1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "crypto/rsa_private_key.h"
6
7 #include <stddef.h>
8 #include <stdint.h>
9
10 #include <algorithm>
11
12 #include "base/logging.h"
13 #include "base/memory/scoped_ptr.h"
14 #include "base/strings/string_util.h"
15
16 // This file manually encodes and decodes RSA private keys using PrivateKeyInfo
17 // from PKCS #8 and RSAPrivateKey from PKCS #1. These structures are:
18 //
19 // PrivateKeyInfo ::= SEQUENCE {
20 // version Version,
21 // privateKeyAlgorithm PrivateKeyAlgorithmIdentifier,
22 // privateKey PrivateKey,
23 // attributes [0] IMPLICIT Attributes OPTIONAL
24 // }
25 //
26 // RSAPrivateKey ::= SEQUENCE {
27 // version Version,
28 // modulus INTEGER,
29 // publicExponent INTEGER,
30 // privateExponent INTEGER,
31 // prime1 INTEGER,
32 // prime2 INTEGER,
33 // exponent1 INTEGER,
34 // exponent2 INTEGER,
35 // coefficient INTEGER
36 // }
37
38 namespace {
39 // Helper for error handling during key import.
40 #define READ_ASSERT(truth) \
41 if (!(truth)) { \
42 NOTREACHED(); \
43 return false; \
44 }
45 } // namespace
46
47 namespace crypto {
48
49 const uint8_t PrivateKeyInfoCodec::kRsaAlgorithmIdentifier[] = {
50 0x30, 0x0D, 0x06, 0x09, 0x2A, 0x86, 0x48, 0x86,
51 0xF7, 0x0D, 0x01, 0x01, 0x01, 0x05, 0x00};
52
PrivateKeyInfoCodec(bool big_endian)53 PrivateKeyInfoCodec::PrivateKeyInfoCodec(bool big_endian)
54 : big_endian_(big_endian) {}
55
~PrivateKeyInfoCodec()56 PrivateKeyInfoCodec::~PrivateKeyInfoCodec() {}
57
Export(std::vector<uint8_t> * output)58 bool PrivateKeyInfoCodec::Export(std::vector<uint8_t>* output) {
59 std::list<uint8_t> content;
60
61 // Version (always zero)
62 uint8_t version = 0;
63
64 PrependInteger(coefficient_, &content);
65 PrependInteger(exponent2_, &content);
66 PrependInteger(exponent1_, &content);
67 PrependInteger(prime2_, &content);
68 PrependInteger(prime1_, &content);
69 PrependInteger(private_exponent_, &content);
70 PrependInteger(public_exponent_, &content);
71 PrependInteger(modulus_, &content);
72 PrependInteger(&version, 1, &content);
73 PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content);
74 PrependTypeHeaderAndLength(kOctetStringTag, content.size(), &content);
75
76 // RSA algorithm OID
77 for (size_t i = sizeof(kRsaAlgorithmIdentifier); i > 0; --i)
78 content.push_front(kRsaAlgorithmIdentifier[i - 1]);
79
80 PrependInteger(&version, 1, &content);
81 PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content);
82
83 // Copy everying into the output.
84 output->reserve(content.size());
85 output->assign(content.begin(), content.end());
86
87 return true;
88 }
89
ExportPublicKeyInfo(std::vector<uint8_t> * output)90 bool PrivateKeyInfoCodec::ExportPublicKeyInfo(std::vector<uint8_t>* output) {
91 // Create a sequence with the modulus (n) and public exponent (e).
92 std::vector<uint8_t> bit_string;
93 if (!ExportPublicKey(&bit_string))
94 return false;
95
96 // Add the sequence as the contents of a bit string.
97 std::list<uint8_t> content;
98 PrependBitString(&bit_string[0], static_cast<int>(bit_string.size()),
99 &content);
100
101 // Add the RSA algorithm OID.
102 for (size_t i = sizeof(kRsaAlgorithmIdentifier); i > 0; --i)
103 content.push_front(kRsaAlgorithmIdentifier[i - 1]);
104
105 // Finally, wrap everything in a sequence.
