1 /*
2 * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include "webrtc/modules/pacing/paced_sender.h"
12
13 #include <map>
14 #include <queue>
15 #include <set>
16
17 #include "webrtc/base/checks.h"
18 #include "webrtc/base/logging.h"
19 #include "webrtc/modules/include/module_common_types.h"
20 #include "webrtc/modules/pacing/bitrate_prober.h"
21 #include "webrtc/system_wrappers/include/clock.h"
22 #include "webrtc/system_wrappers/include/critical_section_wrapper.h"
23 #include "webrtc/system_wrappers/include/field_trial.h"
24
25 namespace {
26 // Time limit in milliseconds between packet bursts.
27 const int64_t kMinPacketLimitMs = 5;
28
29 // Upper cap on process interval, in case process has not been called in a long
30 // time.
31 const int64_t kMaxIntervalTimeMs = 30;
32
33 } // namespace
34
35 // TODO(sprang): Move at least PacketQueue and MediaBudget out to separate
36 // files, so that we can more easily test them.
37
38 namespace webrtc {
39 namespace paced_sender {
40 struct Packet {
Packetwebrtc::paced_sender::Packet41 Packet(RtpPacketSender::Priority priority,
42 uint32_t ssrc,
43 uint16_t seq_number,
44 int64_t capture_time_ms,
45 int64_t enqueue_time_ms,
46 size_t length_in_bytes,
47 bool retransmission,
48 uint64_t enqueue_order)
49 : priority(priority),
50 ssrc(ssrc),
51 sequence_number(seq_number),
52 capture_time_ms(capture_time_ms),
53 enqueue_time_ms(enqueue_time_ms),
54 bytes(length_in_bytes),
55 retransmission(retransmission),
56 enqueue_order(enqueue_order) {}
57
58 RtpPacketSender::Priority priority;
59 uint32_t ssrc;
60 uint16_t sequence_number;
61 int64_t capture_time_ms;
62 int64_t enqueue_time_ms;
63 size_t bytes;
64 bool retransmission;
65 uint64_t enqueue_order;
66 std::list<Packet>::iterator this_it;
67 };
68
69 // Used by priority queue to sort packets.
70 struct Comparator {
operator ()webrtc::paced_sender::Comparator71 bool operator()(const Packet* first, const Packet* second) {
72 // Highest prio = 0.
73 if (first->priority != second->priority)
74 return first->priority > second->priority;
75
76 // Retransmissions go first.
77 if (second->retransmission && !first->retransmission)
78 return true;
79
80 // Older frames have higher prio.
81 if (first->capture_time_ms != second->capture_time_ms)
82 return first->capture_time_ms > second->capture_time_ms;
83
84 return first->enqueue_order > second->enqueue_order;
85 }
86 };
87
88 // Class encapsulating a priority queue with some extensions.
89 class PacketQueue {
90 public:
PacketQueue(Clock * clock)91 explicit PacketQueue(Clock* clock)
92 : bytes_(0),
93 clock_(clock),
94 queue_time_sum_(0),
95 time_last_updated_(clock_->TimeInMilliseconds()) {}
~PacketQueue()96 virtual ~PacketQueue() {}
97
Push(const Packet & packet)98 void Push(const Packet& packet) {
99 if (!AddToDupeSet(packet))
100 return;
101
102 UpdateQueueTime(packet.enqueue_time_ms);
103
104 // Store packet in list, use pointers in priority queue for cheaper moves.
105 // Packets have a handle to its own iterator in the list, for easy removal
106 // when popping from queue.
107 packet_list_.push_front(packet);
108 std::list<Packet>::iterator it = packet_list_.begin();
109 it->this_it = it; // Handle for direct removal from list.
110 prio_queue_.push(&(*it)); // Pointer into list.
