1 // Copyright (c) 2009 The Chromium OS Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifndef LIBBRILLO_BRILLO_GLIB_OBJECT_H_
6 #define LIBBRILLO_BRILLO_GLIB_OBJECT_H_
7
8 #include <glib-object.h>
9 #include <stdint.h>
10
11 #include <base/logging.h>
12 #include <base/macros.h>
13
14 #include <algorithm>
15 #include <cstddef>
16 #include <memory>
17 #include <string>
18
19 namespace brillo {
20
21 namespace details { // NOLINT
22
23 // \brief ResetHelper is a private class for use with Resetter().
24 //
25 // ResetHelper passes ownership of a pointer to a scoped pointer type with reset
26 // on destruction.
27
28 template <typename T> // T models ScopedPtr
29 class ResetHelper {
30 public:
31 typedef typename T::element_type element_type;
32
ResetHelper(T * x)33 explicit ResetHelper(T* x)
34 : ptr_(nullptr),
35 scoped_(x) {
36 }
~ResetHelper()37 ~ResetHelper() {
38 scoped_->reset(ptr_);
39 }
lvalue()40 element_type*& lvalue() {
41 return ptr_;
42 }
43
44 private:
45 element_type* ptr_;
46 T* scoped_;
47 };
48
49 } // namespace details
50
51 // \brief Resetter() is a utility function for passing pointers to
52 // scoped pointers.
53 //
54 // The Resetter() function return a temporary object containing an lvalue of
55 // \code T::element_type which can be assigned to. When the temporary object
56 // destructs, the associated scoped pointer is reset with the lvalue. It is of
57 // general use when a pointer is returned as an out-argument.
58 //
59 // \example
60 // void function(int** x) {
61 // *x = new int(10);
62 // }
63 // ...
64 // std::unique_ptr<int> x;
65 // function(Resetter(x).lvalue());
66 //
67 // \end_example
68
69 template <typename T> // T models ScopedPtr
Resetter(T * x)70 details::ResetHelper<T> Resetter(T* x) {
71 return details::ResetHelper<T>(x);
72 }
73
74 // \precondition No functions in the glib namespace can be called before
75 // ::g_type_init();
76
77 namespace glib {
78
79 // \brief type_to_gtypeid is a type function mapping from a canonical type to
80 // the GType typeid for the associated GType (see type_to_gtype).
81
82 template <typename T> ::GType type_to_gtypeid();
83
84 template < >
85 inline ::GType type_to_gtypeid<const char*>() {
86 return G_TYPE_STRING;
87 }
88 template < >
89 inline ::GType type_to_gtypeid<char*>() {
90 return G_TYPE_STRING;
91 }
92 template < >
93 inline ::GType type_to_gtypeid< ::uint8_t>() {
94 return G_TYPE_UCHAR;
95 }
96 template < >
97 inline ::GType type_to_gtypeid<double>() {
98 return G_TYPE_DOUBLE;
99 }
100 template < >
101 inline ::GType type_to_gtypeid<bool>() {
102 return G_TYPE_BOOLEAN;
103 }
104 class Value;
105 template < >
106 inline ::GType type_to_gtypeid<const Value*>() {
107 return G_TYPE_VALUE;
108 }
109
110 template < >
111 inline ::GType type_to_gtypeid< ::uint32_t>() {
112 // REVISIT (seanparent) : There currently isn't any G_TYPE_UINT32, this code
113 // assumes sizeof(guint) == sizeof(guint32). Need a static_assert to assert
114 // that.
115 return G_TYPE_UINT;
116 }
117
118 template < >
119 inline ::GType type_to_gtypeid< ::int64_t>() {
120 return G_TYPE_INT64;
121 }
122
123 template < >
124 inline ::GType type_to_gtypeid< ::int32_t>() {
125 return G_TYPE_INT;
126 }
127
128 // \brief Value (and Retrieve) support using std::string as well as const char*
129 // by promoting from const char* to the string. promote_from provides a mapping
130 // for this promotion (and possibly others in the future).
