• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- StatepointLowering.cpp - SDAGBuilder's statepoint code -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file includes support code use by SelectionDAGBuilder when lowering a
11 // statepoint sequence in SelectionDAG IR.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "StatepointLowering.h"
16 #include "SelectionDAGBuilder.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/CodeGen/FunctionLoweringInfo.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/GCMetadata.h"
22 #include "llvm/CodeGen/GCStrategy.h"
23 #include "llvm/CodeGen/SelectionDAG.h"
24 #include "llvm/CodeGen/StackMaps.h"
25 #include "llvm/IR/CallingConv.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/Statepoint.h"
30 #include "llvm/Target/TargetLowering.h"
31 #include <algorithm>
32 using namespace llvm;
33 
34 #define DEBUG_TYPE "statepoint-lowering"
35 
36 STATISTIC(NumSlotsAllocatedForStatepoints,
37           "Number of stack slots allocated for statepoints");
38 STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered");
39 STATISTIC(StatepointMaxSlotsRequired,
40           "Maximum number of stack slots required for a singe statepoint");
41 
pushStackMapConstant(SmallVectorImpl<SDValue> & Ops,SelectionDAGBuilder & Builder,uint64_t Value)42 static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops,
43                                  SelectionDAGBuilder &Builder, uint64_t Value) {
44   SDLoc L = Builder.getCurSDLoc();
45   Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L,
46                                               MVT::i64));
47   Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64));
48 }
49 
startNewStatepoint(SelectionDAGBuilder & Builder)50 void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) {
51   // Consistency check
52   assert(PendingGCRelocateCalls.empty() &&
53          "Trying to visit statepoint before finished processing previous one");
54   Locations.clear();
55   NextSlotToAllocate = 0;
56   // Need to resize this on each safepoint - we need the two to stay in sync and
57   // the clear patterns of a SelectionDAGBuilder have no relation to
58   // FunctionLoweringInfo.  SmallBitVector::reset initializes all bits to false.
59   AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size());
60 }
61 
clear()62 void StatepointLoweringState::clear() {
63   Locations.clear();
64   AllocatedStackSlots.clear();
65   assert(PendingGCRelocateCalls.empty() &&
66          "cleared before statepoint sequence completed");
67 }
68 
69 SDValue
allocateStackSlot(EVT ValueType,SelectionDAGBuilder & Builder)70 StatepointLoweringState::allocateStackSlot(EVT ValueType,
71                                            SelectionDAGBuilder &Builder) {
72   NumSlotsAllocatedForStatepoints++;
73   auto *MFI = Builder.DAG.getMachineFunction().getFrameInfo();
74 
75   unsigned SpillSize = ValueType.getSizeInBits() / 8;
76   assert((SpillSize * 8) == ValueType.getSizeInBits() && "Size not in bytes?");
77 
78   // First look for a previously created stack slot which is not in
79   // use (accounting for the fact arbitrary slots may already be
80   // reserved), or to create a new stack slot and use it.
81 
82   const size_t NumSlots = AllocatedStackSlots.size();
83   assert(NextSlotToAllocate <= NumSlots && "Broken invariant");
84 
85   // The stack slots in StatepointStackSlots beyond the first NumSlots were
86   // added in this instance of StatepointLoweringState, and cannot be re-used.
87   assert(NumSlots <= Builder.FuncInfo.StatepointStackSlots.size() &&
88          "Broken invariant");
89 
90   for (; NextSlotToAllocate < NumSlots; NextSlotToAllocate++) {
91     if (!AllocatedStackSlots.test(NextSlotToAllocate)) {
92       const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate];
93       if (MFI->getObjectSize(FI) == SpillSize) {
94         AllocatedStackSlots.set(NextSlotToAllocate);
95         return Builder.DAG.getFrameIndex(FI, ValueType);
96       }
97     }
98   }
99 
100   // Couldn't find a free slot, so create a new one:
101 
102   SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType);
103   const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
104   MFI->markAsStatepointSpillSlotObjectIndex(FI);
105 
106   Builder.FuncInfo.StatepointStackSlots.push_back(FI);
107 
108   StatepointMaxSlotsRequired = std::max<unsigned long>(
109       StatepointMaxSlotsRequired, Builder.FuncInfo.StatepointStackSlots.size());
110 
111   return SpillSlot;
112 }
113 
114 /// Utility function for reservePreviousStackSlotForValue. Tries to find
115 /// stack slot index to which we have spilled value for previous statepoints.
116 /// LookUpDepth specifies maximum DFS depth this function is allowed to look.
findPreviousSpillSlot(const Value * Val,SelectionDAGBuilder & Builder,int LookUpDepth)117 static Optional<int> findPreviousSpillSlot(const Value *Val,
118                                            SelectionDAGBuilder &Builder,
119                                            int LookUpDepth) {
120   // Can not look any further - give up now
121   if (LookUpDepth <= 0)
122     return None;
123 
124   // Spill location is known for gc relocates
125   if (const auto *Relocate = dyn_cast<GCRelocateInst>(Val)) {
126     const auto &SpillMap =
127         Builder.FuncInfo.StatepointSpillMaps[Relocate->getStatepoint()];
128 
129     auto It = SpillMap.find(Relocate->getDerivedPtr());
130     if (It == SpillMap.end())
131       return None;
132 
133     return It->second;
134   }
135 
136   // Look through bitcast instructions.
137   if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val))
138     return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1);
139 
140   // Look through phi nodes
141   // All incoming values should have same known stack slot, otherwise result
142   // is unknown.
