1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the ScheduleDAGInstrs class, which implements re-scheduling
11 // of MachineInstrs.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
16 #include "llvm/ADT/IntEqClasses.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/ValueTracking.h"
21 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
22 #include "llvm/CodeGen/MachineFunctionPass.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineMemOperand.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/PseudoSourceValue.h"
28 #include "llvm/CodeGen/RegisterPressure.h"
29 #include "llvm/CodeGen/ScheduleDFS.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/Type.h"
32 #include "llvm/IR/Operator.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/Format.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Target/TargetInstrInfo.h"
38 #include "llvm/Target/TargetMachine.h"
39 #include "llvm/Target/TargetRegisterInfo.h"
40 #include "llvm/Target/TargetSubtargetInfo.h"
41
42 using namespace llvm;
43
44 #define DEBUG_TYPE "misched"
45
46 static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden,
47 cl::ZeroOrMore, cl::init(false),
48 cl::desc("Enable use of AA during MI DAG construction"));
49
50 static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden,
51 cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction"));
52
53 // Note: the two options below might be used in tuning compile time vs
54 // output quality. Setting HugeRegion so large that it will never be
55 // reached means best-effort, but may be slow.
56
57 // When Stores and Loads maps (or NonAliasStores and NonAliasLoads)
58 // together hold this many SUs, a reduction of maps will be done.
59 static cl::opt<unsigned> HugeRegion("dag-maps-huge-region", cl::Hidden,
60 cl::init(1000), cl::desc("The limit to use while constructing the DAG "
61 "prior to scheduling, at which point a trade-off "
62 "is made to avoid excessive compile time."));
63
64 static cl::opt<unsigned> ReductionSize(
65 "dag-maps-reduction-size", cl::Hidden,
66 cl::desc("A huge scheduling region will have maps reduced by this many "
67 "nodes at a time. Defaults to HugeRegion / 2."));
68
getReductionSize()69 static unsigned getReductionSize() {
70 // Always reduce a huge region with half of the elements, except
71 // when user sets this number explicitly.
72 if (ReductionSize.getNumOccurrences() == 0)
73 return HugeRegion / 2;
74 return ReductionSize;
75 }
76
dumpSUList(ScheduleDAGInstrs::SUList & L)77 static void dumpSUList(ScheduleDAGInstrs::SUList &L) {
78 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
79 dbgs() << "{ ";
80 for (auto *su : L) {
81 dbgs() << "SU(" << su->NodeNum << ")";
82 if (su != L.back())
83 dbgs() << ", ";
84 }
85 dbgs() << "}\n";
86 #endif
87 }
88
ScheduleDAGInstrs(MachineFunction & mf,const MachineLoopInfo * mli,bool RemoveKillFlags)89 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
90 const MachineLoopInfo *mli,
91 bool RemoveKillFlags)
92 : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()),
93 RemoveKillFlags(RemoveKillFlags), CanHandleTerminators(false),
94 TrackLaneMasks(false), AAForDep(nullptr), BarrierChain(nullptr),
95 UnknownValue(UndefValue::get(
96 Type::getVoidTy(mf.getFunction()->getContext()))),
97 FirstDbgValue(nullptr) {
98 DbgValues.clear();
99
100 const TargetSubtargetInfo &ST = mf.getSubtarget();
101 SchedModel.init(ST.getSchedModel(), &ST, TII);
102 }
103
104 /// getUnderlyingObjectFromInt - This is the function that does the work of
105 /// looking through basic ptrtoint+arithmetic+inttoptr sequences.
getUnderlyingObjectFromInt(const Value * V)106 static const Value *getUnderlyingObjectFromInt(const Value *V) {
107 do {
108 if (const Operator *U = dyn_cast<Operator>(V)) {
109 // If we find a ptrtoint, we can transfer control back to the
110 // regular getUnderlyingObjectFromInt.
111 if (U->getOpcode() == Instruction::PtrToInt)
112 return U->getOperand(0);
113 // If we find an add of a constant, a multiplied value, or a phi, it's
114 // likely that the other operand will lead us to the base
115 // object. We don't have to worry about the case where the
116 // object address is somehow being computed by the multiply,
117 // because our callers only care when the result is an
118 // identifiable object.
119 if (U->getOpcode() != Instruction::Add ||
120 (!isa<ConstantInt>(U->getOperand(1)) &&
121 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
122 !isa<PHINode>(U->getOperand(1))))
123 return V;
124 V = U->getOperand(0);
125 } else {
126 return V;
127 }
128 assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
129 } while (1);
130 }
131
132 /// getUnderlyingObjects - This is a wrapper around GetUnderlyingObjects
133 /// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
getUnderlyingObjects(const Value * V,SmallVectorImpl<Value * > & Objects,const DataLayout & DL)134 static void getUnderlyingObjects(const Value *V,
135 SmallVectorImpl<Value *> &Objects,
136 const DataLayout &DL) {
137 SmallPtrSet<const Value *, 16> Visited;
138 SmallVector<const Value *, 4> Working(1, V);
139 do {
140 V = Working.pop_back_val();
141
142 SmallVector<Value *, 4> Objs;
143 GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL);
144
145 for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end();
146 I != IE; ++I) {
147 V = *I;
148 if (!Visited.insert(V).second)
149 continue;
150 if (Operator::getOpcode(V) == Instruction::IntToPtr) {
151 const Value *O =
152 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
153 if (O->getType()->isPointerTy()) {
154 Working.push_back(O);
155 continue;
156 }
157 }
158 Objects.push_back(const_cast<Value *>(V));
159 }
160 } while (!Working.empty());
161 }
162
163 /// getUnderlyingObjectsForInstr - If this machine instr has memory reference
164 /// information and it can be tracked to a normal reference to a known
165 /// object, return the Value for that object.
getUnderlyingObjectsForInstr(const MachineInstr * MI,const MachineFrameInfo * MFI,UnderlyingObjectsVector & Objects,const DataLayout & DL)166 static void getUnderlyingObjectsForInstr(const MachineInstr *MI,
167 const MachineFrameInfo *MFI,
168 UnderlyingObjectsVector &Objects,
169 const DataLayout &DL) {
170 auto allMMOsOkay = [&]() {
171 for (const MachineMemOperand *MMO : MI->memoperands()) {
172 if (MMO->isVolatile())
173 return false;
174
175 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) {
176 // Function that contain tail calls don't have unique PseudoSourceValue
177 // objects. Two PseudoSourceValues might refer to the same or
178 // overlapping locations. The client code calling this function assumes
179 // this is not the case. So return a conservative answer of no known
180 // object.
181 if (MFI->hasTailCall())
182 return false;
183
184 // For now, ignore PseudoSourceValues which may alias LLVM IR values
185 // because the code that uses this function has no way to cope with
186 // such aliases.
187 if (PSV->isAliased(MFI))
188 return false;
189
190 bool MayAlias = PSV->mayAlias(MFI);
191 Objects.push_back(UnderlyingObjectsVector::value_type(PSV, MayAlias));
192 } else if (const Value *V = MMO->getValue()) {
193 SmallVector<Value *, 4> Objs;
194 getUnderlyingObjects(V, Objs, DL);
195
196 for (Value *V : Objs) {
197 if (!isIdentifiedObject(V))
198 return false;
199
200 Objects.push_back(UnderlyingObjectsVector::value_type(V, true));
201 }
202 } else
203 return false;
204 }
205 return true;
206 };
207
208 if (!allMMOsOkay())
209 Objects.clear();
210 }
211
startBlock(MachineBasicBlock * bb)212 void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) {
213 BB = bb;
214 }
215
finishBlock()216 void ScheduleDAGInstrs::finishBlock() {
217 // Subclasses should no longer refer to the old block.
218 BB = nullptr;
219 }
220
221 /// Initialize the DAG and common scheduler state for the current scheduling
222 /// region. This does not actually create the DAG, only clears it. The
223 /// scheduling driver may call BuildSchedGraph multiple times per scheduling
224 /// region.
enterRegion(MachineBasicBlock * bb,MachineBasicBlock::iterator begin,MachineBasicBlock::iterator end,unsigned regioninstrs)225 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
226 MachineBasicBlock::iterator begin,
227 MachineBasicBlock::iterator end,
228 unsigned regioninstrs) {
229 assert(bb == BB && "startBlock should set BB");
230 RegionBegin = begin;
231 RegionEnd = end;
232 NumRegionInstrs = regioninstrs;
233 }
234
235 /// Close the current scheduling region. Don't clear any state in case the
236 /// driver wants to refer to the previous scheduling region.
exitRegion()237 void ScheduleDAGInstrs::exitRegion() {
238 // Nothing to do.
