• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass transforms loops that contain branches on loop-invariant conditions
11 // to have multiple loops.  For example, it turns the left into the right code:
12 //
13 //  for (...)                  if (lic)
14 //    A                          for (...)
15 //    if (lic)                     A; B; C
16 //      B                      else
17 //    C                          for (...)
18 //                                 A; C
19 //
20 // This can increase the size of the code exponentially (doubling it every time
21 // a loop is unswitched) so we only unswitch if the resultant code will be
22 // smaller than a threshold.
23 //
24 // This pass expects LICM to be run before it to hoist invariant conditions out
25 // of the loop, to make the unswitching opportunity obvious.
26 //
27 //===----------------------------------------------------------------------===//
28 
29 #include "llvm/Transforms/Scalar.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/Analysis/GlobalsModRef.h"
34 #include "llvm/Analysis/AssumptionCache.h"
35 #include "llvm/Analysis/CodeMetrics.h"
36 #include "llvm/Analysis/InstructionSimplify.h"
37 #include "llvm/Analysis/LoopInfo.h"
38 #include "llvm/Analysis/LoopPass.h"
39 #include "llvm/Analysis/ScalarEvolution.h"
40 #include "llvm/Analysis/TargetTransformInfo.h"
41 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
42 #include "llvm/Analysis/BlockFrequencyInfo.h"
43 #include "llvm/Analysis/BranchProbabilityInfo.h"
44 #include "llvm/Support/BranchProbability.h"
45 #include "llvm/IR/Constants.h"
46 #include "llvm/IR/DerivedTypes.h"
47 #include "llvm/IR/Dominators.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/Instructions.h"
50 #include "llvm/IR/Module.h"
51 #include "llvm/IR/MDBuilder.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
56 #include "llvm/Transforms/Utils/Cloning.h"
57 #include "llvm/Transforms/Utils/Local.h"
58 #include "llvm/Transforms/Utils/LoopUtils.h"
59 #include <algorithm>
60 #include <map>
61 #include <set>
62 using namespace llvm;
63 
64 #define DEBUG_TYPE "loop-unswitch"
65 
66 STATISTIC(NumBranches, "Number of branches unswitched");
67 STATISTIC(NumSwitches, "Number of switches unswitched");
68 STATISTIC(NumGuards,   "Number of guards unswitched");
69 STATISTIC(NumSelects , "Number of selects unswitched");
70 STATISTIC(NumTrivial , "Number of unswitches that are trivial");
71 STATISTIC(NumSimplify, "Number of simplifications of unswitched code");
72 STATISTIC(TotalInsts,  "Total number of instructions analyzed");
73 
74 // The specific value of 100 here was chosen based only on intuition and a
75 // few specific examples.
76 static cl::opt<unsigned>
77 Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
78           cl::init(100), cl::Hidden);
79 
80 static cl::opt<bool>
81 LoopUnswitchWithBlockFrequency("loop-unswitch-with-block-frequency",
82     cl::init(false), cl::Hidden,
83     cl::desc("Enable the use of the block frequency analysis to access PGO "
84              "heuristics to minimize code growth in cold regions."));
85 
86 static cl::opt<unsigned>
87 ColdnessThreshold("loop-unswitch-coldness-threshold", cl::init(1), cl::Hidden,
88     cl::desc("Coldness threshold in percentage. The loop header frequency "
89              "(relative to the entry frequency) is compared with this "
90              "threshold to determine if non-trivial unswitching should be "
91              "enabled."));
92 
93 namespace {
94 
95   class LUAnalysisCache {
96 
97     typedef DenseMap<const SwitchInst*, SmallPtrSet<const Value *, 8> >
98       UnswitchedValsMap;
99 
100     typedef UnswitchedValsMap::iterator UnswitchedValsIt;
101 
102     struct LoopProperties {
103       unsigned CanBeUnswitchedCount;
104       unsigned WasUnswitchedCount;
105       unsigned SizeEstimation;
106       UnswitchedValsMap UnswitchedVals;
107     };
108 
109     // Here we use std::map instead of DenseMap, since we need to keep valid
110     // LoopProperties pointer for current loop for better performance.
111     typedef std::map<const Loop*, LoopProperties> LoopPropsMap;
112     typedef LoopPropsMap::iterator LoopPropsMapIt;
113 
114     LoopPropsMap LoopsProperties;
115     UnswitchedValsMap *CurLoopInstructions;
116     LoopProperties *CurrentLoopProperties;
117 
118     // A loop unswitching with an estimated cost above this threshold
119     // is not performed. MaxSize is turned into unswitching quota for
120     // the current loop, and reduced correspondingly, though note that
121     // the quota is returned by releaseMemory() when the loop has been
122     // processed, so that MaxSize will return to its previous
123     // value. So in most cases MaxSize will equal the Threshold flag
124     // when a new loop is processed. An exception to that is that
125     // MaxSize will have a smaller value while processing nested loops
126     // that were introduced due to loop unswitching of an outer loop.
127     //
128     // FIXME: The way that MaxSize works is subtle and depends on the
129     // pass manager processing loops and calling releaseMemory() in a
130     // specific order. It would be good to find a more straightforward
131     // way of doing what MaxSize does.
132     unsigned MaxSize;
133 
134   public:
LUAnalysisCache()135     LUAnalysisCache()
136         : CurLoopInstructions(nullptr), CurrentLoopProperties(nullptr),
137           MaxSize(Threshold) {}
138 
139     // Analyze loop. Check its size, calculate is it possible to unswitch
140     // it. Returns true if we can unswitch this loop.
141     bool countLoop(const Loop *L, const TargetTransformInfo &TTI,
142                    AssumptionCache *AC);
143 
144     // Clean all data related to given loop.
145     void forgetLoop(const Loop *L);
146 
147     // Mark case value as unswitched.