143   if (const PHINode *Phi = dyn_cast<PHINode>(Val)) {
144     Optional<int> MergedResult = None;
145 
146     for (auto &IncomingValue : Phi->incoming_values()) {
147       Optional<int> SpillSlot =
148           findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1);
149       if (!SpillSlot.hasValue())
150         return None;
151 
152       if (MergedResult.hasValue() && *MergedResult != *SpillSlot)
153         return None;
154 
155       MergedResult = SpillSlot;
156     }
157     return MergedResult;
158   }
159 
160   // TODO: We can do better for PHI nodes. In cases like this:
161   //   ptr = phi(relocated_pointer, not_relocated_pointer)
162   //   statepoint(ptr)
163   // We will return that stack slot for ptr is unknown. And later we might
164   // assign different stack slots for ptr and relocated_pointer. This limits
165   // llvm's ability to remove redundant stores.
166   // Unfortunately it's hard to accomplish in current infrastructure.
167   // We use this function to eliminate spill store completely, while
168   // in example we still need to emit store, but instead of any location
169   // we need to use special "preferred" location.
170 
171   // TODO: handle simple updates.  If a value is modified and the original
172   // value is no longer live, it would be nice to put the modified value in the
173   // same slot.  This allows folding of the memory accesses for some
174   // instructions types (like an increment).
175   //   statepoint (i)
176   //   i1 = i+1
177   //   statepoint (i1)
178   // However we need to be careful for cases like this:
179   //   statepoint(i)
180   //   i1 = i+1
181   //   statepoint(i, i1)
182   // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just
183   // put handling of simple modifications in this function like it's done
184   // for bitcasts we might end up reserving i's slot for 'i+1' because order in
185   // which we visit values is unspecified.
186 
187   // Don't know any information about this instruction
188   return None;
189 }
190 
191 /// Try to find existing copies of the incoming values in stack slots used for
192 /// statepoint spilling.  If we can find a spill slot for the incoming value,
193 /// mark that slot as allocated, and reuse the same slot for this safepoint.
194 /// This helps to avoid series of loads and stores that only serve to reshuffle
195 /// values on the stack between calls.
reservePreviousStackSlotForValue(const Value * IncomingValue,SelectionDAGBuilder & Builder)196 static void reservePreviousStackSlotForValue(const Value *IncomingValue,
197                                              SelectionDAGBuilder &Builder) {
198 
199   SDValue Incoming = Builder.getValue(IncomingValue);
200 
201   if (isa<ConstantSDNode>(Incoming) || isa<FrameIndexSDNode>(Incoming)) {
202     // We won't need to spill this, so no need to check for previously
203     // allocated stack slots
204     return;
205   }
206 
207   SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming);
208   if (OldLocation.getNode())
209     // Duplicates in input
210     return;
211 
212   const int LookUpDepth = 6;
213   Optional<int> Index =
214       findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth);
215   if (!Index.hasValue())
216     return;
217 
218   const auto &StatepointSlots = Builder.FuncInfo.StatepointStackSlots;
219 
220   auto SlotIt = find(StatepointSlots, *Index);
221   assert(SlotIt != StatepointSlots.end() &&
222          "Value spilled to the unknown stack slot");
223 
224   // This is one of our dedicated lowering slots
225   const int Offset = std::distance(StatepointSlots.begin(), SlotIt);
226   if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) {
227     // stack slot already assigned to someone else, can't use it!
228     // TODO: currently we reserve space for gc arguments after doing
229     // normal allocation for deopt arguments.  We should reserve for
230     // _all_ deopt and gc arguments, then start allocating.  This
231     // will prevent some moves being inserted when vm state changes,
232     // but gc state doesn't between two calls.
233     return;
234   }
235   // Reserve this stack slot
236   Builder.StatepointLowering.reserveStackSlot(Offset);
237 
238   // Cache this slot so we find it when going through the normal
239   // assignment loop.
240   SDValue Loc = Builder.DAG.getTargetFrameIndex(*Index, Incoming.getValueType());
241   Builder.StatepointLowering.setLocation(Incoming, Loc);
242 }
243 
244 /// Remove any duplicate (as SDValues) from the derived pointer pairs.  This
245 /// is not required for correctness.  It's purpose is to reduce the size of
246 /// StackMap section.  It has no effect on the number of spill slots required
247 /// or the actual lowering.
