1 /*
2 * Copyright 2004 The WebRTC Project Authors. All rights reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #if defined(_MSC_VER) && _MSC_VER < 1300
12 #pragma warning(disable:4786)
13 #endif
14
15 #include <assert.h>
16
17 #ifdef MEMORY_SANITIZER
18 #include <sanitizer/msan_interface.h>
19 #endif
20
21 #if defined(WEBRTC_POSIX)
22 #include <string.h>
23 #include <errno.h>
24 #include <fcntl.h>
25 #include <sys/time.h>
26 #include <sys/select.h>
27 #include <unistd.h>
28 #include <signal.h>
29 #endif
30
31 #if defined(WEBRTC_WIN)
32 #define WIN32_LEAN_AND_MEAN
33 #include <windows.h>
34 #include <winsock2.h>
35 #include <ws2tcpip.h>
36 #undef SetPort
37 #endif
38
39 #include <algorithm>
40 #include <map>
41
42 #include "webrtc/base/arraysize.h"
43 #include "webrtc/base/basictypes.h"
44 #include "webrtc/base/byteorder.h"
45 #include "webrtc/base/common.h"
46 #include "webrtc/base/logging.h"
47 #include "webrtc/base/physicalsocketserver.h"
48 #include "webrtc/base/timeutils.h"
49 #include "webrtc/base/winping.h"
50 #include "webrtc/base/win32socketinit.h"
51
52 // stm: this will tell us if we are on OSX
53 #ifdef HAVE_CONFIG_H
54 #include "config.h"
55 #endif
56
57 #if defined(WEBRTC_POSIX)
58 #include <netinet/tcp.h> // for TCP_NODELAY
59 #define IP_MTU 14 // Until this is integrated from linux/in.h to netinet/in.h
60 typedef void* SockOptArg;
61 #endif // WEBRTC_POSIX
62
63 #if defined(WEBRTC_WIN)
64 typedef char* SockOptArg;
65 #endif
66
67 namespace rtc {
68
69 #if defined(WEBRTC_WIN)
70 // Standard MTUs, from RFC 1191
71 const uint16_t PACKET_MAXIMUMS[] = {
72 65535, // Theoretical maximum, Hyperchannel
73 32000, // Nothing
74 17914, // 16Mb IBM Token Ring
75 8166, // IEEE 802.4
76 // 4464, // IEEE 802.5 (4Mb max)
77 4352, // FDDI
78 // 2048, // Wideband Network
79 2002, // IEEE 802.5 (4Mb recommended)
80 // 1536, // Expermental Ethernet Networks
81 // 1500, // Ethernet, Point-to-Point (default)
82 1492, // IEEE 802.3
83 1006, // SLIP, ARPANET
84 // 576, // X.25 Networks
85 // 544, // DEC IP Portal
86 // 512, // NETBIOS
87 508, // IEEE 802/Source-Rt Bridge, ARCNET
88 296, // Point-to-Point (low delay)
89 68, // Official minimum
90 0, // End of list marker
91 };
92
93 static const int IP_HEADER_SIZE = 20u;
94 static const int IPV6_HEADER_SIZE = 40u;
95 static const int ICMP_HEADER_SIZE = 8u;
96 static const int ICMP_PING_TIMEOUT_MILLIS = 10000u;
97 #endif
98
PhysicalSocket(PhysicalSocketServer * ss,SOCKET s)99 PhysicalSocket::PhysicalSocket(PhysicalSocketServer* ss, SOCKET s)
100 : ss_(ss), s_(s), enabled_events_(0), error_(0),
101 state_((s == INVALID_SOCKET) ? CS_CLOSED : CS_CONNECTED),
102 resolver_(nullptr) {
103 #if defined(WEBRTC_WIN)
104 // EnsureWinsockInit() ensures that winsock is initialized. The default
105 // version of this function doesn't do anything because winsock is
106 // initialized by constructor of a static object. If neccessary libjingle
107 // users can link it with a different version of this function by replacing
108 // win32socketinit.cc. See win32socketinit.cc for more details.
109 EnsureWinsockInit();
110 #endif
111 if (s_ != INVALID_SOCKET) {
112 enabled_events_ = DE_READ | DE_WRITE;
113
114 int type = SOCK_STREAM;
115 socklen_t len = sizeof(type);
116 VERIFY(0 == getsockopt(s_, SOL_SOCKET, SO_TYPE, (SockOptArg)&type, &len));
117 udp_ = (SOCK_DGRAM == type);
118 }
119 }
120
~PhysicalSocket()121 PhysicalSocket::~PhysicalSocket() {
122 Close();
123 }
124
Create(int family,int type)125 bool PhysicalSocket::Create(int family, int type) {
126 Close();
127 s_ = ::socket(family, type, 0);
128 udp_ = (SOCK_DGRAM == type);
129 UpdateLastError();
130 if (udp_)
131 enabled_events_ = DE_READ | DE_WRITE;
132 return s_ != INVALID_SOCKET;
133 }
134
GetLocalAddress() const135 SocketAddress PhysicalSocket::GetLocalAddress() const {
136 sockaddr_storage addr_storage = {0};
137 socklen_t addrlen = sizeof(addr_storage);
138 sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
139 int result = ::getsockname(s_, addr, &addrlen);
140 SocketAddress address;
141 if (result >= 0) {
142 SocketAddressFromSockAddrStorage(addr_storage, &address);
143 } else {
144 LOG(LS_WARNING) << "GetLocalAddress: unable to get local addr, socket="
145 << s_;
146 }
147 return address;
148 }
149
GetRemoteAddress() const150 SocketAddress PhysicalSocket::GetRemoteAddress() const {
151 sockaddr_storage addr_storage = {0};
152 socklen_t addrlen = sizeof(addr_storage);
153 sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
154 int result = ::getpeername(s_, addr, &addrlen);
155 SocketAddress address;
156 if (result >= 0) {
157 SocketAddressFromSockAddrStorage(addr_storage, &address);
158 } else {
159 LOG(LS_WARNING) << "GetRemoteAddress: unable to get remote addr, socket="
160 << s_;
161 }
162 return address;
163 }
164
Bind(const SocketAddress & bind_addr)165 int PhysicalSocket::Bind(const SocketAddress& bind_addr) {
166 sockaddr_storage addr_storage;
167 size_t len = bind_addr.ToSockAddrStorage(&addr_storage);
168 sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
169 int err = ::bind(s_, addr, static_cast<int>(len));
170 UpdateLastError();
171 #if !defined(NDEBUG)
172 if (0 == err) {
173 dbg_addr_ = "Bound @ ";
174 dbg_addr_.append(GetLocalAddress().ToString());
175 }
176 #endif
177 return err;
178 }
179
Connect(const SocketAddress & addr)180 int PhysicalSocket::Connect(const SocketAddress& addr) {
181 // TODO(pthatcher): Implicit creation is required to reconnect...
182 // ...but should we make it more explicit?
