1 /* 2 * Copyright (C) 2005 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 // 18 // Definitions of resource data structures. 19 // 20 #ifndef _LIBS_UTILS_RESOURCE_TYPES_H 21 #define _LIBS_UTILS_RESOURCE_TYPES_H 22 23 #include <androidfw/Asset.h> 24 #include <androidfw/LocaleData.h> 25 #include <utils/Errors.h> 26 #include <utils/String16.h> 27 #include <utils/Vector.h> 28 #include <utils/KeyedVector.h> 29 30 #include <utils/threads.h> 31 32 #include <stdint.h> 33 #include <sys/types.h> 34 35 #include <android/configuration.h> 36 37 #include <memory> 38 39 namespace android { 40 41 /** 42 * In C++11, char16_t is defined as *at least* 16 bits. We do a lot of 43 * casting on raw data and expect char16_t to be exactly 16 bits. 44 */ 45 #if __cplusplus >= 201103L 46 struct __assertChar16Size { 47 static_assert(sizeof(char16_t) == sizeof(uint16_t), "char16_t is not 16 bits"); 48 static_assert(alignof(char16_t) == alignof(uint16_t), "char16_t is not 16-bit aligned"); 49 }; 50 #endif 51 52 /** ******************************************************************** 53 * PNG Extensions 54 * 55 * New private chunks that may be placed in PNG images. 56 * 57 *********************************************************************** */ 58 59 /** 60 * This chunk specifies how to split an image into segments for 61 * scaling. 62 * 63 * There are J horizontal and K vertical segments. These segments divide 64 * the image into J*K regions as follows (where J=4 and K=3): 65 * 66 * F0 S0 F1 S1 67 * +-----+----+------+-------+ 68 * S2| 0 | 1 | 2 | 3 | 69 * +-----+----+------+-------+ 70 * | | | | | 71 * | | | | | 72 * F2| 4 | 5 | 6 | 7 | 73 * | | | | | 74 * | | | | | 75 * +-----+----+------+-------+ 76 * S3| 8 | 9 | 10 | 11 | 77 * +-----+----+------+-------+ 78 * 79 * Each horizontal and vertical segment is considered to by either 80 * stretchable (marked by the Sx labels) or fixed (marked by the Fy 81 * labels), in the horizontal or vertical axis, respectively. In the 82 * above example, the first is horizontal segment (F0) is fixed, the 83 * next is stretchable and then they continue to alternate. Note that 84 * the segment list for each axis can begin or end with a stretchable 85 * or fixed segment. 86 * 87 * The relative sizes of the stretchy segments indicates the relative 88 * amount of stretchiness of the regions bordered by the segments. For 89 * example, regions 3, 7 and 11 above will take up more horizontal space 90 * than regions 1, 5 and 9 since the horizontal segment associated with 91 * the first set of regions is larger than the other set of regions. The 92 * ratios of the amount of horizontal (or vertical) space taken by any 93 * two stretchable slices is exactly the ratio of their corresponding 94 * segment lengths. 95 * 96 * xDivs and yDivs are arrays of horizontal and vertical pixel 97 * indices. The first pair of Divs (in either array) indicate the 98 * starting and ending points of the first stretchable segment in that 99 * axis. The next pair specifies the next stretchable segment, etc. So 100 * in the above example xDiv[0] and xDiv[1] specify the horizontal 101 * coordinates for the regions labeled 1, 5 and 9. xDiv[2] and 102 * xDiv[3] specify the coordinates for regions 3, 7 and 11. Note that 103 * the leftmost slices always start at x=0 and the rightmost slices 104 * always end at the end of the image. So, for example, the regions 0, 105 * 4 and 8 (which are fixed along the X axis) start at x value 0 and 106 * go to xDiv[0] and slices 2, 6 and 10 start at xDiv[1] and end at 107 * xDiv[2]. 108 * 109 * The colors array contains hints for each of the regions. They are 110 * ordered according left-to-right and top-to-bottom as indicated above. 111 * For each segment that is a solid color the array entry will contain 112 * that color value; otherwise it will contain NO_COLOR. Segments that 113 * are completely transparent will always have the value TRANSPARENT_COLOR. 114 * 115 * The PNG chunk type is "npTc". 116 */ 117 struct alignas(uintptr_t) Res_png_9patch 118 { Res_png_9patchRes_png_9patch119 Res_png_9patch() : wasDeserialized(false), xDivsOffset(0), 120 yDivsOffset(0), colorsOffset(0) { } 121 122 int8_t wasDeserialized; 123 uint8_t numXDivs; 124 uint8_t numYDivs; 125 uint8_t numColors; 126 127 // The offset (from the start of this structure) to the xDivs & yDivs 128 // array for this 9patch. To get a pointer to this array, call 129 // getXDivs or getYDivs. Note that the serialized form for 9patches places 130 // the xDivs, yDivs and colors arrays immediately after the location 131 // of the Res_png_9patch struct. 132 uint32_t xDivsOffset; 133 uint32_t yDivsOffset; 134 135 int32_t paddingLeft, paddingRight; 136 int32_t paddingTop, paddingBottom; 137 138 enum { 139 // The 9 patch segment is not a solid color. 140 NO_COLOR = 0x00000001, 141 142 // The 9 patch segment is completely transparent. 143 TRANSPARENT_COLOR = 0x00000000 144 }; 145 146 // The offset (from the start of this structure) to the colors array 147 // for this 9patch. 148 uint32_t colorsOffset; 149 150 // Convert data from device representation to PNG file representation. 151 void deviceToFile(); 152 // Convert data from PNG file representation to device representation. 153 void fileToDevice(); 154 155 // Serialize/Marshall the patch data into a newly malloc-ed block. 156 static void* serialize(const Res_png_9patch& patchHeader, const int32_t* xDivs, 157 const int32_t* yDivs, const uint32_t* colors); 158 // Serialize/Marshall the patch data into |outData|. 159 static void serialize(const Res_png_9patch& patchHeader, const int32_t* xDivs, 160 const int32_t* yDivs, const uint32_t* colors, void* outData); 161 // Deserialize/Unmarshall the patch data 162 static Res_png_9patch* deserialize(void* data); 163 // Compute the size of the serialized data structure 164 size_t serializedSize() const; 165 166 // These tell where the next section of a patch starts. 167 // For example, the first patch includes the pixels from 168 // 0 to xDivs[0]-1 and the second patch includes the pixels 169 // from xDivs[0] to xDivs[1]-1. getXDivsRes_png_9patch170 inline int32_t* getXDivs() const { 171 return reinterpret_cast<int32_t*>(reinterpret_cast<uintptr_t>(this) + xDivsOffset); 172 } getYDivsRes_png_9patch173 inline int32_t* getYDivs() const { 174 return reinterpret_cast<int32_t*>(reinterpret_cast<uintptr_t>(this) + yDivsOffset); 175 } getColorsRes_png_9patch176 inline uint32_t* getColors() const { 177 return reinterpret_cast<uint32_t*>(reinterpret_cast<uintptr_t>(this) + colorsOffset); 178 } 179 180 } __attribute__((packed)); 181 182 /** ******************************************************************** 183 * Base Types 184 * 185 * These are standard types that are shared between multiple specific 186 * resource types. 187 * 188 *********************************************************************** */ 189 190 /** 191 * Header that appears at the front of every data chunk in a resource. 192 */ 193 struct ResChunk_header 194 { 195 // Type identifier for this chunk. The meaning of this value depends 196 // on the containing chunk. 197 uint16_t type; 198 199 // Size of the chunk header (in bytes). Adding this value to 200 // the address of the chunk allows you to find its associated data 201 // (if any). 202 uint16_t headerSize; 203 204 // Total size of this chunk (in bytes). This is the chunkSize plus 205 // the size of any data associated with the chunk. Adding this value 206 // to the chunk allows you to completely skip its contents (including 207 // any child chunks). If this value is the same as chunkSize, there is 208 // no data associated with the chunk. 209 uint32_t size; 210 }; 211 212 enum { 213 RES_NULL_TYPE = 0x0000, 214 RES_STRING_POOL_TYPE = 0x0001, 215 RES_TABLE_TYPE = 0x0002, 216 RES_XML_TYPE = 0x0003, 217 218 // Chunk types in RES_XML_TYPE 219 RES_XML_FIRST_CHUNK_TYPE = 0x0100, 220 RES_XML_START_NAMESPACE_TYPE= 0x0100, 221 RES_XML_END_NAMESPACE_TYPE = 0x0101, 222 RES_XML_START_ELEMENT_TYPE = 0x0102, 223 RES_XML_END_ELEMENT_TYPE = 0x0103, 224 RES_XML_CDATA_TYPE = 0x0104, 225 RES_XML_LAST_CHUNK_TYPE = 0x017f, 226 // This contains a uint32_t array mapping strings in the string 227 // pool back to resource identifiers. It is optional. 228 RES_XML_RESOURCE_MAP_TYPE = 0x0180, 229 230 // Chunk types in RES_TABLE_TYPE 231 RES_TABLE_PACKAGE_TYPE = 0x0200, 232 RES_TABLE_TYPE_TYPE = 0x0201, 233 RES_TABLE_TYPE_SPEC_TYPE = 0x0202, 234 RES_TABLE_LIBRARY_TYPE = 0x0203 235 }; 236 237 /** 238 * Macros for building/splitting resource identifiers. 