248 static void
removeDuplicateGCPtrs(SmallVectorImpl<const Value * > & Bases,SmallVectorImpl<const Value * > & Ptrs,SmallVectorImpl<const GCRelocateInst * > & Relocs,SelectionDAGBuilder & Builder,FunctionLoweringInfo::StatepointSpillMap & SSM)249 removeDuplicateGCPtrs(SmallVectorImpl<const Value *> &Bases,
250                       SmallVectorImpl<const Value *> &Ptrs,
251                       SmallVectorImpl<const GCRelocateInst *> &Relocs,
252                       SelectionDAGBuilder &Builder,
253                       FunctionLoweringInfo::StatepointSpillMap &SSM) {
254   DenseMap<SDValue, const Value *> Seen;
255 
256   SmallVector<const Value *, 64> NewBases, NewPtrs;
257   SmallVector<const GCRelocateInst *, 64> NewRelocs;
258   for (size_t i = 0, e = Ptrs.size(); i < e; i++) {
259     SDValue SD = Builder.getValue(Ptrs[i]);
260     auto SeenIt = Seen.find(SD);
261 
262     if (SeenIt == Seen.end()) {
263       // Only add non-duplicates
264       NewBases.push_back(Bases[i]);
265       NewPtrs.push_back(Ptrs[i]);
266       NewRelocs.push_back(Relocs[i]);
267       Seen[SD] = Ptrs[i];
268     } else {
269       // Duplicate pointer found, note in SSM and move on:
270       SSM.DuplicateMap[Ptrs[i]] = SeenIt->second;
271     }
272   }
273   assert(Bases.size() >= NewBases.size());
274   assert(Ptrs.size() >= NewPtrs.size());
275   assert(Relocs.size() >= NewRelocs.size());
276   Bases = NewBases;
277   Ptrs = NewPtrs;
278   Relocs = NewRelocs;
279   assert(Ptrs.size() == Bases.size());
280   assert(Ptrs.size() == Relocs.size());
281 }
282 
283 /// Extract call from statepoint, lower it and return pointer to the
284 /// call node. Also update NodeMap so that getValue(statepoint) will
285 /// reference lowered call result
lowerCallFromStatepointLoweringInfo(SelectionDAGBuilder::StatepointLoweringInfo & SI,SelectionDAGBuilder & Builder,SmallVectorImpl<SDValue> & PendingExports)286 static std::pair<SDValue, SDNode *> lowerCallFromStatepointLoweringInfo(
287     SelectionDAGBuilder::StatepointLoweringInfo &SI,
288     SelectionDAGBuilder &Builder, SmallVectorImpl<SDValue> &PendingExports) {
289 
290   SDValue ReturnValue, CallEndVal;
291   std::tie(ReturnValue, CallEndVal) =
292       Builder.lowerInvokable(SI.CLI, SI.EHPadBB);
293   SDNode *CallEnd = CallEndVal.getNode();
294 
295   // Get a call instruction from the call sequence chain.  Tail calls are not
296   // allowed.  The following code is essentially reverse engineering X86's
297   // LowerCallTo.
298   //
299   // We are expecting DAG to have the following form:
300   //
301   // ch = eh_label (only in case of invoke statepoint)
302   //   ch, glue = callseq_start ch
303   //   ch, glue = X86::Call ch, glue
304   //   ch, glue = callseq_end ch, glue
305   //   get_return_value ch, glue
306   //
307   // get_return_value can either be a sequence of CopyFromReg instructions
308   // to grab the return value from the return register(s), or it can be a LOAD
309   // to load a value returned by reference via a stack slot.
310 
311   bool HasDef = !SI.CLI.RetTy->isVoidTy();
312   if (HasDef) {
313     if (CallEnd->getOpcode() == ISD::LOAD)
314       CallEnd = CallEnd->getOperand(0).getNode();
315     else
316       while (CallEnd->getOpcode() == ISD::CopyFromReg)
317         CallEnd = CallEnd->getOperand(0).getNode();
318   }
319 
320   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!");
321   return std::make_pair(ReturnValue, CallEnd->getOperand(0).getNode());
322 }
323 
324 /// Spill a value incoming to the statepoint. It might be either part of
325 /// vmstate
326 /// or gcstate. In both cases unconditionally spill it on the stack unless it
327 /// is a null constant. Return pair with first element being frame index
328 /// containing saved value and second element with outgoing chain from the
329 /// emitted store
330 static std::pair<SDValue, SDValue>
spillIncomingStatepointValue(SDValue Incoming,SDValue Chain,SelectionDAGBuilder & Builder)331 spillIncomingStatepointValue(SDValue Incoming, SDValue Chain,
332                              SelectionDAGBuilder &Builder) {
333   SDValue Loc = Builder.StatepointLowering.getLocation(Incoming);
334 
335   // Emit new store if we didn't do it for this ptr before
336   if (!Loc.getNode()) {
337     Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(),
338                                                        Builder);
339     int Index = cast<FrameIndexSDNode>(Loc)->getIndex();
340     // We use TargetFrameIndex so that isel will not select it into LEA
341     Loc = Builder.DAG.getTargetFrameIndex(Index, Incoming.getValueType());
342 
343     // TODO: We can create TokenFactor node instead of
344     //       chaining stores one after another, this may allow
345     //       a bit more optimal scheduling for them
346 
347 #ifndef NDEBUG
348     // Right now we always allocate spill slots that are of the same
349     // size as the value we're about to spill (the size of spillee can
350     // vary since we spill vectors of pointers too).  At some point we
351     // can consider allowing spills of smaller values to larger slots
352     // (i.e. change the '==' in the assert below to a '>=').
353     auto *MFI = Builder.DAG.getMachineFunction().getFrameInfo();
354     assert((MFI->getObjectSize(Index) * 8) ==
355                Incoming.getValueType().getSizeInBits() &&
356            "Bad spill:  stack slot does not match!");
357 #endif
358 
359     Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc,
360                                  MachinePointerInfo::getFixedStack(
361                                      Builder.DAG.getMachineFunction(), Index),
362                                  false, false, 0);
363 
364     Builder.StatepointLowering.setLocation(Incoming, Loc);
365   }
366 
367   assert(Loc.getNode());
368   return std::make_pair(Loc, Chain);
369 }
370 
371 /// Lower a single value incoming to a statepoint node.  This value can be
372 /// either a deopt value or a gc value, the handling is the same.  We special
373 /// case constants and allocas, then fall back to spilling if required.
lowerIncomingStatepointValue(SDValue Incoming,SmallVectorImpl<SDValue> & Ops,SelectionDAGBuilder & Builder)374 static void lowerIncomingStatepointValue(SDValue Incoming,
375                                          SmallVectorImpl<SDValue> &Ops,
376                                          SelectionDAGBuilder &Builder) {
377   SDValue Chain = Builder.getRoot();
378 
379   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) {
380     // If the original value was a constant, make sure it gets recorded as
381     // such in the stackmap.  This is required so that the consumer can
382     // parse any internal format to the deopt state.  It also handles null
383     // pointers and other constant pointers in GC states.  Note the constant
384     // vectors do not appear to actually hit this path and that anything larger
385     // than an i64 value (not type!) will fail asserts here.
