 DAG.getNode(ISD::BUILD_VECTOR, dl, Node->getValueType(0), Scalars);
3715 ReplaceNode(SDValue(Node, 0), Result);
3716 break;
3717 }
3718 case ISD::GLOBAL_OFFSET_TABLE:
3719 case ISD::GlobalAddress:
3720 case ISD::GlobalTLSAddress:
3721 case ISD::ExternalSymbol:
3722 case ISD::ConstantPool:
3723 case ISD::JumpTable:
3724 case ISD::INTRINSIC_W_CHAIN:
3725 case ISD::INTRINSIC_WO_CHAIN:
3726 case ISD::INTRINSIC_VOID:
3727 // FIXME: Custom lowering for these operations shouldn't return null!
3728 break;
3729 }
3730
3731 // Replace the original node with the legalized result.
3732 if (Results.empty())
3733 return false;
3734
3735 ReplaceNode(Node, Results.data());
3736 return true;
3737 }
3738
ConvertNodeToLibcall(SDNode * Node)3739 void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) {
3740 SmallVector<SDValue, 8> Results;
3741 SDLoc dl(Node);
3742 SDValue Tmp1, Tmp2, Tmp3, Tmp4;
3743 unsigned Opc = Node->getOpcode();
3744 switch (Opc) {
3745 case ISD::ATOMIC_FENCE: {
3746 // If the target didn't lower this, lower it to '__sync_synchronize()' call
3747 // FIXME: handle "fence singlethread" more efficiently.
3748 TargetLowering::ArgListTy Args;
3749
3750 TargetLowering::CallLoweringInfo CLI(DAG);
3751 CLI.setDebugLoc(dl)
3752 .setChain(Node->getOperand(0))
3753 .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3754 DAG.getExternalSymbol("__sync_synchronize",
3755 TLI.getPointerTy(DAG.getDataLayout())),
3756 std::move(Args));
3757
3758 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
3759
3760 Results.push_back(CallResult.second);
3761 break;
3762 }
3763 // By default, atomic intrinsics are marked Legal and lowered. Targets
3764 // which don't support them directly, however, may want libcalls, in which
3765 // case they mark them Expand, and we get here.
3766 case ISD::ATOMIC_SWAP:
3767 case ISD::ATOMIC_LOAD_ADD:
3768 case ISD::ATOMIC_LOAD_SUB:
3769 case ISD::ATOMIC_LOAD_AND:
3770 case ISD::ATOMIC_LOAD_OR:
3771 case ISD::ATOMIC_LOAD_XOR:
3772 case ISD::ATOMIC_LOAD_NAND:
3773 case ISD::ATOMIC_LOAD_MIN:
3774 case ISD::ATOMIC_LOAD_MAX:
3775 case ISD::ATOMIC_LOAD_UMIN:
3776 case ISD::ATOMIC_LOAD_UMAX:
3777 case ISD::ATOMIC_CMP_SWAP: {
3778 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
3779 RTLIB::Libcall LC = RTLIB::getSYNC(Opc, VT);
3780 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected atomic op or value type!");
3781
3782 std::pair<SDValue, SDValue> Tmp = ExpandChainLibCall(LC, Node, false);
3783 Results.push_back(Tmp.first);
3784 Results.push_back(Tmp.second);
3785 break;
3786 }
3787 case ISD::TRAP: {
3788 // If this operation is not supported, lower it to 'abort()' call
3789 TargetLowering::ArgListTy Args;
3790 TargetLowering::CallLoweringInfo CLI(DAG);
3791 CLI.setDebugLoc(dl)
3792 .setChain(Node->getOperand(0))
3793 .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3794 DAG.getExternalSymbol("abort",
3795 TLI.getPointerTy(DAG.getDataLayout())),
3796 std::move(Args));
3797 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
3798
3799 Results.push_back(CallResult.second);
3800 break;
3801 }
3802 case ISD::FMINNUM:
3803 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64,
3804 RTLIB::FMIN_F80, RTLIB::FMIN_F128,
3805 RTLIB::FMIN_PPCF128));
3806 break;
3807 case ISD::FMAXNUM:
3808 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64,
3809 RTLIB::FMAX_F80, RTLIB::FMAX_F128,
3810 RTLIB::FMAX_PPCF128));
3811 break;
3812 case ISD::FSQRT:
3813 Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
3814 RTLIB::SQRT_F80, RTLIB::SQRT_F128,
3815 RTLIB::SQRT_PPCF128));
3816 break;
3817 case ISD::FSIN:
3818 Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
3819 RTLIB::SIN_F80, RTLIB::SIN_F128,
3820 RTLIB::SIN_PPCF128));
3821 break;
3822 case ISD::FCOS:
3823 Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
3824 RTLIB::COS_F80, RTLIB::COS_F128,
3825 RTLIB::COS_PPCF128));
3826 break;
3827 case ISD::FSINCOS:
3828 // Expand into sincos libcall.
