1 // Copyright 2013 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "mojo/message_pump/message_pump_mojo.h"
6
7 #include <stdint.h>
8
9 #include <algorithm>
10 #include <map>
11 #include <vector>
12
13 #include "base/containers/small_map.h"
14 #include "base/debug/alias.h"
15 #include "base/lazy_instance.h"
16 #include "base/logging.h"
17 #include "base/threading/thread_local.h"
18 #include "base/threading/thread_restrictions.h"
19 #include "base/time/time.h"
20 #include "mojo/message_pump/message_pump_mojo_handler.h"
21 #include "mojo/message_pump/time_helper.h"
22 #include "mojo/public/c/system/wait_set.h"
23
24 namespace mojo {
25 namespace common {
26 namespace {
27
28 base::LazyInstance<base::ThreadLocalPointer<MessagePumpMojo> >::Leaky
29 g_tls_current_pump = LAZY_INSTANCE_INITIALIZER;
30
TimeTicksToMojoDeadline(base::TimeTicks time_ticks,base::TimeTicks now)31 MojoDeadline TimeTicksToMojoDeadline(base::TimeTicks time_ticks,
32 base::TimeTicks now) {
33 // The is_null() check matches that of HandleWatcher as well as how
34 // |delayed_work_time| is used.
35 if (time_ticks.is_null())
36 return MOJO_DEADLINE_INDEFINITE;
37 const int64_t delta = (time_ticks - now).InMicroseconds();
38 return delta < 0 ? static_cast<MojoDeadline>(0) :
39 static_cast<MojoDeadline>(delta);
40 }
41
42 } // namespace
43
44 struct MessagePumpMojo::RunState {
RunStatemojo::common::MessagePumpMojo::RunState45 RunState() : should_quit(false) {}
46
47 base::TimeTicks delayed_work_time;
48
49 bool should_quit;
50 };
51
MessagePumpMojo()52 MessagePumpMojo::MessagePumpMojo()
53 : run_state_(NULL),
54 next_handler_id_(0),
55 event_(base::WaitableEvent::ResetPolicy::AUTOMATIC,
56 base::WaitableEvent::InitialState::NOT_SIGNALED) {
57 DCHECK(!current())
58 << "There is already a MessagePumpMojo instance on this thread.";
59 g_tls_current_pump.Pointer()->Set(this);
60
61 MojoResult result = CreateMessagePipe(nullptr, &read_handle_, &write_handle_);
62 CHECK_EQ(result, MOJO_RESULT_OK);
63 CHECK(read_handle_.is_valid());
64 CHECK(write_handle_.is_valid());
65
66 MojoHandle handle;
67 result = MojoCreateWaitSet(&handle);
68 CHECK_EQ(result, MOJO_RESULT_OK);
69 wait_set_handle_.reset(Handle(handle));
70 CHECK(wait_set_handle_.is_valid());
71
72 result =
73 MojoAddHandle(wait_set_handle_.get().value(), read_handle_.get().value(),
74 MOJO_HANDLE_SIGNAL_READABLE);
75 CHECK_EQ(result, MOJO_RESULT_OK);
76 }
77
~MessagePumpMojo()78 MessagePumpMojo::~MessagePumpMojo() {
79 DCHECK_EQ(this, current());
80 g_tls_current_pump.Pointer()->Set(NULL);
81 }
82
83 // static
Create()84 std::unique_ptr<base::MessagePump> MessagePumpMojo::Create() {
85 return std::unique_ptr<MessagePump>(new MessagePumpMojo());
86 }
87
88 // static
current()89 MessagePumpMojo* MessagePumpMojo::current() {
90 return g_tls_current_pump.Pointer()->Get();
91 }
92
AddHandler(MessagePumpMojoHandler * handler,const Handle & handle,MojoHandleSignals wait_signals,base::TimeTicks deadline)93 void MessagePumpMojo::AddHandler(MessagePumpMojoHandler* handler,
94 const Handle& handle,
95 MojoHandleSignals wait_signals,
96 base::TimeTicks deadline) {
97 CHECK(handler);
98 DCHECK(handle.is_valid());
99 // Assume it's an error if someone tries to reregister an existing handle.
100 CHECK_EQ(0u, handlers_.count(handle));
101 Handler handler_data;
102 handler_data.handler = handler;
103 handler_data.wait_signals = wait_signals;
104 handler_data.deadline = deadline;
105 handler_data.id = next_handler_id_++;
106 handlers_[handle] = handler_data;
107 if (!deadline.is_null()) {
108 bool inserted = deadline_handles_.insert(handle).second;
109 DCHECK(inserted);
110 }
111
112 MojoResult result = MojoAddHandle(wait_set_handle_.get().value(),
113 handle.value(), wait_signals);
114 // Because stopping a HandleWatcher is now asynchronous, it's possible for the
115 // handle to no longer be open at this point.