386     pushStackMapConstant(Ops, Builder, C->getSExtValue());
387   } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
388     // This handles allocas as arguments to the statepoint (this is only
389     // really meaningful for a deopt value.  For GC, we'd be trying to
390     // relocate the address of the alloca itself?)
391     Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(),
392                                                   Incoming.getValueType()));
393   } else {
394     // Otherwise, locate a spill slot and explicitly spill it so it
395     // can be found by the runtime later.  We currently do not support
396     // tracking values through callee saved registers to their eventual
397     // spill location.  This would be a useful optimization, but would
398     // need to be optional since it requires a lot of complexity on the
399     // runtime side which not all would support.
400     auto Res = spillIncomingStatepointValue(Incoming, Chain, Builder);
401     Ops.push_back(Res.first);
402     Chain = Res.second;
403   }
404 
405   Builder.DAG.setRoot(Chain);
406 }
407 
408 /// Lower deopt state and gc pointer arguments of the statepoint.  The actual
409 /// lowering is described in lowerIncomingStatepointValue.  This function is
410 /// responsible for lowering everything in the right position and playing some
411 /// tricks to avoid redundant stack manipulation where possible.  On
412 /// completion, 'Ops' will contain ready to use operands for machine code
413 /// statepoint. The chain nodes will have already been created and the DAG root
414 /// will be set to the last value spilled (if any were).
415 static void
lowerStatepointMetaArgs(SmallVectorImpl<SDValue> & Ops,SelectionDAGBuilder::StatepointLoweringInfo & SI,SelectionDAGBuilder & Builder)416 lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops,
417                         SelectionDAGBuilder::StatepointLoweringInfo &SI,
418                         SelectionDAGBuilder &Builder) {
419   // Lower the deopt and gc arguments for this statepoint.  Layout will be:
420   // deopt argument length, deopt arguments.., gc arguments...
421 #ifndef NDEBUG
422   if (auto *GFI = Builder.GFI) {
423     // Check that each of the gc pointer and bases we've gotten out of the
424     // safepoint is something the strategy thinks might be a pointer (or vector
425     // of pointers) into the GC heap.  This is basically just here to help catch
426     // errors during statepoint insertion. TODO: This should actually be in the
427     // Verifier, but we can't get to the GCStrategy from there (yet).
428     GCStrategy &S = GFI->getStrategy();
429     for (const Value *V : SI.Bases) {
430       auto Opt = S.isGCManagedPointer(V->getType()->getScalarType());
431       if (Opt.hasValue()) {
432         assert(Opt.getValue() &&
433                "non gc managed base pointer found in statepoint");
434       }
435     }
436     for (const Value *V : SI.Ptrs) {
437       auto Opt = S.isGCManagedPointer(V->getType()->getScalarType());
438       if (Opt.hasValue()) {
439         assert(Opt.getValue() &&
440                "non gc managed derived pointer found in statepoint");
441       }
442     }
443   } else {
444     assert(SI.Bases.empty() && "No gc specified, so cannot relocate pointers!");
445     assert(SI.Ptrs.empty() && "No gc specified, so cannot relocate pointers!");
446   }
447 #endif
448 
449   // Before we actually start lowering (and allocating spill slots for values),
450   // reserve any stack slots which we judge to be profitable to reuse for a
451   // particular value.  This is purely an optimization over the code below and
452   // doesn't change semantics at all.  It is important for performance that we
453   // reserve slots for both deopt and gc values before lowering either.
454   for (const Value *V : SI.DeoptState) {
455     reservePreviousStackSlotForValue(V, Builder);
456   }
457   for (unsigned i = 0; i < SI.Bases.size(); ++i) {
458     reservePreviousStackSlotForValue(SI.Bases[i], Builder);
459     reservePreviousStackSlotForValue(SI.Ptrs[i], Builder);
460   }
461 
462   // First, prefix the list with the number of unique values to be
463   // lowered.  Note that this is the number of *Values* not the
464   // number of SDValues required to lower them.
465   const int NumVMSArgs = SI.DeoptState.size();
466   pushStackMapConstant(Ops, Builder, NumVMSArgs);
467 
468   // The vm state arguments are lowered in an opaque manner.  We do not know
469   // what type of values are contained within.
470   for (const Value *V : SI.DeoptState) {
471     SDValue Incoming = Builder.getValue(V);
472     lowerIncomingStatepointValue(Incoming, Ops, Builder);
473   }
474 
475   // Finally, go ahead and lower all the gc arguments.  There's no prefixed
476   // length for this one.  After lowering, we'll have the base and pointer
477   // arrays interwoven with each (lowered) base pointer immediately followed by
478   // it's (lowered) derived pointer.  i.e
479   // (base[0], ptr[0], base[1], ptr[1], ...)