148     // Since SI instruction can be partly unswitched, in order to avoid
149     // extra unswitching in cloned loops keep track all unswitched values.
150     void setUnswitched(const SwitchInst *SI, const Value *V);
151 
152     // Check was this case value unswitched before or not.
153     bool isUnswitched(const SwitchInst *SI, const Value *V);
154 
155     // Returns true if another unswitching could be done within the cost
156     // threshold.
157     bool CostAllowsUnswitching();
158 
159     // Clone all loop-unswitch related loop properties.
160     // Redistribute unswitching quotas.
161     // Note, that new loop data is stored inside the VMap.
162     void cloneData(const Loop *NewLoop, const Loop *OldLoop,
163                    const ValueToValueMapTy &VMap);
164   };
165 
166   class LoopUnswitch : public LoopPass {
167     LoopInfo *LI;  // Loop information
168     LPPassManager *LPM;
169     AssumptionCache *AC;
170 
171     // Used to check if second loop needs processing after
172     // RewriteLoopBodyWithConditionConstant rewrites first loop.
173     std::vector<Loop*> LoopProcessWorklist;
174 
175     LUAnalysisCache BranchesInfo;
176 
177     bool EnabledPGO;
178 
179     // BFI and ColdEntryFreq are only used when PGO and
180     // LoopUnswitchWithBlockFrequency are enabled.
181     BlockFrequencyInfo BFI;
182     BlockFrequency ColdEntryFreq;
183 
184     bool OptimizeForSize;
185     bool redoLoop;
186 
187     Loop *currentLoop;
188     DominatorTree *DT;
189     BasicBlock *loopHeader;
190     BasicBlock *loopPreheader;
191 
192     bool SanitizeMemory;
193     LoopSafetyInfo SafetyInfo;
194 
195     // LoopBlocks contains all of the basic blocks of the loop, including the
196     // preheader of the loop, the body of the loop, and the exit blocks of the
197     // loop, in that order.
198     std::vector<BasicBlock*> LoopBlocks;
199     // NewBlocks contained cloned copy of basic blocks from LoopBlocks.
200     std::vector<BasicBlock*> NewBlocks;
201 
202   public:
203     static char ID; // Pass ID, replacement for typeid
LoopUnswitch(bool Os=false)204     explicit LoopUnswitch(bool Os = false) :
205       LoopPass(ID), OptimizeForSize(Os), redoLoop(false),
206       currentLoop(nullptr), DT(nullptr), loopHeader(nullptr),
207       loopPreheader(nullptr) {
208         initializeLoopUnswitchPass(*PassRegistry::getPassRegistry());
209       }
210 
211     bool runOnLoop(Loop *L, LPPassManager &LPM) override;
212     bool processCurrentLoop();
213 
214     /// This transformation requires natural loop information & requires that
215     /// loop preheaders be inserted into the CFG.
216     ///
getAnalysisUsage(AnalysisUsage & AU) const217     void getAnalysisUsage(AnalysisUsage &AU) const override {
218       AU.addRequired<AssumptionCacheTracker>();
219       AU.addRequired<TargetTransformInfoWrapperPass>();
220       getLoopAnalysisUsage(AU);
221     }
222 
223   private:
224 
releaseMemory()225     void releaseMemory() override {
226       BranchesInfo.forgetLoop(currentLoop);
227     }
228 
initLoopData()229     void initLoopData() {
230       loopHeader = currentLoop->getHeader();
231       loopPreheader = currentLoop->getLoopPreheader();
232     }
233 
234     /// Split all of the edges from inside the loop to their exit blocks.
235     /// Update the appropriate Phi nodes as we do so.
236     void SplitExitEdges(Loop *L,
237                         const SmallVectorImpl<BasicBlock *> &ExitBlocks);
238 
239     bool TryTrivialLoopUnswitch(bool &Changed);
240 
241     bool UnswitchIfProfitable(Value *LoopCond, Constant *Val,
242                               TerminatorInst *TI = nullptr);
243     void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
244                                   BasicBlock *ExitBlock, TerminatorInst *TI);
245     void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L,
246                                      TerminatorInst *TI);
247 
248     void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
249                                               Constant *Val, bool isEqual);
250 
251     void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
252                                         BasicBlock *TrueDest,
253                                         BasicBlock *FalseDest,
254                                         Instruction *InsertPt,
255                                         TerminatorInst *TI);
256 
257     void SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L);
258   };
259 }
260 
261 // Analyze loop. Check its size, calculate is it possible to unswitch
262 // it. Returns true if we can unswitch this loop.
countLoop(const Loop * L,const TargetTransformInfo & TTI,AssumptionCache * AC)263 bool LUAnalysisCache::countLoop(const Loop *L, const TargetTransformInfo &TTI,
264                                 AssumptionCache *AC) {
265 
266   LoopPropsMapIt PropsIt;
267   bool Inserted;
268   std::tie(PropsIt, Inserted) =
269       LoopsProperties.insert(std::make_pair(L, LoopProperties()));
270 
271   LoopProperties &Props = PropsIt->second;
272 
273   if (Inserted) {
274     // New loop.
275 
276     // Limit the number of instructions to avoid causing significant code
277     // expansion, and the number of basic blocks, to avoid loops with
278     // large numbers of branches which cause loop unswitching to go crazy.
279     // This is a very ad-hoc heuristic.
280 
281     SmallPtrSet<const Value *, 32> EphValues;
282     CodeMetrics::collectEphemeralValues(L, AC, EphValues);
283 
284     // FIXME: This is overly conservative because it does not take into
285     // consideration code simplification opportunities and code that can
286     // be shared by the resultant unswitched loops.
