• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*	$OpenBSD: sha2.c,v 1.11 2005/08/08 08:05:35 espie Exp 	*/
2 
3 /*
4  * FILE:	sha2.c
5  * AUTHOR:	Aaron D. Gifford <me@aarongifford.com>
6  *
7  * Copyright (c) 2000-2001, Aaron D. Gifford
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the copyright holder nor the names of contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $From: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
35  */
36 
37 /* OPENBSD ORIGINAL: lib/libc/hash/sha2.c */
38 
39 #include "includes.h"
40 
41 #ifdef WITH_OPENSSL
42 # include <openssl/opensslv.h>
43 # if !defined(HAVE_EVP_SHA256) && (OPENSSL_VERSION_NUMBER >= 0x00907000L)
44 #  define _NEED_SHA2 1
45 # endif
46 #else
47 # define _NEED_SHA2 1
48 #endif
49 
50 #if defined(_NEED_SHA2) && !defined(HAVE_SHA256_UPDATE)
51 
52 #include <string.h>
53 
54 /*
55  * UNROLLED TRANSFORM LOOP NOTE:
56  * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
57  * loop version for the hash transform rounds (defined using macros
58  * later in this file).  Either define on the command line, for example:
59  *
60  *   cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
61  *
62  * or define below:
63  *
64  *   #define SHA2_UNROLL_TRANSFORM
65  *
66  */
67 
68 /*** SHA-256/384/512 Machine Architecture Definitions *****************/
69 /*
70  * BYTE_ORDER NOTE:
71  *
72  * Please make sure that your system defines BYTE_ORDER.  If your
73  * architecture is little-endian, make sure it also defines
74  * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
75  * equivilent.
76  *
77  * If your system does not define the above, then you can do so by
78  * hand like this:
79  *
80  *   #define LITTLE_ENDIAN 1234
81  *   #define BIG_ENDIAN    4321
82  *
83  * And for little-endian machines, add:
84  *
85  *   #define BYTE_ORDER LITTLE_ENDIAN
86  *
87  * Or for big-endian machines:
88  *
89  *   #define BYTE_ORDER BIG_ENDIAN
90  *
91  * The FreeBSD machine this was written on defines BYTE_ORDER
92  * appropriately by including <sys/types.h> (which in turn includes
93  * <machine/endian.h> where the appropriate definitions are actually
94  * made).
95  */
96 #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
97 #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
98 #endif
99 
100 
101 /*** SHA-256/384/512 Various Length Definitions ***********************/
102 /* NOTE: Most of these are in sha2.h */
103 #define SHA256_SHORT_BLOCK_LENGTH	(SHA256_BLOCK_LENGTH - 8)
104 #define SHA384_SHORT_BLOCK_LENGTH	(SHA384_BLOCK_LENGTH - 16)
105 #define SHA512_SHORT_BLOCK_LENGTH	(SHA512_BLOCK_LENGTH - 16)
106 
107 /*** ENDIAN SPECIFIC COPY MACROS **************************************/
108 #define BE_8_TO_32(dst, cp) do {					\
109 	(dst) = (u_int32_t)(cp)[3] | ((u_int32_t)(cp)[2] << 8) |	\
110 	    ((u_int32_t)(cp)[1] << 16) | ((u_int32_t)(cp)[0] << 24);	\
111 } while(0)
112 
113 #define BE_8_TO_64(dst, cp) do {					\
114 	(dst) = (u_int64_t)(cp)[7] | ((u_int64_t)(cp)[6] << 8) |	\
115 	    ((u_int64_t)(cp)[5] << 16) | ((u_int64_t)(cp)[4] << 24) |	\
116 	    ((u_int64_t)(cp)[3] << 32) | ((u_int64_t)(cp)[2] << 40) |	\
117 	    ((u_int64_t)(cp)[1] << 48) | ((u_int64_t)(cp)[0] << 56);	\
118 } while (0)
119 
120 #define BE_64_TO_8(cp, src) do {					\
121 	(cp)[0] = (src) >> 56;						\
122         (cp)[1] = (src) >> 48;						\
123 	(cp)[2] = (src) >> 40;						\
124 	(cp)[3] = (src) >> 32;						\
125 	(cp)[4] = (src) >> 24;						\
126 	(cp)[5] = (src) >> 16;						\
127 	(cp)[6] = (src) >> 8;						\
128 	(cp)[7] = (src);						\
129 } while (0)
130 
131 #define BE_32_TO_8(cp, src) do {					\
132 	(cp)[0] = (src) >> 24;						\