239 }
240
241 /// addSchedBarrierDeps - Add dependencies from instructions in the current
242 /// list of instructions being scheduled to scheduling barrier by adding
243 /// the exit SU to the register defs and use list. This is because we want to
244 /// make sure instructions which define registers that are either used by
245 /// the terminator or are live-out are properly scheduled. This is
246 /// especially important when the definition latency of the return value(s)
247 /// are too high to be hidden by the branch or when the liveout registers
248 /// used by instructions in the fallthrough block.
addSchedBarrierDeps()249 void ScheduleDAGInstrs::addSchedBarrierDeps() {
250 MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : nullptr;
251 ExitSU.setInstr(ExitMI);
252 bool AllDepKnown = ExitMI &&
253 (ExitMI->isCall() || ExitMI->isBarrier());
254 if (ExitMI && AllDepKnown) {
255 // If it's a call or a barrier, add dependencies on the defs and uses of
256 // instruction.
257 for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
258 const MachineOperand &MO = ExitMI->getOperand(i);
259 if (!MO.isReg() || MO.isDef()) continue;
260 unsigned Reg = MO.getReg();
261 if (Reg == 0) continue;
262
263 if (TRI->isPhysicalRegister(Reg))
264 Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
265 else if (MO.readsReg()) // ignore undef operands
266 addVRegUseDeps(&ExitSU, i);
267 }
268 } else {
269 // For others, e.g. fallthrough, conditional branch, assume the exit
270 // uses all the registers that are livein to the successor blocks.
271 assert(Uses.empty() && "Uses in set before adding deps?");
272 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
273 SE = BB->succ_end(); SI != SE; ++SI)
274 for (const auto &LI : (*SI)->liveins()) {
275 if (!Uses.contains(LI.PhysReg))
276 Uses.insert(PhysRegSUOper(&ExitSU, -1, LI.PhysReg));
277 }
278 }
279 }
280
281 /// MO is an operand of SU's instruction that defines a physical register. Add
282 /// data dependencies from SU to any uses of the physical register.
addPhysRegDataDeps(SUnit * SU,unsigned OperIdx)283 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) {
284 const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx);
285 assert(MO.isDef() && "expect physreg def");
286
287 // Ask the target if address-backscheduling is desirable, and if so how much.
288 const TargetSubtargetInfo &ST = MF.getSubtarget();
289
290 for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
291 Alias.isValid(); ++Alias) {
292 if (!Uses.contains(*Alias))
293 continue;
294 for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) {
295 SUnit *UseSU = I->SU;
296 if (UseSU == SU)
297 continue;
298
299 // Adjust the dependence latency using operand def/use information,
300 // then allow the target to perform its own adjustments.
301 int UseOp = I->OpIdx;
302 MachineInstr *RegUse = nullptr;
303 SDep Dep;
304 if (UseOp < 0)
305 Dep = SDep(SU, SDep::Artificial);
306 else {
307 // Set the hasPhysRegDefs only for physreg defs that have a use within
308 // the scheduling region.
309 SU->hasPhysRegDefs = true;
310 Dep = SDep(SU, SDep::Data, *Alias);
311 RegUse = UseSU->getInstr();
312 }
313 Dep.setLatency(
314 SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, RegUse,
315 UseOp));
316
317 ST.adjustSchedDependency(SU, UseSU, Dep);
318 UseSU->addPred(Dep);
319 }
320 }
321 }
322
323 /// addPhysRegDeps - Add register dependencies (data, anti, and output) from
324 /// this SUnit to following instructions in the same scheduling region that
325 /// depend the physical register referenced at OperIdx.
addPhysRegDeps(SUnit * SU,unsigned OperIdx)326 void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
327 MachineInstr *MI = SU->getInstr();
328 MachineOperand &MO = MI->getOperand(OperIdx);
329
330 // Optionally add output and anti dependencies. For anti
331 // dependencies we use a latency of 0 because for a multi-issue
332 // target we want to allow the defining instruction to issue
333 // in the same cycle as the using instruction.
334 // TODO: Using a latency of 1 here for output dependencies assumes
335 // there's no cost for reusing registers.
336 SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
337 for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
338 Alias.isValid(); ++Alias) {
339 if (!Defs.contains(*Alias))
340 continue;
341 for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) {
342 SUnit *DefSU = I->SU;
343 if (DefSU == &ExitSU)
344 continue;
345 if (DefSU != SU &&
346 (Kind != SDep::Output || !MO.isDead() ||
347 !DefSU->getInstr()->registerDefIsDead(*Alias))) {
348 if (Kind == SDep::Anti)
349 DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias));
350 else {
351 SDep Dep(SU, Kind, /*Reg=*/*Alias);
352 Dep.setLatency(
353 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
354 DefSU->addPred(Dep);
355 }
356 }
357 }
358 }
359
360 if (!MO.isDef()) {
361 SU->hasPhysRegUses = true;
362 // Either insert a new Reg2SUnits entry with an empty SUnits list, or
363 // retrieve the existing SUnits list for this register's uses.
364 // Push this SUnit on the use list.
365 Uses.insert(PhysRegSUOper(SU, OperIdx, MO.getReg()));
366 if (RemoveKillFlags)
367 MO.setIsKill(false);
368 }
369 else {
370 addPhysRegDataDeps(SU, OperIdx);
371 unsigned Reg = MO.getReg();
372
373 // clear this register's use list
374 if (Uses.contains(Reg))
375 Uses.eraseAll(Reg);
376
377 if (!MO.isDead()) {
378 Defs.eraseAll(Reg);
379 } else if (SU->isCall) {
380 // Calls will not be reordered because of chain dependencies (see
381 // below). Since call operands are dead, calls may continue to be added
382 // to the DefList making dependence checking quadratic in the size of
383 // the block. Instead, we leave only one call at the back of the
384 // DefList.
385 Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg);
386 Reg2SUnitsMap::iterator B = P.first;
387 Reg2SUnitsMap::iterator I = P.second;
388 for (bool isBegin = I == B; !isBegin; /* empty */) {
389 isBegin = (--I) == B;
390 if (!I->SU->isCall)
391 break;
392 I = Defs.erase(I);
393 }
394 }
395
396 // Defs are pushed in the order they are visited and never reordered.
397 Defs.insert(PhysRegSUOper(SU, OperIdx, Reg));
398 }
399 }
400
getLaneMaskForMO(const MachineOperand & MO) const401 LaneBitmask ScheduleDAGInstrs::getLaneMaskForMO(const MachineOperand &MO) const
402 {
403 unsigned Reg = MO.getReg();
404 // No point in tracking lanemasks if we don't have interesting subregisters.
405 const TargetRegisterClass &RC = *MRI.getRegClass(Reg);
406 if (!RC.HasDisjunctSubRegs)
407 return ~0u;
408
409 unsigned SubReg = MO.getSubReg();
410 if (SubReg == 0)
411 return RC.getLaneMask();
412 return TRI->getSubRegIndexLaneMask(SubReg);
413 }
414
415 /// addVRegDefDeps - Add register output and data dependencies from this SUnit
416 /// to instructions that occur later in the same scheduling region if they read
417 /// from or write to the virtual register defined at OperIdx.
418 ///
419 /// TODO: Hoist loop induction variable increments. This has to be
420 /// reevaluated. Generally, IV scheduling should be done before coalescing.
addVRegDefDeps(SUnit * SU,unsigned OperIdx)421 void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
422 MachineInstr *MI = SU->getInstr();
423 MachineOperand &MO = MI->getOperand(OperIdx);
424 unsigned Reg = MO.getReg();
425
426 LaneBitmask DefLaneMask;
427 LaneBitmask KillLaneMask;
428 if (TrackLaneMasks) {
429 bool IsKill = MO.getSubReg() == 0 || MO.isUndef();
430 DefLaneMask = getLaneMaskForMO(MO);
431 // If we have a <read-undef> flag, none of the lane values comes from an
432 // earlier instruction.
433 KillLaneMask = IsKill ? ~0u : DefLaneMask;
434
435 // Clear undef flag, we'll re-add it later once we know which subregister
436 // Def is first.
437 MO.setIsUndef(false);
438 } else {
439 DefLaneMask = ~0u;
440 KillLaneMask = ~0u;
441 }
442
443 if (MO.isDead()) {
444 assert(CurrentVRegUses.find(Reg) == CurrentVRegUses.end() &&
445 "Dead defs should have no uses");
446 } else {
447 // Add data dependence to all uses we found so far.
448 const TargetSubtargetInfo &ST = MF.getSubtarget();
449 for (VReg2SUnitOperIdxMultiMap::iterator I = CurrentVRegUses.find(Reg),
450 E = CurrentVRegUses.end(); I != E; /*empty*/) {
451 LaneBitmask LaneMask = I->LaneMask;
452 // Ignore uses of other lanes.