183 if (state_ != CS_CLOSED) {
184 SetError(EALREADY);
185 return SOCKET_ERROR;
186 }
187 if (addr.IsUnresolvedIP()) {
188 LOG(LS_VERBOSE) << "Resolving addr in PhysicalSocket::Connect";
189 resolver_ = new AsyncResolver();
190 resolver_->SignalDone.connect(this, &PhysicalSocket::OnResolveResult);
191 resolver_->Start(addr);
192 state_ = CS_CONNECTING;
193 return 0;
194 }
195
196 return DoConnect(addr);
197 }
198
DoConnect(const SocketAddress & connect_addr)199 int PhysicalSocket::DoConnect(const SocketAddress& connect_addr) {
200 if ((s_ == INVALID_SOCKET) &&
201 !Create(connect_addr.family(), SOCK_STREAM)) {
202 return SOCKET_ERROR;
203 }
204 sockaddr_storage addr_storage;
205 size_t len = connect_addr.ToSockAddrStorage(&addr_storage);
206 sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
207 int err = ::connect(s_, addr, static_cast<int>(len));
208 UpdateLastError();
209 if (err == 0) {
210 state_ = CS_CONNECTED;
211 } else if (IsBlockingError(GetError())) {
212 state_ = CS_CONNECTING;
213 enabled_events_ |= DE_CONNECT;
214 } else {
215 return SOCKET_ERROR;
216 }
217
218 enabled_events_ |= DE_READ | DE_WRITE;
219 return 0;
220 }
221
GetError() const222 int PhysicalSocket::GetError() const {
223 CritScope cs(&crit_);
224 return error_;
225 }
226
SetError(int error)227 void PhysicalSocket::SetError(int error) {
228 CritScope cs(&crit_);
229 error_ = error;
230 }
231
GetState() const232 AsyncSocket::ConnState PhysicalSocket::GetState() const {
233 return state_;
234 }
235
GetOption(Option opt,int * value)236 int PhysicalSocket::GetOption(Option opt, int* value) {
237 int slevel;
238 int sopt;
239 if (TranslateOption(opt, &slevel, &sopt) == -1)
240 return -1;
241 socklen_t optlen = sizeof(*value);
242 int ret = ::getsockopt(s_, slevel, sopt, (SockOptArg)value, &optlen);
243 if (ret != -1 && opt == OPT_DONTFRAGMENT) {
244 #if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID)
245 *value = (*value != IP_PMTUDISC_DONT) ? 1 : 0;
246 #endif
247 }
248 return ret;
249 }
250
SetOption(Option opt,int value)251 int PhysicalSocket::SetOption(Option opt, int value) {
252 int slevel;
253 int sopt;
254 if (TranslateOption(opt, &slevel, &sopt) == -1)
255 return -1;
256 if (opt == OPT_DONTFRAGMENT) {
257 #if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID)
258 value = (value) ? IP_PMTUDISC_DO : IP_PMTUDISC_DONT;
259 #endif
260 }
261 return ::setsockopt(s_, slevel, sopt, (SockOptArg)&value, sizeof(value));
262 }
263
Send(const void * pv,size_t cb)264 int PhysicalSocket::Send(const void* pv, size_t cb) {
265 int sent = ::send(s_, reinterpret_cast<const char *>(pv), (int)cb,
266 #if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID)
267 // Suppress SIGPIPE. Without this, attempting to send on a socket whose
268 // other end is closed will result in a SIGPIPE signal being raised to
269 // our process, which by default will terminate the process, which we
270 // don't want. By specifying this flag, we'll just get the error EPIPE
271 // instead and can handle the error gracefully.
272 MSG_NOSIGNAL
273 #else
274 0
275 #endif
276 );
277 UpdateLastError();
278 MaybeRemapSendError();
279 // We have seen minidumps where this may be false.
280 ASSERT(sent <= static_cast<int>(cb));
281 if ((sent < 0) && IsBlockingError(GetError())) {
282 enabled_events_ |= DE_WRITE;
283 }
284 return sent;
285 }
286
SendTo(const void * buffer,size_t length,const SocketAddress & addr)287 int PhysicalSocket::SendTo(const void* buffer,
288 size_t length,
289 const SocketAddress& addr) {
290 sockaddr_storage saddr;
291 size_t len = addr.ToSockAddrStorage(&saddr);
292 int sent = ::sendto(
293 s_, static_cast<const char *>(buffer), static_cast<int>(length),
294 #if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID)
295 // Suppress SIGPIPE. See above for explanation.
296 MSG_NOSIGNAL,
297 #else
298 0,
299 #endif
300 reinterpret_cast<sockaddr*>(&saddr), static_cast<int>(len));
301 UpdateLastError();
302 MaybeRemapSendError();
303 // We have seen minidumps where this may be false.
304 ASSERT(sent <= static_cast<int>(length));
305 if ((sent < 0) && IsBlockingError(GetError())) {
306 enabled_events_ |= DE_WRITE;
307 }
308 return sent;
309 }
310
Recv(void * buffer,size_t length)311 int PhysicalSocket::Recv(void* buffer, size_t length) {
312 int received = ::recv(s_, static_cast<char*>(buffer),
313 static_cast<int>(length), 0);
314 if ((received == 0) && (length != 0)) {
315 // Note: on graceful shutdown, recv can return 0. In this case, we
316 // pretend it is blocking, and then signal close, so that simplifying
317 // assumptions can be made about Recv.
318 LOG(LS_WARNING) << "EOF from socket; deferring close event";
319 // Must turn this back on so that the select() loop will notice the close
320 // event.
321 enabled_events_ |= DE_READ;
322 SetError(EWOULDBLOCK);
323 return SOCKET_ERROR;
324 }
325 UpdateLastError();
326 int error = GetError();
327 bool success = (received >= 0) || IsBlockingError(error);
328 if (udp_ || success) {
329 enabled_events_ |= DE_READ;
330 }
331 if (!success) {
332 LOG_F(LS_VERBOSE) << "Error = " << error;
333 }
334 return received;
335 }
336
RecvFrom(void * buffer,size_t length,SocketAddress * out_addr)337 int PhysicalSocket::RecvFrom(void* buffer,
338 size_t length,
339 SocketAddress* out_addr) {
340 sockaddr_storage addr_storage;
341 socklen_t addr_len = sizeof(addr_storage);
342 sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
343 int received = ::recvfrom(s_, static_cast<char*>(buffer),
344 static_cast<int>(length), 0, addr, &addr_len);
345 UpdateLastError();
346 if ((received >= 0) && (out_addr != nullptr))
347 SocketAddressFromSockAddrStorage(addr_storage, out_addr);
348 int error = GetError();
349 bool success = (received >= 0) || IsBlockingError(error);
350 if (udp_ || success) {
351 enabled_events_ |= DE_READ;
352 }
353 if (!success) {
354 LOG_F(LS_VERBOSE) << "Error = " << error;
355 }
356 return received;
357 }
358
Listen(int backlog)359 int PhysicalSocket::Listen(int backlog) {
360 int err = ::listen(s_, backlog);
361 UpdateLastError();
362 if (err == 0) {
363 state_ = CS_CONNECTING;
364 enabled_events_ |= DE_ACCEPT;
365 #if !defined(NDEBUG)
366 dbg_addr_ = "Listening @ ";
367 dbg_addr_.append(GetLocalAddress().ToString());
368 #endif
369 }
370 return err;
371 }
372
Accept(SocketAddress * out_addr)373 AsyncSocket* PhysicalSocket::Accept(SocketAddress* out_addr) {
374 // Always re-subscribe DE_ACCEPT to make sure new incoming connections will
375 // trigger an event even if DoAccept returns an error here.
376 enabled_events_ |= DE_ACCEPT;
377 sockaddr_storage addr_storage;
378 socklen_t addr_len = sizeof(addr_storage);
379 sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
380 SOCKET s = DoAccept(s_, addr, &addr_len);
381 UpdateLastError();
382 if (s == INVALID_SOCKET)
383 return nullptr;
384 if (out_addr != nullptr)
385 SocketAddressFromSockAddrStorage(addr_storage, out_addr);
386 return ss_->WrapSocket(s);
387 }
388
Close()389 int PhysicalSocket::Close() {
390 if (s_ == INVALID_SOCKET)
391 return 0;
392 int err = ::closesocket(s_);
393 UpdateLastError();
394 s_ = INVALID_SOCKET;
395 state_ = CS_CLOSED;
396 enabled_events_ = 0;
397 if (resolver_) {
398 resolver_->Destroy(false);
399 resolver_ = nullptr;
400 }
401 return err;
402 }
403
EstimateMTU(uint16_t * mtu)404 int PhysicalSocket::EstimateMTU(uint16_t* mtu) {
405 SocketAddress addr = GetRemoteAddress();
406 if (addr.IsAnyIP()) {
407 SetError(ENOTCONN);
408 return -1;
409 }
410
411 #if defined(WEBRTC_WIN)
412 // Gets the interface MTU (TTL=1) for the interface used to reach |addr|.