3829 ExpandSinCosLibCall(Node, Results);
3830 break;
3831 case ISD::FLOG:
3832 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
3833 RTLIB::LOG_F80, RTLIB::LOG_F128,
3834 RTLIB::LOG_PPCF128));
3835 break;
3836 case ISD::FLOG2:
3837 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
3838 RTLIB::LOG2_F80, RTLIB::LOG2_F128,
3839 RTLIB::LOG2_PPCF128));
3840 break;
3841 case ISD::FLOG10:
3842 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
3843 RTLIB::LOG10_F80, RTLIB::LOG10_F128,
3844 RTLIB::LOG10_PPCF128));
3845 break;
3846 case ISD::FEXP:
3847 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
3848 RTLIB::EXP_F80, RTLIB::EXP_F128,
3849 RTLIB::EXP_PPCF128));
3850 break;
3851 case ISD::FEXP2:
3852 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
3853 RTLIB::EXP2_F80, RTLIB::EXP2_F128,
3854 RTLIB::EXP2_PPCF128));
3855 break;
3856 case ISD::FTRUNC:
3857 Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
3858 RTLIB::TRUNC_F80, RTLIB::TRUNC_F128,
3859 RTLIB::TRUNC_PPCF128));
3860 break;
3861 case ISD::FFLOOR:
3862 Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
3863 RTLIB::FLOOR_F80, RTLIB::FLOOR_F128,
3864 RTLIB::FLOOR_PPCF128));
3865 break;
3866 case ISD::FCEIL:
3867 Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
3868 RTLIB::CEIL_F80, RTLIB::CEIL_F128,
3869 RTLIB::CEIL_PPCF128));
3870 break;
3871 case ISD::FRINT:
3872 Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
3873 RTLIB::RINT_F80, RTLIB::RINT_F128,
3874 RTLIB::RINT_PPCF128));
3875 break;
3876 case ISD::FNEARBYINT:
3877 Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
3878 RTLIB::NEARBYINT_F64,
3879 RTLIB::NEARBYINT_F80,
3880 RTLIB::NEARBYINT_F128,
3881 RTLIB::NEARBYINT_PPCF128));
3882 break;
3883 case ISD::FROUND:
3884 Results.push_back(ExpandFPLibCall(Node, RTLIB::ROUND_F32,
3885 RTLIB::ROUND_F64,
3886 RTLIB::ROUND_F80,
3887 RTLIB::ROUND_F128,
3888 RTLIB::ROUND_PPCF128));
3889 break;
3890 case ISD::FPOWI:
3891 Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
3892 RTLIB::POWI_F80, RTLIB::POWI_F128,
3893 RTLIB::POWI_PPCF128));
3894 break;
3895 case ISD::FPOW:
3896 Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
3897 RTLIB::POW_F80, RTLIB::POW_F128,
3898 RTLIB::POW_PPCF128));
3899 break;
3900 case ISD::FDIV:
3901 Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
3902 RTLIB::DIV_F80, RTLIB::DIV_F128,
3903 RTLIB::DIV_PPCF128));
3904 break;
3905 case ISD::FREM:
3906 Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
3907 RTLIB::REM_F80, RTLIB::REM_F128,