239 */ 240 #define Res_VALIDID(resid) (resid != 0) 241 #define Res_CHECKID(resid) ((resid&0xFFFF0000) != 0) 242 #define Res_MAKEID(package, type, entry) \ 243 (((package+1)<<24) | (((type+1)&0xFF)<<16) | (entry&0xFFFF)) 244 #define Res_GETPACKAGE(id) ((id>>24)-1) 245 #define Res_GETTYPE(id) (((id>>16)&0xFF)-1) 246 #define Res_GETENTRY(id) (id&0xFFFF) 247 248 #define Res_INTERNALID(resid) ((resid&0xFFFF0000) != 0 && (resid&0xFF0000) == 0) 249 #define Res_MAKEINTERNAL(entry) (0x01000000 | (entry&0xFFFF)) 250 #define Res_MAKEARRAY(entry) (0x02000000 | (entry&0xFFFF)) 251 252 static const size_t Res_MAXPACKAGE = 255; 253 static const size_t Res_MAXTYPE = 255; 254 255 /** 256 * Representation of a value in a resource, supplying type 257 * information. 258 */ 259 struct Res_value 260 { 261 // Number of bytes in this structure. 262 uint16_t size; 263 264 // Always set to 0. 265 uint8_t res0; 266 267 // Type of the data value. 268 enum : uint8_t { 269 // The 'data' is either 0 or 1, specifying this resource is either 270 // undefined or empty, respectively. 271 TYPE_NULL = 0x00, 272 // The 'data' holds a ResTable_ref, a reference to another resource 273 // table entry. 274 TYPE_REFERENCE = 0x01, 275 // The 'data' holds an attribute resource identifier. 276 TYPE_ATTRIBUTE = 0x02, 277 // The 'data' holds an index into the containing resource table's 278 // global value string pool. 279 TYPE_STRING = 0x03, 280 // The 'data' holds a single-precision floating point number. 281 TYPE_FLOAT = 0x04, 282 // The 'data' holds a complex number encoding a dimension value, 283 // such as "100in". 284 TYPE_DIMENSION = 0x05, 285 // The 'data' holds a complex number encoding a fraction of a 286 // container. 287 TYPE_FRACTION = 0x06, 288 // The 'data' holds a dynamic ResTable_ref, which needs to be 289 // resolved before it can be used like a TYPE_REFERENCE. 290 TYPE_DYNAMIC_REFERENCE = 0x07, 291 // The 'data' holds an attribute resource identifier, which needs to be resolved 292 // before it can be used like a TYPE_ATTRIBUTE. 293 TYPE_DYNAMIC_ATTRIBUTE = 0x08, 294 295 // Beginning of integer flavors... 296 TYPE_FIRST_INT = 0x10, 297 298 // The 'data' is a raw integer value of the form n..n. 299 TYPE_INT_DEC = 0x10, 300 // The 'data' is a raw integer value of the form 0xn..n. 301 TYPE_INT_HEX = 0x11, 302 // The 'data' is either 0 or 1, for input "false" or "true" respectively. 303 TYPE_INT_BOOLEAN = 0x12, 304 305 // Beginning of color integer flavors... 306 TYPE_FIRST_COLOR_INT = 0x1c, 307 308 // The 'data' is a raw integer value of the form #aarrggbb. 309 TYPE_INT_COLOR_ARGB8 = 0x1c, 310 // The 'data' is a raw integer value of the form #rrggbb. 311 TYPE_INT_COLOR_RGB8 = 0x1d, 312 // The 'data' is a raw integer value of the form #argb. 313 TYPE_INT_COLOR_ARGB4 = 0x1e, 314 // The 'data' is a raw integer value of the form #rgb. 315 TYPE_INT_COLOR_RGB4 = 0x1f, 316 317 // ...end of integer flavors. 318 TYPE_LAST_COLOR_INT = 0x1f, 319 320 // ...end of integer flavors. 321 TYPE_LAST_INT = 0x1f 322 }; 323 uint8_t dataType; 324 325 // Structure of complex data values (TYPE_UNIT and TYPE_FRACTION) 326 enum { 327 // Where the unit type information is. This gives us 16 possible 328 // types, as defined below. 329 COMPLEX_UNIT_SHIFT = 0, 330 COMPLEX_UNIT_MASK = 0xf, 331 332 // TYPE_DIMENSION: Value is raw pixels. 333 COMPLEX_UNIT_PX = 0, 334 // TYPE_DIMENSION: Value is Device Independent Pixels. 335 COMPLEX_UNIT_DIP = 1, 336 // TYPE_DIMENSION: Value is a Scaled device independent Pixels. 337 COMPLEX_UNIT_SP = 2, 338 // TYPE_DIMENSION: Value is in points. 339 COMPLEX_UNIT_PT = 3, 340 // TYPE_DIMENSION: Value is in inches. 341 COMPLEX_UNIT_IN = 4, 342 // TYPE_DIMENSION: Value is in millimeters. 343 COMPLEX_UNIT_MM = 5, 344 345 // TYPE_FRACTION: A basic fraction of the overall size. 346 COMPLEX_UNIT_FRACTION = 0, 347 // TYPE_FRACTION: A fraction of the parent size. 348 COMPLEX_UNIT_FRACTION_PARENT = 1, 349 350 // Where the radix information is, telling where the decimal place 351 // appears in the mantissa. This give us 4 possible fixed point 352 // representations as defined below. 353 COMPLEX_RADIX_SHIFT = 4, 354 COMPLEX_RADIX_MASK = 0x3, 355 356 // The mantissa is an integral number -- i.e., 0xnnnnnn.0 357 COMPLEX_RADIX_23p0 = 0, 358 // The mantissa magnitude is 16 bits -- i.e, 0xnnnn.nn 359 COMPLEX_RADIX_16p7 = 1, 360 // The mantissa magnitude is 8 bits -- i.e, 0xnn.nnnn 361 COMPLEX_RADIX_8p15 = 2, 362 // The mantissa magnitude is 0 bits -- i.e, 0x0.nnnnnn 363 COMPLEX_RADIX_0p23 = 3, 364 365 // Where the actual value is. This gives us 23 bits of 366 // precision. The top bit is the sign. 367 COMPLEX_MANTISSA_SHIFT = 8, 368 COMPLEX_MANTISSA_MASK = 0xffffff 369 }; 370 371 // Possible data values for TYPE_NULL. 372 enum { 373 // The value is not defined. 374 DATA_NULL_UNDEFINED = 0, 375 // The value is explicitly defined as empty. 376 DATA_NULL_EMPTY = 1 377 }; 378 379 // The data for this item, as interpreted according to dataType. 380 typedef uint32_t data_type; 381 data_type data; 382 383 void copyFrom_dtoh(const Res_value& src); 384 }; 385 386 /** 387 * This is a reference to a unique entry (a ResTable_entry structure) 388 * in a resource table. The value is structured as: 0xpptteeee, 389 * where pp is the package index, tt is the type index in that 390 * package, and eeee is the entry index in that type. The package 391 * and type values start at 1 for the first item, to help catch cases 392 * where they have not been supplied. 393 */ 394 struct ResTable_ref 395 { 396 uint32_t ident; 397 }; 398 399 /** 400 * Reference to a string in a string pool. 401 */ 402 struct ResStringPool_ref 403 { 404 // Index into the string pool table (uint32_t-offset from the indices 405 // immediately after ResStringPool_header) at which to find the location 406 // of the string data in the pool. 407 uint32_t index; 408 }; 409 410 /** ******************************************************************** 411 * String Pool 412 * 413 * A set of strings that can be references by others through a 414 * ResStringPool_ref. 415 * 416 *********************************************************************** */ 417 418 /** 419 * Definition for a pool of strings. The data of this chunk is an 420 * array of uint32_t providing indices into the pool, relative to 421 * stringsStart. At stringsStart are all of the UTF-16 strings 422 * concatenated together; each starts with a uint16_t of the string's 423 * length and each ends with a 0x0000 terminator. If a string is > 424 * 32767 characters, the high bit of the length is set meaning to take 425 * those 15 bits as a high word and it will be followed by another 426 * uint16_t containing the low word. 427 * 428 * If styleCount is not zero, then immediately following the array of 429 * uint32_t indices into the string table is another array of indices 430 * into a style table starting at stylesStart. Each entry in the 431 * style table is an array of ResStringPool_span structures. 432 */ 433 struct ResStringPool_header 434 { 435 struct ResChunk_header header; 436 437 // Number of strings in this pool (number of uint32_t indices that follow 438 // in the data). 439 uint32_t stringCount; 440 441 // Number of style span arrays in the pool (number of uint32_t indices 442 // follow the string indices). 443 uint32_t styleCount; 444 445 // Flags. 446 enum { 447 // If set, the string index is sorted by the string values (based 448 // on strcmp16()). 449 SORTED_FLAG = 1<<0, 450 451 // String pool is encoded in UTF-8 452 UTF8_FLAG = 1<<8 453 }; 454 uint32_t flags; 455 456 // Index from header of the string data. 457 uint32_t stringsStart; 458 459 // Index from header of the style data. 460 uint32_t stylesStart; 461 }; 462 463 /** 464 * This structure defines a span of style information associated with 465 * a string in the pool. 466 */ 467 struct ResStringPool_span 468 { 469 enum { 470 END = 0xFFFFFFFF 471 }; 472 473 // This is the name of the span -- that is, the name of the XML 474 // tag that defined it. The special value END (0xFFFFFFFF) indicates 475 // the end of an array of spans. 476 ResStringPool_ref name; 477 478 // The range of characters in the string that this span applies to. 479 uint32_t firstChar, lastChar; 480 }; 481 482 /** 483 * Convenience class for accessing data in a ResStringPool resource. 484 */ 485 class ResStringPool 486 { 487 public: 488 ResStringPool(); 489 ResStringPool(const void* data, size_t size, bool copyData=false); 490 ~ResStringPool(); 491 492 void setToEmpty(); 493 status_t setTo(const void* data, size_t size, bool copyData=false); 494 495 status_t getError() const; 496 497 void uninit(); 498 499 // Return string entry as UTF16; if the pool is UTF8, the string will 500 // be converted before returning. stringAt(const ResStringPool_ref & ref,size_t * outLen)501 inline const char16_t* stringAt(const ResStringPool_ref& ref, size_t* outLen) const { 502 return stringAt(ref.index, outLen); 503 } 504 const char16_t* stringAt(size_t idx, size_t* outLen) const; 505 506 // Note: returns null if the string pool is not UTF8. 