287     CodeMetrics Metrics;
288     for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); I != E;
289          ++I)
290       Metrics.analyzeBasicBlock(*I, TTI, EphValues);
291 
292     Props.SizeEstimation = Metrics.NumInsts;
293     Props.CanBeUnswitchedCount = MaxSize / (Props.SizeEstimation);
294     Props.WasUnswitchedCount = 0;
295     MaxSize -= Props.SizeEstimation * Props.CanBeUnswitchedCount;
296 
297     if (Metrics.notDuplicatable) {
298       DEBUG(dbgs() << "NOT unswitching loop %"
299                    << L->getHeader()->getName() << ", contents cannot be "
300                    << "duplicated!\n");
301       return false;
302     }
303   }
304 
305   // Be careful. This links are good only before new loop addition.
306   CurrentLoopProperties = &Props;
307   CurLoopInstructions = &Props.UnswitchedVals;
308 
309   return true;
310 }
311 
312 // Clean all data related to given loop.
forgetLoop(const Loop * L)313 void LUAnalysisCache::forgetLoop(const Loop *L) {
314 
315   LoopPropsMapIt LIt = LoopsProperties.find(L);
316 
317   if (LIt != LoopsProperties.end()) {
318     LoopProperties &Props = LIt->second;
319     MaxSize += (Props.CanBeUnswitchedCount + Props.WasUnswitchedCount) *
320                Props.SizeEstimation;
321     LoopsProperties.erase(LIt);
322   }
323 
324   CurrentLoopProperties = nullptr;
325   CurLoopInstructions = nullptr;
326 }
327 
328 // Mark case value as unswitched.
329 // Since SI instruction can be partly unswitched, in order to avoid
330 // extra unswitching in cloned loops keep track all unswitched values.
setUnswitched(const SwitchInst * SI,const Value * V)331 void LUAnalysisCache::setUnswitched(const SwitchInst *SI, const Value *V) {
332   (*CurLoopInstructions)[SI].insert(V);
333 }
334 
335 // Check was this case value unswitched before or not.
isUnswitched(const SwitchInst * SI,const Value * V)336 bool LUAnalysisCache::isUnswitched(const SwitchInst *SI, const Value *V) {
337   return (*CurLoopInstructions)[SI].count(V);
338 }
339 
CostAllowsUnswitching()340 bool LUAnalysisCache::CostAllowsUnswitching() {
341   return CurrentLoopProperties->CanBeUnswitchedCount > 0;
342 }
343 
344 // Clone all loop-unswitch related loop properties.
345 // Redistribute unswitching quotas.
346 // Note, that new loop data is stored inside the VMap.
cloneData(const Loop * NewLoop,const Loop * OldLoop,const ValueToValueMapTy & VMap)347 void LUAnalysisCache::cloneData(const Loop *NewLoop, const Loop *OldLoop,
348                                 const ValueToValueMapTy &VMap) {
349 
350   LoopProperties &NewLoopProps = LoopsProperties[NewLoop];
351   LoopProperties &OldLoopProps = *CurrentLoopProperties;
352   UnswitchedValsMap &Insts = OldLoopProps.UnswitchedVals;
353 
354   // Reallocate "can-be-unswitched quota"
355 
356   --OldLoopProps.CanBeUnswitchedCount;
357   ++OldLoopProps.WasUnswitchedCount;
358   NewLoopProps.WasUnswitchedCount = 0;
359   unsigned Quota = OldLoopProps.CanBeUnswitchedCount;
360   NewLoopProps.CanBeUnswitchedCount = Quota / 2;
361   OldLoopProps.CanBeUnswitchedCount = Quota - Quota / 2;
362 
363   NewLoopProps.SizeEstimation = OldLoopProps.SizeEstimation;
364 
365   // Clone unswitched values info:
366   // for new loop switches we clone info about values that was
367   // already unswitched and has redundant successors.
368   for (UnswitchedValsIt I = Insts.begin(); I != Insts.end(); ++I) {
369     const SwitchInst *OldInst = I->first;
370     Value *NewI = VMap.lookup(OldInst);
371     const SwitchInst *NewInst = cast_or_null<SwitchInst>(NewI);
372     assert(NewInst && "All instructions that are in SrcBB must be in VMap.");
373 
374     NewLoopProps.UnswitchedVals[NewInst] = OldLoopProps.UnswitchedVals[OldInst];
375   }
376 }
377 
378 char LoopUnswitch::ID = 0;
379 INITIALIZE_PASS_BEGIN(LoopUnswitch, "loop-unswitch", "Unswitch loops",
380                       false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)381 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
382 INITIALIZE_PASS_DEPENDENCY(LoopPass)
383 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
384 INITIALIZE_PASS_END(LoopUnswitch, "loop-unswitch", "Unswitch loops",
385                       false, false)
386 
387 Pass *llvm::createLoopUnswitchPass(bool Os) {
388   return new LoopUnswitch(Os);
389 }
390 
391 /// Cond is a condition that occurs in L. If it is invariant in the loop, or has
392 /// an invariant piece, return the invariant. Otherwise, return null.
FindLIVLoopCondition(Value * Cond,Loop * L,bool & Changed,DenseMap<Value *,Value * > & Cache)393 static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed,
394                                    DenseMap<Value *, Value *> &Cache) {
395   auto CacheIt = Cache.find(Cond);
396   if (CacheIt != Cache.end())
397     return CacheIt->second;
398 
399   // We started analyze new instruction, increment scanned instructions counter.
400   ++TotalInsts;
401 
402   // We can never unswitch on vector conditions.
403   if (Cond->getType()->isVectorTy())
404     return nullptr;
405 
406   // Constants should be folded, not unswitched on!
407   if (isa<Constant>(Cond)) return nullptr;
408 
409   // TODO: Handle: br (VARIANT|INVARIANT).
410 
411   // Hoist simple values out.