480   for (unsigned i = 0; i < SI.Bases.size(); ++i) {
481     const Value *Base = SI.Bases[i];
482     lowerIncomingStatepointValue(Builder.getValue(Base), Ops, Builder);
483 
484     const Value *Ptr = SI.Ptrs[i];
485     lowerIncomingStatepointValue(Builder.getValue(Ptr), Ops, Builder);
486   }
487 
488   // If there are any explicit spill slots passed to the statepoint, record
489   // them, but otherwise do not do anything special.  These are user provided
490   // allocas and give control over placement to the consumer.  In this case,
491   // it is the contents of the slot which may get updated, not the pointer to
492   // the alloca
493   for (Value *V : SI.GCArgs) {
494     SDValue Incoming = Builder.getValue(V);
495     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
496       // This handles allocas as arguments to the statepoint
497       Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(),
498                                                     Incoming.getValueType()));
499     }
500   }
501 
502   // Record computed locations for all lowered values.
503   // This can not be embedded in lowering loops as we need to record *all*
504   // values, while previous loops account only values with unique SDValues.
505   const Instruction *StatepointInstr = SI.StatepointInstr;
506   auto &SpillMap = Builder.FuncInfo.StatepointSpillMaps[StatepointInstr];
507 
508   for (const GCRelocateInst *Relocate : SI.GCRelocates) {
509     const Value *V = Relocate->getDerivedPtr();
510     SDValue SDV = Builder.getValue(V);
511     SDValue Loc = Builder.StatepointLowering.getLocation(SDV);
512 
513     if (Loc.getNode()) {
514       SpillMap.SlotMap[V] = cast<FrameIndexSDNode>(Loc)->getIndex();
515     } else {
516       // Record value as visited, but not spilled. This is case for allocas
517       // and constants. For this values we can avoid emitting spill load while
518       // visiting corresponding gc_relocate.
519       // Actually we do not need to record them in this map at all.
520       // We do this only to check that we are not relocating any unvisited
521       // value.
522       SpillMap.SlotMap[V] = None;
523 
524       // Default llvm mechanisms for exporting values which are used in
525       // different basic blocks does not work for gc relocates.
526       // Note that it would be incorrect to teach llvm that all relocates are
527       // uses of the corresponding values so that it would automatically
528       // export them. Relocates of the spilled values does not use original
529       // value.
530       if (Relocate->getParent() != StatepointInstr->getParent())
531         Builder.ExportFromCurrentBlock(V);
532     }
533   }
534 }
535 
LowerAsSTATEPOINT(SelectionDAGBuilder::StatepointLoweringInfo & SI)536 SDValue SelectionDAGBuilder::LowerAsSTATEPOINT(
537     SelectionDAGBuilder::StatepointLoweringInfo &SI) {
538   // The basic scheme here is that information about both the original call and
539   // the safepoint is encoded in the CallInst.  We create a temporary call and
540   // lower it, then reverse engineer the calling sequence.
541 
542   NumOfStatepoints++;
543   // Clear state
544   StatepointLowering.startNewStatepoint(*this);
545 
546 #ifndef NDEBUG
547   // We schedule gc relocates before removeDuplicateGCPtrs since we _will_
548   // encounter the duplicate gc relocates we elide in removeDuplicateGCPtrs.
549   for (auto *Reloc : SI.GCRelocates)
550     if (Reloc->getParent() == SI.StatepointInstr->getParent())
551       StatepointLowering.scheduleRelocCall(*Reloc);
552 #endif
553 
554   // Remove any redundant llvm::Values which map to the same SDValue as another
555   // input.  Also has the effect of removing duplicates in the original
556   // llvm::Value input list as well.  This is a useful optimization for
557   // reducing the size of the StackMap section.  It has no other impact.
558   removeDuplicateGCPtrs(SI.Bases, SI.Ptrs, SI.GCRelocates, *this,
559                         FuncInfo.StatepointSpillMaps[SI.StatepointInstr]);
560   assert(SI.Bases.size() == SI.Ptrs.size() &&
561          SI.Ptrs.size() == SI.GCRelocates.size());
562 
563   // Lower statepoint vmstate and gcstate arguments
564   SmallVector<SDValue, 10> LoweredMetaArgs;
565   lowerStatepointMetaArgs(LoweredMetaArgs, SI, *this);
566 
567   // Now that we've emitted the spills, we need to update the root so that the
568   // call sequence is ordered correctly.
569   SI.CLI.setChain(getRoot());
570 
571   // Get call node, we will replace it later with statepoint
572   SDValue ReturnVal;
573   SDNode *CallNode;
574   std::tie(ReturnVal, CallNode) =
575       lowerCallFromStatepointLoweringInfo(SI, *this, PendingExports);
576 
577   // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END
578   // nodes with all the appropriate arguments and return values.
579 
580   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
581   SDValue Chain = CallNode->getOperand(0);
582 
583   SDValue Glue;
584   bool CallHasIncomingGlue = CallNode->getGluedNode();
585   if (CallHasIncomingGlue) {
586     // Glue is always last operand
587     Glue = CallNode->getOperand(CallNode->getNumOperands() - 1);
588   }
589 
590   // Build the GC_TRANSITION_START node if necessary.
591   //
592   // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the
593   // order in which they appear in the call to the statepoint intrinsic. If
594   // any of the operands is a pointer-typed, that operand is immediately
595   // followed by a SRCVALUE for the pointer that may be used during lowering
596   // (e.g. to form MachinePointerInfo values for loads/stores).