133 	(cp)[1] = (src) >> 16;						\
134 	(cp)[2] = (src) >> 8;						\
135 	(cp)[3] = (src);						\
136 } while (0)
137 
138 /*
139  * Macro for incrementally adding the unsigned 64-bit integer n to the
140  * unsigned 128-bit integer (represented using a two-element array of
141  * 64-bit words):
142  */
143 #define ADDINC128(w,n) do {						\
144 	(w)[0] += (u_int64_t)(n);					\
145 	if ((w)[0] < (n)) {						\
146 		(w)[1]++;						\
147 	}								\
148 } while (0)
149 
150 /*** THE SIX LOGICAL FUNCTIONS ****************************************/
151 /*
152  * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
153  *
154  *   NOTE:  The naming of R and S appears backwards here (R is a SHIFT and
155  *   S is a ROTATION) because the SHA-256/384/512 description document
156  *   (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
157  *   same "backwards" definition.
158  */
159 /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
160 #define R(b,x) 		((x) >> (b))
161 /* 32-bit Rotate-right (used in SHA-256): */
162 #define S32(b,x)	(((x) >> (b)) | ((x) << (32 - (b))))
163 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
164 #define S64(b,x)	(((x) >> (b)) | ((x) << (64 - (b))))
165 
166 /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
167 #define Ch(x,y,z)	(((x) & (y)) ^ ((~(x)) & (z)))
168 #define Maj(x,y,z)	(((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
169 
170 /* Four of six logical functions used in SHA-256: */
171 #define Sigma0_256(x)	(S32(2,  (x)) ^ S32(13, (x)) ^ S32(22, (x)))
172 #define Sigma1_256(x)	(S32(6,  (x)) ^ S32(11, (x)) ^ S32(25, (x)))
173 #define sigma0_256(x)	(S32(7,  (x)) ^ S32(18, (x)) ^ R(3 ,   (x)))
174 #define sigma1_256(x)	(S32(17, (x)) ^ S32(19, (x)) ^ R(10,   (x)))
175 
176 /* Four of six logical functions used in SHA-384 and SHA-512: */
177 #define Sigma0_512(x)	(S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
178 #define Sigma1_512(x)	(S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
179 #define sigma0_512(x)	(S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7,   (x)))
180 #define sigma1_512(x)	(S64(19, (x)) ^ S64(61, (x)) ^ R( 6,   (x)))
181 
182 
183 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
184 /* Hash constant words K for SHA-256: */
185 const static u_int32_t K256[64] = {
186 	0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
187 	0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
188 	0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
189 	0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
190 	0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
191 	0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
192 	0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
193 	0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
194 	0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
195 	0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
196 	0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
197 	0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
198 	0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
199 	0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
200 	0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
201 	0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
202 };
203 
204 /* Initial hash value H for SHA-256: */
205 const static u_int32_t sha256_initial_hash_value[8] = {
206 	0x6a09e667UL,
207 	0xbb67ae85UL,
208 	0x3c6ef372UL,
209 	0xa54ff53aUL,
210 	0x510e527fUL,
211 	0x9b05688cUL,
212 	0x1f83d9abUL,
213 	0x5be0cd19UL
214 };
215 
216 /* Hash constant words K for SHA-384 and SHA-512: */
217 const static u_int64_t K512[80] = {