507 const char* string8At(size_t idx, size_t* outLen) const; 508 509 // Return string whether the pool is UTF8 or UTF16. Does not allow you 510 // to distinguish null. 511 const String8 string8ObjectAt(size_t idx) const; 512 513 const ResStringPool_span* styleAt(const ResStringPool_ref& ref) const; 514 const ResStringPool_span* styleAt(size_t idx) const; 515 516 ssize_t indexOfString(const char16_t* str, size_t strLen) const; 517 518 size_t size() const; 519 size_t styleCount() const; 520 size_t bytes() const; 521 522 bool isSorted() const; 523 bool isUTF8() const; 524 525 private: 526 status_t mError; 527 void* mOwnedData; 528 const ResStringPool_header* mHeader; 529 size_t mSize; 530 mutable Mutex mDecodeLock; 531 const uint32_t* mEntries; 532 const uint32_t* mEntryStyles; 533 const void* mStrings; 534 char16_t mutable** mCache; 535 uint32_t mStringPoolSize; // number of uint16_t 536 const uint32_t* mStyles; 537 uint32_t mStylePoolSize; // number of uint32_t 538 }; 539 540 /** 541 * Wrapper class that allows the caller to retrieve a string from 542 * a string pool without knowing which string pool to look. 543 */ 544 class StringPoolRef { 545 public: 546 StringPoolRef(); 547 StringPoolRef(const ResStringPool* pool, uint32_t index); 548 549 const char* string8(size_t* outLen) const; 550 const char16_t* string16(size_t* outLen) const; 551 552 private: 553 const ResStringPool* mPool; 554 uint32_t mIndex; 555 }; 556 557 /** ******************************************************************** 558 * XML Tree 559 * 560 * Binary representation of an XML document. This is designed to 561 * express everything in an XML document, in a form that is much 562 * easier to parse on the device. 563 * 564 *********************************************************************** */ 565 566 /** 567 * XML tree header. This appears at the front of an XML tree, 568 * describing its content. It is followed by a flat array of 569 * ResXMLTree_node structures; the hierarchy of the XML document 570 * is described by the occurrance of RES_XML_START_ELEMENT_TYPE 571 * and corresponding RES_XML_END_ELEMENT_TYPE nodes in the array. 572 */ 573 struct ResXMLTree_header 574 { 575 struct ResChunk_header header; 576 }; 577 578 /** 579 * Basic XML tree node. A single item in the XML document. Extended info 580 * about the node can be found after header.headerSize. 581 */ 582 struct ResXMLTree_node 583 { 584 struct ResChunk_header header; 585 586 // Line number in original source file at which this element appeared. 587 uint32_t lineNumber; 588 589 // Optional XML comment that was associated with this element; -1 if none. 590 struct ResStringPool_ref comment; 591 }; 592 593 /** 594 * Extended XML tree node for CDATA tags -- includes the CDATA string. 595 * Appears header.headerSize bytes after a ResXMLTree_node. 596 */ 597 struct ResXMLTree_cdataExt 598 { 599 // The raw CDATA character data. 600 struct ResStringPool_ref data; 601 602 // The typed value of the character data if this is a CDATA node. 603 struct Res_value typedData; 604 }; 605 606 /** 607 * Extended XML tree node for namespace start/end nodes. 608 * Appears header.headerSize bytes after a ResXMLTree_node. 609 */ 610 struct ResXMLTree_namespaceExt 611 { 612 // The prefix of the namespace. 613 struct ResStringPool_ref prefix; 614 615 // The URI of the namespace. 616 struct ResStringPool_ref uri; 617 }; 618 619 /** 620 * Extended XML tree node for element start/end nodes. 621 * Appears header.headerSize bytes after a ResXMLTree_node. 622 */ 623 struct ResXMLTree_endElementExt 624 { 625 // String of the full namespace of this element. 626 struct ResStringPool_ref ns; 627 628 // String name of this node if it is an ELEMENT; the raw 629 // character data if this is a CDATA node. 630 struct ResStringPool_ref name; 631 }; 632 633 /** 634 * Extended XML tree node for start tags -- includes attribute 635 * information. 636 * Appears header.headerSize bytes after a ResXMLTree_node. 637 */ 638 struct ResXMLTree_attrExt 639 { 640 // String of the full namespace of this element. 641 struct ResStringPool_ref ns; 642 643 // String name of this node if it is an ELEMENT; the raw 644 // character data if this is a CDATA node. 645 struct ResStringPool_ref name; 646 647 // Byte offset from the start of this structure where the attributes start. 648 uint16_t attributeStart; 649 650 // Size of the ResXMLTree_attribute structures that follow. 651 uint16_t attributeSize; 652 653 // Number of attributes associated with an ELEMENT. These are 654 // available as an array of ResXMLTree_attribute structures 655 // immediately following this node. 656 uint16_t attributeCount; 657 658 // Index (1-based) of the "id" attribute. 0 if none. 659 uint16_t idIndex; 660 661 // Index (1-based) of the "class" attribute. 0 if none. 662 uint16_t classIndex; 663 664 // Index (1-based) of the "style" attribute. 0 if none. 665 uint16_t styleIndex; 666 }; 667 668 struct ResXMLTree_attribute 669 { 670 // Namespace of this attribute. 671 struct ResStringPool_ref ns; 672 673 // Name of this attribute. 674 struct ResStringPool_ref name; 675 676 // The original raw string value of this attribute. 677 struct ResStringPool_ref rawValue; 678 679 // Processesd typed value of this attribute. 680 struct Res_value typedValue; 681 }; 682 683 class ResXMLTree; 684 685 class ResXMLParser 686 { 687 public: 688 ResXMLParser(const ResXMLTree& tree); 689 690 enum event_code_t { 691 BAD_DOCUMENT = -1, 692 START_DOCUMENT = 0, 693 END_DOCUMENT = 1, 694 695 FIRST_CHUNK_CODE = RES_XML_FIRST_CHUNK_TYPE, 696 697 START_NAMESPACE = RES_XML_START_NAMESPACE_TYPE, 698 END_NAMESPACE = RES_XML_END_NAMESPACE_TYPE, 699 START_TAG = RES_XML_START_ELEMENT_TYPE, 700 END_TAG = RES_XML_END_ELEMENT_TYPE, 701 TEXT = RES_XML_CDATA_TYPE 702 }; 703 704 struct ResXMLPosition 705 { 706 event_code_t eventCode; 707 const ResXMLTree_node* curNode; 708 const void* curExt; 709 }; 710 711 void restart(); 712 713 const ResStringPool& getStrings() const; 714 715 event_code_t getEventType() const; 716 // Note, unlike XmlPullParser, the first call to next() will return 717 // START_TAG of the first element. 718 event_code_t next(); 719 720 // These are available for all nodes: 721 int32_t getCommentID() const; 722 const char16_t* getComment(size_t* outLen) const; 723 uint32_t getLineNumber() const; 724 725 // This is available for TEXT: 726 int32_t getTextID() const; 727 const char16_t* getText(size_t* outLen) const; 728 ssize_t getTextValue(Res_value* outValue) const; 729 730 // These are available for START_NAMESPACE and END_NAMESPACE: 731 int32_t getNamespacePrefixID() const; 732 const char16_t* getNamespacePrefix(size_t* outLen) const; 733 int32_t getNamespaceUriID() const; 734 const char16_t* getNamespaceUri(size_t* outLen) const; 735 736 // These are available for START_TAG and END_TAG: 737 int32_t getElementNamespaceID() const; 738 const char16_t* getElementNamespace(size_t* outLen) const; 739 int32_t getElementNameID() const; 740 const char16_t* getElementName(size_t* outLen) const; 741 742 // Remaining methods are for retrieving information about attributes 743 // associated with a START_TAG: 744 745 size_t getAttributeCount() const; 746 747 // Returns -1 if no namespace, -2 if idx out of range. 748 int32_t getAttributeNamespaceID(size_t idx) const; 749 const char16_t* getAttributeNamespace(size_t idx, size_t* outLen) const; 750 751 int32_t getAttributeNameID(size_t idx) const; 752 const char16_t* getAttributeName(size_t idx, size_t* outLen) const; 753 uint32_t getAttributeNameResID(size_t idx) const; 754 755 // These will work only if the underlying string pool is UTF-8. 756 const char* getAttributeNamespace8(size_t idx, size_t* outLen) const; 757 const char* getAttributeName8(size_t idx, size_t* outLen) const; 758 759 int32_t getAttributeValueStringID(size_t idx) const; 760 const char16_t* getAttributeStringValue(size_t idx, size_t* outLen) const; 761 762 int32_t getAttributeDataType(size_t idx) const; 763 int32_t getAttributeData(size_t idx) const; 764 ssize_t getAttributeValue(size_t idx, Res_value* outValue) const; 765 766 ssize_t indexOfAttribute(const char* ns, const char* attr) const; 767 ssize_t indexOfAttribute(const char16_t* ns, size_t nsLen, 768 const char16_t* attr, size_t attrLen) const; 769 770 ssize_t indexOfID() const; 771 ssize_t indexOfClass() const; 772 ssize_t indexOfStyle() const; 773 774 void getPosition(ResXMLPosition* pos) const; 775 void setPosition(const ResXMLPosition& pos); 776 777 private: 778 friend class ResXMLTree; 779 780 event_code_t nextNode(); 781 782 const ResXMLTree& mTree; 783 event_code_t mEventCode; 784 const ResXMLTree_node* mCurNode; 785 const void* mCurExt; 786 }; 787 788 class DynamicRefTable; 789 790 /** 791 * Convenience class for accessing data in a ResXMLTree resource. 