412   if (L->makeLoopInvariant(Cond, Changed)) {
413     Cache[Cond] = Cond;
414     return Cond;
415   }
416 
417   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
418     if (BO->getOpcode() == Instruction::And ||
419         BO->getOpcode() == Instruction::Or) {
420       // If either the left or right side is invariant, we can unswitch on this,
421       // which will cause the branch to go away in one loop and the condition to
422       // simplify in the other one.
423       if (Value *LHS =
424               FindLIVLoopCondition(BO->getOperand(0), L, Changed, Cache)) {
425         Cache[Cond] = LHS;
426         return LHS;
427       }
428       if (Value *RHS =
429               FindLIVLoopCondition(BO->getOperand(1), L, Changed, Cache)) {
430         Cache[Cond] = RHS;
431         return RHS;
432       }
433     }
434 
435   Cache[Cond] = nullptr;
436   return nullptr;
437 }
438 
FindLIVLoopCondition(Value * Cond,Loop * L,bool & Changed)439 static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed) {
440   DenseMap<Value *, Value *> Cache;
441   return FindLIVLoopCondition(Cond, L, Changed, Cache);
442 }
443 
runOnLoop(Loop * L,LPPassManager & LPM_Ref)444 bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) {
445   if (skipLoop(L))
446     return false;
447 
448   AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
449       *L->getHeader()->getParent());
450   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
451   LPM = &LPM_Ref;
452   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
453   currentLoop = L;
454   Function *F = currentLoop->getHeader()->getParent();
455 
456   SanitizeMemory = F->hasFnAttribute(Attribute::SanitizeMemory);
457   if (SanitizeMemory)
458     computeLoopSafetyInfo(&SafetyInfo, L);
459 
460   EnabledPGO = F->getEntryCount().hasValue();
461 
462   if (LoopUnswitchWithBlockFrequency && EnabledPGO) {
463     BranchProbabilityInfo BPI(*F, *LI);
464     BFI.calculate(*L->getHeader()->getParent(), BPI, *LI);
465 
466     // Use BranchProbability to compute a minimum frequency based on
467     // function entry baseline frequency. Loops with headers below this
468     // frequency are considered as cold.
469     const BranchProbability ColdProb(ColdnessThreshold, 100);
470     ColdEntryFreq = BlockFrequency(BFI.getEntryFreq()) * ColdProb;
471   }
472 
473   bool Changed = false;
474   do {
475     assert(currentLoop->isLCSSAForm(*DT));
476     redoLoop = false;
477     Changed |= processCurrentLoop();
478   } while(redoLoop);
479 
480   // FIXME: Reconstruct dom info, because it is not preserved properly.
481   if (Changed)
482     DT->recalculate(*F);
483   return Changed;
484 }
485 
486 /// Do actual work and unswitch loop if possible and profitable.
processCurrentLoop()487 bool LoopUnswitch::processCurrentLoop() {
488   bool Changed = false;
489 
490   initLoopData();
491 
492   // If LoopSimplify was unable to form a preheader, don't do any unswitching.
493   if (!loopPreheader)
494     return false;
495 
496   // Loops with indirectbr cannot be cloned.
497   if (!currentLoop->isSafeToClone())
498     return false;
499 
500   // Without dedicated exits, splitting the exit edge may fail.
501   if (!currentLoop->hasDedicatedExits())
502     return false;
503 
504   LLVMContext &Context = loopHeader->getContext();
505 
506   // Analyze loop cost, and stop unswitching if loop content can not be duplicated.
507   if (!BranchesInfo.countLoop(
508           currentLoop, getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
509                            *currentLoop->getHeader()->getParent()),
510           AC))
511     return false;
512 
513   // Try trivial unswitch first before loop over other basic blocks in the loop.
514   if (TryTrivialLoopUnswitch(Changed)) {
515     return true;
516   }
517 
518   // Run through the instructions in the loop, keeping track of three things:
519   //
520   //  - That we do not unswitch loops containing convergent operations, as we
521   //    might be making them control dependent on the unswitch value when they
522   //    were not before.
523   //    FIXME: This could be refined to only bail if the convergent operation is
524   //    not already control-dependent on the unswitch value.
525   //
526   //  - That basic blocks in the loop contain invokes whose predecessor edges we
527   //    cannot split.
528   //
529   //  - The set of guard intrinsics encountered (these are non terminator
530   //    instructions that are also profitable to be unswitched).
531 
532   SmallVector<IntrinsicInst *, 4> Guards;
533 
534   for (const auto BB : currentLoop->blocks()) {
535     for (auto &I : *BB) {
536       auto CS = CallSite(&I);
537       if (!CS) continue;
538       if (CS.hasFnAttr(Attribute::Convergent))
539         return false;
540       if (auto *II = dyn_cast<InvokeInst>(&I))
541         if (!II->getUnwindDest()->canSplitPredecessors())
542           return false;
543       if (auto *II = dyn_cast<IntrinsicInst>(&I))
544         if (II->getIntrinsicID() == Intrinsic::experimental_guard)
545           Guards.push_back(II);
546     }
547   }
548 
549   // Do not do non-trivial unswitch while optimizing for size.
550   // FIXME: Use Function::optForSize().
551   if (OptimizeForSize ||
552       loopHeader->getParent()->hasFnAttribute(Attribute::OptimizeForSize))
553     return false;
554 
555   if (LoopUnswitchWithBlockFrequency && EnabledPGO) {
556     // Compute the weighted frequency of the hottest block in the
557     // loop (loopHeader in this case since inner loops should be
558     // processed before outer loop). If it is less than ColdFrequency,
559     // we should not unswitch.