453 if ((LaneMask & KillLaneMask) == 0) {
454 ++I;
455 continue;
456 }
457
458 if ((LaneMask & DefLaneMask) != 0) {
459 SUnit *UseSU = I->SU;
460 MachineInstr *Use = UseSU->getInstr();
461 SDep Dep(SU, SDep::Data, Reg);
462 Dep.setLatency(SchedModel.computeOperandLatency(MI, OperIdx, Use,
463 I->OperandIndex));
464 ST.adjustSchedDependency(SU, UseSU, Dep);
465 UseSU->addPred(Dep);
466 }
467
468 LaneMask &= ~KillLaneMask;
469 // If we found a Def for all lanes of this use, remove it from the list.
470 if (LaneMask != 0) {
471 I->LaneMask = LaneMask;
472 ++I;
473 } else
474 I = CurrentVRegUses.erase(I);
475 }
476 }
477
478 // Shortcut: Singly defined vregs do not have output/anti dependencies.
479 if (MRI.hasOneDef(Reg))
480 return;
481
482 // Add output dependence to the next nearest defs of this vreg.
483 //
484 // Unless this definition is dead, the output dependence should be
485 // transitively redundant with antidependencies from this definition's
486 // uses. We're conservative for now until we have a way to guarantee the uses
487 // are not eliminated sometime during scheduling. The output dependence edge
488 // is also useful if output latency exceeds def-use latency.
489 LaneBitmask LaneMask = DefLaneMask;
490 for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg),
491 CurrentVRegDefs.end())) {
492 // Ignore defs for other lanes.
493 if ((V2SU.LaneMask & LaneMask) == 0)
494 continue;
495 // Add an output dependence.
496 SUnit *DefSU = V2SU.SU;
497 // Ignore additional defs of the same lanes in one instruction. This can
498 // happen because lanemasks are shared for targets with too many
499 // subregisters. We also use some representration tricks/hacks where we
500 // add super-register defs/uses, to imply that although we only access parts
501 // of the reg we care about the full one.
502 if (DefSU == SU)
503 continue;
504 SDep Dep(SU, SDep::Output, Reg);
505 Dep.setLatency(
506 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
507 DefSU->addPred(Dep);
508
509 // Update current definition. This can get tricky if the def was about a
510 // bigger lanemask before. We then have to shrink it and create a new
511 // VReg2SUnit for the non-overlapping part.
512 LaneBitmask OverlapMask = V2SU.LaneMask & LaneMask;
513 LaneBitmask NonOverlapMask = V2SU.LaneMask & ~LaneMask;
514 V2SU.SU = SU;
515 V2SU.LaneMask = OverlapMask;
516 if (NonOverlapMask != 0)
517 CurrentVRegDefs.insert(VReg2SUnit(Reg, NonOverlapMask, DefSU));
518 }
519 // If there was no CurrentVRegDefs entry for some lanes yet, create one.
520 if (LaneMask != 0)
521 CurrentVRegDefs.insert(VReg2SUnit(Reg, LaneMask, SU));
522 }
523
524 /// addVRegUseDeps - Add a register data dependency if the instruction that
525 /// defines the virtual register used at OperIdx is mapped to an SUnit. Add a
526 /// register antidependency from this SUnit to instructions that occur later in
527 /// the same scheduling region if they write the virtual register.
528 ///
529 /// TODO: Handle ExitSU "uses" properly.
addVRegUseDeps(SUnit * SU,unsigned OperIdx)530 void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
531 const MachineInstr *MI = SU->getInstr();
532 const MachineOperand &MO = MI->getOperand(OperIdx);
533 unsigned Reg = MO.getReg();
534
535 // Remember the use. Data dependencies will be added when we find the def.
536 LaneBitmask LaneMask = TrackLaneMasks ? getLaneMaskForMO(MO) : ~0u;
537 CurrentVRegUses.insert(VReg2SUnitOperIdx(Reg, LaneMask, OperIdx, SU));
538
539 // Add antidependences to the following defs of the vreg.
540 for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg),
541 CurrentVRegDefs.end())) {
542 // Ignore defs for unrelated lanes.
543 LaneBitmask PrevDefLaneMask = V2SU.LaneMask;
544 if ((PrevDefLaneMask & LaneMask) == 0)
545 continue;
546 if (V2SU.SU == SU)
547 continue;
548
549 V2SU.SU->addPred(SDep(SU, SDep::Anti, Reg));
550 }
551 }
552
553 /// Return true if MI is an instruction we are unable to reason about
554 /// (like a call or something with unmodeled side effects).
isGlobalMemoryObject(AliasAnalysis * AA,MachineInstr * MI)555 static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) {
556 return MI->isCall() || MI->hasUnmodeledSideEffects() ||
557 (MI->hasOrderedMemoryRef() && !MI->isInvariantLoad(AA));
558 }
559
560 /// This returns true if the two MIs need a chain edge between them.
561 /// This is called on normal stores and loads.
MIsNeedChainEdge(AliasAnalysis * AA,const MachineFrameInfo * MFI,const DataLayout & DL,MachineInstr * MIa,MachineInstr * MIb)562 static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI,
563 const DataLayout &DL, MachineInstr *MIa,
564 MachineInstr *MIb) {
565 const MachineFunction *MF = MIa->getParent()->getParent();
566 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
567
568 assert ((MIa->mayStore() || MIb->mayStore()) &&
569 "Dependency checked between two loads");
570
571 // Let the target decide if memory accesses cannot possibly overlap.
572 if (TII->areMemAccessesTriviallyDisjoint(*MIa, *MIb, AA))
573 return false;
574
575 // To this point analysis is generic. From here on we do need AA.
576 if (!AA)
577 return true;
578
579 // FIXME: Need to handle multiple memory operands to support all targets.
580 if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand())
581 return true;
582
583 MachineMemOperand *MMOa = *MIa->memoperands_begin();
584 MachineMemOperand *MMOb = *MIb->memoperands_begin();
585
586 if (!MMOa->getValue() || !MMOb->getValue())
587 return true;
588
589 // The following interface to AA is fashioned after DAGCombiner::isAlias
590 // and operates with MachineMemOperand offset with some important
591 // assumptions:
592 // - LLVM fundamentally assumes flat address spaces.
593 // - MachineOperand offset can *only* result from legalization and
594 // cannot affect queries other than the trivial case of overlap
595 // checking.
596 // - These offsets never wrap and never step outside
597 // of allocated objects.
598 // - There should never be any negative offsets here.
599 //
600 // FIXME: Modify API to hide this math from "user"
601 // FIXME: Even before we go to AA we can reason locally about some
602 // memory objects. It can save compile time, and possibly catch some
603 // corner cases not currently covered.
604
605 assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset");
606 assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset");
607
608 int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset());
609 int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset;
610 int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset;
611
612 AliasResult AAResult =
613 AA->alias(MemoryLocation(MMOa->getValue(), Overlapa,
614 UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
615 MemoryLocation(MMOb->getValue(), Overlapb,
616 UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
617
618 return (AAResult != NoAlias);
619 }
620
621 /// Check whether two objects need a chain edge and add it if needed.
addChainDependency(SUnit * SUa,SUnit * SUb,unsigned Latency)622 void ScheduleDAGInstrs::addChainDependency (SUnit *SUa, SUnit *SUb,
623 unsigned Latency) {
624 if (MIsNeedChainEdge(AAForDep, MFI, MF.getDataLayout(), SUa->getInstr(),
625 SUb->getInstr())) {
626 SDep Dep(SUa, SDep::MayAliasMem);
627 Dep.setLatency(Latency);
628 SUb->addPred(Dep);
629 }
630 }
631
632 /// Create an SUnit for each real instruction, numbered in top-down topological
633 /// order. The instruction order A < B, implies that no edge exists from B to A.
634 ///
635 /// Map each real instruction to its SUnit.
636 ///
637 /// After initSUnits, the SUnits vector cannot be resized and the scheduler may
638 /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
639 /// instead of pointers.
640 ///
641 /// MachineScheduler relies on initSUnits numbering the nodes by their order in
642 /// the original instruction list.
initSUnits()643 void ScheduleDAGInstrs::initSUnits() {
644 // We'll be allocating one SUnit for each real instruction in the region,
645 // which is contained within a basic block.
646 SUnits.reserve(NumRegionInstrs);
647
648 for (MachineInstr &MI : llvm::make_range(RegionBegin, RegionEnd)) {
649 if (MI.isDebugValue())
650 continue;
651
652 SUnit *SU = newSUnit(&MI);
653 MISUnitMap[&MI] = SU;
654
655 SU->isCall = MI.isCall();
656 SU->isCommutable = MI.isCommutable();
657
658 // Assign the Latency field of SU using target-provided information.
659 SU->Latency = SchedModel.computeInstrLatency(SU->getInstr());
660
661 // If this SUnit uses a reserved or unbuffered resource, mark it as such.