218 	0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
219 	0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
220 	0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
221 	0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
222 	0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
223 	0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
224 	0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
225 	0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
226 	0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
227 	0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
228 	0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
229 	0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
230 	0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
231 	0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
232 	0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
233 	0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
234 	0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
235 	0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
236 	0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
237 	0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
238 	0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
239 	0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
240 	0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
241 	0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
242 	0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
243 	0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
244 	0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
245 	0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
246 	0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
247 	0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
248 	0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
249 	0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
250 	0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
251 	0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
252 	0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
253 	0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
254 	0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
255 	0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
256 	0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
257 	0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
258 };
259 
260 /* Initial hash value H for SHA-384 */
261 const static u_int64_t sha384_initial_hash_value[8] = {
262 	0xcbbb9d5dc1059ed8ULL,
263 	0x629a292a367cd507ULL,
264 	0x9159015a3070dd17ULL,
265 	0x152fecd8f70e5939ULL,
266 	0x67332667ffc00b31ULL,
267 	0x8eb44a8768581511ULL,
268 	0xdb0c2e0d64f98fa7ULL,
269 	0x47b5481dbefa4fa4ULL
270 };
271 
272 /* Initial hash value H for SHA-512 */
273 const static u_int64_t sha512_initial_hash_value[8] = {
274 	0x6a09e667f3bcc908ULL,
275 	0xbb67ae8584caa73bULL,
276 	0x3c6ef372fe94f82bULL,
277 	0xa54ff53a5f1d36f1ULL,
278 	0x510e527fade682d1ULL,
279 	0x9b05688c2b3e6c1fULL,
280 	0x1f83d9abfb41bd6bULL,
281 	0x5be0cd19137e2179ULL
282 };
283 
284 
285 /*** SHA-256: *********************************************************/
286 void
SHA256_Init(SHA256_CTX * context)287 SHA256_Init(SHA256_CTX *context)
288 {
289 	if (context == NULL)
290 		return;
291 	memcpy(context->state, sha256_initial_hash_value,
292 	    sizeof(sha256_initial_hash_value));
293 	memset(context->buffer, 0, sizeof(context->buffer));
294 	context->bitcount = 0;
295 }
296 
297 #ifdef SHA2_UNROLL_TRANSFORM
298 
299 /* Unrolled SHA-256 round macros: */
300 
301 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) do {				    \