792 */ 793 class ResXMLTree : public ResXMLParser 794 { 795 public: 796 ResXMLTree(const DynamicRefTable* dynamicRefTable); 797 ResXMLTree(); 798 ~ResXMLTree(); 799 800 status_t setTo(const void* data, size_t size, bool copyData=false); 801 802 status_t getError() const; 803 804 void uninit(); 805 806 private: 807 friend class ResXMLParser; 808 809 status_t validateNode(const ResXMLTree_node* node) const; 810 811 const DynamicRefTable* const mDynamicRefTable; 812 813 status_t mError; 814 void* mOwnedData; 815 const ResXMLTree_header* mHeader; 816 size_t mSize; 817 const uint8_t* mDataEnd; 818 ResStringPool mStrings; 819 const uint32_t* mResIds; 820 size_t mNumResIds; 821 const ResXMLTree_node* mRootNode; 822 const void* mRootExt; 823 event_code_t mRootCode; 824 }; 825 826 /** ******************************************************************** 827 * RESOURCE TABLE 828 * 829 *********************************************************************** */ 830 831 /** 832 * Header for a resource table. Its data contains a series of 833 * additional chunks: 834 * * A ResStringPool_header containing all table values. This string pool 835 * contains all of the string values in the entire resource table (not 836 * the names of entries or type identifiers however). 837 * * One or more ResTable_package chunks. 838 * 839 * Specific entries within a resource table can be uniquely identified 840 * with a single integer as defined by the ResTable_ref structure. 841 */ 842 struct ResTable_header 843 { 844 struct ResChunk_header header; 845 846 // The number of ResTable_package structures. 847 uint32_t packageCount; 848 }; 849 850 /** 851 * A collection of resource data types within a package. Followed by 852 * one or more ResTable_type and ResTable_typeSpec structures containing the 853 * entry values for each resource type. 854 */ 855 struct ResTable_package 856 { 857 struct ResChunk_header header; 858 859 // If this is a base package, its ID. Package IDs start 860 // at 1 (corresponding to the value of the package bits in a 861 // resource identifier). 0 means this is not a base package. 862 uint32_t id; 863 864 // Actual name of this package, \0-terminated. 865 uint16_t name[128]; 866 867 // Offset to a ResStringPool_header defining the resource 868 // type symbol table. If zero, this package is inheriting from 869 // another base package (overriding specific values in it). 870 uint32_t typeStrings; 871 872 // Last index into typeStrings that is for public use by others. 873 uint32_t lastPublicType; 874 875 // Offset to a ResStringPool_header defining the resource 876 // key symbol table. If zero, this package is inheriting from 877 // another base package (overriding specific values in it). 878 uint32_t keyStrings; 879 880 // Last index into keyStrings that is for public use by others. 881 uint32_t lastPublicKey; 882 883 uint32_t typeIdOffset; 884 }; 885 886 // The most specific locale can consist of: 887 // 888 // - a 3 char language code 889 // - a 3 char region code prefixed by a 'r' 890 // - a 4 char script code prefixed by a 's' 891 // - a 8 char variant code prefixed by a 'v' 892 // 893 // each separated by a single char separator, which sums up to a total of 24 894 // chars, (25 include the string terminator) rounded up to 28 to be 4 byte 895 // aligned. 896 #define RESTABLE_MAX_LOCALE_LEN 28 897 898 899 /** 900 * Describes a particular resource configuration. 901 */ 902 struct ResTable_config 903 { 904 // Number of bytes in this structure. 905 uint32_t size; 906 907 union { 908 struct { 909 // Mobile country code (from SIM). 0 means "any". 910 uint16_t mcc; 911 // Mobile network code (from SIM). 0 means "any". 912 uint16_t mnc; 913 }; 914 uint32_t imsi; 915 }; 916 917 union { 918 struct { 919 // This field can take three different forms: 920 // - \0\0 means "any". 921 // 922 // - Two 7 bit ascii values interpreted as ISO-639-1 language 923 // codes ('fr', 'en' etc. etc.). The high bit for both bytes is 924 // zero. 925 // 926 // - A single 16 bit little endian packed value representing an 927 // ISO-639-2 3 letter language code. This will be of the form: 928 // 929 // {1, t, t, t, t, t, s, s, s, s, s, f, f, f, f, f} 930 // 931 // bit[0, 4] = first letter of the language code 932 // bit[5, 9] = second letter of the language code 933 // bit[10, 14] = third letter of the language code. 934 // bit[15] = 1 always 935 // 936 // For backwards compatibility, languages that have unambiguous 937 // two letter codes are represented in that format. 938 // 939 // The layout is always bigendian irrespective of the runtime 940 // architecture. 941 char language[2]; 942 943 // This field can take three different forms: 944 // - \0\0 means "any". 945 // 946 // - Two 7 bit ascii values interpreted as 2 letter region 947 // codes ('US', 'GB' etc.). The high bit for both bytes is zero. 948 // 949 // - An UN M.49 3 digit region code. For simplicity, these are packed 950 // in the same manner as the language codes, though we should need 951 // only 10 bits to represent them, instead of the 15. 952 // 953 // The layout is always bigendian irrespective of the runtime 954 // architecture. 955 char country[2]; 956 }; 957 uint32_t locale; 958 }; 959 960 enum { 961 ORIENTATION_ANY = ACONFIGURATION_ORIENTATION_ANY, 962 ORIENTATION_PORT = ACONFIGURATION_ORIENTATION_PORT, 963 ORIENTATION_LAND = ACONFIGURATION_ORIENTATION_LAND, 964 ORIENTATION_SQUARE = ACONFIGURATION_ORIENTATION_SQUARE, 965 }; 966 967 enum { 968 TOUCHSCREEN_ANY = ACONFIGURATION_TOUCHSCREEN_ANY, 969 TOUCHSCREEN_NOTOUCH = ACONFIGURATION_TOUCHSCREEN_NOTOUCH, 970 TOUCHSCREEN_STYLUS = ACONFIGURATION_TOUCHSCREEN_STYLUS, 971 TOUCHSCREEN_FINGER = ACONFIGURATION_TOUCHSCREEN_FINGER, 972 }; 973 974 enum { 975 DENSITY_DEFAULT = ACONFIGURATION_DENSITY_DEFAULT, 976 DENSITY_LOW = ACONFIGURATION_DENSITY_LOW, 977 DENSITY_MEDIUM = ACONFIGURATION_DENSITY_MEDIUM, 978 DENSITY_TV = ACONFIGURATION_DENSITY_TV, 979 DENSITY_HIGH = ACONFIGURATION_DENSITY_HIGH, 980 DENSITY_XHIGH = ACONFIGURATION_DENSITY_XHIGH, 981 DENSITY_XXHIGH = ACONFIGURATION_DENSITY_XXHIGH, 982 DENSITY_XXXHIGH = ACONFIGURATION_DENSITY_XXXHIGH, 983 DENSITY_ANY = ACONFIGURATION_DENSITY_ANY, 984 DENSITY_NONE = ACONFIGURATION_DENSITY_NONE 985 }; 986 987 union { 988 struct { 989 uint8_t orientation; 990 uint8_t touchscreen; 991 uint16_t density; 992 }; 993 uint32_t screenType; 994 }; 995 996 enum { 997 KEYBOARD_ANY = ACONFIGURATION_KEYBOARD_ANY, 998 KEYBOARD_NOKEYS = ACONFIGURATION_KEYBOARD_NOKEYS, 999 KEYBOARD_QWERTY = ACONFIGURATION_KEYBOARD_QWERTY, 1000 KEYBOARD_12KEY = ACONFIGURATION_KEYBOARD_12KEY, 1001 }; 1002 1003 enum { 1004 NAVIGATION_ANY = ACONFIGURATION_NAVIGATION_ANY, 1005 NAVIGATION_NONAV = ACONFIGURATION_NAVIGATION_NONAV, 1006 NAVIGATION_DPAD = ACONFIGURATION_NAVIGATION_DPAD, 1007 NAVIGATION_TRACKBALL = ACONFIGURATION_NAVIGATION_TRACKBALL, 1008 NAVIGATION_WHEEL = ACONFIGURATION_NAVIGATION_WHEEL, 1009 }; 1010 1011 enum { 1012 MASK_KEYSHIDDEN = 0x0003, 1013 KEYSHIDDEN_ANY = ACONFIGURATION_KEYSHIDDEN_ANY, 1014 KEYSHIDDEN_NO = ACONFIGURATION_KEYSHIDDEN_NO, 1015 KEYSHIDDEN_YES = ACONFIGURATION_KEYSHIDDEN_YES, 1016 KEYSHIDDEN_SOFT = ACONFIGURATION_KEYSHIDDEN_SOFT, 1017 }; 1018 1019 enum { 1020 MASK_NAVHIDDEN = 0x000c, 1021 SHIFT_NAVHIDDEN = 2, 1022 NAVHIDDEN_ANY = ACONFIGURATION_NAVHIDDEN_ANY << SHIFT_NAVHIDDEN, 1023 NAVHIDDEN_NO = ACONFIGURATION_NAVHIDDEN_NO << SHIFT_NAVHIDDEN, 1024 NAVHIDDEN_YES = ACONFIGURATION_NAVHIDDEN_YES << SHIFT_NAVHIDDEN, 1025 }; 1026 1027 union { 1028 struct { 1029 uint8_t keyboard; 1030 uint8_t navigation; 1031 uint8_t inputFlags; 1032 uint8_t inputPad0; 1033 }; 1034 uint32_t input; 1035 }; 1036 1037 enum { 1038 SCREENWIDTH_ANY = 0 1039 }; 1040 1041 enum { 1042 SCREENHEIGHT_ANY = 0 1043 }; 1044 1045 union { 1046 struct { 1047 uint16_t screenWidth; 1048 uint16_t screenHeight; 1049 }; 1050 uint32_t screenSize; 1051 }; 1052 1053 enum { 1054 SDKVERSION_ANY = 0 1055 }; 1056 1057 enum { 1058 MINORVERSION_ANY = 0 1059 }; 1060 1061 union { 1062 struct { 1063 uint16_t sdkVersion; 1064 // For now minorVersion must always be 0!!! Its meaning 1065 // is currently undefined. 1066 uint16_t minorVersion; 1067 }; 1068 uint32_t version; 1069 }; 1070 1071 enum { 1072 // screenLayout bits for screen size class. 1073 MASK_SCREENSIZE = 0x0f, 1074 SCREENSIZE_ANY = ACONFIGURATION_SCREENSIZE_ANY, 1075 SCREENSIZE_SMALL = ACONFIGURATION_SCREENSIZE_SMALL, 1076 SCREENSIZE_NORMAL = ACONFIGURATION_SCREENSIZE_NORMAL, 1077 SCREENSIZE_LARGE = ACONFIGURATION_SCREENSIZE_LARGE, 1078 SCREENSIZE_XLARGE = ACONFIGURATION_SCREENSIZE_XLARGE, 1079 1080 // screenLayout bits for wide/long screen variation. 1081 MASK_SCREENLONG = 0x30, 1082 SHIFT_SCREENLONG = 4, 1083 SCREENLONG_ANY = ACONFIGURATION_SCREENLONG_ANY << SHIFT_SCREENLONG, 1084 SCREENLONG_NO = ACONFIGURATION_SCREENLONG_NO << SHIFT_SCREENLONG, 1085 SCREENLONG_YES = ACONFIGURATION_SCREENLONG_YES << SHIFT_SCREENLONG, 1086 1087 // screenLayout bits for layout direction. 