106 PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content);
107
108 // Copy everything into the output.
109 output->reserve(content.size());
110 output->assign(content.begin(), content.end());
111
112 return true;
113 }
114
ExportPublicKey(std::vector<uint8_t> * output)115 bool PrivateKeyInfoCodec::ExportPublicKey(std::vector<uint8_t>* output) {
116 // Create a sequence with the modulus (n) and public exponent (e).
117 std::list<uint8_t> content;
118 PrependInteger(&public_exponent_[0],
119 static_cast<int>(public_exponent_.size()),
120 &content);
121 PrependInteger(&modulus_[0], static_cast<int>(modulus_.size()), &content);
122 PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content);
123
124 // Copy everything into the output.
125 output->reserve(content.size());
126 output->assign(content.begin(), content.end());
127
128 return true;
129 }
130
Import(const std::vector<uint8_t> & input)131 bool PrivateKeyInfoCodec::Import(const std::vector<uint8_t>& input) {
132 if (input.empty()) {
133 return false;
134 }
135
136 // Parse the private key info up to the public key values, ignoring
137 // the subsequent private key values.
138 uint8_t* src = const_cast<uint8_t*>(&input.front());
139 uint8_t* end = src + input.size();
140 if (!ReadSequence(&src, end) ||
141 !ReadVersion(&src, end) ||
142 !ReadAlgorithmIdentifier(&src, end) ||
143 !ReadTypeHeaderAndLength(&src, end, kOctetStringTag, NULL) ||
144 !ReadSequence(&src, end) ||
145 !ReadVersion(&src, end) ||
146 !ReadInteger(&src, end, &modulus_))
147 return false;
148
149 int mod_size = modulus_.size();
150 READ_ASSERT(mod_size % 2 == 0);
151 int primes_size = mod_size / 2;
152
153 if (!ReadIntegerWithExpectedSize(&src, end, 4, &public_exponent_) ||
154 !ReadIntegerWithExpectedSize(&src, end, mod_size, &private_exponent_) ||
155 !ReadIntegerWithExpectedSize(&src, end, primes_size, &prime1_) ||
156 !ReadIntegerWithExpectedSize(&src, end, primes_size, &prime2_) ||
157 !ReadIntegerWithExpectedSize(&src, end, primes_size, &exponent1_) ||
158 !ReadIntegerWithExpectedSize(&src, end, primes_size, &exponent2_) ||
159 !ReadIntegerWithExpectedSize(&src, end, primes_size, &coefficient_))
160 return false;
161
162 READ_ASSERT(src == end);
163
164
165 return true;
166 }
167
PrependInteger(const std::vector<uint8_t> & in,std::list<uint8_t> * out)168 void PrivateKeyInfoCodec::PrependInteger(const std::vector<uint8_t>& in,
169 std::list<uint8_t>* out) {
170 uint8_t* ptr = const_cast<uint8_t*>(&in.front());
171 PrependIntegerImpl(ptr, in.size(), out, big_endian_);
172 }
173
174 // Helper to prepend an ASN.1 integer.
PrependInteger(uint8_t * val,int num_bytes,std::list<uint8_t> * data)175 void PrivateKeyInfoCodec::PrependInteger(uint8_t* val,
176 int num_bytes,
177 std::list<uint8_t>* data) {
178 PrependIntegerImpl(val, num_bytes, data, big_endian_);
179 }
180
PrependIntegerImpl(uint8_t * val,int num_bytes,std::list<uint8_t> * data,bool big_endian)181 void PrivateKeyInfoCodec::PrependIntegerImpl(uint8_t* val,
182 int num_bytes,
183 std::list<uint8_t>* data,
184 bool big_endian) {
185 // Reverse input if little-endian.
186 std::vector<uint8_t> tmp;
187 if (!big_endian) {
188 tmp.assign(val, val + num_bytes);
189 std::reverse(tmp.begin(), tmp.end());
190 val = &tmp.front();
191 }
192
193 // ASN.1 integers are unpadded byte arrays, so skip any null padding bytes
194 // from the most-significant end of the integer.