3908 RTLIB::REM_PPCF128));
3909 break;
3910 case ISD::FMA:
3911 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64,
3912 RTLIB::FMA_F80, RTLIB::FMA_F128,
3913 RTLIB::FMA_PPCF128));
3914 break;
3915 case ISD::FADD:
3916 Results.push_back(ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64,
3917 RTLIB::ADD_F80, RTLIB::ADD_F128,
3918 RTLIB::ADD_PPCF128));
3919 break;
3920 case ISD::FMUL:
3921 Results.push_back(ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64,
3922 RTLIB::MUL_F80, RTLIB::MUL_F128,
3923 RTLIB::MUL_PPCF128));
3924 break;
3925 case ISD::FP16_TO_FP:
3926 if (Node->getValueType(0) == MVT::f32) {
3927 Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
3928 }
3929 break;
3930 case ISD::FP_TO_FP16: {
3931 RTLIB::Libcall LC =
3932 RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16);
3933 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16");
3934 Results.push_back(ExpandLibCall(LC, Node, false));
3935 break;
3936 }
3937 case ISD::FSUB:
3938 Results.push_back(ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64,
3939 RTLIB::SUB_F80, RTLIB::SUB_F128,
3940 RTLIB::SUB_PPCF128));
3941 break;
3942 case ISD::SREM:
3943 Results.push_back(ExpandIntLibCall(Node, true,
3944 RTLIB::SREM_I8,
3945 RTLIB::SREM_I16, RTLIB::SREM_I32,
3946 RTLIB::SREM_I64, RTLIB::SREM_I128));
3947 break;
3948 case ISD::UREM:
3949 Results.push_back(ExpandIntLibCall(Node, false,
3950 RTLIB::UREM_I8,
3951 RTLIB::UREM_I16, RTLIB::UREM_I32,
3952 RTLIB::UREM_I64, RTLIB::UREM_I128));
3953 break;
3954 case ISD::SDIV:
3955 Results.push_back(ExpandIntLibCall(Node, true,
3956 RTLIB::SDIV_I8,
3957 RTLIB::SDIV_I16, RTLIB::SDIV_I32,
3958 RTLIB::SDIV_I64, RTLIB::SDIV_I128));
3959 break;
3960 case ISD::UDIV:
3961 Results.push_back(ExpandIntLibCall(Node, false,
3962 RTLIB::UDIV_I8,
3963 RTLIB::UDIV_I16, RTLIB::UDIV_I32,
3964 RTLIB::UDIV_I64, RTLIB::UDIV_I128));
3965 break;
3966 case ISD::SDIVREM:
3967 case ISD::UDIVREM:
3968 // Expand into divrem libcall
3969 ExpandDivRemLibCall(Node, Results);
3970 break;
3971 case ISD::MUL:
3972 Results.push_back(ExpandIntLibCall(Node, false,
3973 RTLIB::MUL_I8,
3974 RTLIB::MUL_I16, RTLIB::MUL_I32,
3975 RTLIB::MUL_I64, RTLIB::MUL_I128));
3976 break;
3977 }
3978
3979 // Replace the original node with the legalized result.
3980 if (!Results.empty())
3981 ReplaceNode(Node, Results.data());
3982 }
3983
3984 // Determine the vector type to use in place of an original scalar element when
3985 // promoting equally sized vectors.