560     BlockFrequency LoopEntryFreq = BFI.getBlockFreq(loopHeader);
561     if (LoopEntryFreq < ColdEntryFreq)
562       return false;
563   }
564 
565   for (IntrinsicInst *Guard : Guards) {
566     Value *LoopCond =
567         FindLIVLoopCondition(Guard->getOperand(0), currentLoop, Changed);
568     if (LoopCond &&
569         UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(Context))) {
570       // NB! Unswitching (if successful) could have erased some of the
571       // instructions in Guards leaving dangling pointers there.  This is fine
572       // because we're returning now, and won't look at Guards again.
573       ++NumGuards;
574       return true;
575     }
576   }
577 
578   // Loop over all of the basic blocks in the loop.  If we find an interior
579   // block that is branching on a loop-invariant condition, we can unswitch this
580   // loop.
581   for (Loop::block_iterator I = currentLoop->block_begin(),
582          E = currentLoop->block_end(); I != E; ++I) {
583     TerminatorInst *TI = (*I)->getTerminator();
584 
585     // Unswitching on a potentially uninitialized predicate is not
586     // MSan-friendly. Limit this to the cases when the original predicate is
587     // guaranteed to execute, to avoid creating a use-of-uninitialized-value
588     // in the code that did not have one.
589     // This is a workaround for the discrepancy between LLVM IR and MSan
590     // semantics. See PR28054 for more details.
591     if (SanitizeMemory &&
592         !isGuaranteedToExecute(*TI, DT, currentLoop, &SafetyInfo))
593       continue;
594 
595     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
596       // If this isn't branching on an invariant condition, we can't unswitch
597       // it.
598       if (BI->isConditional()) {
599         // See if this, or some part of it, is loop invariant.  If so, we can
600         // unswitch on it if we desire.
601         Value *LoopCond = FindLIVLoopCondition(BI->getCondition(),
602                                                currentLoop, Changed);
603         if (LoopCond &&
604             UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(Context), TI)) {
605           ++NumBranches;
606           return true;
607         }
608       }
609     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
610       Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
611                                              currentLoop, Changed);
612       unsigned NumCases = SI->getNumCases();
613       if (LoopCond && NumCases) {
614         // Find a value to unswitch on:
615         // FIXME: this should chose the most expensive case!
616         // FIXME: scan for a case with a non-critical edge?
617         Constant *UnswitchVal = nullptr;
618 
619         // Do not process same value again and again.
620         // At this point we have some cases already unswitched and
621         // some not yet unswitched. Let's find the first not yet unswitched one.
622         for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
623              i != e; ++i) {
624           Constant *UnswitchValCandidate = i.getCaseValue();
625           if (!BranchesInfo.isUnswitched(SI, UnswitchValCandidate)) {
626             UnswitchVal = UnswitchValCandidate;
627             break;
628           }
629         }
630 
631         if (!UnswitchVal)
632           continue;
633 
634         if (UnswitchIfProfitable(LoopCond, UnswitchVal)) {
635           ++NumSwitches;
636           return true;
637         }
638       }
639     }
640 
641     // Scan the instructions to check for unswitchable values.
642     for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
643          BBI != E; ++BBI)
644       if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) {
645         Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
646                                                currentLoop, Changed);
647         if (LoopCond && UnswitchIfProfitable(LoopCond,
648                                              ConstantInt::getTrue(Context))) {
649           ++NumSelects;
650           return true;
651         }
652       }
653   }
654   return Changed;
655 }
656 
657 /// Check to see if all paths from BB exit the loop with no side effects
658 /// (including infinite loops).
659 ///
660 /// If true, we return true and set ExitBB to the block we
661 /// exit through.
662 ///
isTrivialLoopExitBlockHelper(Loop * L,BasicBlock * BB,BasicBlock * & ExitBB,std::set<BasicBlock * > & Visited)663 static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB,
664                                          BasicBlock *&ExitBB,
665                                          std::set<BasicBlock*> &Visited) {
666   if (!Visited.insert(BB).second) {
667     // Already visited. Without more analysis, this could indicate an infinite
668     // loop.
669     return false;
670   }
671   if (!L->contains(BB)) {
672     // Otherwise, this is a loop exit, this is fine so long as this is the
673     // first exit.
674     if (ExitBB) return false;
675     ExitBB = BB;
676     return true;
677   }
678 
679   // Otherwise, this is an unvisited intra-loop node.  Check all successors.
680   for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
681     // Check to see if the successor is a trivial loop exit.
682     if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited))
683       return false;
684   }
685 
686   // Okay, everything after this looks good, check to make sure that this block
687   // doesn't include any side effects.
688   for (Instruction &I : *BB)
689     if (I.mayHaveSideEffects())
690       return false;
691 
692   return true;
693 }
694 
695 /// Return true if the specified block unconditionally leads to an exit from
696 /// the specified loop, and has no side-effects in the process. If so, return
697 /// the block that is exited to, otherwise return null.
isTrivialLoopExitBlock(Loop * L,BasicBlock * BB)698 static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) {
699   std::set<BasicBlock*> Visited;
700   Visited.insert(L->getHeader());  // Branches to header make infinite loops.
701   BasicBlock *ExitBB = nullptr;
702   if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited))
703     return ExitBB;
704   return nullptr;
705 }
706 
707 /// We have found that we can unswitch currentLoop when LoopCond == Val to
708 /// simplify the loop.  If we decide that this is profitable,
709 /// unswitch the loop, reprocess the pieces, then return true.
UnswitchIfProfitable(Value * LoopCond,Constant * Val,TerminatorInst * TI)710 bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val,
711                                         TerminatorInst *TI) {
712   // Check to see if it would be profitable to unswitch current loop.
713   if (!BranchesInfo.CostAllowsUnswitching()) {
714     DEBUG(dbgs() << "NOT unswitching loop %"
715                  << currentLoop->getHeader()->getName()
716                  << " at non-trivial condition '" << *Val
717                  << "' == " << *LoopCond << "\n"
718                  << ". Cost too high.\n");
719     return false;
720   }
721 
722   UnswitchNontrivialCondition(LoopCond, Val, currentLoop, TI);
723   return true;
724 }
725 
726 /// Recursively clone the specified loop and all of its children,
727 /// mapping the blocks with the specified map.