195 int start = 0;
196 while (start < (num_bytes - 1) && val[start] == 0x00) {
197 start++;
198 num_bytes--;
199 }
200 PrependBytes(val, start, num_bytes, data);
201
202 // ASN.1 integers are signed. To encode a positive integer whose sign bit
203 // (the most significant bit) would otherwise be set and make the number
204 // negative, ASN.1 requires a leading null byte to force the integer to be
205 // positive.
206 uint8_t front = data->front();
207 if ((front & 0x80) != 0) {
208 data->push_front(0x00);
209 num_bytes++;
210 }
211
212 PrependTypeHeaderAndLength(kIntegerTag, num_bytes, data);
213 }
214
ReadInteger(uint8_t ** pos,uint8_t * end,std::vector<uint8_t> * out)215 bool PrivateKeyInfoCodec::ReadInteger(uint8_t** pos,
216 uint8_t* end,
217 std::vector<uint8_t>* out) {
218 return ReadIntegerImpl(pos, end, out, big_endian_);
219 }
220
ReadIntegerWithExpectedSize(uint8_t ** pos,uint8_t * end,size_t expected_size,std::vector<uint8_t> * out)221 bool PrivateKeyInfoCodec::ReadIntegerWithExpectedSize(
222 uint8_t** pos,
223 uint8_t* end,
224 size_t expected_size,
225 std::vector<uint8_t>* out) {
226 std::vector<uint8_t> temp;
227 if (!ReadIntegerImpl(pos, end, &temp, true)) // Big-Endian
228 return false;
229
230 int pad = expected_size - temp.size();
231 int index = 0;
232 if (out->size() == expected_size + 1) {
233 READ_ASSERT(out->front() == 0x00);
234 pad++;
235 index++;
236 } else {
237 READ_ASSERT(out->size() <= expected_size);
238 }
239
240 out->insert(out->end(), pad, 0x00);
241 out->insert(out->end(), temp.begin(), temp.end());
242
243 // Reverse output if little-endian.
244 if (!big_endian_)
245 std::reverse(out->begin(), out->end());
246 return true;
247 }
248
ReadIntegerImpl(uint8_t ** pos,uint8_t * end,std::vector<uint8_t> * out,bool big_endian)249 bool PrivateKeyInfoCodec::ReadIntegerImpl(uint8_t** pos,
250 uint8_t* end,
251 std::vector<uint8_t>* out,
252 bool big_endian) {
253 uint32_t length = 0;
254 if (!ReadTypeHeaderAndLength(pos, end, kIntegerTag, &length) || !length)
255 return false;
256
257 // The first byte can be zero to force positiveness. We can ignore this.
258 if (**pos == 0x00) {
259 ++(*pos);
260 --length;
261 }
262
263 if (length)
264 out->insert(out->end(), *pos, (*pos) + length);
265
266 (*pos) += length;
267
268 // Reverse output if little-endian.
269 if (!big_endian)
270 std::reverse(out->begin(), out->end());
271 return true;
272 }
273
PrependBytes(uint8_t * val,int start,int num_bytes,std::list<uint8_t> * data)274 void PrivateKeyInfoCodec::PrependBytes(uint8_t* val,
275 int start,
276 int num_bytes,
277 std::list<uint8_t>* data) {
278 while (num_bytes > 0) {
279 --num_bytes;
280 data->push_front(val[start + num_bytes]);
281 }
282 }
283
PrependLength(size_t size,std::list<uint8_t> * data)284 void PrivateKeyInfoCodec::PrependLength(size_t size, std::list<uint8_t>* data) {
285 // The high bit is used to indicate whether additional octets are needed to
286 // represent the length.