1088 MASK_LAYOUTDIR = 0xC0, 1089 SHIFT_LAYOUTDIR = 6, 1090 LAYOUTDIR_ANY = ACONFIGURATION_LAYOUTDIR_ANY << SHIFT_LAYOUTDIR, 1091 LAYOUTDIR_LTR = ACONFIGURATION_LAYOUTDIR_LTR << SHIFT_LAYOUTDIR, 1092 LAYOUTDIR_RTL = ACONFIGURATION_LAYOUTDIR_RTL << SHIFT_LAYOUTDIR, 1093 }; 1094 1095 enum { 1096 // uiMode bits for the mode type. 1097 MASK_UI_MODE_TYPE = 0x0f, 1098 UI_MODE_TYPE_ANY = ACONFIGURATION_UI_MODE_TYPE_ANY, 1099 UI_MODE_TYPE_NORMAL = ACONFIGURATION_UI_MODE_TYPE_NORMAL, 1100 UI_MODE_TYPE_DESK = ACONFIGURATION_UI_MODE_TYPE_DESK, 1101 UI_MODE_TYPE_CAR = ACONFIGURATION_UI_MODE_TYPE_CAR, 1102 UI_MODE_TYPE_TELEVISION = ACONFIGURATION_UI_MODE_TYPE_TELEVISION, 1103 UI_MODE_TYPE_APPLIANCE = ACONFIGURATION_UI_MODE_TYPE_APPLIANCE, 1104 UI_MODE_TYPE_WATCH = ACONFIGURATION_UI_MODE_TYPE_WATCH, 1105 UI_MODE_TYPE_VR_HEADSET = ACONFIGURATION_UI_MODE_TYPE_VR_HEADSET, 1106 1107 // uiMode bits for the night switch. 1108 MASK_UI_MODE_NIGHT = 0x30, 1109 SHIFT_UI_MODE_NIGHT = 4, 1110 UI_MODE_NIGHT_ANY = ACONFIGURATION_UI_MODE_NIGHT_ANY << SHIFT_UI_MODE_NIGHT, 1111 UI_MODE_NIGHT_NO = ACONFIGURATION_UI_MODE_NIGHT_NO << SHIFT_UI_MODE_NIGHT, 1112 UI_MODE_NIGHT_YES = ACONFIGURATION_UI_MODE_NIGHT_YES << SHIFT_UI_MODE_NIGHT, 1113 }; 1114 1115 union { 1116 struct { 1117 uint8_t screenLayout; 1118 uint8_t uiMode; 1119 uint16_t smallestScreenWidthDp; 1120 }; 1121 uint32_t screenConfig; 1122 }; 1123 1124 union { 1125 struct { 1126 uint16_t screenWidthDp; 1127 uint16_t screenHeightDp; 1128 }; 1129 uint32_t screenSizeDp; 1130 }; 1131 1132 // The ISO-15924 short name for the script corresponding to this 1133 // configuration. (eg. Hant, Latn, etc.). Interpreted in conjunction with 1134 // the locale field. 1135 char localeScript[4]; 1136 1137 // A single BCP-47 variant subtag. Will vary in length between 4 and 8 1138 // chars. Interpreted in conjunction with the locale field. 1139 char localeVariant[8]; 1140 1141 enum { 1142 // screenLayout2 bits for round/notround. 1143 MASK_SCREENROUND = 0x03, 1144 SCREENROUND_ANY = ACONFIGURATION_SCREENROUND_ANY, 1145 SCREENROUND_NO = ACONFIGURATION_SCREENROUND_NO, 1146 SCREENROUND_YES = ACONFIGURATION_SCREENROUND_YES, 1147 }; 1148 1149 enum { 1150 // colorMode bits for wide-color gamut/narrow-color gamut. 1151 MASK_WIDE_COLOR_GAMUT = 0x03, 1152 WIDE_COLOR_GAMUT_ANY = ACONFIGURATION_WIDE_COLOR_GAMUT_ANY, 1153 WIDE_COLOR_GAMUT_NO = ACONFIGURATION_WIDE_COLOR_GAMUT_NO, 1154 WIDE_COLOR_GAMUT_YES = ACONFIGURATION_WIDE_COLOR_GAMUT_YES, 1155 1156 // colorMode bits for HDR/LDR. 1157 MASK_HDR = 0x0c, 1158 SHIFT_COLOR_MODE_HDR = 2, 1159 HDR_ANY = ACONFIGURATION_HDR_ANY << SHIFT_COLOR_MODE_HDR, 1160 HDR_NO = ACONFIGURATION_HDR_NO << SHIFT_COLOR_MODE_HDR, 1161 HDR_YES = ACONFIGURATION_HDR_YES << SHIFT_COLOR_MODE_HDR, 1162 }; 1163 1164 // An extension of screenConfig. 1165 union { 1166 struct { 1167 uint8_t screenLayout2; // Contains round/notround qualifier. 1168 uint8_t colorMode; // Wide-gamut, HDR, etc. 1169 uint16_t screenConfigPad2; // Reserved padding. 1170 }; 1171 uint32_t screenConfig2; 1172 }; 1173 1174 // If false and localeScript is set, it means that the script of the locale 1175 // was explicitly provided. 1176 // 1177 // If true, it means that localeScript was automatically computed. 1178 // localeScript may still not be set in this case, which means that we 1179 // tried but could not compute a script. 1180 bool localeScriptWasComputed; 1181 1182 void copyFromDeviceNoSwap(const ResTable_config& o); 1183 1184 void copyFromDtoH(const ResTable_config& o); 1185 1186 void swapHtoD(); 1187 1188 int compare(const ResTable_config& o) const; 1189 int compareLogical(const ResTable_config& o) const; 1190 1191 inline bool operator<(const ResTable_config& o) const { return compare(o) < 0; } 1192 1193 // Flags indicating a set of config values. These flag constants must 1194 // match the corresponding ones in android.content.pm.ActivityInfo and 1195 // attrs_manifest.xml. 1196 enum { 1197 CONFIG_MCC = ACONFIGURATION_MCC, 1198 CONFIG_MNC = ACONFIGURATION_MNC, 1199 CONFIG_LOCALE = ACONFIGURATION_LOCALE, 1200 CONFIG_TOUCHSCREEN = ACONFIGURATION_TOUCHSCREEN, 1201 CONFIG_KEYBOARD = ACONFIGURATION_KEYBOARD, 1202 CONFIG_KEYBOARD_HIDDEN = ACONFIGURATION_KEYBOARD_HIDDEN, 1203 CONFIG_NAVIGATION = ACONFIGURATION_NAVIGATION, 1204 CONFIG_ORIENTATION = ACONFIGURATION_ORIENTATION, 1205 CONFIG_DENSITY = ACONFIGURATION_DENSITY, 1206 CONFIG_SCREEN_SIZE = ACONFIGURATION_SCREEN_SIZE, 1207 CONFIG_SMALLEST_SCREEN_SIZE = ACONFIGURATION_SMALLEST_SCREEN_SIZE, 1208 CONFIG_VERSION = ACONFIGURATION_VERSION, 1209 CONFIG_SCREEN_LAYOUT = ACONFIGURATION_SCREEN_LAYOUT, 1210 CONFIG_UI_MODE = ACONFIGURATION_UI_MODE, 1211 CONFIG_LAYOUTDIR = ACONFIGURATION_LAYOUTDIR, 1212 CONFIG_SCREEN_ROUND = ACONFIGURATION_SCREEN_ROUND, 1213 CONFIG_COLOR_MODE = ACONFIGURATION_COLOR_MODE, 1214 }; 1215 1216 // Compare two configuration, returning CONFIG_* flags set for each value 1217 // that is different. 1218 int diff(const ResTable_config& o) const; 1219 1220 // Return true if 'this' is more specific than 'o'. 1221 bool isMoreSpecificThan(const ResTable_config& o) const; 1222 1223 // Return true if 'this' is a better match than 'o' for the 'requested' 1224 // configuration. This assumes that match() has already been used to 1225 // remove any configurations that don't match the requested configuration 1226 // at all; if they are not first filtered, non-matching results can be 1227 // considered better than matching ones. 1228 // The general rule per attribute: if the request cares about an attribute 1229 // (it normally does), if the two (this and o) are equal it's a tie. If 1230 // they are not equal then one must be generic because only generic and 1231 // '==requested' will pass the match() call. So if this is not generic, 1232 // it wins. If this IS generic, o wins (return false). 1233 bool isBetterThan(const ResTable_config& o, const ResTable_config* requested) const; 1234 1235 // Return true if 'this' can be considered a match for the parameters in 1236 // 'settings'. 1237 // Note this is asymetric. A default piece of data will match every request 1238 // but a request for the default should not match odd specifics 1239 // (ie, request with no mcc should not match a particular mcc's data) 1240 // settings is the requested settings 1241 bool match(const ResTable_config& settings) const; 1242 1243 // Get the string representation of the locale component of this 1244 // Config. The maximum size of this representation will be 1245 // |RESTABLE_MAX_LOCALE_LEN| (including a terminating '\0'). 1246 // 1247 // Example: en-US, en-Latn-US, en-POSIX. 1248 // 1249 // If canonicalize is set, Tagalog (tl) locales get converted 1250 // to Filipino (fil). 1251 void getBcp47Locale(char* out, bool canonicalize=false) const; 1252 1253 // Append to str the resource-qualifer string representation of the 1254 // locale component of this Config. If the locale is only country 1255 // and language, it will look like en-rUS. If it has scripts and 1256 // variants, it will be a modified bcp47 tag: b+en+Latn+US. 1257 void appendDirLocale(String8& str) const; 1258 1259 // Sets the values of language, region, script and variant to the 1260 // well formed BCP-47 locale contained in |in|. The input locale is 1261 // assumed to be valid and no validation is performed. 1262 void setBcp47Locale(const char* in); 1263 clearLocaleResTable_config1264 inline void clearLocale() { 1265 locale = 0; 1266 localeScriptWasComputed = false; 1267 memset(localeScript, 0, sizeof(localeScript)); 1268 memset(localeVariant, 0, sizeof(localeVariant)); 1269 } 1270 computeScriptResTable_config1271 inline void computeScript() { 1272 localeDataComputeScript(localeScript, language, country); 1273 } 1274 1275 // Get the 2 or 3 letter language code of this configuration. Trailing 1276 // bytes are set to '\0'. 1277 size_t unpackLanguage(char language[4]) const; 1278 // Get the 2 or 3 letter language code of this configuration. Trailing 1279 // bytes are set to '\0'. 1280 size_t unpackRegion(char region[4]) const; 1281 1282 // Sets the language code of this configuration to the first three 1283 // chars at |language|. 1284 // 1285 // If |language| is a 2 letter code, the trailing byte must be '\0' or 1286 // the BCP-47 separator '-'. 1287 void packLanguage(const char* language); 1288 // Sets the region code of this configuration to the first three bytes 1289 // at |region|. If |region| is a 2 letter code, the trailing byte must be '\0' 1290 // or the BCP-47 separator '-'. 1291 void packRegion(const char* region); 1292 1293 // Returns a positive integer if this config is more specific than |o| 1294 // with respect to their locales, a negative integer if |o| is more specific 1295 // and 0 if they're equally specific. 