302 	BE_8_TO_32(W256[j], data);					    \
303 	data += 4;							    \
304 	T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + W256[j]; \
305 	(d) += T1;							    \
306 	(h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c));		    \
307 	j++;								    \
308 } while(0)
309 
310 #define ROUND256(a,b,c,d,e,f,g,h) do {					    \
311 	s0 = W256[(j+1)&0x0f];						    \
312 	s0 = sigma0_256(s0);						    \
313 	s1 = W256[(j+14)&0x0f];						    \
314 	s1 = sigma1_256(s1);						    \
315 	T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] +	    \
316 	     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);		    \
317 	(d) += T1;							    \
318 	(h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c));		    \
319 	j++;								    \
320 } while(0)
321 
322 void
SHA256_Transform(u_int32_t state[8],const u_int8_t data[SHA256_BLOCK_LENGTH])323 SHA256_Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH])
324 {
325 	u_int32_t	a, b, c, d, e, f, g, h, s0, s1;
326 	u_int32_t	T1, W256[16];
327 	int		j;
328 
329 	/* Initialize registers with the prev. intermediate value */
330 	a = state[0];
331 	b = state[1];
332 	c = state[2];
333 	d = state[3];
334 	e = state[4];
335 	f = state[5];
336 	g = state[6];
337 	h = state[7];
338 
339 	j = 0;
340 	do {
341 		/* Rounds 0 to 15 (unrolled): */
342 		ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
343 		ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
344 		ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
345 		ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
346 		ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
347 		ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
348 		ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
349 		ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
350 	} while (j < 16);
351 
352 	/* Now for the remaining rounds up to 63: */
353 	do {
354 		ROUND256(a,b,c,d,e,f,g,h);
355 		ROUND256(h,a,b,c,d,e,f,g);
356 		ROUND256(g,h,a,b,c,d,e,f);
357 		ROUND256(f,g,h,a,b,c,d,e);
358 		ROUND256(e,f,g,h,a,b,c,d);
359 		ROUND256(d,e,f,g,h,a,b,c);
360 		ROUND256(c,d,e,f,g,h,a,b);
361 		ROUND256(b,c,d,e,f,g,h,a);
362 	} while (j < 64);
363 
364 	/* Compute the current intermediate hash value */
365 	state[0] += a;
366 	state[1] += b;
367 	state[2] += c;
368 	state[3] += d;
369 	state[4] += e;
370 	state[5] += f;
371 	state[6] += g;
372 	state[7] += h;
373 
374 	/* Clean up */
375 	a = b = c = d = e = f = g = h = T1 = 0;
376 }
377 
378 #else /* SHA2_UNROLL_TRANSFORM */
379 
380 void
SHA256_Transform(u_int32_t state[8],const u_int8_t data[SHA256_BLOCK_LENGTH])381 SHA256_Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH])
382 {
383 	u_int32_t	a, b, c, d, e, f, g, h, s0, s1;
384 	u_int32_t	T1, T2, W256[16];
385 	int		j;
386 
387 	/* Initialize registers with the prev. intermediate value */
388 	a = state[0];
389 	b = state[1];
390 	c = state[2];
391 	d = state[3];
392 	e = state[4];
393 	f = state[5];
394 	g = state[6];
395 	h = state[7];
396 
397 	j = 0;
398 	do {
399 		BE_8_TO_32(W256[j], data);
400 		data += 4;
401 		/* Apply the SHA-256 compression function to update a..h */
402 		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
403 		T2 = Sigma0_256(a) + Maj(a, b, c);
404 		h = g;
405 		g = f;
406 		f = e;
407 		e = d + T1;
408 		d = c;
409 		c = b;
410 		b = a;
411 		a = T1 + T2;
412 
413 		j++;
414 	} while (j < 16);
415 
416 	do {
417 		/* Part of the message block expansion: */
418 		s0 = W256[(j+1)&0x0f];
419 		s0 = sigma0_256(s0);
420 		s1 = W256[(j+14)&0x0f];
421 		s1 = sigma1_256(s1);
422 
423 		/* Apply the SHA-256 compression function to update a..h */
