• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- ExecutionEngine.h - Abstract Execution Engine Interface --*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the abstract interface that implements execution support
11 // for LLVM.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_EXECUTION_ENGINE_H
16 #define LLVM_EXECUTION_ENGINE_H
17 
18 #include <vector>
19 #include <map>
20 #include <string>
21 #include "llvm/MC/MCCodeGenInfo.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/ValueMap.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/Support/ValueHandle.h"
27 #include "llvm/Support/Mutex.h"
28 #include "llvm/Target/TargetMachine.h"
29 
30 namespace llvm {
31 
32 struct GenericValue;
33 class Constant;
34 class ExecutionEngine;
35 class Function;
36 class GlobalVariable;
37 class GlobalValue;
38 class JITEventListener;
39 class JITMemoryManager;
40 class MachineCodeInfo;
41 class Module;
42 class MutexGuard;
43 class TargetData;
44 class Type;
45 
46 /// \brief Helper class for helping synchronize access to the global address map
47 /// table.
48 class ExecutionEngineState {
49 public:
50   struct AddressMapConfig : public ValueMapConfig<const GlobalValue*> {
51     typedef ExecutionEngineState *ExtraData;
52     static sys::Mutex *getMutex(ExecutionEngineState *EES);
53     static void onDelete(ExecutionEngineState *EES, const GlobalValue *Old);
54     static void onRAUW(ExecutionEngineState *, const GlobalValue *,
55                        const GlobalValue *);
56   };
57 
58   typedef ValueMap<const GlobalValue *, void *, AddressMapConfig>
59       GlobalAddressMapTy;
60 
61 private:
62   ExecutionEngine &EE;
63 
64   /// GlobalAddressMap - A mapping between LLVM global values and their
65   /// actualized version...
66   GlobalAddressMapTy GlobalAddressMap;
67 
68   /// GlobalAddressReverseMap - This is the reverse mapping of GlobalAddressMap,
69   /// used to convert raw addresses into the LLVM global value that is emitted
70   /// at the address.  This map is not computed unless getGlobalValueAtAddress
71   /// is called at some point.
72   std::map<void *, AssertingVH<const GlobalValue> > GlobalAddressReverseMap;
73 
74 public:
75   ExecutionEngineState(ExecutionEngine &EE);
76 
getGlobalAddressMap(const MutexGuard &)77   GlobalAddressMapTy &getGlobalAddressMap(const MutexGuard &) {
78     return GlobalAddressMap;
79   }
80 
81   std::map<void*, AssertingVH<const GlobalValue> > &
getGlobalAddressReverseMap(const MutexGuard &)82   getGlobalAddressReverseMap(const MutexGuard &) {
83     return GlobalAddressReverseMap;
84   }
85 
86   /// \brief Erase an entry from the mapping table.
87   ///
88   /// \returns The address that \arg ToUnmap was happed to.
89   void *RemoveMapping(const MutexGuard &, const GlobalValue *ToUnmap);
90 };
91 
92 /// \brief Abstract interface for implementation execution of LLVM modules,
93 /// designed to support both interpreter and just-in-time (JIT) compiler
94 /// implementations.
95 class ExecutionEngine {
96   /// The state object holding the global address mapping, which must be
97   /// accessed synchronously.
98   //
99   // FIXME: There is no particular need the entire map needs to be
100   // synchronized.  Wouldn't a reader-writer design be better here?
101   ExecutionEngineState EEState;
102 
103   /// The target data for the platform for which execution is being performed.
104   const TargetData *TD;
105 
106   /// Whether lazy JIT compilation is enabled.
107   bool CompilingLazily;
108 
109   /// Whether JIT compilation of external global variables is allowed.
110   bool GVCompilationDisabled;
111 
112   /// Whether the JIT should perform lookups of external symbols (e.g.,
113   /// using dlsym).
114   bool SymbolSearchingDisabled;
115 
116   friend class EngineBuilder;  // To allow access to JITCtor and InterpCtor.
117 
118 protected:
119   /// The list of Modules that we are JIT'ing from.  We use a SmallVector to
120   /// optimize for the case where there is only one module.