116 CHECK(result == MOJO_RESULT_OK || result == MOJO_RESULT_INVALID_ARGUMENT);
117 }
118
RemoveHandler(const Handle & handle)119 void MessagePumpMojo::RemoveHandler(const Handle& handle) {
120 MojoResult result =
121 MojoRemoveHandle(wait_set_handle_.get().value(), handle.value());
122 // At this point, it's possible that the handle has been closed, which would
123 // cause MojoRemoveHandle() to return MOJO_RESULT_INVALID_ARGUMENT. It's also
124 // possible for the handle to have already been removed, so all of the
125 // possible error codes are valid here.
126 CHECK(result == MOJO_RESULT_OK || result == MOJO_RESULT_NOT_FOUND ||
127 result == MOJO_RESULT_INVALID_ARGUMENT);
128
129 handlers_.erase(handle);
130 deadline_handles_.erase(handle);
131 }
132
AddObserver(Observer * observer)133 void MessagePumpMojo::AddObserver(Observer* observer) {
134 observers_.AddObserver(observer);
135 }
136
RemoveObserver(Observer * observer)137 void MessagePumpMojo::RemoveObserver(Observer* observer) {
138 observers_.RemoveObserver(observer);
139 }
140
Run(Delegate * delegate)141 void MessagePumpMojo::Run(Delegate* delegate) {
142 RunState run_state;
143 RunState* old_state = NULL;
144 {
145 base::AutoLock auto_lock(run_state_lock_);
146 old_state = run_state_;
147 run_state_ = &run_state;
148 }
149 DoRunLoop(&run_state, delegate);
150 {
151 base::AutoLock auto_lock(run_state_lock_);
152 run_state_ = old_state;
153 }
154 }
155
Quit()156 void MessagePumpMojo::Quit() {
157 base::AutoLock auto_lock(run_state_lock_);
158 if (run_state_)
159 run_state_->should_quit = true;
160 }
161
ScheduleWork()162 void MessagePumpMojo::ScheduleWork() {
163 SignalControlPipe();
164 }
165
ScheduleDelayedWork(const base::TimeTicks & delayed_work_time)166 void MessagePumpMojo::ScheduleDelayedWork(
167 const base::TimeTicks& delayed_work_time) {
168 base::AutoLock auto_lock(run_state_lock_);
169 if (!run_state_)
170 return;
171 run_state_->delayed_work_time = delayed_work_time;
172 }
173
DoRunLoop(RunState * run_state,Delegate * delegate)174 void MessagePumpMojo::DoRunLoop(RunState* run_state, Delegate* delegate) {
175 bool more_work_is_plausible = true;
176 for (;;) {
177 const bool block = !more_work_is_plausible;
178 if (read_handle_.is_valid()) {
179 more_work_is_plausible = DoInternalWork(*run_state, block);
180 } else {
181 more_work_is_plausible = DoNonMojoWork(*run_state, block);
182 }
183
184 if (run_state->should_quit)
185 break;
186
187 more_work_is_plausible |= delegate->DoWork();
188 if (run_state->should_quit)
189 break;
190
191 more_work_is_plausible |= delegate->DoDelayedWork(
192 &run_state->delayed_work_time);
193 if (run_state->should_quit)
194 break;
195
196 if (more_work_is_plausible)
197 continue;
198
199 more_work_is_plausible = delegate->DoIdleWork();
200 if (run_state->should_quit)
201 break;
202 }
203 }
204
DoInternalWork(const RunState & run_state,bool block)205 bool MessagePumpMojo::DoInternalWork(const RunState& run_state, bool block) {
206 bool did_work = block;
207 if (block) {
208 // If the wait isn't blocking (deadline == 0), there's no point in waiting.
209 // Wait sets do not require a wait operation to be performed in order to
210 // retreive any ready handles. Performing a wait with deadline == 0 is
211 // unnecessary work.
212 did_work = WaitForReadyHandles(run_state);
213 }
214
215 did_work |= ProcessReadyHandles();
216 did_work |= RemoveExpiredHandles();
217
218 return did_work;
219 }
220
DoNonMojoWork(const RunState & run_state,bool block)221 bool MessagePumpMojo::DoNonMojoWork(const RunState& run_state, bool block) {
222 bool did_work = block;
223 if (block) {
224 const MojoDeadline deadline = GetDeadlineForWait(run_state);
225 // Stolen from base/message_loop/message_pump_default.cc
226 base::ThreadRestrictions::ScopedAllowWait allow_wait;
227 if (deadline == MOJO_DEADLINE_INDEFINITE) {
228 event_.Wait();
229 } else {
230 if (deadline > 0) {
231 event_.TimedWait(base::TimeDelta::FromMicroseconds(deadline));
232 } else {
233 did_work = false;
234 }
235 }
236 // Since event_ is auto-reset, we don't need to do anything special here
237 // other than service each delegate method.