CloneLoop(Loop * L,Loop * PL,ValueToValueMapTy & VM,LoopInfo * LI,LPPassManager * LPM)728 static Loop *CloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
729                        LoopInfo *LI, LPPassManager *LPM) {
730   Loop &New = LPM->addLoop(PL);
731 
732   // Add all of the blocks in L to the new loop.
733   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
734        I != E; ++I)
735     if (LI->getLoopFor(*I) == L)
736       New.addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI);
737 
738   // Add all of the subloops to the new loop.
739   for (Loop *I : *L)
740     CloneLoop(I, &New, VM, LI, LPM);
741 
742   return &New;
743 }
744 
copyMetadata(Instruction * DstInst,const Instruction * SrcInst,bool Swapped)745 static void copyMetadata(Instruction *DstInst, const Instruction *SrcInst,
746                          bool Swapped) {
747   if (!SrcInst || !SrcInst->hasMetadata())
748     return;
749 
750   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
751   SrcInst->getAllMetadata(MDs);
752   for (auto &MD : MDs) {
753     switch (MD.first) {
754     default:
755       break;
756     case LLVMContext::MD_prof:
757       if (Swapped && MD.second->getNumOperands() == 3 &&
758           isa<MDString>(MD.second->getOperand(0))) {
759         MDString *MDName = cast<MDString>(MD.second->getOperand(0));
760         if (MDName->getString() == "branch_weights") {
761           auto *ValT = cast_or_null<ConstantAsMetadata>(
762                            MD.second->getOperand(1))->getValue();
763           auto *ValF = cast_or_null<ConstantAsMetadata>(
764                            MD.second->getOperand(2))->getValue();
765           assert(ValT && ValF && "Invalid Operands of branch_weights");
766           auto NewMD =
767               MDBuilder(DstInst->getParent()->getContext())
768                   .createBranchWeights(cast<ConstantInt>(ValF)->getZExtValue(),
769                                        cast<ConstantInt>(ValT)->getZExtValue());
770           MD.second = NewMD;
771         }
772       }
773       // fallthrough.
774     case LLVMContext::MD_make_implicit:
775     case LLVMContext::MD_dbg:
776       DstInst->setMetadata(MD.first, MD.second);
777     }
778   }
779 }
780 
781 /// Emit a conditional branch on two values if LIC == Val, branch to TrueDst,
782 /// otherwise branch to FalseDest. Insert the code immediately before InsertPt.
EmitPreheaderBranchOnCondition(Value * LIC,Constant * Val,BasicBlock * TrueDest,BasicBlock * FalseDest,Instruction * InsertPt,TerminatorInst * TI)783 void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
784                                                   BasicBlock *TrueDest,
785                                                   BasicBlock *FalseDest,
786                                                   Instruction *InsertPt,
787                                                   TerminatorInst *TI) {
788   // Insert a conditional branch on LIC to the two preheaders.  The original
789   // code is the true version and the new code is the false version.
790   Value *BranchVal = LIC;
791   bool Swapped = false;
792   if (!isa<ConstantInt>(Val) ||
793       Val->getType() != Type::getInt1Ty(LIC->getContext()))
794     BranchVal = new ICmpInst(InsertPt, ICmpInst::ICMP_EQ, LIC, Val);
795   else if (Val != ConstantInt::getTrue(Val->getContext())) {
796     // We want to enter the new loop when the condition is true.
797     std::swap(TrueDest, FalseDest);
798     Swapped = true;
799   }
800 
801   // Insert the new branch.
802   BranchInst *BI = BranchInst::Create(TrueDest, FalseDest, BranchVal, InsertPt);
803   copyMetadata(BI, TI, Swapped);
804 
805   // If either edge is critical, split it. This helps preserve LoopSimplify
806   // form for enclosing loops.
807   auto Options = CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA();
808   SplitCriticalEdge(BI, 0, Options);
809   SplitCriticalEdge(BI, 1, Options);
810 }
811 
812 /// Given a loop that has a trivial unswitchable condition in it (a cond branch
813 /// from its header block to its latch block, where the path through the loop
814 /// that doesn't execute its body has no side-effects), unswitch it. This
815 /// doesn't involve any code duplication, just moving the conditional branch
816 /// outside of the loop and updating loop info.
UnswitchTrivialCondition(Loop * L,Value * Cond,Constant * Val,BasicBlock * ExitBlock,TerminatorInst * TI)817 void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
818                                             BasicBlock *ExitBlock,
819                                             TerminatorInst *TI) {
820   DEBUG(dbgs() << "loop-unswitch: Trivial-Unswitch loop %"
821                << loopHeader->getName() << " [" << L->getBlocks().size()
822                << " blocks] in Function "
823                << L->getHeader()->getParent()->getName() << " on cond: " << *Val
824                << " == " << *Cond << "\n");
825 
826   // First step, split the preheader, so that we know that there is a safe place
827   // to insert the conditional branch.  We will change loopPreheader to have a
828   // conditional branch on Cond.
829   BasicBlock *NewPH = SplitEdge(loopPreheader, loopHeader, DT, LI);
830 
831   // Now that we have a place to insert the conditional branch, create a place
832   // to branch to: this is the exit block out of the loop that we should
833   // short-circuit to.
834 
835   // Split this block now, so that the loop maintains its exit block, and so
836   // that the jump from the preheader can execute the contents of the exit block
837   // without actually branching to it (the exit block should be dominated by the
838   // loop header, not the preheader).