413 WinPing ping;
414 if (!ping.IsValid()) {
415 SetError(EINVAL); // can't think of a better error ID
416 return -1;
417 }
418 int header_size = ICMP_HEADER_SIZE;
419 if (addr.family() == AF_INET6) {
420 header_size += IPV6_HEADER_SIZE;
421 } else if (addr.family() == AF_INET) {
422 header_size += IP_HEADER_SIZE;
423 }
424
425 for (int level = 0; PACKET_MAXIMUMS[level + 1] > 0; ++level) {
426 int32_t size = PACKET_MAXIMUMS[level] - header_size;
427 WinPing::PingResult result = ping.Ping(addr.ipaddr(), size,
428 ICMP_PING_TIMEOUT_MILLIS,
429 1, false);
430 if (result == WinPing::PING_FAIL) {
431 SetError(EINVAL); // can't think of a better error ID
432 return -1;
433 } else if (result != WinPing::PING_TOO_LARGE) {
434 *mtu = PACKET_MAXIMUMS[level];
435 return 0;
436 }
437 }
438
439 ASSERT(false);
440 return -1;
441 #elif defined(WEBRTC_MAC)
442 // No simple way to do this on Mac OS X.
443 // SIOCGIFMTU would work if we knew which interface would be used, but
444 // figuring that out is pretty complicated. For now we'll return an error
445 // and let the caller pick a default MTU.
446 SetError(EINVAL);
447 return -1;
448 #elif defined(WEBRTC_LINUX)
449 // Gets the path MTU.
450 int value;
451 socklen_t vlen = sizeof(value);
452 int err = getsockopt(s_, IPPROTO_IP, IP_MTU, &value, &vlen);
453 if (err < 0) {
454 UpdateLastError();
455 return err;
456 }
457
458 ASSERT((0 <= value) && (value <= 65536));
459 *mtu = value;
460 return 0;
461 #elif defined(__native_client__)
462 // Most socket operations, including this, will fail in NaCl's sandbox.
463 error_ = EACCES;
464 return -1;
465 #endif
466 }
467
468
DoAccept(SOCKET socket,sockaddr * addr,socklen_t * addrlen)469 SOCKET PhysicalSocket::DoAccept(SOCKET socket,
470 sockaddr* addr,
471 socklen_t* addrlen) {
472 return ::accept(socket, addr, addrlen);
473 }
474
OnResolveResult(AsyncResolverInterface * resolver)475 void PhysicalSocket::OnResolveResult(AsyncResolverInterface* resolver) {
476 if (resolver != resolver_) {
477 return;
478 }
479
480 int error = resolver_->GetError();
481 if (error == 0) {
482 error = DoConnect(resolver_->address());
483 } else {
484 Close();
485 }
486
487 if (error) {
488 SetError(error);
489 SignalCloseEvent(this, error);
490 }
491 }
492
UpdateLastError()493 void PhysicalSocket::UpdateLastError() {
494 SetError(LAST_SYSTEM_ERROR);
495 }
496
MaybeRemapSendError()497 void PhysicalSocket::MaybeRemapSendError() {
498 #if defined(WEBRTC_MAC)
499 // https://developer.apple.com/library/mac/documentation/Darwin/
500 // Reference/ManPages/man2/sendto.2.html
501 // ENOBUFS - The output queue for a network interface is full.
502 // This generally indicates that the interface has stopped sending,
503 // but may be caused by transient congestion.
504 if (GetError() == ENOBUFS) {
505 SetError(EWOULDBLOCK);
506 }
507 #endif
508 }
509
TranslateOption(Option opt,int * slevel,int * sopt)510 int PhysicalSocket::TranslateOption(Option opt, int* slevel, int* sopt) {
511 switch (opt) {
512 case OPT_DONTFRAGMENT:
513 #if defined(WEBRTC_WIN)
514 *slevel = IPPROTO_IP;
515 *sopt = IP_DONTFRAGMENT;
516 break;
517 #elif defined(WEBRTC_MAC) || defined(BSD) || defined(__native_client__)
518 LOG(LS_WARNING) << "Socket::OPT_DONTFRAGMENT not supported.";
519 return -1;
520 #elif defined(WEBRTC_POSIX)
521 *slevel = IPPROTO_IP;
522 *sopt = IP_MTU_DISCOVER;
523 break;
524 #endif
525 case OPT_RCVBUF:
526 *slevel = SOL_SOCKET;
527 *sopt = SO_RCVBUF;
528 break;
529 case OPT_SNDBUF:
530 *slevel = SOL_SOCKET;
531 *sopt = SO_SNDBUF;
532 break;
533 case OPT_NODELAY:
534 *slevel = IPPROTO_TCP;
535 *sopt = TCP_NODELAY;
536 break;
537 case OPT_DSCP:
538 LOG(LS_WARNING) << "Socket::OPT_DSCP not supported.";
539 return -1;
540 case OPT_RTP_SENDTIME_EXTN_ID:
541 return -1; // No logging is necessary as this not a OS socket option.
542 default:
543 ASSERT(false);
544 return -1;
545 }
546 return 0;
547 }
548
SocketDispatcher(PhysicalSocketServer * ss)549 SocketDispatcher::SocketDispatcher(PhysicalSocketServer *ss)
550 #if defined(WEBRTC_WIN)
551 : PhysicalSocket(ss), id_(0), signal_close_(false)
552 #else
553 : PhysicalSocket(ss)
554 #endif
555 {
556 }
557
SocketDispatcher(SOCKET s,PhysicalSocketServer * ss)558 SocketDispatcher::SocketDispatcher(SOCKET s, PhysicalSocketServer *ss)
559 #if defined(WEBRTC_WIN)
560 : PhysicalSocket(ss, s), id_(0), signal_close_(false)
561 #else
562 : PhysicalSocket(ss, s)
563 #endif
564 {
565 }
566
~SocketDispatcher()567 SocketDispatcher::~SocketDispatcher() {
568 Close();
569 }
570
Initialize()571 bool SocketDispatcher::Initialize() {
572 ASSERT(s_ != INVALID_SOCKET);
573 // Must be a non-blocking
574 #if defined(WEBRTC_WIN)
575 u_long argp = 1;
576 ioctlsocket(s_, FIONBIO, &argp);
577 #elif defined(WEBRTC_POSIX)
578 fcntl(s_, F_SETFL, fcntl(s_, F_GETFL, 0) | O_NONBLOCK);
579 #endif
580 ss_->Add(this);
581 return true;
582 }
583
Create(int type)584 bool SocketDispatcher::Create(int type) {
585 return Create(AF_INET, type);
586 }
587
Create(int family,int type)588 bool SocketDispatcher::Create(int family, int type) {
589 // Change the socket to be non-blocking.
590 if (!PhysicalSocket::Create(family, type))
591 return false;
592
593 if (!Initialize())
594 return false;
595
596 #if defined(WEBRTC_WIN)
597 do { id_ = ++next_id_; } while (id_ == 0);
598 #endif
599 return true;
600 }
601
602 #if defined(WEBRTC_WIN)
603
GetWSAEvent()604 WSAEVENT SocketDispatcher::GetWSAEvent() {
605 return WSA_INVALID_EVENT;
606 }
607
GetSocket()608 SOCKET SocketDispatcher::GetSocket() {
609 return s_;
610 }
611
CheckSignalClose()612 bool SocketDispatcher::CheckSignalClose() {
613 if (!signal_close_)
614 return false;
615
616 char ch;
617 if (recv(s_, &ch, 1, MSG_PEEK) > 0)
618 return false;
619
620 state_ = CS_CLOSED;
621 signal_close_ = false;
622 SignalCloseEvent(this, signal_err_);
623 return true;
624 }
625
626 int SocketDispatcher::next_id_ = 0;
627
628 #elif defined(WEBRTC_POSIX)
629
GetDescriptor()630 int SocketDispatcher::GetDescriptor() {
631 return s_;
632 }
633
IsDescriptorClosed()634 bool SocketDispatcher::IsDescriptorClosed() {
635 // We don't have a reliable way of distinguishing end-of-stream
636 // from readability. So test on each readable call. Is this
637 // inefficient? Probably.