597   const bool IsGCTransition =
598       (SI.StatepointFlags & (uint64_t)StatepointFlags::GCTransition) ==
599       (uint64_t)StatepointFlags::GCTransition;
600   if (IsGCTransition) {
601     SmallVector<SDValue, 8> TSOps;
602 
603     // Add chain
604     TSOps.push_back(Chain);
605 
606     // Add GC transition arguments
607     for (const Value *V : SI.GCTransitionArgs) {
608       TSOps.push_back(getValue(V));
609       if (V->getType()->isPointerTy())
610         TSOps.push_back(DAG.getSrcValue(V));
611     }
612 
613     // Add glue if necessary
614     if (CallHasIncomingGlue)
615       TSOps.push_back(Glue);
616 
617     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
618 
619     SDValue GCTransitionStart =
620         DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps);
621 
622     Chain = GCTransitionStart.getValue(0);
623     Glue = GCTransitionStart.getValue(1);
624   }
625 
626   // TODO: Currently, all of these operands are being marked as read/write in
627   // PrologEpilougeInserter.cpp, we should special case the VMState arguments
628   // and flags to be read-only.
629   SmallVector<SDValue, 40> Ops;
630 
631   // Add the <id> and <numBytes> constants.
632   Ops.push_back(DAG.getTargetConstant(SI.ID, getCurSDLoc(), MVT::i64));
633   Ops.push_back(
634       DAG.getTargetConstant(SI.NumPatchBytes, getCurSDLoc(), MVT::i32));
635 
636   // Calculate and push starting position of vmstate arguments
637   // Get number of arguments incoming directly into call node
638   unsigned NumCallRegArgs =
639       CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3);
640   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32));
641 
642   // Add call target
643   SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0);
644   Ops.push_back(CallTarget);
645 
646   // Add call arguments
647   // Get position of register mask in the call
648   SDNode::op_iterator RegMaskIt;
649   if (CallHasIncomingGlue)
650     RegMaskIt = CallNode->op_end() - 2;
651   else
652     RegMaskIt = CallNode->op_end() - 1;
653   Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt);
654 
655   // Add a constant argument for the calling convention
656   pushStackMapConstant(Ops, *this, SI.CLI.CallConv);
657 
658   // Add a constant argument for the flags
659   uint64_t Flags = SI.StatepointFlags;
660   assert(((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) &&
661          "Unknown flag used");
662   pushStackMapConstant(Ops, *this, Flags);
663 
664   // Insert all vmstate and gcstate arguments
665   Ops.insert(Ops.end(), LoweredMetaArgs.begin(), LoweredMetaArgs.end());
666 
667   // Add register mask from call node
668   Ops.push_back(*RegMaskIt);
669 
670   // Add chain
671   Ops.push_back(Chain);
672 
673   // Same for the glue, but we add it only if original call had it
674   if (Glue.getNode())
675     Ops.push_back(Glue);
676 
677   // Compute return values.  Provide a glue output since we consume one as
678   // input.  This allows someone else to chain off us as needed.
679   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
680 
681   SDNode *StatepointMCNode =
682       DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops);
683 
684   SDNode *SinkNode = StatepointMCNode;
685 
686   // Build the GC_TRANSITION_END node if necessary.
687   //
688   // See the comment above regarding GC_TRANSITION_START for the layout of
689   // the operands to the GC_TRANSITION_END node.
690   if (IsGCTransition) {
691     SmallVector<SDValue, 8> TEOps;
692 
693     // Add chain
694     TEOps.push_back(SDValue(StatepointMCNode, 0));
695 
696     // Add GC transition arguments
697     for (const Value *V : SI.GCTransitionArgs) {
698       TEOps.push_back(getValue(V));
699       if (V->getType()->isPointerTy())
700         TEOps.push_back(DAG.getSrcValue(V));
701     }
702 
703     // Add glue
704     TEOps.push_back(SDValue(StatepointMCNode, 1));
705 
706     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
707 
708     SDValue GCTransitionStart =
709         DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps);
710 
711     SinkNode = GCTransitionStart.getNode();
712   }
713 
714   // Replace original call
715   DAG.ReplaceAllUsesWith(CallNode, SinkNode); // This may update Root
716   // Remove original call node
717   DAG.DeleteNode(CallNode);
718 
719   // DON'T set the root - under the assumption that it's already set past the
720   // inserted node we created.
721 
722   // TODO: A better future implementation would be to emit a single variable
723   // argument, variable return value STATEPOINT node here and then hookup the
724   // return value of each gc.relocate to the respective output of the
725   // previously emitted STATEPOINT value.  Unfortunately, this doesn't appear
726   // to actually be possible today.
727 
728   return ReturnVal;
729 }
730 
731 void
LowerStatepoint(ImmutableStatepoint ISP,const BasicBlock * EHPadBB)732 SelectionDAGBuilder::LowerStatepoint(ImmutableStatepoint ISP,
733                                      const BasicBlock *EHPadBB /*= nullptr*/) {
734   assert(ISP.getCallSite().getCallingConv() != CallingConv::AnyReg &&
735          "anyregcc is not supported on statepoints!");
736 
737 #ifndef NDEBUG
738   // If this is a malformed statepoint, report it early to simplify debugging.
739   // This should catch any IR level mistake that's made when constructing or
740   // transforming statepoints.
741   ISP.verify();
742 
743   // Check that the associated GCStrategy expects to encounter statepoints.