839   assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
840   BasicBlock *NewExit = SplitBlock(ExitBlock, &ExitBlock->front(), DT, LI);
841 
842   // Okay, now we have a position to branch from and a position to branch to,
843   // insert the new conditional branch.
844   EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH,
845                                  loopPreheader->getTerminator(), TI);
846   LPM->deleteSimpleAnalysisValue(loopPreheader->getTerminator(), L);
847   loopPreheader->getTerminator()->eraseFromParent();
848 
849   // We need to reprocess this loop, it could be unswitched again.
850   redoLoop = true;
851 
852   // Now that we know that the loop is never entered when this condition is a
853   // particular value, rewrite the loop with this info.  We know that this will
854   // at least eliminate the old branch.
855   RewriteLoopBodyWithConditionConstant(L, Cond, Val, false);
856   ++NumTrivial;
857 }
858 
859 /// Check if the first non-constant condition starting from the loop header is
860 /// a trivial unswitch condition: that is, a condition controls whether or not
861 /// the loop does anything at all. If it is a trivial condition, unswitching
862 /// produces no code duplications (equivalently, it produces a simpler loop and
863 /// a new empty loop, which gets deleted). Therefore always unswitch trivial
864 /// condition.
TryTrivialLoopUnswitch(bool & Changed)865 bool LoopUnswitch::TryTrivialLoopUnswitch(bool &Changed) {
866   BasicBlock *CurrentBB = currentLoop->getHeader();
867   TerminatorInst *CurrentTerm = CurrentBB->getTerminator();
868   LLVMContext &Context = CurrentBB->getContext();
869 
870   // If loop header has only one reachable successor (currently via an
871   // unconditional branch or constant foldable conditional branch, but
872   // should also consider adding constant foldable switch instruction in
873   // future), we should keep looking for trivial condition candidates in
874   // the successor as well. An alternative is to constant fold conditions
875   // and merge successors into loop header (then we only need to check header's
876   // terminator). The reason for not doing this in LoopUnswitch pass is that
877   // it could potentially break LoopPassManager's invariants. Folding dead
878   // branches could either eliminate the current loop or make other loops
879   // unreachable. LCSSA form might also not be preserved after deleting
880   // branches. The following code keeps traversing loop header's successors
881   // until it finds the trivial condition candidate (condition that is not a
882   // constant). Since unswitching generates branches with constant conditions,
883   // this scenario could be very common in practice.
884   SmallSet<BasicBlock*, 8> Visited;
885 
886   while (true) {
887     // If we exit loop or reach a previous visited block, then
888     // we can not reach any trivial condition candidates (unfoldable
889     // branch instructions or switch instructions) and no unswitch
890     // can happen. Exit and return false.
891     if (!currentLoop->contains(CurrentBB) || !Visited.insert(CurrentBB).second)
892       return false;
893 
894     // Check if this loop will execute any side-effecting instructions (e.g.
895     // stores, calls, volatile loads) in the part of the loop that the code
896     // *would* execute. Check the header first.
897     for (Instruction &I : *CurrentBB)
898       if (I.mayHaveSideEffects())
899         return false;
900 
901     // FIXME: add check for constant foldable switch instructions.
902     if (BranchInst *BI = dyn_cast<BranchInst>(CurrentTerm)) {
903       if (BI->isUnconditional()) {
904         CurrentBB = BI->getSuccessor(0);
905       } else if (BI->getCondition() == ConstantInt::getTrue(Context)) {
906         CurrentBB = BI->getSuccessor(0);
907       } else if (BI->getCondition() == ConstantInt::getFalse(Context)) {
908         CurrentBB = BI->getSuccessor(1);
909       } else {
910         // Found a trivial condition candidate: non-foldable conditional branch.
911         break;
912       }
913     } else {
914       break;
915     }
916 
917     CurrentTerm = CurrentBB->getTerminator();
918   }
919 
920   // CondVal is the condition that controls the trivial condition.
921   // LoopExitBB is the BasicBlock that loop exits when meets trivial condition.
922   Constant *CondVal = nullptr;
923   BasicBlock *LoopExitBB = nullptr;
924 
925   if (BranchInst *BI = dyn_cast<BranchInst>(CurrentTerm)) {
926     // If this isn't branching on an invariant condition, we can't unswitch it.
927     if (!BI->isConditional())
928       return false;
929 
930     Value *LoopCond = FindLIVLoopCondition(BI->getCondition(),
931                                            currentLoop, Changed);
932 
933     // Unswitch only if the trivial condition itself is an LIV (not
934     // partial LIV which could occur in and/or)
935     if (!LoopCond || LoopCond != BI->getCondition())
936       return false;
937 
938     // Check to see if a successor of the branch is guaranteed to
939     // exit through a unique exit block without having any
940     // side-effects.  If so, determine the value of Cond that causes
941     // it to do this.
942     if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
943                                              BI->getSuccessor(0)))) {
944       CondVal = ConstantInt::getTrue(Context);
945     } else if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
946                                                     BI->getSuccessor(1)))) {
947       CondVal = ConstantInt::getFalse(Context);
948     }
949 
950     // If we didn't find a single unique LoopExit block, or if the loop exit
951     // block contains phi nodes, this isn't trivial.
952     if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
953       return false;   // Can't handle this.
954 
955     UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, LoopExitBB,
956                              CurrentTerm);
957     ++NumBranches;
958     return true;
959   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
960     // If this isn't switching on an invariant condition, we can't unswitch it.
961     Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
962                                            currentLoop, Changed);
963 
964     // Unswitch only if the trivial condition itself is an LIV (not
965     // partial LIV which could occur in and/or)
966     if (!LoopCond || LoopCond != SI->getCondition())
967       return false;
968 
969     // Check to see if a successor of the switch is guaranteed to go to the
970     // latch block or exit through a one exit block without having any
971     // side-effects.  If so, determine the value of Cond that causes it to do
972     // this.