638 char ch;
639 ssize_t res = ::recv(s_, &ch, 1, MSG_PEEK);
640 if (res > 0) {
641 // Data available, so not closed.
642 return false;
643 } else if (res == 0) {
644 // EOF, so closed.
645 return true;
646 } else { // error
647 switch (errno) {
648 // Returned if we've already closed s_.
649 case EBADF:
650 // Returned during ungraceful peer shutdown.
651 case ECONNRESET:
652 return true;
653 default:
654 // Assume that all other errors are just blocking errors, meaning the
655 // connection is still good but we just can't read from it right now.
656 // This should only happen when connecting (and at most once), because
657 // in all other cases this function is only called if the file
658 // descriptor is already known to be in the readable state. However,
659 // it's not necessary a problem if we spuriously interpret a
660 // "connection lost"-type error as a blocking error, because typically
661 // the next recv() will get EOF, so we'll still eventually notice that
662 // the socket is closed.
663 LOG_ERR(LS_WARNING) << "Assuming benign blocking error";
664 return false;
665 }
666 }
667 }
668
669 #endif // WEBRTC_POSIX
670
GetRequestedEvents()671 uint32_t SocketDispatcher::GetRequestedEvents() {
672 return enabled_events_;
673 }
674
OnPreEvent(uint32_t ff)675 void SocketDispatcher::OnPreEvent(uint32_t ff) {
676 if ((ff & DE_CONNECT) != 0)
677 state_ = CS_CONNECTED;
678
679 #if defined(WEBRTC_WIN)
680 // We set CS_CLOSED from CheckSignalClose.
681 #elif defined(WEBRTC_POSIX)
682 if ((ff & DE_CLOSE) != 0)
683 state_ = CS_CLOSED;
684 #endif
685 }
686
687 #if defined(WEBRTC_WIN)
688
OnEvent(uint32_t ff,int err)689 void SocketDispatcher::OnEvent(uint32_t ff, int err) {
690 int cache_id = id_;
691 // Make sure we deliver connect/accept first. Otherwise, consumers may see
692 // something like a READ followed by a CONNECT, which would be odd.
693 if (((ff & DE_CONNECT) != 0) && (id_ == cache_id)) {
694 if (ff != DE_CONNECT)
695 LOG(LS_VERBOSE) << "Signalled with DE_CONNECT: " << ff;
696 enabled_events_ &= ~DE_CONNECT;
697 #if !defined(NDEBUG)
698 dbg_addr_ = "Connected @ ";
699 dbg_addr_.append(GetRemoteAddress().ToString());
700 #endif
701 SignalConnectEvent(this);
702 }
703 if (((ff & DE_ACCEPT) != 0) && (id_ == cache_id)) {
704 enabled_events_ &= ~DE_ACCEPT;
705 SignalReadEvent(this);
706 }
707 if ((ff & DE_READ) != 0) {
708 enabled_events_ &= ~DE_READ;
709 SignalReadEvent(this);
710 }
711 if (((ff & DE_WRITE) != 0) && (id_ == cache_id)) {
712 enabled_events_ &= ~DE_WRITE;
713 SignalWriteEvent(this);
714 }
715 if (((ff & DE_CLOSE) != 0) && (id_ == cache_id)) {
716 signal_close_ = true;
717 signal_err_ = err;
718 }
719 }
720
721 #elif defined(WEBRTC_POSIX)
722
OnEvent(uint32_t ff,int err)723 void SocketDispatcher::OnEvent(uint32_t ff, int err) {
724 // Make sure we deliver connect/accept first. Otherwise, consumers may see
725 // something like a READ followed by a CONNECT, which would be odd.
726 if ((ff & DE_CONNECT) != 0) {
727 enabled_events_ &= ~DE_CONNECT;
728 SignalConnectEvent(this);
729 }
730 if ((ff & DE_ACCEPT) != 0) {
731 enabled_events_ &= ~DE_ACCEPT;
732 SignalReadEvent(this);
733 }
734 if ((ff & DE_READ) != 0) {
735 enabled_events_ &= ~DE_READ;
736 SignalReadEvent(this);
737 }
738 if ((ff & DE_WRITE) != 0) {
739 enabled_events_ &= ~DE_WRITE;
740 SignalWriteEvent(this);
741 }
742 if ((ff & DE_CLOSE) != 0) {
743 // The socket is now dead to us, so stop checking it.
744 enabled_events_ = 0;
745 SignalCloseEvent(this, err);
746 }
747 }
748
749 #endif // WEBRTC_POSIX
750
Close()751 int SocketDispatcher::Close() {
752 if (s_ == INVALID_SOCKET)
753 return 0;
754
755 #if defined(WEBRTC_WIN)
756 id_ = 0;
757 signal_close_ = false;
758 #endif
759 ss_->Remove(this);
760 return PhysicalSocket::Close();
761 }
762
763 #if defined(WEBRTC_POSIX)
764 class EventDispatcher : public Dispatcher {
765 public:
EventDispatcher(PhysicalSocketServer * ss)766 EventDispatcher(PhysicalSocketServer* ss) : ss_(ss), fSignaled_(false) {
767 if (pipe(afd_) < 0)
768 LOG(LERROR) << "pipe failed";
769 ss_->Add(this);
770 }
771
~EventDispatcher()772 ~EventDispatcher() override {
773 ss_->Remove(this);
774 close(afd_[0]);
775 close(afd_[1]);
776 }
777
Signal()778 virtual void Signal() {
779 CritScope cs(&crit_);
780 if (!fSignaled_) {
781 const uint8_t b[1] = {0};
782 if (VERIFY(1 == write(afd_[1], b, sizeof(b)))) {
783 fSignaled_ = true;
784 }
785 }
786 }
787
GetRequestedEvents()788 uint32_t GetRequestedEvents() override { return DE_READ; }
789
OnPreEvent(uint32_t ff)790 void OnPreEvent(uint32_t ff) override {
791 // It is not possible to perfectly emulate an auto-resetting event with
792 // pipes. This simulates it by resetting before the event is handled.
793
794 CritScope cs(&crit_);
795 if (fSignaled_) {
796 uint8_t b[4]; // Allow for reading more than 1 byte, but expect 1.
797 VERIFY(1 == read(afd_[0], b, sizeof(b)));
798 fSignaled_ = false;
799 }
800 }
801
OnEvent(uint32_t ff,int err)802 void OnEvent(uint32_t ff, int err) override { ASSERT(false); }
803
GetDescriptor()804 int GetDescriptor() override { return afd_[0]; }
805
IsDescriptorClosed()806 bool IsDescriptorClosed() override { return false; }
807
808 private:
809 PhysicalSocketServer *ss_;
810 int afd_[2];
811 bool fSignaled_;
812 CriticalSection crit_;
813 };
814
815 // These two classes use the self-pipe trick to deliver POSIX signals to our
816 // select loop. This is the only safe, reliable, cross-platform way to do
817 // non-trivial things with a POSIX signal in an event-driven program (until
818 // proper pselect() implementations become ubiquitous).
819
820 class PosixSignalHandler {
821 public:
822 // POSIX only specifies 32 signals, but in principle the system might have
823 // more and the programmer might choose to use them, so we size our array
824 // for 128.
825 static const int kNumPosixSignals = 128;
826
827 // There is just a single global instance. (Signal handlers do not get any
828 // sort of user-defined void * parameter, so they can't access anything that
829 // isn't global.)
Instance()830 static PosixSignalHandler* Instance() {
831 RTC_DEFINE_STATIC_LOCAL(PosixSignalHandler, instance, ());
832 return &instance;
833 }
834
835 // Returns true if the given signal number is set.