121   SmallVector<Module*, 1> Modules;
122 
setTargetData(const TargetData * td)123   void setTargetData(const TargetData *td) { TD = td; }
124 
125   /// getMemoryforGV - Allocate memory for a global variable.
126   virtual char *getMemoryForGV(const GlobalVariable *GV);
127 
128   // To avoid having libexecutionengine depend on the JIT and interpreter
129   // libraries, the execution engine implementations set these functions to ctor
130   // pointers at startup time if they are linked in.
131   static ExecutionEngine *(*JITCtor)(
132     Module *M,
133     std::string *ErrorStr,
134     JITMemoryManager *JMM,
135     CodeGenOpt::Level OptLevel,
136     bool GVsWithCode,
137     TargetMachine *TM);
138   static ExecutionEngine *(*MCJITCtor)(
139     Module *M,
140     std::string *ErrorStr,
141     JITMemoryManager *JMM,
142     CodeGenOpt::Level OptLevel,
143     bool GVsWithCode,
144     TargetMachine *TM);
145   static ExecutionEngine *(*InterpCtor)(Module *M, std::string *ErrorStr);
146 
147   /// LazyFunctionCreator - If an unknown function is needed, this function
148   /// pointer is invoked to create it.  If this returns null, the JIT will
149   /// abort.
150   void *(*LazyFunctionCreator)(const std::string &);
151 
152   /// ExceptionTableRegister - If Exception Handling is set, the JIT will
153   /// register dwarf tables with this function.
154   typedef void (*EERegisterFn)(void*);
155   EERegisterFn ExceptionTableRegister;
156   EERegisterFn ExceptionTableDeregister;
157   /// This maps functions to their exception tables frames.
158   DenseMap<const Function*, void*> AllExceptionTables;
159 
160 
161 public:
162   /// lock - This lock protects the ExecutionEngine, JIT, JITResolver and
163   /// JITEmitter classes.  It must be held while changing the internal state of
164   /// any of those classes.
165   sys::Mutex lock;
166 
167   //===--------------------------------------------------------------------===//
168   //  ExecutionEngine Startup
169   //===--------------------------------------------------------------------===//
170 
171   virtual ~ExecutionEngine();
172 
173   /// create - This is the factory method for creating an execution engine which
174   /// is appropriate for the current machine.  This takes ownership of the
175   /// module.
176   ///
177   /// \param GVsWithCode - Allocating globals with code breaks
178   /// freeMachineCodeForFunction and is probably unsafe and bad for performance.
179   /// However, we have clients who depend on this behavior, so we must support
180   /// it.  Eventually, when we're willing to break some backwards compatibility,
181   /// this flag should be flipped to false, so that by default
182   /// freeMachineCodeForFunction works.
183   static ExecutionEngine *create(Module *M,
184                                  bool ForceInterpreter = false,
185                                  std::string *ErrorStr = 0,
186                                  CodeGenOpt::Level OptLevel =
187                                  CodeGenOpt::Default,
188                                  bool GVsWithCode = true);
189 
190   /// createJIT - This is the factory method for creating a JIT for the current
191   /// machine, it does not fall back to the interpreter.  This takes ownership
192   /// of the Module and JITMemoryManager if successful.
193   ///
194   /// Clients should make sure to initialize targets prior to calling this
195   /// function.
196   static ExecutionEngine *createJIT(Module *M,
197                                     std::string *ErrorStr = 0,
198                                     JITMemoryManager *JMM = 0,
199                                     CodeGenOpt::Level OptLevel =
200                                     CodeGenOpt::Default,
201                                     bool GVsWithCode = true,
202                                     Reloc::Model RM = Reloc::Default,
203                                     CodeModel::Model CMM =
204                                     CodeModel::JITDefault);
205 
206   /// addModule - Add a Module to the list of modules that we can JIT from.
207   /// Note that this takes ownership of the Module: when the ExecutionEngine is
208   /// destroyed, it destroys the Module as well.
addModule(Module * M)209   virtual void addModule(Module *M) {
210     Modules.push_back(M);
211   }
212 
213   //===--------------------------------------------------------------------===//
214 
getTargetData()215   const TargetData *getTargetData() const { return TD; }
216 
217   /// removeModule - Remove a Module from the list of modules.  Returns true if
218   /// M is found.