131
132 template <typename T> struct promotes_from {
133 typedef T type;
134 };
135 template < > struct promotes_from<std::string> {
136 typedef const char* type;
137 };
138
139 // \brief RawCast converts from a GValue to a value of a canonical type.
140 //
141 // RawCast is a low level function. Generally, use Cast() instead.
142 //
143 // \precondition \param x contains a value of type \param T.
144
145 template <typename T>
146 inline T RawCast(const ::GValue& x) {
147 // Use static_assert() to issue a meaningful compile-time error.
148 // To prevent this from happening for all references to RawCast, use sizeof(T)
149 // to make static_assert depend on type T and therefore prevent binding it
150 // unconditionally until the actual RawCast<T> instantiation happens.
151 static_assert(sizeof(T) == 0, "Using RawCast on unsupported type");
152 return T();
153 }
154
155 template < >
156 inline const char* RawCast<const char*>(const ::GValue& x) {
157 return static_cast<const char*>(::g_value_get_string(&x));
158 }
159 template < >
160 inline double RawCast<double>(const ::GValue& x) {
161 return static_cast<double>(::g_value_get_double(&x));
162 }
163 template < >
164 inline bool RawCast<bool>(const ::GValue& x) {
165 return static_cast<bool>(::g_value_get_boolean(&x));
166 }
167 template < >
168 inline ::uint32_t RawCast< ::uint32_t>(const ::GValue& x) {
169 return static_cast< ::uint32_t>(::g_value_get_uint(&x));
170 }
171 template < >
172 inline ::uint8_t RawCast< ::uint8_t>(const ::GValue& x) {
173 return static_cast< ::uint8_t>(::g_value_get_uchar(&x));
174 }
175 template < >
176 inline ::int64_t RawCast< ::int64_t>(const ::GValue& x) {
177 return static_cast< ::int64_t>(::g_value_get_int64(&x));
178 }
179 template < >
180 inline ::int32_t RawCast< ::int32_t>(const ::GValue& x) {
181 return static_cast< ::int32_t>(::g_value_get_int(&x));
182 }
183
184 inline void RawSet(GValue* x, const std::string& v) {
185 ::g_value_set_string(x, v.c_str());
186 }
187 inline void RawSet(GValue* x, const char* v) {
188 ::g_value_set_string(x, v);
189 }
190 inline void RawSet(GValue* x, double v) {
191 ::g_value_set_double(x, v);
192 }
193 inline void RawSet(GValue* x, bool v) {
194 ::g_value_set_boolean(x, v);
195 }
196 inline void RawSet(GValue* x, ::uint32_t v) {
197 ::g_value_set_uint(x, v);
198 }
199 inline void RawSet(GValue* x, ::uint8_t v) {
200 ::g_value_set_uchar(x, v);
201 }
202 inline void RawSet(GValue* x, ::int64_t v) {
203 ::g_value_set_int64(x, v);
204 }
205 inline void RawSet(GValue* x, ::int32_t v) {
206 ::g_value_set_int(x, v);
207 }
208
209 // \brief Value is a data type for managing GValues.
210 //
211 // A Value is a polymorphic container holding at most a single value.
212 //
213 // The Value wrapper ensures proper initialization, copies, and assignment of
214 // GValues.
215 //
216 // \note GValues are equationally incomplete and so can't support proper
217 // equality. The semantics of copy are verified with equality of retrieved
218 // values.