111 bytes_ += packet.bytes;
112 }
113
BeginPop()114 const Packet& BeginPop() {
115 const Packet& packet = *prio_queue_.top();
116 prio_queue_.pop();
117 return packet;
118 }
119
CancelPop(const Packet & packet)120 void CancelPop(const Packet& packet) { prio_queue_.push(&(*packet.this_it)); }
121
FinalizePop(const Packet & packet)122 void FinalizePop(const Packet& packet) {
123 RemoveFromDupeSet(packet);
124 bytes_ -= packet.bytes;
125 queue_time_sum_ -= (time_last_updated_ - packet.enqueue_time_ms);
126 packet_list_.erase(packet.this_it);
127 RTC_DCHECK_EQ(packet_list_.size(), prio_queue_.size());
128 if (packet_list_.empty())
129 RTC_DCHECK_EQ(0u, queue_time_sum_);
130 }
131
Empty() const132 bool Empty() const { return prio_queue_.empty(); }
133
SizeInPackets() const134 size_t SizeInPackets() const { return prio_queue_.size(); }
135
SizeInBytes() const136 uint64_t SizeInBytes() const { return bytes_; }
137
OldestEnqueueTimeMs() const138 int64_t OldestEnqueueTimeMs() const {
139 auto it = packet_list_.rbegin();
140 if (it == packet_list_.rend())
141 return 0;
142 return it->enqueue_time_ms;
143 }
144
UpdateQueueTime(int64_t timestamp_ms)145 void UpdateQueueTime(int64_t timestamp_ms) {
146 RTC_DCHECK_GE(timestamp_ms, time_last_updated_);
147 int64_t delta = timestamp_ms - time_last_updated_;
148 // Use packet packet_list_.size() not prio_queue_.size() here, as there
149 // might be an outstanding element popped from prio_queue_ currently in the
150 // SendPacket() call, while packet_list_ will always be correct.
151 queue_time_sum_ += delta * packet_list_.size();
152 time_last_updated_ = timestamp_ms;
153 }
154
AverageQueueTimeMs() const155 int64_t AverageQueueTimeMs() const {
156 if (prio_queue_.empty())
157 return 0;
158 return queue_time_sum_ / packet_list_.size();
159 }
160
161 private:
162 // Try to add a packet to the set of ssrc/seqno identifiers currently in the
163 // queue. Return true if inserted, false if this is a duplicate.
AddToDupeSet(const Packet & packet)164 bool AddToDupeSet(const Packet& packet) {
165 SsrcSeqNoMap::iterator it = dupe_map_.find(packet.ssrc);
166 if (it == dupe_map_.end()) {
167 // First for this ssrc, just insert.
168 dupe_map_[packet.ssrc].insert(packet.sequence_number);
169 return true;
170 }
171
172 // Insert returns a pair, where second is a bool set to true if new element.
173 return it->second.insert(packet.sequence_number).second;
174 }
175
RemoveFromDupeSet(const Packet & packet)176 void RemoveFromDupeSet(const Packet& packet) {
177 SsrcSeqNoMap::iterator it = dupe_map_.find(packet.ssrc);
178 RTC_DCHECK(it != dupe_map_.end());
179 it->second.erase(packet.sequence_number);
180 if (it->second.empty()) {
181 dupe_map_.erase(it);
182 }
183 }
184
185 // List of packets, in the order the were enqueued. Since dequeueing may
186 // occur out of order, use list instead of vector.
187 std::list<Packet> packet_list_;
188 // Priority queue of the packets, sorted according to Comparator.
189 // Use pointers into list, to avoid moving whole struct within heap.
190 std::priority_queue<Packet*, std::vector<Packet*>, Comparator> prio_queue_;
191 // Total number of bytes in the queue.
192 uint64_t bytes_;
193 // Map<ssrc, set<seq_no> >, for checking duplicates.