744   assert(GFI->getStrategy().useStatepoints() &&
745          "GCStrategy does not expect to encounter statepoints");
746 #endif
747 
748   SDValue ActualCallee;
749 
750   if (ISP.getNumPatchBytes() > 0) {
751     // If we've been asked to emit a nop sequence instead of a call instruction
752     // for this statepoint then don't lower the call target, but use a constant
753     // `null` instead.  Not lowering the call target lets statepoint clients get
754     // away without providing a physical address for the symbolic call target at
755     // link time.
756 
757     const auto &TLI = DAG.getTargetLoweringInfo();
758     const auto &DL = DAG.getDataLayout();
759 
760     unsigned AS = ISP.getCalledValue()->getType()->getPointerAddressSpace();
761     ActualCallee = DAG.getConstant(0, getCurSDLoc(), TLI.getPointerTy(DL, AS));
762   } else {
763     ActualCallee = getValue(ISP.getCalledValue());
764   }
765 
766   StatepointLoweringInfo SI(DAG);
767   populateCallLoweringInfo(SI.CLI, ISP.getCallSite(),
768                            ImmutableStatepoint::CallArgsBeginPos,
769                            ISP.getNumCallArgs(), ActualCallee,
770                            ISP.getActualReturnType(), false /* IsPatchPoint */);
771 
772   for (const GCRelocateInst *Relocate : ISP.getRelocates()) {
773     SI.GCRelocates.push_back(Relocate);
774     SI.Bases.push_back(Relocate->getBasePtr());
775     SI.Ptrs.push_back(Relocate->getDerivedPtr());
776   }
777 
778   SI.GCArgs = ArrayRef<const Use>(ISP.gc_args_begin(), ISP.gc_args_end());
779   SI.StatepointInstr = ISP.getInstruction();
780   SI.GCTransitionArgs =
781       ArrayRef<const Use>(ISP.gc_args_begin(), ISP.gc_args_end());
782   SI.ID = ISP.getID();
783   SI.DeoptState = ArrayRef<const Use>(ISP.vm_state_begin(), ISP.vm_state_end());
784   SI.StatepointFlags = ISP.getFlags();
785   SI.NumPatchBytes = ISP.getNumPatchBytes();
786   SI.EHPadBB = EHPadBB;
787 
788   SDValue ReturnValue = LowerAsSTATEPOINT(SI);
789 
790   // Export the result value if needed
791   const GCResultInst *GCResult = ISP.getGCResult();
792   Type *RetTy = ISP.getActualReturnType();
793   if (!RetTy->isVoidTy() && GCResult) {
794     if (GCResult->getParent() != ISP.getCallSite().getParent()) {
795       // Result value will be used in a different basic block so we need to
796       // export it now.  Default exporting mechanism will not work here because
797       // statepoint call has a different type than the actual call. It means
798       // that by default llvm will create export register of the wrong type
799       // (always i32 in our case). So instead we need to create export register
800       // with correct type manually.
801       // TODO: To eliminate this problem we can remove gc.result intrinsics
802       //       completely and make statepoint call to return a tuple.
803       unsigned Reg = FuncInfo.CreateRegs(RetTy);
804       RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
805                        DAG.getDataLayout(), Reg, RetTy);
806       SDValue Chain = DAG.getEntryNode();
807 
808       RFV.getCopyToRegs(ReturnValue, DAG, getCurSDLoc(), Chain, nullptr);
809       PendingExports.push_back(Chain);
810       FuncInfo.ValueMap[ISP.getInstruction()] = Reg;
811     } else {
812       // Result value will be used in a same basic block. Don't export it or
813       // perform any explicit register copies.
814       // We'll replace the actuall call node shortly. gc_result will grab
815       // this value.
816       setValue(ISP.getInstruction(), ReturnValue);
817     }
818   } else {
819     // The token value is never used from here on, just generate a poison value
820     setValue(ISP.getInstruction(), DAG.getIntPtrConstant(-1, getCurSDLoc()));
821   }
822 }
823 
LowerCallSiteWithDeoptBundleImpl(ImmutableCallSite CS,SDValue Callee,const BasicBlock * EHPadBB,bool VarArgDisallowed,bool ForceVoidReturnTy)824 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundleImpl(
825     ImmutableCallSite CS, SDValue Callee, const BasicBlock *EHPadBB,
826     bool VarArgDisallowed, bool ForceVoidReturnTy) {
827   StatepointLoweringInfo SI(DAG);
828   unsigned ArgBeginIndex = CS.arg_begin() - CS.getInstruction()->op_begin();
829   populateCallLoweringInfo(
830       SI.CLI, CS, ArgBeginIndex, CS.getNumArgOperands(), Callee,
831       ForceVoidReturnTy ? Type::getVoidTy(*DAG.getContext()) : CS.getType(),
832       false);
833   if (!VarArgDisallowed)
834     SI.CLI.IsVarArg = CS.getFunctionType()->isVarArg();
835 
836   auto DeoptBundle = *CS.getOperandBundle(LLVMContext::OB_deopt);
837 
838   unsigned DefaultID = StatepointDirectives::DeoptBundleStatepointID;
839 
840   auto SD = parseStatepointDirectivesFromAttrs(CS.getAttributes());
841   SI.ID = SD.StatepointID.getValueOr(DefaultID);
842   SI.NumPatchBytes = SD.NumPatchBytes.getValueOr(0);
843 
844   SI.DeoptState =
845       ArrayRef<const Use>(DeoptBundle.Inputs.begin(), DeoptBundle.Inputs.end());
846   SI.StatepointFlags = static_cast<uint64_t>(StatepointFlags::None);
847   SI.EHPadBB = EHPadBB;
848 
849   // NB! The GC arguments are deliberately left empty.