662 //
663 // Reserved resources block an instruction from issuing and stall the
664 // entire pipeline. These are identified by BufferSize=0.
665 //
666 // Unbuffered resources prevent execution of subsequent instructions that
667 // require the same resources. This is used for in-order execution pipelines
668 // within an out-of-order core. These are identified by BufferSize=1.
669 if (SchedModel.hasInstrSchedModel()) {
670 const MCSchedClassDesc *SC = getSchedClass(SU);
671 for (TargetSchedModel::ProcResIter
672 PI = SchedModel.getWriteProcResBegin(SC),
673 PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) {
674 switch (SchedModel.getProcResource(PI->ProcResourceIdx)->BufferSize) {
675 case 0:
676 SU->hasReservedResource = true;
677 break;
678 case 1:
679 SU->isUnbuffered = true;
680 break;
681 default:
682 break;
683 }
684 }
685 }
686 }
687 }
688
collectVRegUses(SUnit * SU)689 void ScheduleDAGInstrs::collectVRegUses(SUnit *SU) {
690 const MachineInstr *MI = SU->getInstr();
691 for (const MachineOperand &MO : MI->operands()) {
692 if (!MO.isReg())
693 continue;
694 if (!MO.readsReg())
695 continue;
696 if (TrackLaneMasks && !MO.isUse())
697 continue;
698
699 unsigned Reg = MO.getReg();
700 if (!TargetRegisterInfo::isVirtualRegister(Reg))
701 continue;
702
703 // Ignore re-defs.
704 if (TrackLaneMasks) {
705 bool FoundDef = false;
706 for (const MachineOperand &MO2 : MI->operands()) {
707 if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) {
708 FoundDef = true;
709 break;
710 }
711 }
712 if (FoundDef)
713 continue;
714 }
715
716 // Record this local VReg use.
717 VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg);
718 for (; UI != VRegUses.end(); ++UI) {
719 if (UI->SU == SU)
720 break;
721 }
722 if (UI == VRegUses.end())
723 VRegUses.insert(VReg2SUnit(Reg, 0, SU));
724 }
725 }
726
727 class ScheduleDAGInstrs::Value2SUsMap : public MapVector<ValueType, SUList> {
728
729 /// Current total number of SUs in map.
730 unsigned NumNodes;
731
732 /// 1 for loads, 0 for stores. (see comment in SUList)
733 unsigned TrueMemOrderLatency;
734 public:
735
Value2SUsMap(unsigned lat=0)736 Value2SUsMap(unsigned lat = 0) : NumNodes(0), TrueMemOrderLatency(lat) {}
737
738 /// To keep NumNodes up to date, insert() is used instead of
739 /// this operator w/ push_back().
operator [](const SUList & Key)740 ValueType &operator[](const SUList &Key) {
741 llvm_unreachable("Don't use. Use insert() instead."); };
742
743 /// Add SU to the SUList of V. If Map grows huge, reduce its size
744 /// by calling reduce().
insert(SUnit * SU,ValueType V)745 void inline insert(SUnit *SU, ValueType V) {
746 MapVector::operator[](V).push_back(SU);
747 NumNodes++;
748 }
749
750 /// Clears the list of SUs mapped to V.
clearList(ValueType V)751 void inline clearList(ValueType V) {
752 iterator Itr = find(V);
753 if (Itr != end()) {
754 assert (NumNodes >= Itr->second.size());
755 NumNodes -= Itr->second.size();
756
757 Itr->second.clear();
758 }
759 }
760
761 /// Clears map from all contents.
clear()762 void clear() {
763 MapVector<ValueType, SUList>::clear();
764 NumNodes = 0;
765 }
766
size() const767 unsigned inline size() const { return NumNodes; }
768
769 /// Count the number of SUs in this map after a reduction.
reComputeSize(void)770 void reComputeSize(void) {
771 NumNodes = 0;
772 for (auto &I : *this)
773 NumNodes += I.second.size();
774 }
775
getTrueMemOrderLatency() const776 unsigned inline getTrueMemOrderLatency() const {
777 return TrueMemOrderLatency;
778 }
779
780 void dump();
781 };
782
addChainDependencies(SUnit * SU,Value2SUsMap & Val2SUsMap)783 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU,
784 Value2SUsMap &Val2SUsMap) {
785 for (auto &I : Val2SUsMap)
786 addChainDependencies(SU, I.second,
787 Val2SUsMap.getTrueMemOrderLatency());
788 }
789
addChainDependencies(SUnit * SU,Value2SUsMap & Val2SUsMap,ValueType V)790 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU,
791 Value2SUsMap &Val2SUsMap,
792 ValueType V) {
793 Value2SUsMap::iterator Itr = Val2SUsMap.find(V);
794 if (Itr != Val2SUsMap.end())
795 addChainDependencies(SU, Itr->second,
796 Val2SUsMap.getTrueMemOrderLatency());
797 }
798
addBarrierChain(Value2SUsMap & map)799 void ScheduleDAGInstrs::addBarrierChain(Value2SUsMap &map) {
800 assert (BarrierChain != nullptr);
801
802 for (auto &I : map) {
803 SUList &sus = I.second;
804 for (auto *SU : sus)
805 SU->addPredBarrier(BarrierChain);
806 }
807 map.clear();
808 }
809
insertBarrierChain(Value2SUsMap & map)810 void ScheduleDAGInstrs::insertBarrierChain(Value2SUsMap &map) {
811 assert (BarrierChain != nullptr);
812
813 // Go through all lists of SUs.
814 for (Value2SUsMap::iterator I = map.begin(), EE = map.end(); I != EE;) {
815 Value2SUsMap::iterator CurrItr = I++;
816 SUList &sus = CurrItr->second;
817 SUList::iterator SUItr = sus.begin(), SUEE = sus.end();
818 for (; SUItr != SUEE; ++SUItr) {
819 // Stop on BarrierChain or any instruction above it.
820 if ((*SUItr)->NodeNum <= BarrierChain->NodeNum)
821 break;
822
823 (*SUItr)->addPredBarrier(BarrierChain);
824 }
825
826 // Remove also the BarrierChain from list if present.
827 if (SUItr != SUEE && *SUItr == BarrierChain)
828 SUItr++;
829
830 // Remove all SUs that are now successors of BarrierChain.
831 if (SUItr != sus.begin())
832 sus.erase(sus.begin(), SUItr);
833 }
834
835 // Remove all entries with empty su lists.
836 map.remove_if([&](std::pair<ValueType, SUList> &mapEntry) {
837 return (mapEntry.second.empty()); });
838
839 // Recompute the size of the map (NumNodes).
840 map.reComputeSize();
841 }
842
843 /// If RegPressure is non-null, compute register pressure as a side effect. The
844 /// DAG builder is an efficient place to do it because it already visits
845 /// operands.
buildSchedGraph(AliasAnalysis * AA,RegPressureTracker * RPTracker,PressureDiffs * PDiffs,LiveIntervals * LIS,bool TrackLaneMasks)846 void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
847 RegPressureTracker *RPTracker,
848 PressureDiffs *PDiffs,
849 LiveIntervals *LIS,
850 bool TrackLaneMasks) {
851 const TargetSubtargetInfo &ST = MF.getSubtarget();
852 bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI
853 : ST.useAA();
854 AAForDep = UseAA ? AA : nullptr;
855
856 BarrierChain = nullptr;
857
858 this->TrackLaneMasks = TrackLaneMasks;
859 MISUnitMap.clear();
860 ScheduleDAG::clearDAG();
861
862 // Create an SUnit for each real instruction.
863 initSUnits();
864
865 if (PDiffs)
866 PDiffs->init(SUnits.size());
867
868 // We build scheduling units by walking a block's instruction list
869 // from bottom to top.
870
871 // Each MIs' memory operand(s) is analyzed to a list of underlying
872 // objects. The SU is then inserted in the SUList(s) mapped from the
873 // Value(s). Each Value thus gets mapped to lists of SUs depending
874 // on it, stores and loads kept separately. Two SUs are trivially
875 // non-aliasing if they both depend on only identified Values and do
876 // not share any common Value.
877 Value2SUsMap Stores, Loads(1 /*TrueMemOrderLatency*/);
878
879 // Certain memory accesses are known to not alias any SU in Stores
880 // or Loads, and have therefore their own 'NonAlias'
881 // domain. E.g. spill / reload instructions never alias LLVM I/R
882 // Values. It would be nice to assume that this type of memory
883 // accesses always have a proper memory operand modelling, and are
884 // therefore never unanalyzable, but this is conservatively not
885 // done.
886 Value2SUsMap NonAliasStores, NonAliasLoads(1 /*TrueMemOrderLatency*/);
887
888 // Remove any stale debug info; sometimes BuildSchedGraph is called again
889 // without emitting the info from the previous call.