194 typedef std::map<uint32_t, std::set<uint16_t> > SsrcSeqNoMap;
195 SsrcSeqNoMap dupe_map_;
196 Clock* const clock_;
197 int64_t queue_time_sum_;
198 int64_t time_last_updated_;
199 };
200
201 class IntervalBudget {
202 public:
IntervalBudget(int initial_target_rate_kbps)203 explicit IntervalBudget(int initial_target_rate_kbps)
204 : target_rate_kbps_(initial_target_rate_kbps),
205 bytes_remaining_(0) {}
206
set_target_rate_kbps(int target_rate_kbps)207 void set_target_rate_kbps(int target_rate_kbps) {
208 target_rate_kbps_ = target_rate_kbps;
209 bytes_remaining_ =
210 std::max(-kWindowMs * target_rate_kbps_ / 8, bytes_remaining_);
211 }
212
IncreaseBudget(int64_t delta_time_ms)213 void IncreaseBudget(int64_t delta_time_ms) {
214 int64_t bytes = target_rate_kbps_ * delta_time_ms / 8;
215 if (bytes_remaining_ < 0) {
216 // We overused last interval, compensate this interval.
217 bytes_remaining_ = bytes_remaining_ + bytes;
218 } else {
219 // If we underused last interval we can't use it this interval.
220 bytes_remaining_ = bytes;
221 }
222 }
223
UseBudget(size_t bytes)224 void UseBudget(size_t bytes) {
225 bytes_remaining_ = std::max(bytes_remaining_ - static_cast<int>(bytes),
226 -kWindowMs * target_rate_kbps_ / 8);
227 }
228
bytes_remaining() const229 size_t bytes_remaining() const {
230 return static_cast<size_t>(std::max(0, bytes_remaining_));
231 }
232
target_rate_kbps() const233 int target_rate_kbps() const { return target_rate_kbps_; }
234
235 private:
236 static const int kWindowMs = 500;
237
238 int target_rate_kbps_;
239 int bytes_remaining_;
240 };
241 } // namespace paced_sender
242
243 const int64_t PacedSender::kMaxQueueLengthMs = 2000;
244 const float PacedSender::kDefaultPaceMultiplier = 2.5f;
245
PacedSender(Clock * clock,Callback * callback,int bitrate_kbps,int max_bitrate_kbps,int min_bitrate_kbps)246 PacedSender::PacedSender(Clock* clock,
247 Callback* callback,
248 int bitrate_kbps,
249 int max_bitrate_kbps,
250 int min_bitrate_kbps)
251 : clock_(clock),
252 callback_(callback),
253 critsect_(CriticalSectionWrapper::CreateCriticalSection()),
254 paused_(false),
255 probing_enabled_(true),
256 media_budget_(new paced_sender::IntervalBudget(max_bitrate_kbps)),
257 padding_budget_(new paced_sender::IntervalBudget(min_bitrate_kbps)),
258 prober_(new BitrateProber()),
259 bitrate_bps_(1000 * bitrate_kbps),
260 max_bitrate_kbps_(max_bitrate_kbps),
261 time_last_update_us_(clock->TimeInMicroseconds()),
262 packets_(new paced_sender::PacketQueue(clock)),
263 packet_counter_(0) {
264 UpdateBytesPerInterval(kMinPacketLimitMs);
265 }
266
~PacedSender()267 PacedSender::~PacedSender() {}
268
Pause()269 void PacedSender::Pause() {
270 CriticalSectionScoped cs(critsect_.get());
271 paused_ = true;
272 }
273
Resume()274 void PacedSender::Resume() {
275 CriticalSectionScoped cs(critsect_.get());
276 paused_ = false;
277 }
278
SetProbingEnabled(bool enabled)279 void PacedSender::SetProbingEnabled(bool enabled) {
280 RTC_CHECK_EQ(0u, packet_counter_);
281 probing_enabled_ = enabled;
282 }
283
UpdateBitrate(int bitrate_kbps,int max_bitrate_kbps,int min_bitrate_kbps)284 void PacedSender::UpdateBitrate(int bitrate_kbps,
285 int max_bitrate_kbps,
286 int min_bitrate_kbps) {
287 CriticalSectionScoped cs(critsect_.get());
288 // Don't set media bitrate here as it may be boosted in order to meet max
289 // queue time constraint. Just update max_bitrate_kbps_ and let media_budget_
290 // be updated in Process().