219   virtual bool removeModule(Module *M);
220 
221   /// FindFunctionNamed - Search all of the active modules to find the one that
222   /// defines FnName.  This is very slow operation and shouldn't be used for
223   /// general code.
224   Function *FindFunctionNamed(const char *FnName);
225 
226   /// runFunction - Execute the specified function with the specified arguments,
227   /// and return the result.
228   virtual GenericValue runFunction(Function *F,
229                                 const std::vector<GenericValue> &ArgValues) = 0;
230 
231   /// runStaticConstructorsDestructors - This method is used to execute all of
232   /// the static constructors or destructors for a program.
233   ///
234   /// \param isDtors - Run the destructors instead of constructors.
235   void runStaticConstructorsDestructors(bool isDtors);
236 
237   /// runStaticConstructorsDestructors - This method is used to execute all of
238   /// the static constructors or destructors for a particular module.
239   ///
240   /// \param isDtors - Run the destructors instead of constructors.
241   void runStaticConstructorsDestructors(Module *module, bool isDtors);
242 
243 
244   /// runFunctionAsMain - This is a helper function which wraps runFunction to
245   /// handle the common task of starting up main with the specified argc, argv,
246   /// and envp parameters.
247   int runFunctionAsMain(Function *Fn, const std::vector<std::string> &argv,
248                         const char * const * envp);
249 
250 
251   /// addGlobalMapping - Tell the execution engine that the specified global is
252   /// at the specified location.  This is used internally as functions are JIT'd
253   /// and as global variables are laid out in memory.  It can and should also be
254   /// used by clients of the EE that want to have an LLVM global overlay
255   /// existing data in memory.  Mappings are automatically removed when their
256   /// GlobalValue is destroyed.
257   void addGlobalMapping(const GlobalValue *GV, void *Addr);
258 
259   /// clearAllGlobalMappings - Clear all global mappings and start over again,
260   /// for use in dynamic compilation scenarios to move globals.
261   void clearAllGlobalMappings();
262 
263   /// clearGlobalMappingsFromModule - Clear all global mappings that came from a
264   /// particular module, because it has been removed from the JIT.
265   void clearGlobalMappingsFromModule(Module *M);
266 
267   /// updateGlobalMapping - Replace an existing mapping for GV with a new
268   /// address.  This updates both maps as required.  If "Addr" is null, the
269   /// entry for the global is removed from the mappings.  This returns the old
270   /// value of the pointer, or null if it was not in the map.
271   void *updateGlobalMapping(const GlobalValue *GV, void *Addr);
272 
273   /// getPointerToGlobalIfAvailable - This returns the address of the specified
274   /// global value if it is has already been codegen'd, otherwise it returns
275   /// null.
276   void *getPointerToGlobalIfAvailable(const GlobalValue *GV);
277 
278   /// getPointerToGlobal - This returns the address of the specified global
279   /// value. This may involve code generation if it's a function.
280   void *getPointerToGlobal(const GlobalValue *GV);
281 
282   /// getPointerToFunction - The different EE's represent function bodies in
283   /// different ways.  They should each implement this to say what a function
284   /// pointer should look like.  When F is destroyed, the ExecutionEngine will
285   /// remove its global mapping and free any machine code.  Be sure no threads
286   /// are running inside F when that happens.
287   virtual void *getPointerToFunction(Function *F) = 0;
288 
289   /// getPointerToBasicBlock - The different EE's represent basic blocks in
290   /// different ways.  Return the representation for a blockaddress of the
291   /// specified block.
292   virtual void *getPointerToBasicBlock(BasicBlock *BB) = 0;
293 
294   /// getPointerToFunctionOrStub - If the specified function has been
295   /// code-gen'd, return a pointer to the function.  If not, compile it, or use
296   /// a stub to implement lazy compilation if available.  See
297   /// getPointerToFunction for the requirements on destroying F.
getPointerToFunctionOrStub(Function * F)298   virtual void *getPointerToFunctionOrStub(Function *F) {
299     // Default implementation, just codegen the function.
300     return getPointerToFunction(F);
301   }
302 
303   // The JIT overrides a version that actually does this.