238 }
239
240 did_work |= RemoveExpiredHandles();
241
242 return did_work;
243 }
244
WaitForReadyHandles(const RunState & run_state) const245 bool MessagePumpMojo::WaitForReadyHandles(const RunState& run_state) const {
246 const MojoDeadline deadline = GetDeadlineForWait(run_state);
247 const MojoResult wait_result = Wait(
248 wait_set_handle_.get(), MOJO_HANDLE_SIGNAL_READABLE, deadline, nullptr);
249 if (wait_result == MOJO_RESULT_OK) {
250 // Handles may be ready. Or not since wake-ups can be spurious in certain
251 // circumstances.
252 return true;
253 } else if (wait_result == MOJO_RESULT_DEADLINE_EXCEEDED) {
254 return false;
255 }
256
257 base::debug::Alias(&wait_result);
258 // Unexpected result is likely fatal, crash so we can determine cause.
259 CHECK(false);
260 return false;
261 }
262
ProcessReadyHandles()263 bool MessagePumpMojo::ProcessReadyHandles() {
264 // Maximum number of handles to retrieve and process. Experimentally, the 95th
265 // percentile is 1 handle, and the long-term average is 1.1. However, this has
266 // been seen to reach >10 under heavy load. 8 is a hand-wavy compromise.
267 const uint32_t kMaxServiced = 8;
268 uint32_t num_ready_handles = kMaxServiced;
269 MojoHandle handles[kMaxServiced];
270 MojoResult handle_results[kMaxServiced];
271
272 const MojoResult get_result =
273 MojoGetReadyHandles(wait_set_handle_.get().value(), &num_ready_handles,
274 handles, handle_results, nullptr);
275 CHECK(get_result == MOJO_RESULT_OK || get_result == MOJO_RESULT_SHOULD_WAIT);
276 if (get_result != MOJO_RESULT_OK)
277 return false;
278
279 DCHECK(num_ready_handles);
280 DCHECK_LE(num_ready_handles, kMaxServiced);
281 // Do this in two steps, because notifying a handler may remove/add other
282 // handles that may have also been woken up.
283 // First, enumerate the IDs of the ready handles. Then, iterate over the
284 // handles and only take action if the ID hasn't changed.
285 // Since the size of this map is bounded by |kMaxServiced|, use a SmallMap to
286 // avoid the per-element allocation.
287 base::SmallMap<std::map<Handle, int>, kMaxServiced> ready_handles;
288 for (uint32_t i = 0; i < num_ready_handles; i++) {
289 const Handle handle = Handle(handles[i]);
290 // Skip the control handle. It's special.
291 if (handle.value() == read_handle_.get().value())
292 continue;
293 DCHECK(handle.is_valid());
294 const auto it = handlers_.find(handle);
295 // Skip handles that have been removed. This is possible because
296 // RemoveHandler() can be called with a handle that has been closed. Because
297 // the handle is closed, the MojoRemoveHandle() call in RemoveHandler()
298 // would have failed, but the handle is still in the wait set. Once the
299 // handle is retrieved using MojoGetReadyHandles(), it is implicitly removed
300 // from the set. The result is either the pending result that existed when
301 // the handle was closed, or |MOJO_RESULT_CANCELLED| to indicate that the
302 // handle was closed.
303 if (it == handlers_.end())
304 continue;
305 ready_handles[handle] = it->second.id;
306 }
307
308 for (uint32_t i = 0; i < num_ready_handles; i++) {
309 const Handle handle = Handle(handles[i]);
310
311 // If the handle has been removed, or it's ID has changed, skip over it.
312 // If the handle's ID has changed, and it still satisfies its signals,
313 // then it'll be caught in the next message pump iteration.
314 const auto it = handlers_.find(handle);
315 if ((handle.value() != read_handle_.get().value()) &&
316 (it == handlers_.end() || it->second.id != ready_handles[handle])) {
317 continue;
318 }
319
320 switch (handle_results[i]) {
321 case MOJO_RESULT_CANCELLED:
322 case MOJO_RESULT_FAILED_PRECONDITION:
323 DVLOG(1) << "Error: " << handle_results[i]
324 << " handle: " << handle.value();
325 if (handle.value() == read_handle_.get().value()) {
326 // The Mojo EDK is shutting down. We can't just quit the message pump
327 // because that may cause the thread to quit, which causes the
328 // thread's MessageLoop to be destroyed, which races with any use of
329 // |Thread::task_runner()|. So instead, we enter a "dumb" mode which
330 // bypasses Mojo and just acts like a trivial message pump. That way,
331 // we can wait for the usual thread exiting mechanism to happen.