getPromotedVectorElementType(const TargetLowering & TLI,MVT EltVT,MVT NewEltVT)3986 static MVT getPromotedVectorElementType(const TargetLowering &TLI,
3987 MVT EltVT, MVT NewEltVT) {
3988 unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits();
3989 MVT MidVT = MVT::getVectorVT(NewEltVT, OldEltsPerNewElt);
3990 assert(TLI.isTypeLegal(MidVT) && "unexpected");
3991 return MidVT;
3992 }
3993
PromoteNode(SDNode * Node)3994 void SelectionDAGLegalize::PromoteNode(SDNode *Node) {
3995 SmallVector<SDValue, 8> Results;
3996 MVT OVT = Node->getSimpleValueType(0);
3997 if (Node->getOpcode() == ISD::UINT_TO_FP ||
3998 Node->getOpcode() == ISD::SINT_TO_FP ||
3999 Node->getOpcode() == ISD::SETCC ||
4000 Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
4001 Node->getOpcode() == ISD::INSERT_VECTOR_ELT) {
4002 OVT = Node->getOperand(0).getSimpleValueType();
4003 }
4004 if (Node->getOpcode() == ISD::BR_CC)
4005 OVT = Node->getOperand(2).getSimpleValueType();
4006 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
4007 SDLoc dl(Node);
4008 SDValue Tmp1, Tmp2, Tmp3;
4009 switch (Node->getOpcode()) {
4010 case ISD::CTTZ:
4011 case ISD::CTTZ_ZERO_UNDEF:
4012 case ISD::CTLZ:
4013 case ISD::CTLZ_ZERO_UNDEF:
4014 case ISD::CTPOP:
4015 // Zero extend the argument.
4016 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
4017 if (Node->getOpcode() == ISD::CTTZ) {
4018 // The count is the same in the promoted type except if the original
4019 // value was zero. This can be handled by setting the bit just off
4020 // the top of the original type.
4021 auto TopBit = APInt::getOneBitSet(NVT.getSizeInBits(),
4022 OVT.getSizeInBits());
4023 Tmp1 = DAG.getNode(ISD::OR, dl, NVT, Tmp1,
4024 DAG.getConstant(TopBit, dl, NVT));
4025 }
4026 // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is
4027 // already the correct result.
4028 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4029 if (Node->getOpcode() == ISD::CTLZ ||
4030 Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) {
4031 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
4032 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
4033 DAG.getConstant(NVT.getSizeInBits() -
4034 OVT.getSizeInBits(), dl, NVT));
4035 }
4036 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
4037 break;
4038 case ISD::BSWAP: {
4039 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
4040 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
4041 Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
4042 Tmp1 = DAG.getNode(
4043 ISD::SRL, dl, NVT, Tmp1,
4044 DAG.getConstant(DiffBits, dl,
4045 TLI.getShiftAmountTy(NVT, DAG.getDataLayout())));
4046 Results.push_back(Tmp1);
4047 break;
4048 }
4049 case ISD::FP_TO_UINT:
4050 case ISD::FP_TO_SINT:
4051 Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
4052 Node->getOpcode() == ISD::FP_TO_SINT, dl);
4053 Results.push_back(Tmp1);
4054 break;
4055 case ISD::UINT_TO_FP:
4056 case ISD::SINT_TO_FP:
4057 Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
4058 Node->getOpcode() == ISD::SINT_TO_FP, dl);
4059 Results.push_back(Tmp1);
4060 break;
4061 case ISD::VAARG: {
4062 SDValue Chain = Node->getOperand(0); // Get the chain.
4063 SDValue Ptr = Node->getOperand(1); // Get the pointer.
4064
4065 unsigned TruncOp;
4066 if (OVT.isVector()) {
4067 TruncOp = ISD::BITCAST;
4068 } else {
4069 assert(OVT.isInteger()
4070 && "VAARG promotion is supported only for vectors or integer types");
4071 TruncOp = ISD::TRUNCATE;
4072 }
4073
4074 // Perform the larger operation, then convert back
4075 Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2),
4076 Node->getConstantOperandVal(3));
4077 Chain = Tmp1.getValue(1);
4078
4079 Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1);
4080
4081 // Modified the chain result - switch anything that used the old chain to
4082 // use the new one.