304   virtual void runJITOnFunction(Function *, MachineCodeInfo * = 0) { }
305 
306   /// getGlobalValueAtAddress - Return the LLVM global value object that starts
307   /// at the specified address.
308   ///
309   const GlobalValue *getGlobalValueAtAddress(void *Addr);
310 
311   /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr.
312   /// Ptr is the address of the memory at which to store Val, cast to
313   /// GenericValue *.  It is not a pointer to a GenericValue containing the
314   /// address at which to store Val.
315   void StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr,
316                           Type *Ty);
317 
318   void InitializeMemory(const Constant *Init, void *Addr);
319 
320   /// recompileAndRelinkFunction - This method is used to force a function which
321   /// has already been compiled to be compiled again, possibly after it has been
322   /// modified.  Then the entry to the old copy is overwritten with a branch to
323   /// the new copy.  If there was no old copy, this acts just like
324   /// VM::getPointerToFunction().
325   virtual void *recompileAndRelinkFunction(Function *F) = 0;
326 
327   /// freeMachineCodeForFunction - Release memory in the ExecutionEngine
328   /// corresponding to the machine code emitted to execute this function, useful
329   /// for garbage-collecting generated code.
330   virtual void freeMachineCodeForFunction(Function *F) = 0;
331 
332   /// getOrEmitGlobalVariable - Return the address of the specified global
333   /// variable, possibly emitting it to memory if needed.  This is used by the
334   /// Emitter.
getOrEmitGlobalVariable(const GlobalVariable * GV)335   virtual void *getOrEmitGlobalVariable(const GlobalVariable *GV) {
336     return getPointerToGlobal((GlobalValue*)GV);
337   }
338 
339   /// Registers a listener to be called back on various events within
340   /// the JIT.  See JITEventListener.h for more details.  Does not
341   /// take ownership of the argument.  The argument may be NULL, in
342   /// which case these functions do nothing.
RegisterJITEventListener(JITEventListener *)343   virtual void RegisterJITEventListener(JITEventListener *) {}
UnregisterJITEventListener(JITEventListener *)344   virtual void UnregisterJITEventListener(JITEventListener *) {}
345 
346   /// DisableLazyCompilation - When lazy compilation is off (the default), the
347   /// JIT will eagerly compile every function reachable from the argument to
348   /// getPointerToFunction.  If lazy compilation is turned on, the JIT will only
349   /// compile the one function and emit stubs to compile the rest when they're
350   /// first called.  If lazy compilation is turned off again while some lazy
351   /// stubs are still around, and one of those stubs is called, the program will
352   /// abort.
353   ///
354   /// In order to safely compile lazily in a threaded program, the user must
355   /// ensure that 1) only one thread at a time can call any particular lazy
356   /// stub, and 2) any thread modifying LLVM IR must hold the JIT's lock
357   /// (ExecutionEngine::lock) or otherwise ensure that no other thread calls a
358   /// lazy stub.  See http://llvm.org/PR5184 for details.
359   void DisableLazyCompilation(bool Disabled = true) {
360     CompilingLazily = !Disabled;
361   }
isCompilingLazily()362   bool isCompilingLazily() const {
363     return CompilingLazily;
364   }
365   // Deprecated in favor of isCompilingLazily (to reduce double-negatives).
366   // Remove this in LLVM 2.8.
isLazyCompilationDisabled()367   bool isLazyCompilationDisabled() const {
368     return !CompilingLazily;
369   }
370 
371   /// DisableGVCompilation - If called, the JIT will abort if it's asked to
372   /// allocate space and populate a GlobalVariable that is not internal to
373   /// the module.
374   void DisableGVCompilation(bool Disabled = true) {
375     GVCompilationDisabled = Disabled;
376   }
isGVCompilationDisabled()377   bool isGVCompilationDisabled() const {
378     return GVCompilationDisabled;
379   }
380 
381   /// DisableSymbolSearching - If called, the JIT will not try to lookup unknown
382   /// symbols with dlsym.  A client can still use InstallLazyFunctionCreator to
383   /// resolve symbols in a custom way.
384   void DisableSymbolSearching(bool Disabled = true) {
385     SymbolSearchingDisabled = Disabled;
386   }
isSymbolSearchingDisabled()387   bool isSymbolSearchingDisabled() const {
388     return SymbolSearchingDisabled;
389   }
390 
391   /// InstallLazyFunctionCreator - If an unknown function is needed, the
392   /// specified function pointer is invoked to create it.  If it returns null,
393   /// the JIT will abort.