IsSignalSet(int signum) const836 bool IsSignalSet(int signum) const {
837 ASSERT(signum < static_cast<int>(arraysize(received_signal_)));
838 if (signum < static_cast<int>(arraysize(received_signal_))) {
839 return received_signal_[signum];
840 } else {
841 return false;
842 }
843 }
844
845 // Clears the given signal number.
ClearSignal(int signum)846 void ClearSignal(int signum) {
847 ASSERT(signum < static_cast<int>(arraysize(received_signal_)));
848 if (signum < static_cast<int>(arraysize(received_signal_))) {
849 received_signal_[signum] = false;
850 }
851 }
852
853 // Returns the file descriptor to monitor for signal events.
GetDescriptor() const854 int GetDescriptor() const {
855 return afd_[0];
856 }
857
858 // This is called directly from our real signal handler, so it must be
859 // signal-handler-safe. That means it cannot assume anything about the
860 // user-level state of the process, since the handler could be executed at any
861 // time on any thread.
OnPosixSignalReceived(int signum)862 void OnPosixSignalReceived(int signum) {
863 if (signum >= static_cast<int>(arraysize(received_signal_))) {
864 // We don't have space in our array for this.
865 return;
866 }
867 // Set a flag saying we've seen this signal.
868 received_signal_[signum] = true;
869 // Notify application code that we got a signal.
870 const uint8_t b[1] = {0};
871 if (-1 == write(afd_[1], b, sizeof(b))) {
872 // Nothing we can do here. If there's an error somehow then there's
873 // nothing we can safely do from a signal handler.
874 // No, we can't even safely log it.
875 // But, we still have to check the return value here. Otherwise,
876 // GCC 4.4.1 complains ignoring return value. Even (void) doesn't help.
877 return;
878 }
879 }
880
881 private:
PosixSignalHandler()882 PosixSignalHandler() {
883 if (pipe(afd_) < 0) {
884 LOG_ERR(LS_ERROR) << "pipe failed";
885 return;
886 }
887 if (fcntl(afd_[0], F_SETFL, O_NONBLOCK) < 0) {
888 LOG_ERR(LS_WARNING) << "fcntl #1 failed";
889 }
890 if (fcntl(afd_[1], F_SETFL, O_NONBLOCK) < 0) {
891 LOG_ERR(LS_WARNING) << "fcntl #2 failed";
892 }
893 memset(const_cast<void *>(static_cast<volatile void *>(received_signal_)),
894 0,
895 sizeof(received_signal_));
896 }
897
~PosixSignalHandler()898 ~PosixSignalHandler() {
899 int fd1 = afd_[0];
900 int fd2 = afd_[1];
901 // We clobber the stored file descriptor numbers here or else in principle
902 // a signal that happens to be delivered during application termination
903 // could erroneously write a zero byte to an unrelated file handle in
904 // OnPosixSignalReceived() if some other file happens to be opened later
905 // during shutdown and happens to be given the same file descriptor number
906 // as our pipe had. Unfortunately even with this precaution there is still a
907 // race where that could occur if said signal happens to be handled
908 // concurrently with this code and happens to have already read the value of
909 // afd_[1] from memory before we clobber it, but that's unlikely.
910 afd_[0] = -1;
911 afd_[1] = -1;
912 close(fd1);
913 close(fd2);
914 }
915
916 int afd_[2];
917 // These are boolean flags that will be set in our signal handler and read
918 // and cleared from Wait(). There is a race involved in this, but it is
919 // benign. The signal handler sets the flag before signaling the pipe, so
920 // we'll never end up blocking in select() while a flag is still true.
921 // However, if two of the same signal arrive close to each other then it's
922 // possible that the second time the handler may set the flag while it's still
923 // true, meaning that signal will be missed. But the first occurrence of it
924 // will still be handled, so this isn't a problem.
925 // Volatile is not necessary here for correctness, but this data _is_ volatile
926 // so I've marked it as such.
927 volatile uint8_t received_signal_[kNumPosixSignals];
928 };
929
930 class PosixSignalDispatcher : public Dispatcher {
931 public:
PosixSignalDispatcher(PhysicalSocketServer * owner)932 PosixSignalDispatcher(PhysicalSocketServer *owner) : owner_(owner) {
933 owner_->Add(this);
934 }
935
~PosixSignalDispatcher()936 ~PosixSignalDispatcher() override {
937 owner_->Remove(this);
938 }
939
GetRequestedEvents()940 uint32_t GetRequestedEvents() override { return DE_READ; }
941
OnPreEvent(uint32_t ff)942 void OnPreEvent(uint32_t ff) override {
943 // Events might get grouped if signals come very fast, so we read out up to
944 // 16 bytes to make sure we keep the pipe empty.
945 uint8_t b[16];
946 ssize_t ret = read(GetDescriptor(), b, sizeof(b));
947 if (ret < 0) {
948 LOG_ERR(LS_WARNING) << "Error in read()";
949 } else if (ret == 0) {
950 LOG(LS_WARNING) << "Should have read at least one byte";
951 }
952 }
953
OnEvent(uint32_t ff,int err)954 void OnEvent(uint32_t ff, int err) override {
955 for (int signum = 0; signum < PosixSignalHandler::kNumPosixSignals;
956 ++signum) {
957 if (PosixSignalHandler::Instance()->IsSignalSet(signum)) {
958 PosixSignalHandler::Instance()->ClearSignal(signum);
959 HandlerMap::iterator i = handlers_.find(signum);
960 if (i == handlers_.end()) {
961 // This can happen if a signal is delivered to our process at around
962 // the same time as we unset our handler for it. It is not an error
963 // condition, but it's unusual enough to be worth logging.
964 LOG(LS_INFO) << "Received signal with no handler: " << signum;
965 } else {
966 // Otherwise, execute our handler.
967 (*i->second)(signum);
968 }
969 }
970 }
971 }
972
GetDescriptor()973 int GetDescriptor() override {
974 return PosixSignalHandler::Instance()->GetDescriptor();
975 }
976
IsDescriptorClosed()977 bool IsDescriptorClosed() override { return false; }
978
SetHandler(int signum,void (* handler)(int))979 void SetHandler(int signum, void (*handler)(int)) {
980 handlers_[signum] = handler;
981 }
982
ClearHandler(int signum)983 void ClearHandler(int signum) {
984 handlers_.erase(signum);
985 }
986
HasHandlers()987 bool HasHandlers() {
988 return !handlers_.empty();
989 }
990
991 private:
992 typedef std::map<int, void (*)(int)> HandlerMap;
993
994 HandlerMap handlers_;
995 // Our owner.