424 		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
425 		     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
426 		T2 = Sigma0_256(a) + Maj(a, b, c);
427 		h = g;
428 		g = f;
429 		f = e;
430 		e = d + T1;
431 		d = c;
432 		c = b;
433 		b = a;
434 		a = T1 + T2;
435 
436 		j++;
437 	} while (j < 64);
438 
439 	/* Compute the current intermediate hash value */
440 	state[0] += a;
441 	state[1] += b;
442 	state[2] += c;
443 	state[3] += d;
444 	state[4] += e;
445 	state[5] += f;
446 	state[6] += g;
447 	state[7] += h;
448 
449 	/* Clean up */
450 	a = b = c = d = e = f = g = h = T1 = T2 = 0;
451 }
452 
453 #endif /* SHA2_UNROLL_TRANSFORM */
454 
455 void
SHA256_Update(SHA256_CTX * context,const u_int8_t * data,size_t len)456 SHA256_Update(SHA256_CTX *context, const u_int8_t *data, size_t len)
457 {
458 	size_t	freespace, usedspace;
459 
460 	/* Calling with no data is valid (we do nothing) */
461 	if (len == 0)
462 		return;
463 
464 	usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
465 	if (usedspace > 0) {
466 		/* Calculate how much free space is available in the buffer */
467 		freespace = SHA256_BLOCK_LENGTH - usedspace;
468 
469 		if (len >= freespace) {
470 			/* Fill the buffer completely and process it */
471 			memcpy(&context->buffer[usedspace], data, freespace);
472 			context->bitcount += freespace << 3;
473 			len -= freespace;
474 			data += freespace;
475 			SHA256_Transform(context->state, context->buffer);
476 		} else {
477 			/* The buffer is not yet full */
478 			memcpy(&context->buffer[usedspace], data, len);
479 			context->bitcount += len << 3;
480 			/* Clean up: */
481 			usedspace = freespace = 0;
482 			return;
483 		}
484 	}
485 	while (len >= SHA256_BLOCK_LENGTH) {
486 		/* Process as many complete blocks as we can */
487 		SHA256_Transform(context->state, data);
488 		context->bitcount += SHA256_BLOCK_LENGTH << 3;
489 		len -= SHA256_BLOCK_LENGTH;
490 		data += SHA256_BLOCK_LENGTH;
491 	}
492 	if (len > 0) {
493 		/* There's left-overs, so save 'em */
494 		memcpy(context->buffer, data, len);
495 		context->bitcount += len << 3;
496 	}
497 	/* Clean up: */
498 	usedspace = freespace = 0;
499 }
500 
501 void
SHA256_Pad(SHA256_CTX * context)502 SHA256_Pad(SHA256_CTX *context)
503 {
504 	unsigned int	usedspace;
505 
506 	usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
507 	if (usedspace > 0) {
508 		/* Begin padding with a 1 bit: */
509 		context->buffer[usedspace++] = 0x80;
510 
511 		if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
512 			/* Set-up for the last transform: */
513 			memset(&context->buffer[usedspace], 0,
514 			    SHA256_SHORT_BLOCK_LENGTH - usedspace);
515 		} else {
516 			if (usedspace < SHA256_BLOCK_LENGTH) {
517 				memset(&context->buffer[usedspace], 0,
518 				    SHA256_BLOCK_LENGTH - usedspace);
519 			}
520 			/* Do second-to-last transform: */
521 			SHA256_Transform(context->state, context->buffer);
522 
523 			/* Prepare for last transform: */
524 			memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);
525 		}
526 	} else {
527 		/* Set-up for the last transform: */
528 		memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);
529 
530 		/* Begin padding with a 1 bit: */
531 		*context->buffer = 0x80;
532 	}
533 	/* Store the length of input data (in bits) in big endian format: */
534 	BE_64_TO_8(&context->buffer[SHA256_SHORT_BLOCK_LENGTH],
535 	    context->bitcount);
536 
537 	/* Final transform: */
538 	SHA256_Transform(context->state, context->buffer);
539 
540 	/* Clean up: */
541 	usedspace = 0;
542 }
543 
544 void