4083 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2);
4084 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
4085 if (UpdatedNodes) {
4086 UpdatedNodes->insert(Tmp2.getNode());
4087 UpdatedNodes->insert(Chain.getNode());
4088 }
4089 ReplacedNode(Node);
4090 break;
4091 }
4092 case ISD::AND:
4093 case ISD::OR:
4094 case ISD::XOR: {
4095 unsigned ExtOp, TruncOp;
4096 if (OVT.isVector()) {
4097 ExtOp = ISD::BITCAST;
4098 TruncOp = ISD::BITCAST;
4099 } else {
4100 assert(OVT.isInteger() && "Cannot promote logic operation");
4101 ExtOp = ISD::ANY_EXTEND;
4102 TruncOp = ISD::TRUNCATE;
4103 }
4104 // Promote each of the values to the new type.
4105 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4106 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4107 // Perform the larger operation, then convert back
4108 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
4109 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
4110 break;
4111 }
4112 case ISD::SELECT: {
4113 unsigned ExtOp, TruncOp;
4114 if (Node->getValueType(0).isVector() ||
4115 Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) {
4116 ExtOp = ISD::BITCAST;
4117 TruncOp = ISD::BITCAST;
4118 } else if (Node->getValueType(0).isInteger()) {
4119 ExtOp = ISD::ANY_EXTEND;
4120 TruncOp = ISD::TRUNCATE;
4121 } else {
4122 ExtOp = ISD::FP_EXTEND;
4123 TruncOp = ISD::FP_ROUND;
4124 }
4125 Tmp1 = Node->getOperand(0);
4126 // Promote each of the values to the new type.
4127 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4128 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
4129 // Perform the larger operation, then round down.
4130 Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3);
4131 if (TruncOp != ISD::FP_ROUND)
4132 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
4133 else
4134 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
4135 DAG.getIntPtrConstant(0, dl));
4136 Results.push_back(Tmp1);
4137 break;
4138 }
4139 case ISD::VECTOR_SHUFFLE: {
4140 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
4141
4142 // Cast the two input vectors.
4143 Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0));
4144 Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1));
4145
4146 // Convert the shuffle mask to the right # elements.
4147 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
4148 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1);
4149 Results.push_back(Tmp1);
4150 break;
4151 }
4152 case ISD::SETCC: {
4153 unsigned ExtOp = ISD::FP_EXTEND;
4154 if (NVT.isInteger()) {
4155 ISD::CondCode CCCode =
4156 cast<CondCodeSDNode>(Node->getOperand(2))->get();
4157 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4158 }
4159 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4160 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4161 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
4162 Tmp1, Tmp2, Node->getOperand(2)));
4163 break;
4164 }
4165 case ISD::BR_CC: {
4166 unsigned ExtOp = ISD::FP_EXTEND;
4167 if (NVT.isInteger()) {
4168 ISD::CondCode CCCode =
4169 cast<CondCodeSDNode>(Node->getOperand(1))->get();
4170 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4171 }
4172 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
4173 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3));
4174 Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0),
4175 Node->getOperand(0), Node->getOperand(1),
4176 Tmp1, Tmp2, Node->getOperand(4)));
4177 break;
4178 }
4179 case ISD::FADD:
4180 case ISD::FSUB:
4181 case ISD::FMUL:
4182 case ISD::FDIV:
4183 case ISD::FREM:
4184 case ISD::FMINNUM:
4185 case ISD::FMAXNUM:
4186 case ISD::FPOW: {
4187 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4188 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
4189 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2,
4190 Node->getFlags());
4191 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4192 Tmp3, DAG.getIntPtrConstant(0, dl)));
4193 break;
4194 }
4195 case ISD::FMA: {
4196 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4197 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
4198 Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2));
4199 Results.push_back(
4200 DAG.getNode(ISD::FP_ROUND, dl, OVT,
4201 DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3),
4202 DAG.getIntPtrConstant(0, dl)));
4203 break;
4204 }
4205 case ISD::FCOPYSIGN:
4206 case ISD::FPOWI: {
4207 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4208 Tmp2 = Node->getOperand(1);
4209 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
4210
4211 // fcopysign doesn't change anything but the sign bit, so
4212 // (fp_round (fcopysign (fpext a), b))
4213 // is as precise as
4214 // (fp_round (fpext a))
4215 // which is a no-op. Mark it as a TRUNCating FP_ROUND.