219
220 class Value : public ::GValue {
221 public:
222 Value()
223 : GValue() {
224 }
225 explicit Value(const ::GValue& x)
226 : GValue() {
227 *this = *static_cast<const Value*>(&x);
228 }
229 template <typename T>
230 explicit Value(T x)
231 : GValue() {
232 ::g_value_init(this,
233 type_to_gtypeid<typename promotes_from<T>::type>());
234 RawSet(this, x);
235 }
236 Value(const Value& x)
237 : GValue() {
238 if (x.empty())
239 return;
240 ::g_value_init(this, G_VALUE_TYPE(&x));
241 ::g_value_copy(&x, this);
242 }
243 ~Value() {
244 clear();
245 }
246 Value& operator=(const Value& x) {
247 if (this == &x)
248 return *this;
249 clear();
250 if (x.empty())
251 return *this;
252 ::g_value_init(this, G_VALUE_TYPE(&x));
253 ::g_value_copy(&x, this);
254 return *this;
255 }
256 template <typename T>
257 Value& operator=(const T& x) {
258 clear();
259 ::g_value_init(this,
260 type_to_gtypeid<typename promotes_from<T>::type>());
261 RawSet(this, x);
262 return *this;
263 }
264
265 // Lower-case names to follow STL container conventions.
266
267 void clear() {
268 if (!empty())
269 ::g_value_unset(this);
270 }
271
272 bool empty() const {
273 return G_VALUE_TYPE(this) == G_TYPE_INVALID;
274 }
275 };
276
277 template < >
278 inline const Value* RawCast<const Value*>(const ::GValue& x) {
279 return static_cast<const Value*>(&x);
280 }
281
282 // \brief Retrieve gets a value from a GValue.
283 //
284 // \postcondition If \param x contains a value of type \param T, then the
285 // value is copied to \param result and \true is returned. Otherwise, \param
286 // result is unchanged and \false is returned.
287 //
288 // \precondition \param result is not \nullptr.
289
290 template <typename T>
291 bool Retrieve(const ::GValue& x, T* result) {
292 if (!G_VALUE_HOLDS(&x, type_to_gtypeid<typename promotes_from<T>::type>())) {
293 LOG(WARNING) << "GValue retrieve failed. Expected: "
294 << g_type_name(type_to_gtypeid<typename promotes_from<T>::type>())
295 << ", Found: " << g_type_name(G_VALUE_TYPE(&x));
296 return false;
297 }
298
299 *result = RawCast<typename promotes_from<T>::type>(x);
300 return true;
301 }
302
303 inline bool Retrieve(const ::GValue& x, Value* result) {
304 *result = Value(x);
305 return true;
306 }
307
308 // \brief ScopedError holds a ::GError* and deletes it on destruction.
309
310 struct FreeError {
311 void operator()(::GError* x) const {
312 if (x)
313 ::g_error_free(x);
314 }
315 };
316
317 typedef std::unique_ptr< ::GError, FreeError> ScopedError;
318
319 // \brief ScopedArray holds a ::GArray* and deletes both the container and the
320 // segment containing the elements on destruction.
321
322 struct FreeArray {
323 void operator()(::GArray* x) const {
324 if (x)
325 ::g_array_free(x, TRUE);
326 }
327 };
328
329 typedef std::unique_ptr< ::GArray, FreeArray> ScopedArray;
330
331 // \brief ScopedPtrArray adapts ::GPtrArray* to conform to the standard
332 // container requirements.
333 //
334 // \note ScopedPtrArray is only partially implemented and is being fleshed out
335 // as needed.
336 //
337 // \models Random Access Container, Back Insertion Sequence, ScopedPtrArray is
338 // not copyable and equationally incomplete.
339
340 template <typename T> // T models pointer
341 class ScopedPtrArray {
342 public:
343 typedef ::GPtrArray element_type;
344
345 typedef T value_type;
346 typedef const value_type& const_reference;
347 typedef value_type* iterator;
348 typedef const value_type* const_iterator;
349
350 ScopedPtrArray()
351 : object_(0) {
352 }
353
354 explicit ScopedPtrArray(::GPtrArray* x)
355 : object_(x) {
356 }
357
358 ~ScopedPtrArray() {
359 clear();
360 }
361
362 iterator begin() {
363 return iterator(object_ ? object_->pdata : nullptr);
364 }
365 iterator end() {
366 return begin() + size();
367 }
368 const_iterator begin() const {
369 return const_iterator(object_ ? object_->pdata : nullptr);
370 }
371 const_iterator end() const {
372 return begin() + size();
373 }
374
375 // \precondition x is a pointer to an object allocated with g_new().