SHA256_Final(u_int8_t digest[SHA256_DIGEST_LENGTH],SHA256_CTX * context)545 SHA256_Final(u_int8_t digest[SHA256_DIGEST_LENGTH], SHA256_CTX *context)
546 {
547 	SHA256_Pad(context);
548 
549 	/* If no digest buffer is passed, we don't bother doing this: */
550 	if (digest != NULL) {
551 #if BYTE_ORDER == LITTLE_ENDIAN
552 		int	i;
553 
554 		/* Convert TO host byte order */
555 		for (i = 0; i < 8; i++)
556 			BE_32_TO_8(digest + i * 4, context->state[i]);
557 #else
558 		memcpy(digest, context->state, SHA256_DIGEST_LENGTH);
559 #endif
560 		memset(context, 0, sizeof(*context));
561 	}
562 }
563 
564 
565 /*** SHA-512: *********************************************************/
566 void
SHA512_Init(SHA512_CTX * context)567 SHA512_Init(SHA512_CTX *context)
568 {
569 	if (context == NULL)
570 		return;
571 	memcpy(context->state, sha512_initial_hash_value,
572 	    sizeof(sha512_initial_hash_value));
573 	memset(context->buffer, 0, sizeof(context->buffer));
574 	context->bitcount[0] = context->bitcount[1] =  0;
575 }
576 
577 #ifdef SHA2_UNROLL_TRANSFORM
578 
579 /* Unrolled SHA-512 round macros: */
580 
581 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) do {				    \
582 	BE_8_TO_64(W512[j], data);					    \
583 	data += 8;							    \
584 	T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + W512[j]; \
585 	(d) += T1;							    \
586 	(h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c));		    \
587 	j++;								    \
588 } while(0)
589 
590 
591 #define ROUND512(a,b,c,d,e,f,g,h) do {					    \
592 	s0 = W512[(j+1)&0x0f];						    \
593 	s0 = sigma0_512(s0);						    \
594 	s1 = W512[(j+14)&0x0f];						    \
595 	s1 = sigma1_512(s1);						    \
596 	T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] +	    \
597              (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);		    \
598 	(d) += T1;							    \
599 	(h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c));		    \
600 	j++;								    \
601 } while(0)
602 
603 void
SHA512_Transform(u_int64_t state[8],const u_int8_t data[SHA512_BLOCK_LENGTH])604 SHA512_Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH])
605 {
606 	u_int64_t	a, b, c, d, e, f, g, h, s0, s1;
607 	u_int64_t	T1, W512[16];
608 	int		j;
609 
610 	/* Initialize registers with the prev. intermediate value */
611 	a = state[0];
612 	b = state[1];
613 	c = state[2];
614 	d = state[3];
615 	e = state[4];
616 	f = state[5];
617 	g = state[6];
618 	h = state[7];
619 
620 	j = 0;
621 	do {
622 		/* Rounds 0 to 15 (unrolled): */
623 		ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
624 		ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
625 		ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
626 		ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
627 		ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
628 		ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
629 		ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
630 		ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
631 	} while (j < 16);
632 
633 	/* Now for the remaining rounds up to 79: */
634 	do {
635 		ROUND512(a,b,c,d,e,f,g,h);
636 		ROUND512(h,a,b,c,d,e,f,g);
637 		ROUND512(g,h,a,b,c,d,e,f);
638 		ROUND512(f,g,h,a,b,c,d,e);
639 		ROUND512(e,f,g,h,a,b,c,d);
640 		ROUND512(d,e,f,g,h,a,b,c);
641 		ROUND512(c,d,e,f,g,h,a,b);
642 		ROUND512(b,c,d,e,f,g,h,a);
643 	} while (j < 80);
644 
645 	/* Compute the current intermediate hash value */
646 	state[0] += a;
647 	state[1] += b;
648 	state[2] += c;
649 	state[3] += d;
650 	state[4] += e;
651 	state[5] += f;
652 	state[6] += g;
653 	state[7] += h;
654 
655 	/* Clean up */
656 	a = b = c = d = e = f = g = h = T1 = 0;
657 }
658 
659 #else /* SHA2_UNROLL_TRANSFORM */