1296 int isLocaleMoreSpecificThan(const ResTable_config &o) const; 1297 1298 // Return true if 'this' is a better locale match than 'o' for the 1299 // 'requested' configuration. Similar to isBetterThan(), this assumes that 1300 // match() has already been used to remove any configurations that don't 1301 // match the requested configuration at all. 1302 bool isLocaleBetterThan(const ResTable_config& o, const ResTable_config* requested) const; 1303 1304 String8 toString() const; 1305 }; 1306 1307 /** 1308 * A specification of the resources defined by a particular type. 1309 * 1310 * There should be one of these chunks for each resource type. 1311 * 1312 * This structure is followed by an array of integers providing the set of 1313 * configuration change flags (ResTable_config::CONFIG_*) that have multiple 1314 * resources for that configuration. In addition, the high bit is set if that 1315 * resource has been made public. 1316 */ 1317 struct ResTable_typeSpec 1318 { 1319 struct ResChunk_header header; 1320 1321 // The type identifier this chunk is holding. Type IDs start 1322 // at 1 (corresponding to the value of the type bits in a 1323 // resource identifier). 0 is invalid. 1324 uint8_t id; 1325 1326 // Must be 0. 1327 uint8_t res0; 1328 // Must be 0. 1329 uint16_t res1; 1330 1331 // Number of uint32_t entry configuration masks that follow. 1332 uint32_t entryCount; 1333 1334 enum { 1335 // Additional flag indicating an entry is public. 1336 SPEC_PUBLIC = 0x40000000 1337 }; 1338 }; 1339 1340 /** 1341 * A collection of resource entries for a particular resource data 1342 * type. 1343 * 1344 * If the flag FLAG_SPARSE is not set in `flags`, then this struct is 1345 * followed by an array of uint32_t defining the resource 1346 * values, corresponding to the array of type strings in the 1347 * ResTable_package::typeStrings string block. Each of these hold an 1348 * index from entriesStart; a value of NO_ENTRY means that entry is 1349 * not defined. 1350 * 1351 * If the flag FLAG_SPARSE is set in `flags`, then this struct is followed 1352 * by an array of ResTable_sparseTypeEntry defining only the entries that 1353 * have values for this type. Each entry is sorted by their entry ID such 1354 * that a binary search can be performed over the entries. The ID and offset 1355 * are encoded in a uint32_t. See ResTabe_sparseTypeEntry. 1356 * 1357 * There may be multiple of these chunks for a particular resource type, 1358 * supply different configuration variations for the resource values of 1359 * that type. 1360 * 1361 * It would be nice to have an additional ordered index of entries, so 1362 * we can do a binary search if trying to find a resource by string name. 1363 */ 1364 struct ResTable_type 1365 { 1366 struct ResChunk_header header; 1367 1368 enum { 1369 NO_ENTRY = 0xFFFFFFFF 1370 }; 1371 1372 // The type identifier this chunk is holding. Type IDs start 1373 // at 1 (corresponding to the value of the type bits in a 1374 // resource identifier). 0 is invalid. 1375 uint8_t id; 1376 1377 enum { 1378 // If set, the entry is sparse, and encodes both the entry ID and offset into each entry, 1379 // and a binary search is used to find the key. Only available on platforms >= O. 1380 // Mark any types that use this with a v26 qualifier to prevent runtime issues on older 1381 // platforms. 1382 FLAG_SPARSE = 0x01, 1383 }; 1384 uint8_t flags; 1385 1386 // Must be 0. 1387 uint16_t reserved; 1388 1389 // Number of uint32_t entry indices that follow. 1390 uint32_t entryCount; 1391 1392 // Offset from header where ResTable_entry data starts. 1393 uint32_t entriesStart; 1394 1395 // Configuration this collection of entries is designed for. This must always be last. 1396 ResTable_config config; 1397 }; 1398 1399 // The minimum size required to read any version of ResTable_type. 1400 constexpr size_t kResTableTypeMinSize = 1401 sizeof(ResTable_type) - sizeof(ResTable_config) + sizeof(ResTable_config::size); 1402 1403 // Assert that the ResTable_config is always the last field. This poses a problem for extending 1404 // ResTable_type in the future, as ResTable_config is variable (over different releases). 1405 static_assert(sizeof(ResTable_type) == offsetof(ResTable_type, config) + sizeof(ResTable_config), 1406 "ResTable_config must be last field in ResTable_type"); 1407 1408 /** 1409 * An entry in a ResTable_type with the flag `FLAG_SPARSE` set. 1410 */ 1411 union ResTable_sparseTypeEntry { 1412 // Holds the raw uint32_t encoded value. Do not read this. 1413 uint32_t entry; 1414 struct { 1415 // The index of the entry. 1416 uint16_t idx; 1417 1418 // The offset from ResTable_type::entriesStart, divided by 4. 1419 uint16_t offset; 1420 }; 1421 }; 1422 1423 static_assert(sizeof(ResTable_sparseTypeEntry) == sizeof(uint32_t), 1424 "ResTable_sparseTypeEntry must be 4 bytes in size"); 1425 1426 /** 1427 * This is the beginning of information about an entry in the resource 1428 * table. It holds the reference to the name of this entry, and is 1429 * immediately followed by one of: 1430 * * A Res_value structure, if FLAG_COMPLEX is -not- set. 1431 * * An array of ResTable_map structures, if FLAG_COMPLEX is set. 1432 * These supply a set of name/value mappings of data. 1433 */ 1434 struct ResTable_entry 1435 { 1436 // Number of bytes in this structure. 1437 uint16_t size; 1438 1439 enum { 1440 // If set, this is a complex entry, holding a set of name/value 1441 // mappings. It is followed by an array of ResTable_map structures. 1442 FLAG_COMPLEX = 0x0001, 1443 // If set, this resource has been declared public, so libraries 1444 // are allowed to reference it. 1445 FLAG_PUBLIC = 0x0002, 1446 // If set, this is a weak resource and may be overriden by strong 1447 // resources of the same name/type. This is only useful during 1448 // linking with other resource tables. 1449 FLAG_WEAK = 0x0004 1450 }; 1451 uint16_t flags; 1452 1453 // Reference into ResTable_package::keyStrings identifying this entry. 1454 struct ResStringPool_ref key; 1455 }; 1456 1457 /** 1458 * Extended form of a ResTable_entry for map entries, defining a parent map 1459 * resource from which to inherit values. 1460 */ 1461 struct ResTable_map_entry : public ResTable_entry 1462 { 1463 // Resource identifier of the parent mapping, or 0 if there is none. 1464 // This is always treated as a TYPE_DYNAMIC_REFERENCE. 1465 ResTable_ref parent; 1466 // Number of name/value pairs that follow for FLAG_COMPLEX. 1467 uint32_t count; 1468 }; 1469 1470 /** 1471 * A single name/value mapping that is part of a complex resource 1472 * entry. 1473 */ 1474 struct ResTable_map 1475 { 1476 // The resource identifier defining this mapping's name. For attribute 1477 // resources, 'name' can be one of the following special resource types 1478 // to supply meta-data about the attribute; for all other resource types 1479 // it must be an attribute resource. 1480 ResTable_ref name; 1481 1482 // Special values for 'name' when defining attribute resources. 1483 enum { 1484 // This entry holds the attribute's type code. 1485 ATTR_TYPE = Res_MAKEINTERNAL(0), 1486 1487 // For integral attributes, this is the minimum value it can hold. 1488 ATTR_MIN = Res_MAKEINTERNAL(1), 1489 1490 // For integral attributes, this is the maximum value it can hold. 1491 ATTR_MAX = Res_MAKEINTERNAL(2), 1492 1493 // Localization of this resource is can be encouraged or required with 1494 // an aapt flag if this is set 1495 ATTR_L10N = Res_MAKEINTERNAL(3), 1496 1497 // for plural support, see android.content.res.PluralRules#attrForQuantity(int) 1498 ATTR_OTHER = Res_MAKEINTERNAL(4), 1499 ATTR_ZERO = Res_MAKEINTERNAL(5), 1500 ATTR_ONE = Res_MAKEINTERNAL(6), 1501 ATTR_TWO = Res_MAKEINTERNAL(7), 1502 ATTR_FEW = Res_MAKEINTERNAL(8), 1503 ATTR_MANY = Res_MAKEINTERNAL(9) 1504 1505 }; 1506 1507 // Bit mask of allowed types, for use with ATTR_TYPE. 1508 enum { 1509 // No type has been defined for this attribute, use generic 1510 // type handling. The low 16 bits are for types that can be 1511 // handled generically; the upper 16 require additional information 1512 // in the bag so can not be handled generically for TYPE_ANY. 1513 TYPE_ANY = 0x0000FFFF, 1514 1515 // Attribute holds a references to another resource. 1516 TYPE_REFERENCE = 1<<0, 1517 1518 // Attribute holds a generic string. 1519 TYPE_STRING = 1<<1, 1520 1521 // Attribute holds an integer value. ATTR_MIN and ATTR_MIN can 1522 // optionally specify a constrained range of possible integer values. 1523 TYPE_INTEGER = 1<<2, 1524 1525 // Attribute holds a boolean integer. 1526 TYPE_BOOLEAN = 1<<3, 1527 1528 // Attribute holds a color value. 1529 TYPE_COLOR = 1<<4, 1530 1531 // Attribute holds a floating point value. 1532 TYPE_FLOAT = 1<<5, 1533 1534 // Attribute holds a dimension value, such as "20px". 1535 TYPE_DIMENSION = 1<<6, 1536 1537 // Attribute holds a fraction value, such as "20%". 