850 
851   if (SDValue ReturnVal = LowerAsSTATEPOINT(SI)) {
852     const Instruction *Inst = CS.getInstruction();
853     ReturnVal = lowerRangeToAssertZExt(DAG, *Inst, ReturnVal);
854     setValue(Inst, ReturnVal);
855   }
856 }
857 
LowerCallSiteWithDeoptBundle(ImmutableCallSite CS,SDValue Callee,const BasicBlock * EHPadBB)858 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundle(
859     ImmutableCallSite CS, SDValue Callee, const BasicBlock *EHPadBB) {
860   LowerCallSiteWithDeoptBundleImpl(CS, Callee, EHPadBB,
861                                    /* VarArgDisallowed = */ false,
862                                    /* ForceVoidReturnTy  = */ false);
863 }
864 
visitGCResult(const GCResultInst & CI)865 void SelectionDAGBuilder::visitGCResult(const GCResultInst &CI) {
866   // The result value of the gc_result is simply the result of the actual
867   // call.  We've already emitted this, so just grab the value.
868   const Instruction *I = CI.getStatepoint();
869 
870   if (I->getParent() != CI.getParent()) {
871     // Statepoint is in different basic block so we should have stored call
872     // result in a virtual register.
873     // We can not use default getValue() functionality to copy value from this
874     // register because statepoint and actual call return types can be
875     // different, and getValue() will use CopyFromReg of the wrong type,
876     // which is always i32 in our case.
877     PointerType *CalleeType = cast<PointerType>(
878         ImmutableStatepoint(I).getCalledValue()->getType());
879     Type *RetTy =
880         cast<FunctionType>(CalleeType->getElementType())->getReturnType();
881     SDValue CopyFromReg = getCopyFromRegs(I, RetTy);
882 
883     assert(CopyFromReg.getNode());
884     setValue(&CI, CopyFromReg);
885   } else {
886     setValue(&CI, getValue(I));
887   }
888 }
889 
visitGCRelocate(const GCRelocateInst & Relocate)890 void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst &Relocate) {
891 #ifndef NDEBUG
892   // Consistency check
893   // We skip this check for relocates not in the same basic block as thier
894   // statepoint. It would be too expensive to preserve validation info through
895   // different basic blocks.
896   if (Relocate.getStatepoint()->getParent() == Relocate.getParent())
897     StatepointLowering.relocCallVisited(Relocate);
898 
899   auto *Ty = Relocate.getType()->getScalarType();
900   if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty))
901     assert(*IsManaged && "Non gc managed pointer relocated!");
902 #endif
903 
904   const Value *DerivedPtr = Relocate.getDerivedPtr();
905   SDValue SD = getValue(DerivedPtr);
906 
907   auto &SpillMap = FuncInfo.StatepointSpillMaps[Relocate.getStatepoint()];
908   auto SlotIt = SpillMap.find(DerivedPtr);
909   assert(SlotIt != SpillMap.end() && "Relocating not lowered gc value");
910   Optional<int> DerivedPtrLocation = SlotIt->second;
911 
912   // We didn't need to spill these special cases (constants and allocas).
913   // See the handling in spillIncomingValueForStatepoint for detail.
914   if (!DerivedPtrLocation) {
915     setValue(&Relocate, SD);
916     return;
917   }
918 
919   SDValue SpillSlot = DAG.getTargetFrameIndex(*DerivedPtrLocation,
920                                               SD.getValueType());
921 
922   // Be conservative: flush all pending loads
923   // TODO: Probably we can be less restrictive on this,
924   // it may allow more scheduling opportunities.
925   SDValue Chain = getRoot();
926 
927   SDValue SpillLoad =
928       DAG.getLoad(SpillSlot.getValueType(), getCurSDLoc(), Chain, SpillSlot,
929                   MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
930                                                     *DerivedPtrLocation),
931                   false, false, false, 0);
932 
933   // Again, be conservative, don't emit pending loads
934   DAG.setRoot(SpillLoad.getValue(1));
935 
936   assert(SpillLoad.getNode());
937   setValue(&Relocate, SpillLoad);
938 }
939 
LowerDeoptimizeCall(const CallInst * CI)940 void SelectionDAGBuilder::LowerDeoptimizeCall(const CallInst *CI) {
941   const auto &TLI = DAG.getTargetLoweringInfo();
942   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(RTLIB::DEOPTIMIZE),
943                                          TLI.getPointerTy(DAG.getDataLayout()));
944 
945   // We don't lower calls to __llvm_deoptimize as varargs, but as a regular
946   // call.  We also do not lower the return value to any virtual register, and
947   // change the immediately following return to a trap instruction.
948   LowerCallSiteWithDeoptBundleImpl(CI, Callee, /* EHPadBB = */ nullptr,
949                                    /* VarArgDisallowed = */ true,
950                                    /* ForceVoidReturnTy = */ true);
951 }
952 
LowerDeoptimizingReturn()953 void SelectionDAGBuilder::LowerDeoptimizingReturn() {
954   // We do not lower the return value from llvm.deoptimize to any virtual
955   // register, and change the immediately following return to a trap
956   // instruction.
957   if (DAG.getTarget().Options.TrapUnreachable)
958     DAG.setRoot(
959         DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
960 }
961