660 
661 void
SHA512_Transform(u_int64_t state[8],const u_int8_t data[SHA512_BLOCK_LENGTH])662 SHA512_Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH])
663 {
664 	u_int64_t	a, b, c, d, e, f, g, h, s0, s1;
665 	u_int64_t	T1, T2, W512[16];
666 	int		j;
667 
668 	/* Initialize registers with the prev. intermediate value */
669 	a = state[0];
670 	b = state[1];
671 	c = state[2];
672 	d = state[3];
673 	e = state[4];
674 	f = state[5];
675 	g = state[6];
676 	h = state[7];
677 
678 	j = 0;
679 	do {
680 		BE_8_TO_64(W512[j], data);
681 		data += 8;
682 		/* Apply the SHA-512 compression function to update a..h */
683 		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
684 		T2 = Sigma0_512(a) + Maj(a, b, c);
685 		h = g;
686 		g = f;
687 		f = e;
688 		e = d + T1;
689 		d = c;
690 		c = b;
691 		b = a;
692 		a = T1 + T2;
693 
694 		j++;
695 	} while (j < 16);
696 
697 	do {
698 		/* Part of the message block expansion: */
699 		s0 = W512[(j+1)&0x0f];
700 		s0 = sigma0_512(s0);
701 		s1 = W512[(j+14)&0x0f];
702 		s1 =  sigma1_512(s1);
703 
704 		/* Apply the SHA-512 compression function to update a..h */
705 		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
706 		     (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
707 		T2 = Sigma0_512(a) + Maj(a, b, c);
708 		h = g;
709 		g = f;
710 		f = e;
711 		e = d + T1;
712 		d = c;
713 		c = b;
714 		b = a;
715 		a = T1 + T2;
716 
717 		j++;
718 	} while (j < 80);
719 
720 	/* Compute the current intermediate hash value */
721 	state[0] += a;
722 	state[1] += b;
723 	state[2] += c;
724 	state[3] += d;
725 	state[4] += e;
726 	state[5] += f;
727 	state[6] += g;
728 	state[7] += h;
729 
730 	/* Clean up */
731 	a = b = c = d = e = f = g = h = T1 = T2 = 0;
732 }
733 
734 #endif /* SHA2_UNROLL_TRANSFORM */
735 
736 void
SHA512_Update(SHA512_CTX * context,const u_int8_t * data,size_t len)737 SHA512_Update(SHA512_CTX *context, const u_int8_t *data, size_t len)
738 {
739 	size_t	freespace, usedspace;
740 
741 	/* Calling with no data is valid (we do nothing) */
742 	if (len == 0)
743 		return;
744 
745 	usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
746 	if (usedspace > 0) {
747 		/* Calculate how much free space is available in the buffer */
748 		freespace = SHA512_BLOCK_LENGTH - usedspace;
749 
750 		if (len >= freespace) {
751 			/* Fill the buffer completely and process it */
752 			memcpy(&context->buffer[usedspace], data, freespace);
753 			ADDINC128(context->bitcount, freespace << 3);
754 			len -= freespace;
755 			data += freespace;
756 			SHA512_Transform(context->state, context->buffer);
757 		} else {
758 			/* The buffer is not yet full */
759 			memcpy(&context->buffer[usedspace], data, len);
760 			ADDINC128(context->bitcount, len << 3);
761 			/* Clean up: */
762 			usedspace = freespace = 0;
763 			return;
764 		}
765 	}
766 	while (len >= SHA512_BLOCK_LENGTH) {
767 		/* Process as many complete blocks as we can */
768 		SHA512_Transform(context->state, data);
769 		ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
770 		len -= SHA512_BLOCK_LENGTH;
771 		data += SHA512_BLOCK_LENGTH;
772 	}
773 	if (len > 0) {
774 		/* There's left-overs, so save 'em */
775 		memcpy(context->buffer, data, len);
776 		ADDINC128(context->bitcount, len << 3);
777 	}
778 	/* Clean up: */
779 	usedspace = freespace = 0;
780 }
781 
782 void
SHA512_Pad(SHA512_CTX * context)783 SHA512_Pad(SHA512_CTX *context)
784 {
785 	unsigned int	usedspace;
786 
787 	usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
788 	if (usedspace > 0) {
789 		/* Begin padding with a 1 bit: */
790 		context->buffer[usedspace++] = 0x80;
791 