291 padding_budget_->set_target_rate_kbps(min_bitrate_kbps);
292 bitrate_bps_ = 1000 * bitrate_kbps;
293 max_bitrate_kbps_ = max_bitrate_kbps;
294 }
295
InsertPacket(RtpPacketSender::Priority priority,uint32_t ssrc,uint16_t sequence_number,int64_t capture_time_ms,size_t bytes,bool retransmission)296 void PacedSender::InsertPacket(RtpPacketSender::Priority priority,
297 uint32_t ssrc,
298 uint16_t sequence_number,
299 int64_t capture_time_ms,
300 size_t bytes,
301 bool retransmission) {
302 CriticalSectionScoped cs(critsect_.get());
303
304 if (probing_enabled_ && !prober_->IsProbing())
305 prober_->SetEnabled(true);
306 prober_->MaybeInitializeProbe(bitrate_bps_);
307
308 int64_t now_ms = clock_->TimeInMilliseconds();
309 if (capture_time_ms < 0)
310 capture_time_ms = now_ms;
311
312 packets_->Push(paced_sender::Packet(priority, ssrc, sequence_number,
313 capture_time_ms, now_ms, bytes,
314 retransmission, packet_counter_++));
315 }
316
ExpectedQueueTimeMs() const317 int64_t PacedSender::ExpectedQueueTimeMs() const {
318 CriticalSectionScoped cs(critsect_.get());
319 RTC_DCHECK_GT(max_bitrate_kbps_, 0);
320 return static_cast<int64_t>(packets_->SizeInBytes() * 8 / max_bitrate_kbps_);
321 }
322
QueueSizePackets() const323 size_t PacedSender::QueueSizePackets() const {
324 CriticalSectionScoped cs(critsect_.get());
325 return packets_->SizeInPackets();
326 }
327
QueueInMs() const328 int64_t PacedSender::QueueInMs() const {
329 CriticalSectionScoped cs(critsect_.get());
330
331 int64_t oldest_packet = packets_->OldestEnqueueTimeMs();
332 if (oldest_packet == 0)
333 return 0;
334
335 return clock_->TimeInMilliseconds() - oldest_packet;
336 }
337
AverageQueueTimeMs()338 int64_t PacedSender::AverageQueueTimeMs() {
339 CriticalSectionScoped cs(critsect_.get());
340 packets_->UpdateQueueTime(clock_->TimeInMilliseconds());
341 return packets_->AverageQueueTimeMs();
342 }
343
TimeUntilNextProcess()344 int64_t PacedSender::TimeUntilNextProcess() {
345 CriticalSectionScoped cs(critsect_.get());
346 if (prober_->IsProbing()) {
347 int64_t ret = prober_->TimeUntilNextProbe(clock_->TimeInMilliseconds());
348 if (ret >= 0)
349 return ret;
350 }
351 int64_t elapsed_time_us = clock_->TimeInMicroseconds() - time_last_update_us_;
352 int64_t elapsed_time_ms = (elapsed_time_us + 500) / 1000;
353 return std::max<int64_t>(kMinPacketLimitMs - elapsed_time_ms, 0);
354 }
355
Process()356 int32_t PacedSender::Process() {
357 int64_t now_us = clock_->TimeInMicroseconds();
358 CriticalSectionScoped cs(critsect_.get());
359 int64_t elapsed_time_ms = (now_us - time_last_update_us_ + 500) / 1000;
360 time_last_update_us_ = now_us;
361 int target_bitrate_kbps = max_bitrate_kbps_;
362 // TODO(holmer): Remove the !paused_ check when issue 5307 has been fixed.
363 if (!paused_ && elapsed_time_ms > 0) {
364 size_t queue_size_bytes = packets_->SizeInBytes();
365 if (queue_size_bytes > 0) {
366 // Assuming equal size packets and input/output rate, the average packet
367 // has avg_time_left_ms left to get queue_size_bytes out of the queue, if
368 // time constraint shall be met. Determine bitrate needed for that.