332 // The dumb mode is indicated by releasing the control pipe's read
333 // handle.
334 read_handle_.reset();
335 } else {
336 SignalHandleError(handle, handle_results[i]);
337 }
338 break;
339 case MOJO_RESULT_OK:
340 if (handle.value() == read_handle_.get().value()) {
341 DVLOG(1) << "Signaled control pipe";
342 // Control pipe was written to.
343 ReadMessageRaw(read_handle_.get(), nullptr, nullptr, nullptr, nullptr,
344 MOJO_READ_MESSAGE_FLAG_MAY_DISCARD);
345 } else {
346 DVLOG(1) << "Handle ready: " << handle.value();
347 SignalHandleReady(handle);
348 }
349 break;
350 default:
351 base::debug::Alias(&i);
352 base::debug::Alias(&handle_results[i]);
353 // Unexpected result is likely fatal, crash so we can determine cause.
354 CHECK(false);
355 }
356 }
357 return true;
358 }
359
RemoveExpiredHandles()360 bool MessagePumpMojo::RemoveExpiredHandles() {
361 bool removed = false;
362 // Notify and remove any handlers whose time has expired. First, iterate over
363 // the set of handles that have a deadline, and add the expired handles to a
364 // map of <Handle, id>. Then, iterate over those expired handles and remove
365 // them. The two-step process is because a handler can add/remove new
366 // handlers.
367 std::map<Handle, int> expired_handles;
368 const base::TimeTicks now(internal::NowTicks());
369 for (const Handle handle : deadline_handles_) {
370 const auto it = handlers_.find(handle);
371 // Expect any handle in |deadline_handles_| to also be in |handlers_| since
372 // the two are modified in lock-step.
373 DCHECK(it != handlers_.end());
374 if (!it->second.deadline.is_null() && it->second.deadline < now)
375 expired_handles[handle] = it->second.id;
376 }
377 for (const auto& pair : expired_handles) {
378 auto it = handlers_.find(pair.first);
379 // Don't need to check deadline again since it can't change if id hasn't
380 // changed.
381 if (it != handlers_.end() && it->second.id == pair.second) {
382 SignalHandleError(pair.first, MOJO_RESULT_DEADLINE_EXCEEDED);
383 removed = true;
384 }
385 }
386 return removed;
387 }
388
SignalControlPipe()389 void MessagePumpMojo::SignalControlPipe() {
390 const MojoResult result =
391 WriteMessageRaw(write_handle_.get(), NULL, 0, NULL, 0,
392 MOJO_WRITE_MESSAGE_FLAG_NONE);
393 if (result == MOJO_RESULT_FAILED_PRECONDITION) {
394 // Mojo EDK is shutting down.
395 event_.Signal();
396 return;
397 }
398
399 // If we can't write we likely won't wake up the thread and there is a strong
400 // chance we'll deadlock.
401 CHECK_EQ(MOJO_RESULT_OK, result);
402 }
403
GetDeadlineForWait(const RunState & run_state) const404 MojoDeadline MessagePumpMojo::GetDeadlineForWait(
405 const RunState& run_state) const {
406 const base::TimeTicks now(internal::NowTicks());
407 MojoDeadline deadline = TimeTicksToMojoDeadline(run_state.delayed_work_time,
408 now);
409 for (const Handle handle : deadline_handles_) {
410 auto it = handlers_.find(handle);
411 DCHECK(it != handlers_.end());
412 deadline = std::min(
413 TimeTicksToMojoDeadline(it->second.deadline, now), deadline);
414 }
415 return deadline;
416 }
417
SignalHandleReady(Handle handle)418 void MessagePumpMojo::SignalHandleReady(Handle handle) {
419 auto it = handlers_.find(handle);
420 DCHECK(it != handlers_.end());
421 MessagePumpMojoHandler* handler = it->second.handler;
422
423 WillSignalHandler();
424 handler->OnHandleReady(handle);
425 DidSignalHandler();
426 }
427
SignalHandleError(Handle handle,MojoResult result)428 void MessagePumpMojo::SignalHandleError(Handle handle, MojoResult result) {
429 auto it = handlers_.find(handle);
430 DCHECK(it != handlers_.end());
431 MessagePumpMojoHandler* handler = it->second.handler;
432
433 RemoveHandler(handle);
434 WillSignalHandler();
435 handler->OnHandleError(handle, result);
436 DidSignalHandler();
437 }
438
WillSignalHandler()439 void MessagePumpMojo::WillSignalHandler() {
440 FOR_EACH_OBSERVER(Observer, observers_, WillSignalHandler());
441 }
442
DidSignalHandler()443 void MessagePumpMojo::DidSignalHandler() {
444 FOR_EACH_OBSERVER(Observer, observers_, DidSignalHandler());
445 }
446
447 } // namespace common
448 } // namespace mojo
449