792 		if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
793 			/* Set-up for the last transform: */
794 			memset(&context->buffer[usedspace], 0, SHA512_SHORT_BLOCK_LENGTH - usedspace);
795 		} else {
796 			if (usedspace < SHA512_BLOCK_LENGTH) {
797 				memset(&context->buffer[usedspace], 0, SHA512_BLOCK_LENGTH - usedspace);
798 			}
799 			/* Do second-to-last transform: */
800 			SHA512_Transform(context->state, context->buffer);
801 
802 			/* And set-up for the last transform: */
803 			memset(context->buffer, 0, SHA512_BLOCK_LENGTH - 2);
804 		}
805 	} else {
806 		/* Prepare for final transform: */
807 		memset(context->buffer, 0, SHA512_SHORT_BLOCK_LENGTH);
808 
809 		/* Begin padding with a 1 bit: */
810 		*context->buffer = 0x80;
811 	}
812 	/* Store the length of input data (in bits) in big endian format: */
813 	BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH],
814 	    context->bitcount[1]);
815 	BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH + 8],
816 	    context->bitcount[0]);
817 
818 	/* Final transform: */
819 	SHA512_Transform(context->state, context->buffer);
820 
821 	/* Clean up: */
822 	usedspace = 0;
823 }
824 
825 void
SHA512_Final(u_int8_t digest[SHA512_DIGEST_LENGTH],SHA512_CTX * context)826 SHA512_Final(u_int8_t digest[SHA512_DIGEST_LENGTH], SHA512_CTX *context)
827 {
828 	SHA512_Pad(context);
829 
830 	/* If no digest buffer is passed, we don't bother doing this: */
831 	if (digest != NULL) {
832 #if BYTE_ORDER == LITTLE_ENDIAN
833 		int	i;
834 
835 		/* Convert TO host byte order */
836 		for (i = 0; i < 8; i++)
837 			BE_64_TO_8(digest + i * 8, context->state[i]);
838 #else
839 		memcpy(digest, context->state, SHA512_DIGEST_LENGTH);
840 #endif
841 		memset(context, 0, sizeof(*context));
842 	}
843 }
844 
845 
846 /*** SHA-384: *********************************************************/
847 void
SHA384_Init(SHA384_CTX * context)848 SHA384_Init(SHA384_CTX *context)
849 {
850 	if (context == NULL)
851 		return;
852 	memcpy(context->state, sha384_initial_hash_value,
853 	    sizeof(sha384_initial_hash_value));
854 	memset(context->buffer, 0, sizeof(context->buffer));
855 	context->bitcount[0] = context->bitcount[1] = 0;
856 }
857 
858 #if 0
859 __weak_alias(SHA384_Transform, SHA512_Transform);
860 __weak_alias(SHA384_Update, SHA512_Update);
861 __weak_alias(SHA384_Pad, SHA512_Pad);
862 #endif
863 
864 void
SHA384_Transform(u_int64_t state[8],const u_int8_t data[SHA512_BLOCK_LENGTH])865 SHA384_Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH])
866 {
867 	return SHA512_Transform(state, data);
868 }
869 
870 void
SHA384_Update(SHA512_CTX * context,const u_int8_t * data,size_t len)871 SHA384_Update(SHA512_CTX *context, const u_int8_t *data, size_t len)
872 {
873 	SHA512_Update(context, data, len);
874 }
875 
876 void
SHA384_Pad(SHA512_CTX * context)877 SHA384_Pad(SHA512_CTX *context)
878 {
879 	SHA512_Pad(context);
880 }
881 
882 void
SHA384_Final(u_int8_t digest[SHA384_DIGEST_LENGTH],SHA384_CTX * context)883 SHA384_Final(u_int8_t digest[SHA384_DIGEST_LENGTH], SHA384_CTX *context)
884 {
885 	SHA384_Pad(context);
886 
887 	/* If no digest buffer is passed, we don't bother doing this: */
888 	if (digest != NULL) {
889 #if BYTE_ORDER == LITTLE_ENDIAN
890 		int	i;
891 
892 		/* Convert TO host byte order */
893 		for (i = 0; i < 6; i++)
894 			BE_64_TO_8(digest + i * 8, context->state[i]);
895 #else
896 		memcpy(digest, context->state, SHA384_DIGEST_LENGTH);
897 #endif
898 	}
899 
900 	/* Zero out state data */
901 	memset(context, 0, sizeof(*context));
902 }
903 
904 #endif /* defined(_NEED_SHA2) && !defined(HAVE_SHA256_UPDATE) */
905