1538 TYPE_FRACTION = 1<<7, 1539 1540 // Attribute holds an enumeration. The enumeration values are 1541 // supplied as additional entries in the map. 1542 TYPE_ENUM = 1<<16, 1543 1544 // Attribute holds a bitmaks of flags. The flag bit values are 1545 // supplied as additional entries in the map. 1546 TYPE_FLAGS = 1<<17 1547 }; 1548 1549 // Enum of localization modes, for use with ATTR_L10N. 1550 enum { 1551 L10N_NOT_REQUIRED = 0, 1552 L10N_SUGGESTED = 1 1553 }; 1554 1555 // This mapping's value. 1556 Res_value value; 1557 }; 1558 1559 /** 1560 * A package-id to package name mapping for any shared libraries used 1561 * in this resource table. The package-id's encoded in this resource 1562 * table may be different than the id's assigned at runtime. We must 1563 * be able to translate the package-id's based on the package name. 1564 */ 1565 struct ResTable_lib_header 1566 { 1567 struct ResChunk_header header; 1568 1569 // The number of shared libraries linked in this resource table. 1570 uint32_t count; 1571 }; 1572 1573 /** 1574 * A shared library package-id to package name entry. 1575 */ 1576 struct ResTable_lib_entry 1577 { 1578 // The package-id this shared library was assigned at build time. 1579 // We use a uint32 to keep the structure aligned on a uint32 boundary. 1580 uint32_t packageId; 1581 1582 // The package name of the shared library. \0 terminated. 1583 uint16_t packageName[128]; 1584 }; 1585 1586 class AssetManager2; 1587 1588 /** 1589 * Holds the shared library ID table. Shared libraries are assigned package IDs at 1590 * build time, but they may be loaded in a different order, so we need to maintain 1591 * a mapping of build-time package ID to run-time assigned package ID. 1592 * 1593 * Dynamic references are not currently supported in overlays. Only the base package 1594 * may have dynamic references. 1595 */ 1596 class DynamicRefTable 1597 { 1598 friend class AssetManager2; 1599 public: 1600 DynamicRefTable(); 1601 DynamicRefTable(uint8_t packageId, bool appAsLib); 1602 1603 // Loads an unmapped reference table from the package. 1604 status_t load(const ResTable_lib_header* const header); 1605 1606 // Adds mappings from the other DynamicRefTable 1607 status_t addMappings(const DynamicRefTable& other); 1608 1609 // Creates a mapping from build-time package ID to run-time package ID for 1610 // the given package. 1611 status_t addMapping(const String16& packageName, uint8_t packageId); 1612 1613 void addMapping(uint8_t buildPackageId, uint8_t runtimePackageId); 1614 1615 // Performs the actual conversion of build-time resource ID to run-time 1616 // resource ID. 1617 status_t lookupResourceId(uint32_t* resId) const; 1618 status_t lookupResourceValue(Res_value* value) const; 1619 entries()1620 inline const KeyedVector<String16, uint8_t>& entries() const { 1621 return mEntries; 1622 } 1623 1624 private: 1625 uint8_t mAssignedPackageId; 1626 uint8_t mLookupTable[256]; 1627 KeyedVector<String16, uint8_t> mEntries; 1628 bool mAppAsLib; 1629 }; 1630 1631 bool U16StringToInt(const char16_t* s, size_t len, Res_value* outValue); 1632 1633 /** 1634 * Convenience class for accessing data in a ResTable resource. 1635 */ 1636 class ResTable 1637 { 1638 public: 1639 ResTable(); 1640 ResTable(const void* data, size_t size, const int32_t cookie, 1641 bool copyData=false); 1642 ~ResTable(); 1643 1644 status_t add(const void* data, size_t size, const int32_t cookie=-1, bool copyData=false); 1645 status_t add(const void* data, size_t size, const void* idmapData, size_t idmapDataSize, 1646 const int32_t cookie=-1, bool copyData=false, bool appAsLib=false); 1647 1648 status_t add(Asset* asset, const int32_t cookie=-1, bool copyData=false); 1649 status_t add(Asset* asset, Asset* idmapAsset, const int32_t cookie=-1, bool copyData=false, 1650 bool appAsLib=false, bool isSystemAsset=false); 1651 1652 status_t add(ResTable* src, bool isSystemAsset=false); 1653 status_t addEmpty(const int32_t cookie); 1654 1655 status_t getError() const; 1656 1657 void uninit(); 1658 1659 struct resource_name 1660 { 1661 const char16_t* package; 1662 size_t packageLen; 1663 const char16_t* type; 1664 const char* type8; 1665 size_t typeLen; 1666 const char16_t* name; 1667 const char* name8; 1668 size_t nameLen; 1669 }; 1670 1671 bool getResourceName(uint32_t resID, bool allowUtf8, resource_name* outName) const; 1672 1673 bool getResourceFlags(uint32_t resID, uint32_t* outFlags) const; 1674 1675 /** 1676 * Retrieve the value of a resource. If the resource is found, returns a 1677 * value >= 0 indicating the table it is in (for use with 1678 * getTableStringBlock() and getTableCookie()) and fills in 'outValue'. If 1679 * not found, returns a negative error code. 1680 * 1681 * Note that this function does not do reference traversal. If you want 1682 * to follow references to other resources to get the "real" value to 1683 * use, you need to call resolveReference() after this function. 1684 * 1685 * @param resID The desired resoruce identifier. 1686 * @param outValue Filled in with the resource data that was found. 1687 * 1688 * @return ssize_t Either a >= 0 table index or a negative error code. 1689 */ 1690 ssize_t getResource(uint32_t resID, Res_value* outValue, bool mayBeBag = false, 1691 uint16_t density = 0, 1692 uint32_t* outSpecFlags = NULL, 1693 ResTable_config* outConfig = NULL) const; 1694 1695 inline ssize_t getResource(const ResTable_ref& res, Res_value* outValue, 1696 uint32_t* outSpecFlags=NULL) const { 1697 return getResource(res.ident, outValue, false, 0, outSpecFlags, NULL); 1698 } 1699 1700 ssize_t resolveReference(Res_value* inOutValue, 1701 ssize_t blockIndex, 1702 uint32_t* outLastRef = NULL, 1703 uint32_t* inoutTypeSpecFlags = NULL, 1704 ResTable_config* outConfig = NULL) const; 1705 1706 enum { 1707 TMP_BUFFER_SIZE = 16 1708 }; 1709 const char16_t* valueToString(const Res_value* value, size_t stringBlock, 1710 char16_t tmpBuffer[TMP_BUFFER_SIZE], 1711 size_t* outLen) const; 1712 1713 struct bag_entry { 1714 ssize_t stringBlock; 1715 ResTable_map map; 1716 }; 1717 1718 /** 1719 * Retrieve the bag of a resource. If the resoruce is found, returns the 1720 * number of bags it contains and 'outBag' points to an array of their 1721 * values. If not found, a negative error code is returned. 1722 * 1723 * Note that this function -does- do reference traversal of the bag data. 1724 * 1725 * @param resID The desired resource identifier. 1726 * @param outBag Filled inm with a pointer to the bag mappings. 1727 * 1728 * @return ssize_t Either a >= 0 bag count of negative error code. 1729 */ 1730 ssize_t lockBag(uint32_t resID, const bag_entry** outBag) const; 1731 1732 void unlockBag(const bag_entry* bag) const; 1733 1734 void lock() const; 1735 1736 ssize_t getBagLocked(uint32_t resID, const bag_entry** outBag, 1737 uint32_t* outTypeSpecFlags=NULL) const; 1738 1739 void unlock() const; 1740 1741 class Theme { 1742 public: 1743 Theme(const ResTable& table); 1744 ~Theme(); 1745 getResTable()1746 inline const ResTable& getResTable() const { return mTable; } 1747 1748 status_t applyStyle(uint32_t resID, bool force=false); 1749 status_t setTo(const Theme& other); 1750 status_t clear(); 1751 1752 /** 1753 * Retrieve a value in the theme. If the theme defines this 1754 * value, returns a value >= 0 indicating the table it is in 1755 * (for use with getTableStringBlock() and getTableCookie) and 1756 * fills in 'outValue'. If not found, returns a negative error 1757 * code. 1758 * 1759 * Note that this function does not do reference traversal. If you want 1760 * to follow references to other resources to get the "real" value to 1761 * use, you need to call resolveReference() after this function. 1762 * 1763 * @param resID A resource identifier naming the desired theme 1764 * attribute. 1765 * @param outValue Filled in with the theme value that was 1766 * found. 1767 * 1768 * @return ssize_t Either a >= 0 table index or a negative error code. 1769 */ 1770 ssize_t getAttribute(uint32_t resID, Res_value* outValue, 1771 uint32_t* outTypeSpecFlags = NULL) const; 1772 1773 /** 1774 * This is like ResTable::resolveReference(), but also takes 1775 * care of resolving attribute references to the theme. 1776 */ 1777 ssize_t resolveAttributeReference(Res_value* inOutValue, 1778 ssize_t blockIndex, uint32_t* outLastRef = NULL, 1779 uint32_t* inoutTypeSpecFlags = NULL, 1780 ResTable_config* inoutConfig = NULL) const; 1781 1782 /** 1783 * Returns a bit mask of configuration changes that will impact this 1784 * theme (and thus require completely reloading it). 1785 */ 1786 uint32_t getChangingConfigurations() const; 1787 1788 void dumpToLog() const; 1789 1790 private: 1791 Theme(const Theme&); 1792 Theme& operator=(const Theme&); 1793 1794 struct theme_entry { 1795 ssize_t stringBlock; 1796 uint32_t typeSpecFlags; 1797 Res_value value; 1798 }; 1799 1800 struct type_info { 1801 size_t numEntries; 1802 theme_entry* entries; 1803 }; 1804 1805 struct package_info { 1806 type_info types[Res_MAXTYPE + 1]; 1807 }; 1808 1809 void free_package(package_info* pi); 1810 package_info* copy_package(package_info* pi); 1811 1812 const ResTable& mTable; 1813 package_info* mPackages[Res_MAXPACKAGE]; 1814 uint32_t mTypeSpecFlags; 1815 }; 1816 1817 void setParameters(const ResTable_config* params); 1818 void getParameters(ResTable_config* params) const; 1819 1820 // Retrieve an identifier (which can be passed to getResource) 1821 // for a given resource name. The 'name' can be fully qualified 1822 // (<package>:<type>.