287 if (size < 0x80) {
288 data->push_front(static_cast<uint8_t>(size));
289 } else {
290 uint8_t num_bytes = 0;
291 while (size > 0) {
292 data->push_front(static_cast<uint8_t>(size & 0xFF));
293 size >>= 8;
294 num_bytes++;
295 }
296 CHECK_LE(num_bytes, 4);
297 data->push_front(0x80 | num_bytes);
298 }
299 }
300
PrependTypeHeaderAndLength(uint8_t type,uint32_t length,std::list<uint8_t> * output)301 void PrivateKeyInfoCodec::PrependTypeHeaderAndLength(
302 uint8_t type,
303 uint32_t length,
304 std::list<uint8_t>* output) {
305 PrependLength(length, output);
306 output->push_front(type);
307 }
308
PrependBitString(uint8_t * val,int num_bytes,std::list<uint8_t> * output)309 void PrivateKeyInfoCodec::PrependBitString(uint8_t* val,
310 int num_bytes,
311 std::list<uint8_t>* output) {
312 // Start with the data.
313 PrependBytes(val, 0, num_bytes, output);
314 // Zero unused bits.
315 output->push_front(0);
316 // Add the length.
317 PrependLength(num_bytes + 1, output);
318 // Finally, add the bit string tag.
319 output->push_front((uint8_t)kBitStringTag);
320 }
321
ReadLength(uint8_t ** pos,uint8_t * end,uint32_t * result)322 bool PrivateKeyInfoCodec::ReadLength(uint8_t** pos,
323 uint8_t* end,
324 uint32_t* result) {
325 READ_ASSERT(*pos < end);
326 int length = 0;
327
328 // If the MSB is not set, the length is just the byte itself.
329 if (!(**pos & 0x80)) {
330 length = **pos;
331 (*pos)++;
332 } else {
333 // Otherwise, the lower 7 indicate the length of the length.
334 int length_of_length = **pos & 0x7F;
335 READ_ASSERT(length_of_length <= 4);
336 (*pos)++;
337 READ_ASSERT(*pos + length_of_length < end);
338
339 length = 0;
340 for (int i = 0; i < length_of_length; ++i) {
341 length <<= 8;
342 length |= **pos;
343 (*pos)++;
344 }
345 }
346
347 READ_ASSERT(*pos + length <= end);
348 if (result) *result = length;
349 return true;
350 }
351
ReadTypeHeaderAndLength(uint8_t ** pos,uint8_t * end,uint8_t expected_tag,uint32_t * length)352 bool PrivateKeyInfoCodec::ReadTypeHeaderAndLength(uint8_t** pos,
353 uint8_t* end,
354 uint8_t expected_tag,
355 uint32_t* length) {
356 READ_ASSERT(*pos < end);
357 READ_ASSERT(**pos == expected_tag);
358 (*pos)++;
359
360 return ReadLength(pos, end, length);
361 }
362
ReadSequence(uint8_t ** pos,uint8_t * end)363 bool PrivateKeyInfoCodec::ReadSequence(uint8_t** pos, uint8_t* end) {
364 return ReadTypeHeaderAndLength(pos, end, kSequenceTag, NULL);
365 }
366
ReadAlgorithmIdentifier(uint8_t ** pos,uint8_t * end)367 bool PrivateKeyInfoCodec::ReadAlgorithmIdentifier(uint8_t** pos, uint8_t* end) {
368 READ_ASSERT(*pos + sizeof(kRsaAlgorithmIdentifier) < end);
369 READ_ASSERT(memcmp(*pos, kRsaAlgorithmIdentifier,
370 sizeof(kRsaAlgorithmIdentifier)) == 0);
371 (*pos) += sizeof(kRsaAlgorithmIdentifier);
372 return true;
373 }
374
ReadVersion(uint8_t ** pos,uint8_t * end)375 bool PrivateKeyInfoCodec::ReadVersion(uint8_t** pos, uint8_t* end) {
376 uint32_t length = 0;
377 if (!ReadTypeHeaderAndLength(pos, end, kIntegerTag, &length))
378 return false;
379
380 // The version should be zero.
381 for (uint32_t i = 0; i < length; ++i) {
382 READ_ASSERT(**pos == 0x00);
383 (*pos)++;
384 }
385
386 return true;
387 }
388
389 } // namespace crypto
390