InstallLazyFunctionCreator(void * (* P)(const std::string &))394   void InstallLazyFunctionCreator(void* (*P)(const std::string &)) {
395     LazyFunctionCreator = P;
396   }
397 
398   /// InstallExceptionTableRegister - The JIT will use the given function
399   /// to register the exception tables it generates.
InstallExceptionTableRegister(EERegisterFn F)400   void InstallExceptionTableRegister(EERegisterFn F) {
401     ExceptionTableRegister = F;
402   }
InstallExceptionTableDeregister(EERegisterFn F)403   void InstallExceptionTableDeregister(EERegisterFn F) {
404     ExceptionTableDeregister = F;
405   }
406 
407   /// RegisterTable - Registers the given pointer as an exception table.  It
408   /// uses the ExceptionTableRegister function.
RegisterTable(const Function * fn,void * res)409   void RegisterTable(const Function *fn, void* res) {
410     if (ExceptionTableRegister) {
411       ExceptionTableRegister(res);
412       AllExceptionTables[fn] = res;
413     }
414   }
415 
416   /// DeregisterTable - Deregisters the exception frame previously registered
417   /// for the given function.
DeregisterTable(const Function * Fn)418   void DeregisterTable(const Function *Fn) {
419     if (ExceptionTableDeregister) {
420       DenseMap<const Function*, void*>::iterator frame =
421         AllExceptionTables.find(Fn);
422       if(frame != AllExceptionTables.end()) {
423         ExceptionTableDeregister(frame->second);
424         AllExceptionTables.erase(frame);
425       }
426     }
427   }
428 
429   /// DeregisterAllTables - Deregisters all previously registered pointers to an
430   /// exception tables.  It uses the ExceptionTableoDeregister function.
431   void DeregisterAllTables();
432 
433 protected:
434   explicit ExecutionEngine(Module *M);
435 
436   void emitGlobals();
437 
438   void EmitGlobalVariable(const GlobalVariable *GV);
439 
440   GenericValue getConstantValue(const Constant *C);
441   void LoadValueFromMemory(GenericValue &Result, GenericValue *Ptr,
442                            Type *Ty);
443 };
444 
445 namespace EngineKind {
446   // These are actually bitmasks that get or-ed together.
447   enum Kind {
448     JIT         = 0x1,
449     Interpreter = 0x2
450   };
451   const static Kind Either = (Kind)(JIT | Interpreter);
452 }
453 
454 /// EngineBuilder - Builder class for ExecutionEngines.  Use this by
455 /// stack-allocating a builder, chaining the various set* methods, and
456 /// terminating it with a .create() call.
457 class EngineBuilder {
458 private:
459   Module *M;
460   EngineKind::Kind WhichEngine;
461   std::string *ErrorStr;
462   CodeGenOpt::Level OptLevel;
463   JITMemoryManager *JMM;
464   bool AllocateGVsWithCode;
465   Reloc::Model RelocModel;
466   CodeModel::Model CMModel;
467   std::string MArch;
468   std::string MCPU;
469   SmallVector<std::string, 4> MAttrs;
470   bool UseMCJIT;
471 
472   /// InitEngine - Does the common initialization of default options.
InitEngine()473   void InitEngine() {
474     WhichEngine = EngineKind::Either;
475     ErrorStr = NULL;
476     OptLevel = CodeGenOpt::Default;
477     JMM = NULL;
478     AllocateGVsWithCode = false;
479     RelocModel = Reloc::Default;
480     CMModel = CodeModel::JITDefault;
481     UseMCJIT = false;
482   }
483 
484 public:
485   /// EngineBuilder - Constructor for EngineBuilder.  If create() is called and
486   /// is successful, the created engine takes ownership of the module.