996 PhysicalSocketServer *owner_;
997 };
998
999 class FileDispatcher: public Dispatcher, public AsyncFile {
1000 public:
FileDispatcher(int fd,PhysicalSocketServer * ss)1001 FileDispatcher(int fd, PhysicalSocketServer *ss) : ss_(ss), fd_(fd) {
1002 set_readable(true);
1003
1004 ss_->Add(this);
1005
1006 fcntl(fd_, F_SETFL, fcntl(fd_, F_GETFL, 0) | O_NONBLOCK);
1007 }
1008
~FileDispatcher()1009 ~FileDispatcher() override {
1010 ss_->Remove(this);
1011 }
1012
socketserver()1013 SocketServer* socketserver() { return ss_; }
1014
GetDescriptor()1015 int GetDescriptor() override { return fd_; }
1016
IsDescriptorClosed()1017 bool IsDescriptorClosed() override { return false; }
1018
GetRequestedEvents()1019 uint32_t GetRequestedEvents() override { return flags_; }
1020
OnPreEvent(uint32_t ff)1021 void OnPreEvent(uint32_t ff) override {}
1022
OnEvent(uint32_t ff,int err)1023 void OnEvent(uint32_t ff, int err) override {
1024 if ((ff & DE_READ) != 0)
1025 SignalReadEvent(this);
1026 if ((ff & DE_WRITE) != 0)
1027 SignalWriteEvent(this);
1028 if ((ff & DE_CLOSE) != 0)
1029 SignalCloseEvent(this, err);
1030 }
1031
readable()1032 bool readable() override { return (flags_ & DE_READ) != 0; }
1033
set_readable(bool value)1034 void set_readable(bool value) override {
1035 flags_ = value ? (flags_ | DE_READ) : (flags_ & ~DE_READ);
1036 }
1037
writable()1038 bool writable() override { return (flags_ & DE_WRITE) != 0; }
1039
set_writable(bool value)1040 void set_writable(bool value) override {
1041 flags_ = value ? (flags_ | DE_WRITE) : (flags_ & ~DE_WRITE);
1042 }
1043
1044 private:
1045 PhysicalSocketServer* ss_;
1046 int fd_;
1047 int flags_;
1048 };
1049
CreateFile(int fd)1050 AsyncFile* PhysicalSocketServer::CreateFile(int fd) {
1051 return new FileDispatcher(fd, this);
1052 }
1053
1054 #endif // WEBRTC_POSIX
1055
1056 #if defined(WEBRTC_WIN)
FlagsToEvents(uint32_t events)1057 static uint32_t FlagsToEvents(uint32_t events) {
1058 uint32_t ffFD = FD_CLOSE;
1059 if (events & DE_READ)
1060 ffFD |= FD_READ;
1061 if (events & DE_WRITE)
1062 ffFD |= FD_WRITE;
1063 if (events & DE_CONNECT)
1064 ffFD |= FD_CONNECT;
1065 if (events & DE_ACCEPT)
1066 ffFD |= FD_ACCEPT;
1067 return ffFD;
1068 }
1069
1070 class EventDispatcher : public Dispatcher {
1071 public:
EventDispatcher(PhysicalSocketServer * ss)1072 EventDispatcher(PhysicalSocketServer *ss) : ss_(ss) {
1073 hev_ = WSACreateEvent();
1074 if (hev_) {
1075 ss_->Add(this);
1076 }
1077 }
1078
~EventDispatcher()1079 ~EventDispatcher() {
1080 if (hev_ != NULL) {
1081 ss_->Remove(this);
1082 WSACloseEvent(hev_);
1083 hev_ = NULL;
1084 }
1085 }
1086
Signal()1087 virtual void Signal() {
1088 if (hev_ != NULL)
1089 WSASetEvent(hev_);
1090 }
1091
GetRequestedEvents()1092 virtual uint32_t GetRequestedEvents() { return 0; }
1093
OnPreEvent(uint32_t ff)1094 virtual void OnPreEvent(uint32_t ff) { WSAResetEvent(hev_); }
1095
OnEvent(uint32_t ff,int err)1096 virtual void OnEvent(uint32_t ff, int err) {}
1097
GetWSAEvent()1098 virtual WSAEVENT GetWSAEvent() {
1099 return hev_;
1100 }
1101
GetSocket()1102 virtual SOCKET GetSocket() {
1103 return INVALID_SOCKET;
1104 }
1105
CheckSignalClose()1106 virtual bool CheckSignalClose() { return false; }
1107
1108 private:
1109 PhysicalSocketServer* ss_;
1110 WSAEVENT hev_;
1111 };
1112 #endif // WEBRTC_WIN
1113
1114 // Sets the value of a boolean value to false when signaled.
1115 class Signaler : public EventDispatcher {
1116 public:
Signaler(PhysicalSocketServer * ss,bool * pf)1117 Signaler(PhysicalSocketServer* ss, bool* pf)
1118 : EventDispatcher(ss), pf_(pf) {
1119 }
~Signaler()1120 ~Signaler() override { }
1121
OnEvent(uint32_t ff,int err)1122 void OnEvent(uint32_t ff, int err) override {
1123 if (pf_)
1124 *pf_ = false;
1125 }
1126
1127 private:
1128 bool *pf_;
1129 };
1130
PhysicalSocketServer()1131 PhysicalSocketServer::PhysicalSocketServer()
1132 : fWait_(false) {
1133 signal_wakeup_ = new Signaler(this, &fWait_);
1134 #if defined(WEBRTC_WIN)
1135 socket_ev_ = WSACreateEvent();
1136 #endif
1137 }
1138
~PhysicalSocketServer()1139 PhysicalSocketServer::~PhysicalSocketServer() {
1140 #if defined(WEBRTC_WIN)
1141 WSACloseEvent(socket_ev_);
1142 #endif
1143 #if defined(WEBRTC_POSIX)
1144 signal_dispatcher_.reset();
1145 #endif
1146 delete signal_wakeup_;
1147 ASSERT(dispatchers_.empty());
1148 }
1149
WakeUp()1150 void PhysicalSocketServer::WakeUp() {
1151 signal_wakeup_->Signal();
1152 }
1153
CreateSocket(int type)1154 Socket* PhysicalSocketServer::CreateSocket(int type) {
1155 return CreateSocket(AF_INET, type);
1156 }
1157
CreateSocket(int family,int type)1158 Socket* PhysicalSocketServer::CreateSocket(int family, int type) {
1159 PhysicalSocket* socket = new PhysicalSocket(this);
1160 if (socket->Create(family, type)) {
1161 return socket;
1162 } else {
1163 delete socket;
1164 return nullptr;
1165 }
1166 }
1167
CreateAsyncSocket(int type)1168 AsyncSocket* PhysicalSocketServer::CreateAsyncSocket(int type) {
1169 return CreateAsyncSocket(AF_INET, type);
1170 }
1171
CreateAsyncSocket(int family,int type)1172 AsyncSocket* PhysicalSocketServer::CreateAsyncSocket(int family, int type) {
1173 SocketDispatcher* dispatcher = new SocketDispatcher(this);
1174 if (dispatcher->Create(family, type)) {
1175 return dispatcher;
1176 } else {
1177 delete dispatcher;
1178 return nullptr;
1179 }
1180 }
1181
WrapSocket(SOCKET s)1182 AsyncSocket* PhysicalSocketServer::WrapSocket(SOCKET s) {
1183 SocketDispatcher* dispatcher = new SocketDispatcher(s, this);
1184 if (dispatcher->Initialize()) {
1185 return dispatcher;
1186 } else {
1187 delete dispatcher;
1188 return nullptr;
1189 }
1190 }
1191
Add(Dispatcher * pdispatcher)1192 void PhysicalSocketServer::Add(Dispatcher *pdispatcher) {
1193 CritScope cs(&crit_);
1194 // Prevent duplicates. This can cause dead dispatchers to stick around.
1195 DispatcherList::iterator pos = std::find(dispatchers_.begin(),
1196 dispatchers_.end(),
1197 pdispatcher);
1198 if (pos != dispatchers_.end())
1199 return;
1200 dispatchers_.push_back(pdispatcher);
1201 }
1202
Remove(Dispatcher * pdispatcher)1203 void PhysicalSocketServer::Remove(Dispatcher *pdispatcher) {
1204 CritScope cs(&crit_);
1205 DispatcherList::iterator pos = std::find(dispatchers_.begin(),
1206 dispatchers_.end(),
1207 pdispatcher);
1208 // We silently ignore duplicate calls to Add, so we should silently ignore
1209 // the (expected) symmetric calls to Remove. Note that this may still hide
1210 // a real issue, so we at least log a warning about it.