4216 const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN);
4217 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4218 Tmp3, DAG.getIntPtrConstant(isTrunc, dl)));
4219 break;
4220 }
4221 case ISD::FFLOOR:
4222 case ISD::FCEIL:
4223 case ISD::FRINT:
4224 case ISD::FNEARBYINT:
4225 case ISD::FROUND:
4226 case ISD::FTRUNC:
4227 case ISD::FNEG:
4228 case ISD::FSQRT:
4229 case ISD::FSIN:
4230 case ISD::FCOS:
4231 case ISD::FLOG:
4232 case ISD::FLOG2:
4233 case ISD::FLOG10:
4234 case ISD::FABS:
4235 case ISD::FEXP:
4236 case ISD::FEXP2: {
4237 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4238 Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4239 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4240 Tmp2, DAG.getIntPtrConstant(0, dl)));
4241 break;
4242 }
4243 case ISD::BUILD_VECTOR: {
4244 MVT EltVT = OVT.getVectorElementType();
4245 MVT NewEltVT = NVT.getVectorElementType();
4246
4247 // Handle bitcasts to a different vector type with the same total bit size
4248 //
4249 // e.g. v2i64 = build_vector i64:x, i64:y => v4i32
4250 // =>
4251 // v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y))
4252
4253 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
4254 "Invalid promote type for build_vector");
4255 assert(NewEltVT.bitsLT(EltVT) && "not handled");
4256
4257 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4258
4259 SmallVector<SDValue, 8> NewOps;
4260 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) {
4261 SDValue Op = Node->getOperand(I);
4262 NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op));
4263 }
4264
4265 SDLoc SL(Node);
4266 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewOps);
4267 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat);
4268 Results.push_back(CvtVec);
4269 break;
4270 }
4271 case ISD::EXTRACT_VECTOR_ELT: {
4272 MVT EltVT = OVT.getVectorElementType();
4273 MVT NewEltVT = NVT.getVectorElementType();
4274
4275 // Handle bitcasts to a different vector type with the same total bit size.
4276 //
4277 // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32
4278 // =>
4279 // v4i32:castx = bitcast x:v2i64
4280 //
4281 // i64 = bitcast
4282 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
4283 // (i32 (extract_vector_elt castx, (2 * y + 1)))
4284 //
4285
4286 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
4287 "Invalid promote type for extract_vector_elt");
4288 assert(NewEltVT.bitsLT(EltVT) && "not handled");
4289
4290 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4291 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements();
4292
4293 SDValue Idx = Node->getOperand(1);
4294 EVT IdxVT = Idx.getValueType();
4295 SDLoc SL(Node);
4296 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT);
4297 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor);
4298
4299 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0));
4300
4301 SmallVector<SDValue, 8> NewOps;
4302 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
4303 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT);
4304 SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset);
4305
4306 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT,
4307 CastVec, TmpIdx);
4308 NewOps.push_back(Elt);
4309 }
4310
4311 SDValue NewVec = DAG.getNode(ISD::BUILD_VECTOR, SL, MidVT, NewOps);
4312
4313 Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec));
4314 break;
4315 }
4316 case ISD::INSERT_VECTOR_ELT: {
4317 MVT EltVT = OVT.getVectorElementType();
4318 MVT NewEltVT = NVT.getVectorElementType();
4319
4320 // Handle bitcasts to a different vector type with the same total bit size
4321 //
4322 // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32
4323 // =>
4324 // v4i32:castx = bitcast x:v2i64
4325 // v2i32:casty = bitcast y:i64
4326 //
4327 // v2i64 = bitcast
4328 // (v4i32 insert_vector_elt
4329 // (v4i32 insert_vector_elt v4i32:castx,
4330 // (extract_vector_elt casty, 0), 2 * z),
4331 // (extract_vector_elt casty, 1), (2 * z + 1))
4332
4333 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
4334 "Invalid promote type for insert_vector_elt");
4335 assert(NewEltVT.bitsLT(EltVT) && "not handled");
4336
4337 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4338 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements();
4339
4340 SDValue Val = Node->getOperand(1);
4341 SDValue Idx = Node->getOperand(2);
4342 EVT IdxVT = Idx.getValueType();
4343 SDLoc SL(Node);
4344
4345 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT);
4346 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor);
4347
4348 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0));
4349 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val);
4350
4351 SDValue NewVec = CastVec;
4352 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
4353 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT);
4354 SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset);
4355
4356 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT,
4357 CastVal, IdxOffset);
4358
4359 NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT,
4360 NewVec, Elt, InEltIdx);
4361 }
4362
4363 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec));
4364 break;
4365 }
4366 case ISD::SCALAR_TO_VECTOR: {
4367 MVT EltVT = OVT.getVectorElementType();
4368 MVT NewEltVT = NVT.getVectorElementType();
4369
4370 // Handle bitcasts to different vector type with the smae total bit size.