369 packets_->UpdateQueueTime(clock_->TimeInMilliseconds());
370 int64_t avg_time_left_ms = std::max<int64_t>(
371 1, kMaxQueueLengthMs - packets_->AverageQueueTimeMs());
372 int min_bitrate_needed_kbps =
373 static_cast<int>(queue_size_bytes * 8 / avg_time_left_ms);
374 if (min_bitrate_needed_kbps > target_bitrate_kbps)
375 target_bitrate_kbps = min_bitrate_needed_kbps;
376 }
377
378 media_budget_->set_target_rate_kbps(target_bitrate_kbps);
379
380 int64_t delta_time_ms = std::min(kMaxIntervalTimeMs, elapsed_time_ms);
381 UpdateBytesPerInterval(delta_time_ms);
382 }
383 while (!packets_->Empty()) {
384 if (media_budget_->bytes_remaining() == 0 && !prober_->IsProbing())
385 return 0;
386
387 // Since we need to release the lock in order to send, we first pop the
388 // element from the priority queue but keep it in storage, so that we can
389 // reinsert it if send fails.
390 const paced_sender::Packet& packet = packets_->BeginPop();
391
392 if (SendPacket(packet)) {
393 // Send succeeded, remove it from the queue.
394 packets_->FinalizePop(packet);
395 if (prober_->IsProbing())
396 return 0;
397 } else {
398 // Send failed, put it back into the queue.
399 packets_->CancelPop(packet);
400 return 0;
401 }
402 }
403
404 // TODO(holmer): Remove the paused_ check when issue 5307 has been fixed.
405 if (paused_ || !packets_->Empty())
406 return 0;
407
408 size_t padding_needed;
409 if (prober_->IsProbing()) {
410 padding_needed = prober_->RecommendedPacketSize();
411 } else {
412 padding_needed = padding_budget_->bytes_remaining();
413 }
414
415 if (padding_needed > 0)
416 SendPadding(static_cast<size_t>(padding_needed));
417 return 0;
418 }
419
SendPacket(const paced_sender::Packet & packet)420 bool PacedSender::SendPacket(const paced_sender::Packet& packet) {
421 // TODO(holmer): Because of this bug issue 5307 we have to send audio
422 // packets even when the pacer is paused. Here we assume audio packets are
423 // always high priority and that they are the only high priority packets.
424 if (paused_ && packet.priority != kHighPriority)
425 return false;
426 critsect_->Leave();
427 const bool success = callback_->TimeToSendPacket(packet.ssrc,
428 packet.sequence_number,
429 packet.capture_time_ms,
430 packet.retransmission);
431 critsect_->Enter();
432
433 // TODO(holmer): High priority packets should only be accounted for if we are
434 // allocating bandwidth for audio.
435 if (success && packet.priority != kHighPriority) {
436 // Update media bytes sent.
437 prober_->PacketSent(clock_->TimeInMilliseconds(), packet.bytes);
438 media_budget_->UseBudget(packet.bytes);
439 padding_budget_->UseBudget(packet.bytes);
440 }
441
442 return success;
443 }
444
SendPadding(size_t padding_needed)445 void PacedSender::SendPadding(size_t padding_needed) {
446 critsect_->Leave();
447 size_t bytes_sent = callback_->TimeToSendPadding(padding_needed);
448 critsect_->Enter();
449
450 if (bytes_sent > 0) {
451 prober_->PacketSent(clock_->TimeInMilliseconds(), bytes_sent);
452 media_budget_->UseBudget(bytes_sent);
453 padding_budget_->UseBudget(bytes_sent);
454 }
455 }
456
UpdateBytesPerInterval(int64_t delta_time_ms)457 void PacedSender::UpdateBytesPerInterval(int64_t delta_time_ms) {
458 media_budget_->IncreaseBudget(delta_time_ms);
459 padding_budget_->IncreaseBudget(delta_time_ms);
460 }
461 } // namespace webrtc
462