1211 if (pos == dispatchers_.end()) {
1212 LOG(LS_WARNING) << "PhysicalSocketServer asked to remove a unknown "
1213 << "dispatcher, potentially from a duplicate call to Add.";
1214 return;
1215 }
1216 size_t index = pos - dispatchers_.begin();
1217 dispatchers_.erase(pos);
1218 for (IteratorList::iterator it = iterators_.begin(); it != iterators_.end();
1219 ++it) {
1220 if (index < **it) {
1221 --**it;
1222 }
1223 }
1224 }
1225
1226 #if defined(WEBRTC_POSIX)
Wait(int cmsWait,bool process_io)1227 bool PhysicalSocketServer::Wait(int cmsWait, bool process_io) {
1228 // Calculate timing information
1229
1230 struct timeval *ptvWait = NULL;
1231 struct timeval tvWait;
1232 struct timeval tvStop;
1233 if (cmsWait != kForever) {
1234 // Calculate wait timeval
1235 tvWait.tv_sec = cmsWait / 1000;
1236 tvWait.tv_usec = (cmsWait % 1000) * 1000;
1237 ptvWait = &tvWait;
1238
1239 // Calculate when to return in a timeval
1240 gettimeofday(&tvStop, NULL);
1241 tvStop.tv_sec += tvWait.tv_sec;
1242 tvStop.tv_usec += tvWait.tv_usec;
1243 if (tvStop.tv_usec >= 1000000) {
1244 tvStop.tv_usec -= 1000000;
1245 tvStop.tv_sec += 1;
1246 }
1247 }
1248
1249 // Zero all fd_sets. Don't need to do this inside the loop since
1250 // select() zeros the descriptors not signaled
1251
1252 fd_set fdsRead;
1253 FD_ZERO(&fdsRead);
1254 fd_set fdsWrite;
1255 FD_ZERO(&fdsWrite);
1256 // Explicitly unpoison these FDs on MemorySanitizer which doesn't handle the
1257 // inline assembly in FD_ZERO.
1258 // http://crbug.com/344505
1259 #ifdef MEMORY_SANITIZER
1260 __msan_unpoison(&fdsRead, sizeof(fdsRead));
1261 __msan_unpoison(&fdsWrite, sizeof(fdsWrite));
1262 #endif
1263
1264 fWait_ = true;
1265
1266 while (fWait_) {
1267 int fdmax = -1;
1268 {
1269 CritScope cr(&crit_);
1270 for (size_t i = 0; i < dispatchers_.size(); ++i) {
1271 // Query dispatchers for read and write wait state
1272 Dispatcher *pdispatcher = dispatchers_[i];
1273 ASSERT(pdispatcher);
1274 if (!process_io && (pdispatcher != signal_wakeup_))
1275 continue;
1276 int fd = pdispatcher->GetDescriptor();
1277 if (fd > fdmax)
1278 fdmax = fd;
1279
1280 uint32_t ff = pdispatcher->GetRequestedEvents();
1281 if (ff & (DE_READ | DE_ACCEPT))
1282 FD_SET(fd, &fdsRead);
1283 if (ff & (DE_WRITE | DE_CONNECT))
1284 FD_SET(fd, &fdsWrite);
1285 }
1286 }
1287
1288 // Wait then call handlers as appropriate
1289 // < 0 means error
1290 // 0 means timeout
1291 // > 0 means count of descriptors ready
1292 int n = select(fdmax + 1, &fdsRead, &fdsWrite, NULL, ptvWait);
1293
1294 // If error, return error.
1295 if (n < 0) {
1296 if (errno != EINTR) {
1297 LOG_E(LS_ERROR, EN, errno) << "select";
1298 return false;
1299 }
1300 // Else ignore the error and keep going. If this EINTR was for one of the
1301 // signals managed by this PhysicalSocketServer, the
1302 // PosixSignalDeliveryDispatcher will be in the signaled state in the next
1303 // iteration.
1304 } else if (n == 0) {
1305 // If timeout, return success
1306 return true;
1307 } else {
1308 // We have signaled descriptors
1309 CritScope cr(&crit_);
1310 for (size_t i = 0; i < dispatchers_.size(); ++i) {
1311 Dispatcher *pdispatcher = dispatchers_[i];
1312 int fd = pdispatcher->GetDescriptor();
1313 uint32_t ff = 0;
1314 int errcode = 0;
1315
1316 // Reap any error code, which can be signaled through reads or writes.
1317 // TODO(pthatcher): Should we set errcode if getsockopt fails?
1318 if (FD_ISSET(fd, &fdsRead) || FD_ISSET(fd, &fdsWrite)) {
1319 socklen_t len = sizeof(errcode);
1320 ::getsockopt(fd, SOL_SOCKET, SO_ERROR, &errcode, &len);
1321 }
1322
1323 // Check readable descriptors. If we're waiting on an accept, signal
1324 // that. Otherwise we're waiting for data, check to see if we're
1325 // readable or really closed.
1326 // TODO(pthatcher): Only peek at TCP descriptors.
1327 if (FD_ISSET(fd, &fdsRead)) {
1328 FD_CLR(fd, &fdsRead);
1329 if (pdispatcher->GetRequestedEvents() & DE_ACCEPT) {
1330 ff |= DE_ACCEPT;
1331 } else if (errcode || pdispatcher->IsDescriptorClosed()) {
1332 ff |= DE_CLOSE;
1333 } else {
1334 ff |= DE_READ;
1335 }
1336 }
1337
1338 // Check writable descriptors. If we're waiting on a connect, detect
1339 // success versus failure by the reaped error code.
1340 if (FD_ISSET(fd, &fdsWrite)) {
1341 FD_CLR(fd, &fdsWrite);
1342 if (pdispatcher->GetRequestedEvents() & DE_CONNECT) {
1343 if (!errcode) {
1344 ff |= DE_CONNECT;
1345 } else {
1346 ff |= DE_CLOSE;
1347 }
1348 } else {
1349 ff |= DE_WRITE;
1350 }
1351 }
1352
1353 // Tell the descriptor about the event.
1354 if (ff != 0) {
1355 pdispatcher->OnPreEvent(ff);
1356 pdispatcher->OnEvent(ff, errcode);
1357 }
1358 }
1359 }
1360
1361 // Recalc the time remaining to wait. Doing it here means it doesn't get
1362 // calced twice the first time through the loop
1363 if (ptvWait) {
1364 ptvWait->tv_sec = 0;
1365 ptvWait->tv_usec = 0;
1366 struct timeval tvT;
1367 gettimeofday(&tvT, NULL);
1368 if ((tvStop.tv_sec > tvT.tv_sec)
1369 || ((tvStop.tv_sec == tvT.tv_sec)
1370 && (tvStop.tv_usec > tvT.tv_usec))) {
1371 ptvWait->tv_sec = tvStop.tv_sec - tvT.tv_sec;
1372 ptvWait->tv_usec = tvStop.tv_usec - tvT.tv_usec;
1373 if (ptvWait->tv_usec < 0) {
1374 ASSERT(ptvWait->tv_sec > 0);
1375 ptvWait->tv_usec += 1000000;
1376 ptvWait->tv_sec -= 1;
1377 }
1378 }
1379 }
1380 }
1381
1382 return true;
1383 }
1384
GlobalSignalHandler(int signum)1385 static void GlobalSignalHandler(int signum) {
1386 PosixSignalHandler::Instance()->OnPosixSignalReceived(signum);
1387 }
1388
SetPosixSignalHandler(int signum,void (* handler)(int))1389 bool PhysicalSocketServer::SetPosixSignalHandler(int signum,
1390 void (*handler)(int)) {
1391 // If handler is SIG_IGN or SIG_DFL then clear our user-level handler,
1392 // otherwise set one.
1393 if (handler == SIG_IGN || handler == SIG_DFL) {
1394 if (!InstallSignal(signum, handler)) {
1395 return false;
1396 }
1397 if (signal_dispatcher_) {
1398 signal_dispatcher_->ClearHandler(signum);
1399 if (!signal_dispatcher_->HasHandlers()) {
1400 signal_dispatcher_.reset();
1401 }
1402 }
1403 } else {
1404 if (!signal_dispatcher_) {
1405 signal_dispatcher_.reset(new PosixSignalDispatcher(this));
1406 }
1407 signal_dispatcher_->SetHandler(signum, handler);
1408 if (!InstallSignal(signum, &GlobalSignalHandler)) {
1409 return false;
1410 }
1411 }
1412 return true;
1413 }
1414
signal_dispatcher()1415 Dispatcher* PhysicalSocketServer::signal_dispatcher() {
1416 return signal_dispatcher_.get();
1417 }
1418
InstallSignal(int signum,void (* handler)(int))1419 bool PhysicalSocketServer::InstallSignal(int signum, void (*handler)(int)) {
1420 struct sigaction act;
1421 // It doesn't really matter what we set this mask to.