890 DbgValues.clear();
891 FirstDbgValue = nullptr;
892
893 assert(Defs.empty() && Uses.empty() &&
894 "Only BuildGraph should update Defs/Uses");
895 Defs.setUniverse(TRI->getNumRegs());
896 Uses.setUniverse(TRI->getNumRegs());
897
898 assert(CurrentVRegDefs.empty() && "nobody else should use CurrentVRegDefs");
899 assert(CurrentVRegUses.empty() && "nobody else should use CurrentVRegUses");
900 unsigned NumVirtRegs = MRI.getNumVirtRegs();
901 CurrentVRegDefs.setUniverse(NumVirtRegs);
902 CurrentVRegUses.setUniverse(NumVirtRegs);
903
904 VRegUses.clear();
905 VRegUses.setUniverse(NumVirtRegs);
906
907 // Model data dependencies between instructions being scheduled and the
908 // ExitSU.
909 addSchedBarrierDeps();
910
911 // Walk the list of instructions, from bottom moving up.
912 MachineInstr *DbgMI = nullptr;
913 for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin;
914 MII != MIE; --MII) {
915 MachineInstr &MI = *std::prev(MII);
916 if (DbgMI) {
917 DbgValues.push_back(std::make_pair(DbgMI, &MI));
918 DbgMI = nullptr;
919 }
920
921 if (MI.isDebugValue()) {
922 DbgMI = &MI;
923 continue;
924 }
925 SUnit *SU = MISUnitMap[&MI];
926 assert(SU && "No SUnit mapped to this MI");
927
928 if (RPTracker) {
929 collectVRegUses(SU);
930
931 RegisterOperands RegOpers;
932 RegOpers.collect(MI, *TRI, MRI, TrackLaneMasks, false);
933 if (TrackLaneMasks) {
934 SlotIndex SlotIdx = LIS->getInstructionIndex(MI);
935 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx);
936 }
937 if (PDiffs != nullptr)
938 PDiffs->addInstruction(SU->NodeNum, RegOpers, MRI);
939
940 RPTracker->recedeSkipDebugValues();
941 assert(&*RPTracker->getPos() == &MI && "RPTracker in sync");
942 RPTracker->recede(RegOpers);
943 }
944
945 assert(
946 (CanHandleTerminators || (!MI.isTerminator() && !MI.isPosition())) &&
947 "Cannot schedule terminators or labels!");
948
949 // Add register-based dependencies (data, anti, and output).
950 // For some instructions (calls, returns, inline-asm, etc.) there can
951 // be explicit uses and implicit defs, in which case the use will appear
952 // on the operand list before the def. Do two passes over the operand
953 // list to make sure that defs are processed before any uses.
954 bool HasVRegDef = false;
955 for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) {
956 const MachineOperand &MO = MI.getOperand(j);
957 if (!MO.isReg() || !MO.isDef())
958 continue;
959 unsigned Reg = MO.getReg();
960 if (Reg == 0)
961 continue;
962
963 if (TRI->isPhysicalRegister(Reg))
964 addPhysRegDeps(SU, j);
965 else {
966 HasVRegDef = true;
967 addVRegDefDeps(SU, j);
968 }
969 }
970 // Now process all uses.
971 for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) {
972 const MachineOperand &MO = MI.getOperand(j);
973 // Only look at use operands.
974 // We do not need to check for MO.readsReg() here because subsequent
975 // subregister defs will get output dependence edges and need no
976 // additional use dependencies.
977 if (!MO.isReg() || !MO.isUse())
978 continue;
979 unsigned Reg = MO.getReg();
980 if (Reg == 0)
981 continue;
982
983 if (TRI->isPhysicalRegister(Reg))
984 addPhysRegDeps(SU, j);
985 else if (MO.readsReg()) // ignore undef operands
986 addVRegUseDeps(SU, j);
987 }
988
989 // If we haven't seen any uses in this scheduling region, create a
990 // dependence edge to ExitSU to model the live-out latency. This is required
991 // for vreg defs with no in-region use, and prefetches with no vreg def.
992 //
993 // FIXME: NumDataSuccs would be more precise than NumSuccs here. This
994 // check currently relies on being called before adding chain deps.
995 if (SU->NumSuccs == 0 && SU->Latency > 1 && (HasVRegDef || MI.mayLoad())) {
996 SDep Dep(SU, SDep::Artificial);
997 Dep.setLatency(SU->Latency - 1);
998 ExitSU.addPred(Dep);
999 }
1000
1001 // Add memory dependencies (Note: isStoreToStackSlot and
1002 // isLoadFromStackSLot are not usable after stack slots are lowered to
1003 // actual addresses).
1004
1005 // This is a barrier event that acts as a pivotal node in the DAG.
1006 if (isGlobalMemoryObject(AA, &MI)) {
1007
1008 // Become the barrier chain.
1009 if (BarrierChain)
1010 BarrierChain->addPredBarrier(SU);
1011 BarrierChain = SU;
1012
1013 DEBUG(dbgs() << "Global memory object and new barrier chain: SU("
1014 << BarrierChain->NodeNum << ").\n";);
1015
1016 // Add dependencies against everything below it and clear maps.
1017 addBarrierChain(Stores);
1018 addBarrierChain(Loads);
1019 addBarrierChain(NonAliasStores);
1020 addBarrierChain(NonAliasLoads);
1021
1022 continue;
1023 }
1024
1025 // If it's not a store or a variant load, we're done.
1026 if (!MI.mayStore() && !(MI.mayLoad() && !MI.isInvariantLoad(AA)))
1027 continue;
1028
1029 // Always add dependecy edge to BarrierChain if present.
1030 if (BarrierChain)
1031 BarrierChain->addPredBarrier(SU);
1032
1033 // Find the underlying objects for MI. The Objs vector is either
1034 // empty, or filled with the Values of memory locations which this
1035 // SU depends on. An empty vector means the memory location is
1036 // unknown, and may alias anything.
1037 UnderlyingObjectsVector Objs;
1038 getUnderlyingObjectsForInstr(&MI, MFI, Objs, MF.getDataLayout());
1039
1040 if (MI.mayStore()) {
1041 if (Objs.empty()) {
1042 // An unknown store depends on all stores and loads.
1043 addChainDependencies(SU, Stores);
1044 addChainDependencies(SU, NonAliasStores);
1045 addChainDependencies(SU, Loads);
1046 addChainDependencies(SU, NonAliasLoads);
1047
1048 // Map this store to 'UnknownValue'.
1049 Stores.insert(SU, UnknownValue);
1050 } else {
1051 // Add precise dependencies against all previously seen memory
1052 // accesses mapped to the same Value(s).
1053 for (const UnderlyingObject &UnderlObj : Objs) {
1054 ValueType V = UnderlObj.getValue();
1055 bool ThisMayAlias = UnderlObj.mayAlias();
1056
1057 // Add dependencies to previous stores and loads mapped to V.
1058 addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V);
1059 addChainDependencies(SU, (ThisMayAlias ? Loads : NonAliasLoads), V);
1060 }
1061 // Update the store map after all chains have been added to avoid adding
1062 // self-loop edge if multiple underlying objects are present.
1063 for (const UnderlyingObject &UnderlObj : Objs) {
1064 ValueType V = UnderlObj.getValue();
1065 bool ThisMayAlias = UnderlObj.mayAlias();
1066
1067 // Map this store to V.
1068 (ThisMayAlias ? Stores : NonAliasStores).insert(SU, V);
1069 }
1070 // The store may have dependencies to unanalyzable loads and
1071 // stores.
1072 addChainDependencies(SU, Loads, UnknownValue);
1073 addChainDependencies(SU, Stores, UnknownValue);
1074 }
1075 } else { // SU is a load.
1076 if (Objs.empty()) {
1077 // An unknown load depends on all stores.
1078 addChainDependencies(SU, Stores);
1079 addChainDependencies(SU, NonAliasStores);
1080
1081 Loads.insert(SU, UnknownValue);
1082 } else {
1083 for (const UnderlyingObject &UnderlObj : Objs) {
1084 ValueType V = UnderlObj.getValue();
1085 bool ThisMayAlias = UnderlObj.mayAlias();
1086
1087 // Add precise dependencies against all previously seen stores
1088 // mapping to the same Value(s).
1089 addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V);
1090
1091 // Map this load to V.
1092 (ThisMayAlias ? Loads : NonAliasLoads).insert(SU, V);
1093 }
1094 // The load may have dependencies to unanalyzable stores.
1095 addChainDependencies(SU, Stores, UnknownValue);
1096 }
1097 }
1098
1099 // Reduce maps if they grow huge.