EngineBuilder(Module * m)487   EngineBuilder(Module *m) : M(m) {
488     InitEngine();
489   }
490 
491   /// setEngineKind - Controls whether the user wants the interpreter, the JIT,
492   /// or whichever engine works.  This option defaults to EngineKind::Either.
setEngineKind(EngineKind::Kind w)493   EngineBuilder &setEngineKind(EngineKind::Kind w) {
494     WhichEngine = w;
495     return *this;
496   }
497 
498   /// setJITMemoryManager - Sets the memory manager to use.  This allows
499   /// clients to customize their memory allocation policies.  If create() is
500   /// called and is successful, the created engine takes ownership of the
501   /// memory manager.  This option defaults to NULL.
setJITMemoryManager(JITMemoryManager * jmm)502   EngineBuilder &setJITMemoryManager(JITMemoryManager *jmm) {
503     JMM = jmm;
504     return *this;
505   }
506 
507   /// setErrorStr - Set the error string to write to on error.  This option
508   /// defaults to NULL.
setErrorStr(std::string * e)509   EngineBuilder &setErrorStr(std::string *e) {
510     ErrorStr = e;
511     return *this;
512   }
513 
514   /// setOptLevel - Set the optimization level for the JIT.  This option
515   /// defaults to CodeGenOpt::Default.
setOptLevel(CodeGenOpt::Level l)516   EngineBuilder &setOptLevel(CodeGenOpt::Level l) {
517     OptLevel = l;
518     return *this;
519   }
520 
521   /// setRelocationModel - Set the relocation model that the ExecutionEngine
522   /// target is using. Defaults to target specific default "Reloc::Default".
setRelocationModel(Reloc::Model RM)523   EngineBuilder &setRelocationModel(Reloc::Model RM) {
524     RelocModel = RM;
525     return *this;
526   }
527 
528   /// setCodeModel - Set the CodeModel that the ExecutionEngine target
529   /// data is using. Defaults to target specific default
530   /// "CodeModel::JITDefault".
setCodeModel(CodeModel::Model M)531   EngineBuilder &setCodeModel(CodeModel::Model M) {
532     CMModel = M;
533     return *this;
534   }
535 
536   /// setAllocateGVsWithCode - Sets whether global values should be allocated
537   /// into the same buffer as code.  For most applications this should be set
538   /// to false.  Allocating globals with code breaks freeMachineCodeForFunction
539   /// and is probably unsafe and bad for performance.  However, we have clients
540   /// who depend on this behavior, so we must support it.  This option defaults
541   /// to false so that users of the new API can safely use the new memory
542   /// manager and free machine code.
setAllocateGVsWithCode(bool a)543   EngineBuilder &setAllocateGVsWithCode(bool a) {
544     AllocateGVsWithCode = a;
545     return *this;
546   }
547 
548   /// setMArch - Override the architecture set by the Module's triple.
setMArch(StringRef march)549   EngineBuilder &setMArch(StringRef march) {
550     MArch.assign(march.begin(), march.end());
551     return *this;
552   }
553 
554   /// setMCPU - Target a specific cpu type.
setMCPU(StringRef mcpu)555   EngineBuilder &setMCPU(StringRef mcpu) {
556     MCPU.assign(mcpu.begin(), mcpu.end());
557     return *this;
558   }
559 
560   /// setUseMCJIT - Set whether the MC-JIT implementation should be used
561   /// (experimental).
setUseMCJIT(bool Value)562   EngineBuilder &setUseMCJIT(bool Value) {
563     UseMCJIT = Value;
564     return *this;
565   }
566 
567   /// setMAttrs - Set cpu-specific attributes.
568   template<typename StringSequence>
setMAttrs(const StringSequence & mattrs)569   EngineBuilder &setMAttrs(const StringSequence &mattrs) {
570     MAttrs.clear();
571     MAttrs.append(mattrs.begin(), mattrs.end());
572     return *this;
573   }
574 
575   /// selectTarget - Pick a target either via -march or by guessing the native
576   /// arch.  Add any CPU features specified via -mcpu or -mattr.
577   static TargetMachine *selectTarget(Module *M,
578                                      StringRef MArch,
579                                      StringRef MCPU,
580                                      const SmallVectorImpl<std::string>& MAttrs,
581                                      Reloc::Model RM,
582                                      CodeModel::Model CM,
583                                      std::string *Err);
584 
585   ExecutionEngine *create();
586 };
587 
588 } // End llvm namespace
589 
590 #endif
591