1422 if (sigemptyset(&act.sa_mask) != 0) {
1423 LOG_ERR(LS_ERROR) << "Couldn't set mask";
1424 return false;
1425 }
1426 act.sa_handler = handler;
1427 #if !defined(__native_client__)
1428 // Use SA_RESTART so that our syscalls don't get EINTR, since we don't need it
1429 // and it's a nuisance. Though some syscalls still return EINTR and there's no
1430 // real standard for which ones. :(
1431 act.sa_flags = SA_RESTART;
1432 #else
1433 act.sa_flags = 0;
1434 #endif
1435 if (sigaction(signum, &act, NULL) != 0) {
1436 LOG_ERR(LS_ERROR) << "Couldn't set sigaction";
1437 return false;
1438 }
1439 return true;
1440 }
1441 #endif // WEBRTC_POSIX
1442
1443 #if defined(WEBRTC_WIN)
Wait(int cmsWait,bool process_io)1444 bool PhysicalSocketServer::Wait(int cmsWait, bool process_io) {
1445 int cmsTotal = cmsWait;
1446 int cmsElapsed = 0;
1447 uint32_t msStart = Time();
1448
1449 fWait_ = true;
1450 while (fWait_) {
1451 std::vector<WSAEVENT> events;
1452 std::vector<Dispatcher *> event_owners;
1453
1454 events.push_back(socket_ev_);
1455
1456 {
1457 CritScope cr(&crit_);
1458 size_t i = 0;
1459 iterators_.push_back(&i);
1460 // Don't track dispatchers_.size(), because we want to pick up any new
1461 // dispatchers that were added while processing the loop.
1462 while (i < dispatchers_.size()) {
1463 Dispatcher* disp = dispatchers_[i++];
1464 if (!process_io && (disp != signal_wakeup_))
1465 continue;
1466 SOCKET s = disp->GetSocket();
1467 if (disp->CheckSignalClose()) {
1468 // We just signalled close, don't poll this socket
1469 } else if (s != INVALID_SOCKET) {
1470 WSAEventSelect(s,
1471 events[0],
1472 FlagsToEvents(disp->GetRequestedEvents()));
1473 } else {
1474 events.push_back(disp->GetWSAEvent());
1475 event_owners.push_back(disp);
1476 }
1477 }
1478 ASSERT(iterators_.back() == &i);
1479 iterators_.pop_back();
1480 }
1481
1482 // Which is shorter, the delay wait or the asked wait?
1483
1484 int cmsNext;
1485 if (cmsWait == kForever) {
1486 cmsNext = cmsWait;
1487 } else {
1488 cmsNext = std::max(0, cmsTotal - cmsElapsed);
1489 }
1490
1491 // Wait for one of the events to signal
1492 DWORD dw = WSAWaitForMultipleEvents(static_cast<DWORD>(events.size()),
1493 &events[0],
1494 false,
1495 cmsNext,
1496 false);
1497
1498 if (dw == WSA_WAIT_FAILED) {
1499 // Failed?
1500 // TODO(pthatcher): need a better strategy than this!
1501 WSAGetLastError();
1502 ASSERT(false);
1503 return false;
1504 } else if (dw == WSA_WAIT_TIMEOUT) {
1505 // Timeout?
1506 return true;
1507 } else {
1508 // Figure out which one it is and call it
1509 CritScope cr(&crit_);
1510 int index = dw - WSA_WAIT_EVENT_0;
1511 if (index > 0) {
1512 --index; // The first event is the socket event
1513 event_owners[index]->OnPreEvent(0);
1514 event_owners[index]->OnEvent(0, 0);
1515 } else if (process_io) {
1516 size_t i = 0, end = dispatchers_.size();
1517 iterators_.push_back(&i);
1518 iterators_.push_back(&end); // Don't iterate over new dispatchers.
1519 while (i < end) {
1520 Dispatcher* disp = dispatchers_[i++];
1521 SOCKET s = disp->GetSocket();
1522 if (s == INVALID_SOCKET)
1523 continue;
1524
1525 WSANETWORKEVENTS wsaEvents;
1526 int err = WSAEnumNetworkEvents(s, events[0], &wsaEvents);
1527 if (err == 0) {
1528
1529 #if LOGGING
1530 {
1531 if ((wsaEvents.lNetworkEvents & FD_READ) &&
1532 wsaEvents.iErrorCode[FD_READ_BIT] != 0) {
1533 LOG(WARNING) << "PhysicalSocketServer got FD_READ_BIT error "
1534 << wsaEvents.iErrorCode[FD_READ_BIT];
1535 }
1536 if ((wsaEvents.lNetworkEvents & FD_WRITE) &&
1537 wsaEvents.iErrorCode[FD_WRITE_BIT] != 0) {
1538 LOG(WARNING) << "PhysicalSocketServer got FD_WRITE_BIT error "
1539 << wsaEvents.iErrorCode[FD_WRITE_BIT];
1540 }
1541 if ((wsaEvents.lNetworkEvents & FD_CONNECT) &&
1542 wsaEvents.iErrorCode[FD_CONNECT_BIT] != 0) {
1543 LOG(WARNING) << "PhysicalSocketServer got FD_CONNECT_BIT error "
1544 << wsaEvents.iErrorCode[FD_CONNECT_BIT];
1545 }
1546 if ((wsaEvents.lNetworkEvents & FD_ACCEPT) &&
1547 wsaEvents.iErrorCode[FD_ACCEPT_BIT] != 0) {
1548 LOG(WARNING) << "PhysicalSocketServer got FD_ACCEPT_BIT error "
1549 << wsaEvents.iErrorCode[FD_ACCEPT_BIT];
1550 }
1551 if ((wsaEvents.lNetworkEvents & FD_CLOSE) &&
1552 wsaEvents.iErrorCode[FD_CLOSE_BIT] != 0) {
1553 LOG(WARNING) << "PhysicalSocketServer got FD_CLOSE_BIT error "
1554 << wsaEvents.iErrorCode[FD_CLOSE_BIT];
1555 }
1556 }
1557 #endif
1558 uint32_t ff = 0;
1559 int errcode = 0;
1560 if (wsaEvents.lNetworkEvents & FD_READ)
1561 ff |= DE_READ;
1562 if (wsaEvents.lNetworkEvents & FD_WRITE)
1563 ff |= DE_WRITE;
1564 if (wsaEvents.lNetworkEvents & FD_CONNECT) {
1565 if (wsaEvents.iErrorCode[FD_CONNECT_BIT] == 0) {
1566 ff |= DE_CONNECT;
1567 } else {
1568 ff |= DE_CLOSE;
1569 errcode = wsaEvents.iErrorCode[FD_CONNECT_BIT];
1570 }
1571 }
1572 if (wsaEvents.lNetworkEvents & FD_ACCEPT)
1573 ff |= DE_ACCEPT;
1574 if (wsaEvents.lNetworkEvents & FD_CLOSE) {
1575 ff |= DE_CLOSE;
1576 errcode = wsaEvents.iErrorCode[FD_CLOSE_BIT];
1577 }
1578 if (ff != 0) {
1579 disp->OnPreEvent(ff);
1580 disp->OnEvent(ff, errcode);
1581 }
1582 }
1583 }
1584 ASSERT(iterators_.back() == &end);
1585 iterators_.pop_back();
1586 ASSERT(iterators_.back() == &i);
1587 iterators_.pop_back();
1588 }
1589
1590 // Reset the network event until new activity occurs
1591 WSAResetEvent(socket_ev_);
1592 }
1593
1594 // Break?
1595 if (!fWait_)
1596 break;
1597 cmsElapsed = TimeSince(msStart);
1598 if ((cmsWait != kForever) && (cmsElapsed >= cmsWait)) {
1599 break;
1600 }
1601 }
1602
1603 // Done
1604 return true;
1605 }
1606 #endif // WEBRTC_WIN
1607
1608 } // namespace rtc
1609