1100 if (Stores.size() + Loads.size() >= HugeRegion) {
1101 DEBUG(dbgs() << "Reducing Stores and Loads maps.\n";);
1102 reduceHugeMemNodeMaps(Stores, Loads, getReductionSize());
1103 }
1104 if (NonAliasStores.size() + NonAliasLoads.size() >= HugeRegion) {
1105 DEBUG(dbgs() << "Reducing NonAliasStores and NonAliasLoads maps.\n";);
1106 reduceHugeMemNodeMaps(NonAliasStores, NonAliasLoads, getReductionSize());
1107 }
1108 }
1109
1110 if (DbgMI)
1111 FirstDbgValue = DbgMI;
1112
1113 Defs.clear();
1114 Uses.clear();
1115 CurrentVRegDefs.clear();
1116 CurrentVRegUses.clear();
1117 }
1118
operator <<(raw_ostream & OS,const PseudoSourceValue * PSV)1119 raw_ostream &llvm::operator<<(raw_ostream &OS, const PseudoSourceValue* PSV) {
1120 PSV->printCustom(OS);
1121 return OS;
1122 }
1123
dump()1124 void ScheduleDAGInstrs::Value2SUsMap::dump() {
1125 for (auto &Itr : *this) {
1126 if (Itr.first.is<const Value*>()) {
1127 const Value *V = Itr.first.get<const Value*>();
1128 if (isa<UndefValue>(V))
1129 dbgs() << "Unknown";
1130 else
1131 V->printAsOperand(dbgs());
1132 }
1133 else if (Itr.first.is<const PseudoSourceValue*>())
1134 dbgs() << Itr.first.get<const PseudoSourceValue*>();
1135 else
1136 llvm_unreachable("Unknown Value type.");
1137
1138 dbgs() << " : ";
1139 dumpSUList(Itr.second);
1140 }
1141 }
1142
1143 /// Reduce maps in FIFO order, by N SUs. This is better than turning
1144 /// every Nth memory SU into BarrierChain in buildSchedGraph(), since
1145 /// it avoids unnecessary edges between seen SUs above the new
1146 /// BarrierChain, and those below it.
reduceHugeMemNodeMaps(Value2SUsMap & stores,Value2SUsMap & loads,unsigned N)1147 void ScheduleDAGInstrs::reduceHugeMemNodeMaps(Value2SUsMap &stores,
1148 Value2SUsMap &loads, unsigned N) {
1149 DEBUG(dbgs() << "Before reduction:\nStoring SUnits:\n";
1150 stores.dump();
1151 dbgs() << "Loading SUnits:\n";
1152 loads.dump());
1153
1154 // Insert all SU's NodeNums into a vector and sort it.
1155 std::vector<unsigned> NodeNums;
1156 NodeNums.reserve(stores.size() + loads.size());
1157 for (auto &I : stores)
1158 for (auto *SU : I.second)
1159 NodeNums.push_back(SU->NodeNum);
1160 for (auto &I : loads)
1161 for (auto *SU : I.second)
1162 NodeNums.push_back(SU->NodeNum);
1163 std::sort(NodeNums.begin(), NodeNums.end());
1164
1165 // The N last elements in NodeNums will be removed, and the SU with
1166 // the lowest NodeNum of them will become the new BarrierChain to
1167 // let the not yet seen SUs have a dependency to the removed SUs.
1168 assert (N <= NodeNums.size());
1169 SUnit *newBarrierChain = &SUnits[*(NodeNums.end() - N)];
1170 if (BarrierChain) {
1171 // The aliasing and non-aliasing maps reduce independently of each
1172 // other, but share a common BarrierChain. Check if the
1173 // newBarrierChain is above the former one. If it is not, it may
1174 // introduce a loop to use newBarrierChain, so keep the old one.
1175 if (newBarrierChain->NodeNum < BarrierChain->NodeNum) {
1176 BarrierChain->addPredBarrier(newBarrierChain);
1177 BarrierChain = newBarrierChain;
1178 DEBUG(dbgs() << "Inserting new barrier chain: SU("
1179 << BarrierChain->NodeNum << ").\n";);
1180 }
1181 else
1182 DEBUG(dbgs() << "Keeping old barrier chain: SU("
1183 << BarrierChain->NodeNum << ").\n";);
1184 }
1185 else
1186 BarrierChain = newBarrierChain;
1187
1188 insertBarrierChain(stores);
1189 insertBarrierChain(loads);
1190
1191 DEBUG(dbgs() << "After reduction:\nStoring SUnits:\n";
1192 stores.dump();
1193 dbgs() << "Loading SUnits:\n";
1194 loads.dump());
1195 }
1196
1197 /// \brief Initialize register live-range state for updating kills.
startBlockForKills(MachineBasicBlock * BB)1198 void ScheduleDAGInstrs::startBlockForKills(MachineBasicBlock *BB) {
1199 // Start with no live registers.
1200 LiveRegs.reset();
1201
1202 // Examine the live-in regs of all successors.
1203 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
1204 SE = BB->succ_end(); SI != SE; ++SI) {
1205 for (const auto &LI : (*SI)->liveins()) {
1206 // Repeat, for reg and all subregs.
1207 for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true);
1208 SubRegs.isValid(); ++SubRegs)
1209 LiveRegs.set(*SubRegs);
1210 }
1211 }
1212 }
1213
1214 /// \brief If we change a kill flag on the bundle instruction implicit register
1215 /// operands, then we also need to propagate that to any instructions inside
1216 /// the bundle which had the same kill state.
toggleBundleKillFlag(MachineInstr * MI,unsigned Reg,bool NewKillState,const TargetRegisterInfo * TRI)1217 static void toggleBundleKillFlag(MachineInstr *MI, unsigned Reg,
1218 bool NewKillState,
1219 const TargetRegisterInfo *TRI) {
1220 if (MI->getOpcode() != TargetOpcode::BUNDLE)
1221 return;
1222
1223 // Walk backwards from the last instruction in the bundle to the first.
1224 // Once we set a kill flag on an instruction, we bail out, as otherwise we
1225 // might set it on too many operands. We will clear as many flags as we
1226 // can though.
1227 MachineBasicBlock::instr_iterator Begin = MI->getIterator();
1228 MachineBasicBlock::instr_iterator End = getBundleEnd(*MI);
1229 while (Begin != End) {
1230 if (NewKillState) {
1231 if ((--End)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false))
1232 return;
1233 } else
1234 (--End)->clearRegisterKills(Reg, TRI);
1235 }
1236 }
1237
toggleKillFlag(MachineInstr * MI,MachineOperand & MO)1238 bool ScheduleDAGInstrs::toggleKillFlag(MachineInstr *MI, MachineOperand &MO) {
1239 // Setting kill flag...
1240 if (!MO.isKill()) {
1241 MO.setIsKill(true);
1242 toggleBundleKillFlag(MI, MO.getReg(), true, TRI);
1243 return false;
1244 }
1245
1246 // If MO itself is live, clear the kill flag...
1247 if (LiveRegs.test(MO.getReg())) {
1248 MO.setIsKill(false);
1249 toggleBundleKillFlag(MI, MO.getReg(), false, TRI);
1250 return false;
1251 }
1252
1253 // If any subreg of MO is live, then create an imp-def for that
1254 // subreg and keep MO marked as killed.
1255 MO.setIsKill(false);
1256 toggleBundleKillFlag(MI, MO.getReg(), false, TRI);
1257 bool AllDead = true;
1258 const unsigned SuperReg = MO.getReg();
1259 MachineInstrBuilder MIB(MF, MI);
1260 for (MCSubRegIterator SubRegs(SuperReg, TRI); SubRegs.isValid(); ++SubRegs) {
1261 if (LiveRegs.test(*SubRegs)) {
1262 MIB.addReg(*SubRegs, RegState::ImplicitDefine);
1263 AllDead = false;
1264 }
1265 }
1266
1267 if(AllDead) {
1268 MO.setIsKill(true);
1269 toggleBundleKillFlag(MI, MO.getReg(), true, TRI);
1270 }
1271 return false;
1272 }
1273
1274 // FIXME: Reuse the LivePhysRegs utility for this.
fixupKills(MachineBasicBlock * MBB)1275 void ScheduleDAGInstrs::fixupKills(MachineBasicBlock *MBB) {
1276 DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n');
1277
1278 LiveRegs.resize(TRI->getNumRegs());
1279 BitVector killedRegs(TRI->getNumRegs());
1280
1281 startBlockForKills(MBB);
1282
1283 // Examine block from end to start...
1284 unsigned Count = MBB->size();
1285 for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin();
1286 I != E; --Count) {
1287 MachineInstr &MI = *--I;
1288 if (MI.isDebugValue())
1289 continue;
1290
1291 // Update liveness. Registers that are defed but not used in this
1292 // instruction are now dead. Mark register and all subregs as they
1293 // are completely defined.