376
377 void push_back(T x) {
378 if (!object_)
379 object_ = ::g_ptr_array_sized_new(1);
380 ::g_ptr_array_add(object_, ::gpointer(x));
381 }
382
383 T& operator[](std::size_t n) {
384 DCHECK(!(size() < n)) << "ScopedPtrArray index out-of-bound.";
385 return *(begin() + n);
386 }
387
388 std::size_t size() const {
389 return object_ ? object_->len : 0;
390 }
391
392 void clear() {
393 if (object_) {
394 std::for_each(begin(), end(), FreeHelper());
395 ::g_ptr_array_free(object_, true);
396 object_ = nullptr;
397 }
398 }
399
400 void reset(::GPtrArray* p = nullptr) {
401 if (p != object_) {
402 clear();
403 object_ = p;
404 }
405 }
406
407 private:
408 struct FreeHelper {
409 void operator()(T x) const {
410 ::g_free(::gpointer(x));
411 }
412 };
413
414 template <typename U>
415 friend void swap(ScopedPtrArray<U>& x, ScopedPtrArray<U>& y);
416
417 ::GPtrArray* object_;
418
419 DISALLOW_COPY_AND_ASSIGN(ScopedPtrArray);
420 };
421
422 template <typename U>
423 inline void swap(ScopedPtrArray<U>& x, ScopedPtrArray<U>& y) {
424 std::swap(x.object_, y.object_);
425 }
426
427 // \brief ScopedHashTable manages the lifetime of a ::GHashTable* with an
428 // interface compatibitle with a scoped ptr.
429 //
430 // The ScopedHashTable is also the start of an adaptor to model a standard
431 // Container. The standard for an associative container would have an iterator
432 // returning a key value pair. However, that isn't possible with
433 // ::GHashTable because there is no interface returning a reference to the
434 // key value pair, only to retrieve the keys and values and individual elements.
435 //
436 // So the standard interface of find() wouldn't work. I considered implementing
437 // operator[] and count() - operator []. So retrieving a value would look like:
438 //
439 // if (table.count(key))
440 // success = Retrieve(table[key], &value);
441 //
442 // But that requires hashing the key twice.
443 // For now I implemented a Retrieve member function to follow the pattern
444 // developed elsewhere in the code.
445 //
446 // bool success = Retrieve(key, &x);
447 //
448 // This is also a template to retrieve the corect type from the stored GValue
449 // type.
450 //
451 // I may revisit this and use scoped_ptr_malloc and a non-member function
452 // Retrieve() in the future. The Retrieve pattern is becoming common enough
453 // that I want to give some thought as to how to generalize it further.
454
455 class ScopedHashTable {
456 public:
457 typedef ::GHashTable element_type;
458
459 ScopedHashTable()
460 : object_(nullptr) {
461 }
462
463 explicit ScopedHashTable(::GHashTable* p)
464 : object_(p) {
465 }
466
467 ~ScopedHashTable() {
468 clear();
469 }
470
471 template <typename T>
472 bool Retrieve(const char* key, T* result) const {
473 DCHECK(object_) << "Retrieve on empty ScopedHashTable.";
474 if (!object_)
475 return false;
476
477 ::gpointer ptr = ::g_hash_table_lookup(object_, key);
478 if (!ptr)
479 return false;
480 return glib::Retrieve(*static_cast< ::GValue*>(ptr), result);
481 }
482
483 void clear() {
484 if (object_) {
485 ::g_hash_table_unref(object_);
486 object_ = nullptr;
487 }
488 }
489
490 GHashTable* get() {
491 return object_;
492 }
493
494 void reset(::GHashTable* p = nullptr) {
495 if (p != object_) {
496 clear();
497 object_ = p;
498 }
499 }
500
501 private:
502 ::GHashTable* object_;
503 };
504
505 } // namespace glib
506 } // namespace brillo
507
508 #endif // LIBBRILLO_BRILLO_GLIB_OBJECT_H_
509