<basename>) or the package or type components 1823 // can be dropped if default values are supplied here. 1824 // 1825 // Returns 0 if no such resource was found, else a valid resource ID. 1826 uint32_t identifierForName(const char16_t* name, size_t nameLen, 1827 const char16_t* type = 0, size_t typeLen = 0, 1828 const char16_t* defPackage = 0, 1829 size_t defPackageLen = 0, 1830 uint32_t* outTypeSpecFlags = NULL) const; 1831 1832 static bool expandResourceRef(const char16_t* refStr, size_t refLen, 1833 String16* outPackage, 1834 String16* outType, 1835 String16* outName, 1836 const String16* defType = NULL, 1837 const String16* defPackage = NULL, 1838 const char** outErrorMsg = NULL, 1839 bool* outPublicOnly = NULL); 1840 1841 static bool stringToInt(const char16_t* s, size_t len, Res_value* outValue); 1842 static bool stringToFloat(const char16_t* s, size_t len, Res_value* outValue); 1843 1844 // Used with stringToValue. 1845 class Accessor 1846 { 1847 public: ~Accessor()1848 inline virtual ~Accessor() { } 1849 1850 virtual const String16& getAssetsPackage() const = 0; 1851 1852 virtual uint32_t getCustomResource(const String16& package, 1853 const String16& type, 1854 const String16& name) const = 0; 1855 virtual uint32_t getCustomResourceWithCreation(const String16& package, 1856 const String16& type, 1857 const String16& name, 1858 const bool createIfNeeded = false) = 0; 1859 virtual uint32_t getRemappedPackage(uint32_t origPackage) const = 0; 1860 virtual bool getAttributeType(uint32_t attrID, uint32_t* outType) = 0; 1861 virtual bool getAttributeMin(uint32_t attrID, uint32_t* outMin) = 0; 1862 virtual bool getAttributeMax(uint32_t attrID, uint32_t* outMax) = 0; 1863 virtual bool getAttributeEnum(uint32_t attrID, 1864 const char16_t* name, size_t nameLen, 1865 Res_value* outValue) = 0; 1866 virtual bool getAttributeFlags(uint32_t attrID, 1867 const char16_t* name, size_t nameLen, 1868 Res_value* outValue) = 0; 1869 virtual uint32_t getAttributeL10N(uint32_t attrID) = 0; 1870 virtual bool getLocalizationSetting() = 0; 1871 virtual void reportError(void* accessorCookie, const char* fmt, ...) = 0; 1872 }; 1873 1874 // Convert a string to a resource value. Handles standard "@res", 1875 // "#color", "123", and "0x1bd" types; performs escaping of strings. 1876 // The resulting value is placed in 'outValue'; if it is a string type, 1877 // 'outString' receives the string. If 'attrID' is supplied, the value is 1878 // type checked against this attribute and it is used to perform enum 1879 // evaluation. If 'acccessor' is supplied, it will be used to attempt to 1880 // resolve resources that do not exist in this ResTable. If 'attrType' is 1881 // supplied, the value will be type checked for this format if 'attrID' 1882 // is not supplied or found. 1883 bool stringToValue(Res_value* outValue, String16* outString, 1884 const char16_t* s, size_t len, 1885 bool preserveSpaces, bool coerceType, 1886 uint32_t attrID = 0, 1887 const String16* defType = NULL, 1888 const String16* defPackage = NULL, 1889 Accessor* accessor = NULL, 1890 void* accessorCookie = NULL, 1891 uint32_t attrType = ResTable_map::TYPE_ANY, 1892 bool enforcePrivate = true) const; 1893 1894 // Perform processing of escapes and quotes in a string. 1895 static bool collectString(String16* outString, 1896 const char16_t* s, size_t len, 1897 bool preserveSpaces, 1898 const char** outErrorMsg = NULL, 1899 bool append = false); 1900 1901 size_t getBasePackageCount() const; 1902 const String16 getBasePackageName(size_t idx) const; 1903 uint32_t getBasePackageId(size_t idx) const; 1904 uint32_t getLastTypeIdForPackage(size_t idx) const; 1905 1906 // Return the number of resource tables that the object contains. 1907 size_t getTableCount() const; 1908 // Return the values string pool for the resource table at the given 1909 // index. This string pool contains all of the strings for values 1910 // contained in the resource table -- that is the item values themselves, 1911 // but not the names their entries or types. 1912 const ResStringPool* getTableStringBlock(size_t index) const; 1913 // Return unique cookie identifier for the given resource table. 1914 int32_t getTableCookie(size_t index) const; 1915 1916 const DynamicRefTable* getDynamicRefTableForCookie(int32_t cookie) const; 1917 1918 // Return the configurations (ResTable_config) that we know about 1919 void getConfigurations(Vector<ResTable_config>* configs, bool ignoreMipmap=false, 1920 bool ignoreAndroidPackage=false, bool includeSystemConfigs=true) const; 1921 1922 void getLocales(Vector<String8>* locales, bool includeSystemLocales=true, 1923 bool mergeEquivalentLangs=false) const; 1924 1925 // Generate an idmap. 1926 // 1927 // Return value: on success: NO_ERROR; caller is responsible for free-ing 1928 // outData (using free(3)). On failure, any status_t value other than 1929 // NO_ERROR; the caller should not free outData. 1930 status_t createIdmap(const ResTable& overlay, 1931 uint32_t targetCrc, uint32_t overlayCrc, 1932 const char* targetPath, const char* overlayPath, 1933 void** outData, size_t* outSize) const; 1934 1935 static const size_t IDMAP_HEADER_SIZE_BYTES = 4 * sizeof(uint32_t) + 2 * 256; 1936 1937 // Retrieve idmap meta-data. 1938 // 1939 // This function only requires the idmap header (the first 1940 // IDMAP_HEADER_SIZE_BYTES) bytes of an idmap file. 1941 static bool getIdmapInfo(const void* idmap, size_t size, 1942 uint32_t* pVersion, 1943 uint32_t* pTargetCrc, uint32_t* pOverlayCrc, 1944 String8* pTargetPath, String8* pOverlayPath); 1945 1946 void print(bool inclValues) const; 1947 static String8 normalizeForOutput(const char* input); 1948 1949 private: 1950 struct Header; 1951 struct Type; 1952 struct Entry; 1953 struct Package; 1954 struct PackageGroup; 1955 typedef Vector<Type*> TypeList; 1956 1957 struct bag_set { 1958 size_t numAttrs; // number in array 1959 size_t availAttrs; // total space in array 1960 uint32_t typeSpecFlags; 1961 // Followed by 'numAttr' bag_entry structures. 1962 }; 1963 1964 /** 1965 * Configuration dependent cached data. This must be cleared when the configuration is 1966 * changed (setParameters). 1967 */ 1968 struct TypeCacheEntry { TypeCacheEntryTypeCacheEntry1969 TypeCacheEntry() : cachedBags(NULL) {} 1970 1971 // Computed attribute bags for this type. 1972 bag_set** cachedBags; 1973 1974 // Pre-filtered list of configurations (per asset path) that match the parameters set on this 1975 // ResTable. 1976 Vector<std::shared_ptr<Vector<const ResTable_type*>>> filteredConfigs; 1977 }; 1978 1979 status_t addInternal(const void* data, size_t size, const void* idmapData, size_t idmapDataSize, 1980 bool appAsLib, const int32_t cookie, bool copyData, bool isSystemAsset=false); 1981 1982 ssize_t getResourcePackageIndex(uint32_t resID) const; 1983 1984 status_t getEntry( 1985 const PackageGroup* packageGroup, int typeIndex, int entryIndex, 1986 const ResTable_config* config, 1987 Entry* outEntry) const; 1988 1989 uint32_t findEntry(const PackageGroup* group, ssize_t typeIndex, const char16_t* name, 1990 size_t nameLen, uint32_t* outTypeSpecFlags) const; 1991 1992 status_t parsePackage( 1993 const ResTable_package* const pkg, const Header* const header, 1994 bool appAsLib, bool isSystemAsset); 1995 1996 void print_value(const Package* pkg, const Res_value& value) const; 1997 1998 template <typename Func> 1999 void forEachConfiguration(bool ignoreMipmap, bool ignoreAndroidPackage, 2000 bool includeSystemConfigs, const Func& f) const; 2001 2002 mutable Mutex mLock; 2003 2004 // Mutex that controls access to the list of pre-filtered configurations 2005 // to check when looking up entries. 2006 // When iterating over a bag, the mLock mutex is locked. While mLock is locked, 2007 // we do resource lookups. 2008 // Mutex is not reentrant, so we must use a different lock than mLock. 2009 mutable Mutex mFilteredConfigLock; 2010 2011 status_t mError; 2012 2013 ResTable_config mParams; 2014 2015 // Array of all resource tables. 2016 Vector<Header*> mHeaders; 2017 2018 // Array of packages in all resource tables. 2019 Vector<PackageGroup*> mPackageGroups; 2020 2021 // Mapping from resource package IDs to indices into the internal 2022 // package array. 2023 uint8_t mPackageMap[256]; 2024 2025 uint8_t mNextPackageId; 2026 }; 2027 2028 } // namespace android 2029 2030 #endif // _LIBS_UTILS_RESOURCE_TYPES_H 2031