1294 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1295 MachineOperand &MO = MI.getOperand(i);
1296 if (MO.isRegMask())
1297 LiveRegs.clearBitsNotInMask(MO.getRegMask());
1298 if (!MO.isReg()) continue;
1299 unsigned Reg = MO.getReg();
1300 if (Reg == 0) continue;
1301 if (!MO.isDef()) continue;
1302 // Ignore two-addr defs.
1303 if (MI.isRegTiedToUseOperand(i)) continue;
1304
1305 // Repeat for reg and all subregs.
1306 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
1307 SubRegs.isValid(); ++SubRegs)
1308 LiveRegs.reset(*SubRegs);
1309 }
1310
1311 // Examine all used registers and set/clear kill flag. When a
1312 // register is used multiple times we only set the kill flag on
1313 // the first use. Don't set kill flags on undef operands.
1314 killedRegs.reset();
1315 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1316 MachineOperand &MO = MI.getOperand(i);
1317 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
1318 unsigned Reg = MO.getReg();
1319 if ((Reg == 0) || MRI.isReserved(Reg)) continue;
1320
1321 bool kill = false;
1322 if (!killedRegs.test(Reg)) {
1323 kill = true;
1324 // A register is not killed if any subregs are live...
1325 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
1326 if (LiveRegs.test(*SubRegs)) {
1327 kill = false;
1328 break;
1329 }
1330 }
1331
1332 // If subreg is not live, then register is killed if it became
1333 // live in this instruction
1334 if (kill)
1335 kill = !LiveRegs.test(Reg);
1336 }
1337
1338 if (MO.isKill() != kill) {
1339 DEBUG(dbgs() << "Fixing " << MO << " in ");
1340 // Warning: toggleKillFlag may invalidate MO.
1341 toggleKillFlag(&MI, MO);
1342 DEBUG(MI.dump());
1343 DEBUG({
1344 if (MI.getOpcode() == TargetOpcode::BUNDLE) {
1345 MachineBasicBlock::instr_iterator Begin = MI.getIterator();
1346 MachineBasicBlock::instr_iterator End = getBundleEnd(MI);
1347 while (++Begin != End)
1348 DEBUG(Begin->dump());
1349 }
1350 });
1351 }
1352
1353 killedRegs.set(Reg);
1354 }
1355
1356 // Mark any used register (that is not using undef) and subregs as
1357 // now live...
1358 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1359 MachineOperand &MO = MI.getOperand(i);
1360 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
1361 unsigned Reg = MO.getReg();
1362 if ((Reg == 0) || MRI.isReserved(Reg)) continue;
1363
1364 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
1365 SubRegs.isValid(); ++SubRegs)
1366 LiveRegs.set(*SubRegs);
1367 }
1368 }
1369 }
1370
dumpNode(const SUnit * SU) const1371 void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
1372 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1373 SU->getInstr()->dump();
1374 #endif
1375 }
1376
getGraphNodeLabel(const SUnit * SU) const1377 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
1378 std::string s;
1379 raw_string_ostream oss(s);
1380 if (SU == &EntrySU)
1381 oss << "<entry>";
1382 else if (SU == &ExitSU)
1383 oss << "<exit>";
1384 else
1385 SU->getInstr()->print(oss, /*SkipOpers=*/true);
1386 return oss.str();
1387 }
1388
1389 /// Return the basic block label. It is not necessarilly unique because a block
1390 /// contains multiple scheduling regions. But it is fine for visualization.
getDAGName() const1391 std::string ScheduleDAGInstrs::getDAGName() const {
1392 return "dag." + BB->getFullName();
1393 }
1394
1395 //===----------------------------------------------------------------------===//
1396 // SchedDFSResult Implementation
1397 //===----------------------------------------------------------------------===//
1398
1399 namespace llvm {
1400 /// \brief Internal state used to compute SchedDFSResult.
1401 class SchedDFSImpl {
1402 SchedDFSResult &R;
1403
1404 /// Join DAG nodes into equivalence classes by their subtree.
1405 IntEqClasses SubtreeClasses;
1406 /// List PredSU, SuccSU pairs that represent data edges between subtrees.
1407 std::vector<std::pair<const SUnit*, const SUnit*> > ConnectionPairs;
1408
1409 struct RootData {
1410 unsigned NodeID;
1411 unsigned ParentNodeID; // Parent node (member of the parent subtree).
1412 unsigned SubInstrCount; // Instr count in this tree only, not children.
1413
RootDatallvm::SchedDFSImpl::RootData1414 RootData(unsigned id): NodeID(id),
1415 ParentNodeID(SchedDFSResult::InvalidSubtreeID),
1416 SubInstrCount(0) {}
1417
getSparseSetIndexllvm::SchedDFSImpl::RootData1418 unsigned getSparseSetIndex() const { return NodeID; }
1419 };
1420
1421 SparseSet<RootData> RootSet;
1422
1423 public:
SchedDFSImpl(SchedDFSResult & r)1424 SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) {
1425 RootSet.setUniverse(R.DFSNodeData.size());
1426 }
1427
1428 /// Return true if this node been visited by the DFS traversal.
1429 ///
1430 /// During visitPostorderNode the Node's SubtreeID is assigned to the Node
1431 /// ID. Later, SubtreeID is updated but remains valid.
isVisited(const SUnit * SU) const1432 bool isVisited(const SUnit *SU) const {
1433 return R.DFSNodeData[SU->NodeNum].SubtreeID
1434 != SchedDFSResult::InvalidSubtreeID;
1435 }
1436
1437 /// Initialize this node's instruction count. We don't need to flag the node
1438 /// visited until visitPostorder because the DAG cannot have cycles.
visitPreorder(const SUnit * SU)1439 void visitPreorder(const SUnit *SU) {
1440 R.DFSNodeData[SU->NodeNum].InstrCount =
1441 SU->getInstr()->isTransient() ? 0 : 1;
1442 }
1443
1444 /// Called once for each node after all predecessors are visited. Revisit this
1445 /// node's predecessors and potentially join them now that we know the ILP of
1446 /// the other predecessors.
visitPostorderNode(const SUnit * SU)1447 void visitPostorderNode(const SUnit *SU) {
1448 // Mark this node as the root of a subtree. It may be joined with its
1449 // successors later.
1450 R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum;
1451 RootData RData(SU->NodeNum);
1452 RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1;
1453
1454 // If any predecessors are still in their own subtree, they either cannot be
1455 // joined or are large enough to remain separate. If this parent node's
1456 // total instruction count is not greater than a child subtree by at least
1457 // the subtree limit, then try to join it now since splitting subtrees is
1458 // only useful if multiple high-pressure paths are possible.
1459 unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount;
1460 for (SUnit::const_pred_iterator
1461 PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
1462 if (PI->getKind() != SDep::Data)
1463 continue;
1464 unsigned PredNum = PI->getSUnit()->NodeNum;
1465 if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit)
1466 joinPredSubtree(*PI, SU, /*CheckLimit=*/false);
1467
1468 // Either link or merge the TreeData entry from the child to the parent.
1469 if (R.DFSNodeData[PredNum].SubtreeID == PredNum) {
1470 // If the predecessor's parent is invalid, this is a tree edge and the
1471 // current node is the parent.
1472 if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID)
1473 RootSet[PredNum].ParentNodeID = SU->NodeNum;
1474 }
1475 else if (RootSet.count(PredNum)) {
1476 // The predecessor is not a root, but is still in the root set. This
1477 // must be the new parent that it was just joined to. Note that
1478 // RootSet[PredNum].ParentNodeID may either be invalid or may still be
1479 // set to the original parent.
1480 RData.SubInstrCount += RootSet[PredNum].SubInstrCount;
1481 RootSet.erase(PredNum);
1482 }
1483 }
1484 RootSet[SU->NodeNum] = RData;
1485 }
1486
1487 /// Called once for each tree edge after calling visitPostOrderNode on the
1488 /// predecessor. Increment the parent node's instruction count and
1489 /// preemptively join this subtree to its parent's if it is small enough.
visitPostorderEdge(const SDep & PredDep,const SUnit * Succ)1490 void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) {
1491 R.DFSNodeData[Succ->NodeNum].InstrCount
1492 += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount;
1493 joinPredSubtree(PredDep, Succ);
1494 }
1495
1496 /// Add a connection for cross edges.
visitCrossEdge(const SDep & PredDep,const SUnit * Succ)1497 void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) {
1498 ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ));
1499 }
1500
1501 /// Set each node's subtree ID to the representative ID and record connections
1502 /// between trees.
finalize()1503 void finalize() {
1504 SubtreeClasses.compress();
1505 R.DFSTreeData.resize(SubtreeClasses.getNumClasses());
1506 assert(SubtreeClasses.getNumClasses() == RootSet.size()
1507 && "number of roots should match trees");
1508 for (SparseSet<RootData>::const_iterator
1509 RI = RootSet.begin(), RE = RootSet.end(); RI != RE; ++RI) {
1510 unsigned TreeID = SubtreeClasses[RI->NodeID];
1511 if (RI->ParentNodeID != SchedDFSResult::InvalidSubtreeID)
1512 R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[RI->ParentNodeID];
1513 R.DFSTreeData[TreeID].SubInstrCount = RI->SubInstrCount;
1514 // Note that SubInstrCount may be greater than InstrCount if we joined
1515 // subtrees across a cross edge. InstrCount will be attributed to the
1516 // original parent, while SubInstrCount will be attributed to the joined
1517 // parent.