4371 //
4372 // e.g. v2i64 = scalar_to_vector x:i64
4373 // =>
4374 // concat_vectors (v2i32 bitcast x:i64), (v2i32 undef)
4375 //
4376
4377 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4378 SDValue Val = Node->getOperand(0);
4379 SDLoc SL(Node);
4380
4381 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val);
4382 SDValue Undef = DAG.getUNDEF(MidVT);
4383
4384 SmallVector<SDValue, 8> NewElts;
4385 NewElts.push_back(CastVal);
4386 for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I)
4387 NewElts.push_back(Undef);
4388
4389 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts);
4390 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat);
4391 Results.push_back(CvtVec);
4392 break;
4393 }
4394 }
4395
4396 // Replace the original node with the legalized result.
4397 if (!Results.empty())
4398 ReplaceNode(Node, Results.data());
4399 }
4400
4401 /// This is the entry point for the file.
Legalize()4402 void SelectionDAG::Legalize() {
4403 AssignTopologicalOrder();
4404
4405 SmallPtrSet<SDNode *, 16> LegalizedNodes;
4406 SelectionDAGLegalize Legalizer(*this, LegalizedNodes);
4407
4408 // Visit all the nodes. We start in topological order, so that we see
4409 // nodes with their original operands intact. Legalization can produce
4410 // new nodes which may themselves need to be legalized. Iterate until all
4411 // nodes have been legalized.
4412 for (;;) {
4413 bool AnyLegalized = false;
4414 for (auto NI = allnodes_end(); NI != allnodes_begin();) {
4415 --NI;
4416
4417 SDNode *N = &*NI;
4418 if (N->use_empty() && N != getRoot().getNode()) {
4419 ++NI;
4420 DeleteNode(N);
4421 continue;
4422 }
4423
4424 if (LegalizedNodes.insert(N).second) {
4425 AnyLegalized = true;
4426 Legalizer.LegalizeOp(N);
4427
4428 if (N->use_empty() && N != getRoot().getNode()) {
4429 ++NI;
4430 DeleteNode(N);
4431 }
4432 }
4433 }
4434 if (!AnyLegalized)
4435 break;
4436
4437 }
4438
4439 // Remove dead nodes now.
4440 RemoveDeadNodes();
4441 }
4442
LegalizeOp(SDNode * N,SmallSetVector<SDNode *,16> & UpdatedNodes)4443 bool SelectionDAG::LegalizeOp(SDNode *N,
4444 SmallSetVector<SDNode *, 16> &UpdatedNodes) {
4445 SmallPtrSet<SDNode *, 16> LegalizedNodes;
4446 SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes);
4447
4448 // Directly insert the node in question, and legalize it. This will recurse
4449 // as needed through operands.
4450 LegalizedNodes.insert(N);
4451 Legalizer.LegalizeOp(N);
4452
4453 return LegalizedNodes.count(N);
4454 }
4455