1518 }
1519 R.SubtreeConnections.resize(SubtreeClasses.getNumClasses());
1520 R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses());
1521 DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n");
1522 for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) {
1523 R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx];
1524 DEBUG(dbgs() << " SU(" << Idx << ") in tree "
1525 << R.DFSNodeData[Idx].SubtreeID << '\n');
1526 }
1527 for (std::vector<std::pair<const SUnit*, const SUnit*> >::const_iterator
1528 I = ConnectionPairs.begin(), E = ConnectionPairs.end();
1529 I != E; ++I) {
1530 unsigned PredTree = SubtreeClasses[I->first->NodeNum];
1531 unsigned SuccTree = SubtreeClasses[I->second->NodeNum];
1532 if (PredTree == SuccTree)
1533 continue;
1534 unsigned Depth = I->first->getDepth();
1535 addConnection(PredTree, SuccTree, Depth);
1536 addConnection(SuccTree, PredTree, Depth);
1537 }
1538 }
1539
1540 protected:
1541 /// Join the predecessor subtree with the successor that is its DFS
1542 /// parent. Apply some heuristics before joining.
joinPredSubtree(const SDep & PredDep,const SUnit * Succ,bool CheckLimit=true)1543 bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ,
1544 bool CheckLimit = true) {
1545 assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges");
1546
1547 // Check if the predecessor is already joined.
1548 const SUnit *PredSU = PredDep.getSUnit();
1549 unsigned PredNum = PredSU->NodeNum;
1550 if (R.DFSNodeData[PredNum].SubtreeID != PredNum)
1551 return false;
1552
1553 // Four is the magic number of successors before a node is considered a
1554 // pinch point.
1555 unsigned NumDataSucs = 0;
1556 for (SUnit::const_succ_iterator SI = PredSU->Succs.begin(),
1557 SE = PredSU->Succs.end(); SI != SE; ++SI) {
1558 if (SI->getKind() == SDep::Data) {
1559 if (++NumDataSucs >= 4)
1560 return false;
1561 }
1562 }
1563 if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit)
1564 return false;
1565 R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum;
1566 SubtreeClasses.join(Succ->NodeNum, PredNum);
1567 return true;
1568 }
1569
1570 /// Called by finalize() to record a connection between trees.
addConnection(unsigned FromTree,unsigned ToTree,unsigned Depth)1571 void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) {
1572 if (!Depth)
1573 return;
1574
1575 do {
1576 SmallVectorImpl<SchedDFSResult::Connection> &Connections =
1577 R.SubtreeConnections[FromTree];
1578 for (SmallVectorImpl<SchedDFSResult::Connection>::iterator
1579 I = Connections.begin(), E = Connections.end(); I != E; ++I) {
1580 if (I->TreeID == ToTree) {
1581 I->Level = std::max(I->Level, Depth);
1582 return;
1583 }
1584 }
1585 Connections.push_back(SchedDFSResult::Connection(ToTree, Depth));
1586 FromTree = R.DFSTreeData[FromTree].ParentTreeID;
1587 } while (FromTree != SchedDFSResult::InvalidSubtreeID);
1588 }
1589 };
1590 } // namespace llvm
1591
1592 namespace {
1593 /// \brief Manage the stack used by a reverse depth-first search over the DAG.
1594 class SchedDAGReverseDFS {
1595 std::vector<std::pair<const SUnit*, SUnit::const_pred_iterator> > DFSStack;
1596 public:
isComplete() const1597 bool isComplete() const { return DFSStack.empty(); }
1598
follow(const SUnit * SU)1599 void follow(const SUnit *SU) {
1600 DFSStack.push_back(std::make_pair(SU, SU->Preds.begin()));
1601 }
advance()1602 void advance() { ++DFSStack.back().second; }
1603
backtrack()1604 const SDep *backtrack() {
1605 DFSStack.pop_back();
1606 return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second);
1607 }
1608
getCurr() const1609 const SUnit *getCurr() const { return DFSStack.back().first; }
1610
getPred() const1611 SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; }
1612
getPredEnd() const1613 SUnit::const_pred_iterator getPredEnd() const {
1614 return getCurr()->Preds.end();
1615 }
1616 };
1617 } // anonymous
1618
hasDataSucc(const SUnit * SU)1619 static bool hasDataSucc(const SUnit *SU) {
1620 for (SUnit::const_succ_iterator
1621 SI = SU->Succs.begin(), SE = SU->Succs.end(); SI != SE; ++SI) {
1622 if (SI->getKind() == SDep::Data && !SI->getSUnit()->isBoundaryNode())
1623 return true;
1624 }
1625 return false;
1626 }
1627
1628 /// Compute an ILP metric for all nodes in the subDAG reachable via depth-first
1629 /// search from this root.
compute(ArrayRef<SUnit> SUnits)1630 void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) {
1631 if (!IsBottomUp)
1632 llvm_unreachable("Top-down ILP metric is unimplemnted");
1633
1634 SchedDFSImpl Impl(*this);
1635 for (ArrayRef<SUnit>::const_iterator
1636 SI = SUnits.begin(), SE = SUnits.end(); SI != SE; ++SI) {
1637 const SUnit *SU = &*SI;
1638 if (Impl.isVisited(SU) || hasDataSucc(SU))
1639 continue;
1640
1641 SchedDAGReverseDFS DFS;
1642 Impl.visitPreorder(SU);
1643 DFS.follow(SU);
1644 for (;;) {
1645 // Traverse the leftmost path as far as possible.
1646 while (DFS.getPred() != DFS.getPredEnd()) {
1647 const SDep &PredDep = *DFS.getPred();
1648 DFS.advance();
1649 // Ignore non-data edges.
1650 if (PredDep.getKind() != SDep::Data
1651 || PredDep.getSUnit()->isBoundaryNode()) {
1652 continue;
1653 }
1654 // An already visited edge is a cross edge, assuming an acyclic DAG.
1655 if (Impl.isVisited(PredDep.getSUnit())) {
1656 Impl.visitCrossEdge(PredDep, DFS.getCurr());
1657 continue;
1658 }
1659 Impl.visitPreorder(PredDep.getSUnit());
1660 DFS.follow(PredDep.getSUnit());
1661 }
1662 // Visit the top of the stack in postorder and backtrack.
1663 const SUnit *Child = DFS.getCurr();
1664 const SDep *PredDep = DFS.backtrack();
1665 Impl.visitPostorderNode(Child);
1666 if (PredDep)
1667 Impl.visitPostorderEdge(*PredDep, DFS.getCurr());
1668 if (DFS.isComplete())
1669 break;
1670 }
1671 }
1672 Impl.finalize();
1673 }
1674
1675 /// The root of the given SubtreeID was just scheduled. For all subtrees
1676 /// connected to this tree, record the depth of the connection so that the
1677 /// nearest connected subtrees can be prioritized.
scheduleTree(unsigned SubtreeID)1678 void SchedDFSResult::scheduleTree(unsigned SubtreeID) {
1679 for (SmallVectorImpl<Connection>::const_iterator
1680 I = SubtreeConnections[SubtreeID].begin(),
1681 E = SubtreeConnections[SubtreeID].end(); I != E; ++I) {
1682 SubtreeConnectLevels[I->TreeID] =
1683 std::max(SubtreeConnectLevels[I->TreeID], I->Level);
1684 DEBUG(dbgs() << " Tree: " << I->TreeID
1685 << " @" << SubtreeConnectLevels[I->TreeID] << '\n');
1686 }
1687 }
1688
1689 LLVM_DUMP_METHOD
print(raw_ostream & OS) const1690 void ILPValue::print(raw_ostream &OS) const {
1691 OS << InstrCount << " / " << Length << " = ";
1692 if (!Length)
1693 OS << "BADILP";
1694 else
1695 OS << format("%g", ((double)InstrCount / Length));
1696 }
1697
1698 LLVM_DUMP_METHOD
dump() const1699 void ILPValue::dump() const {
1700 dbgs() << *this << '\n';
1701 }
1702
1703 namespace llvm {
1704
1705 LLVM_DUMP_METHOD
operator <<(raw_ostream & OS,const ILPValue & Val)1706 raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) {
1707 Val.print(OS);
1708 return OS;
1709 }
1710
1711 } // namespace llvm
1712