973     // Note that we can't trivially unswitch on the default case or
974     // on already unswitched cases.
975     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
976          i != e; ++i) {
977       BasicBlock *LoopExitCandidate;
978       if ((LoopExitCandidate = isTrivialLoopExitBlock(currentLoop,
979                                                i.getCaseSuccessor()))) {
980         // Okay, we found a trivial case, remember the value that is trivial.
981         ConstantInt *CaseVal = i.getCaseValue();
982 
983         // Check that it was not unswitched before, since already unswitched
984         // trivial vals are looks trivial too.
985         if (BranchesInfo.isUnswitched(SI, CaseVal))
986           continue;
987         LoopExitBB = LoopExitCandidate;
988         CondVal = CaseVal;
989         break;
990       }
991     }
992 
993     // If we didn't find a single unique LoopExit block, or if the loop exit
994     // block contains phi nodes, this isn't trivial.
995     if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
996       return false;   // Can't handle this.
997 
998     UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, LoopExitBB,
999                              nullptr);
1000     ++NumSwitches;
1001     return true;
1002   }
1003   return false;
1004 }
1005 
1006 /// Split all of the edges from inside the loop to their exit blocks.
1007 /// Update the appropriate Phi nodes as we do so.
SplitExitEdges(Loop * L,const SmallVectorImpl<BasicBlock * > & ExitBlocks)1008 void LoopUnswitch::SplitExitEdges(Loop *L,
1009                                const SmallVectorImpl<BasicBlock *> &ExitBlocks){
1010 
1011   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
1012     BasicBlock *ExitBlock = ExitBlocks[i];
1013     SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBlock),
1014                                        pred_end(ExitBlock));
1015 
1016     // Although SplitBlockPredecessors doesn't preserve loop-simplify in
1017     // general, if we call it on all predecessors of all exits then it does.
1018     SplitBlockPredecessors(ExitBlock, Preds, ".us-lcssa", DT, LI,
1019                            /*PreserveLCSSA*/ true);
1020   }
1021 }
1022 
1023 /// We determined that the loop is profitable to unswitch when LIC equal Val.
1024 /// Split it into loop versions and test the condition outside of either loop.
1025 /// Return the loops created as Out1/Out2.
UnswitchNontrivialCondition(Value * LIC,Constant * Val,Loop * L,TerminatorInst * TI)1026 void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val,
1027                                                Loop *L, TerminatorInst *TI) {
1028   Function *F = loopHeader->getParent();
1029   DEBUG(dbgs() << "loop-unswitch: Unswitching loop %"
1030         << loopHeader->getName() << " [" << L->getBlocks().size()
1031         << " blocks] in Function " << F->getName()
1032         << " when '" << *Val << "' == " << *LIC << "\n");
1033 
1034   if (auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>())
1035     SEWP->getSE().forgetLoop(L);
1036 
1037   LoopBlocks.clear();
1038   NewBlocks.clear();
1039 
1040   // First step, split the preheader and exit blocks, and add these blocks to
1041   // the LoopBlocks list.
1042   BasicBlock *NewPreheader = SplitEdge(loopPreheader, loopHeader, DT, LI);
1043   LoopBlocks.push_back(NewPreheader);
1044 
1045   // We want the loop to come after the preheader, but before the exit blocks.
1046   LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
1047 
1048   SmallVector<BasicBlock*, 8> ExitBlocks;
1049   L->getUniqueExitBlocks(ExitBlocks);
1050 
1051   // Split all of the edges from inside the loop to their exit blocks.  Update
1052   // the appropriate Phi nodes as we do so.
1053   SplitExitEdges(L, ExitBlocks);
1054 
1055   // The exit blocks may have been changed due to edge splitting, recompute.
1056   ExitBlocks.clear();
1057   L->getUniqueExitBlocks(ExitBlocks);
1058 
1059   // Add exit blocks to the loop blocks.
1060   LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end());
1061 
1062   // Next step, clone all of the basic blocks that make up the loop (including
1063   // the loop preheader and exit blocks), keeping track of the mapping between
1064   // the instructions and blocks.
1065   NewBlocks.reserve(LoopBlocks.size());
1066   ValueToValueMapTy VMap;
1067   for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
1068     BasicBlock *NewBB = CloneBasicBlock(LoopBlocks[i], VMap, ".us", F);
1069 
1070     NewBlocks.push_back(NewBB);
1071     VMap[LoopBlocks[i]] = NewBB;  // Keep the BB mapping.
1072     LPM->cloneBasicBlockSimpleAnalysis(LoopBlocks[i], NewBB, L);
1073   }
1074 
1075   // Splice the newly inserted blocks into the function right before the
1076   // original preheader.
1077   F->getBasicBlockList().splice(NewPreheader->getIterator(),
1078                                 F->getBasicBlockList(),
1079                                 NewBlocks[0]->getIterator(), F->end());
1080 
1081   // FIXME: We could register any cloned assumptions instead of clearing the
1082   // whole function's cache.
1083   AC->clear();
1084 
1085   // Now we create the new Loop object for the versioned loop.
1086   Loop *NewLoop = CloneLoop(L, L->getParentLoop(), VMap, LI, LPM);
1087 
1088   // Recalculate unswitching quota, inherit simplified switches info for NewBB,
1089   // Probably clone more loop-unswitch related loop properties.
1090   BranchesInfo.cloneData(NewLoop, L, VMap);
1091 
1092   Loop *ParentLoop = L->getParentLoop();
1093   if (ParentLoop) {
1094     // Make sure to add the cloned preheader and exit blocks to the parent loop
1095     // as well.
1096     ParentLoop->addBasicBlockToLoop(NewBlocks[0], *LI);
1097   }
1098 
1099   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
1100     BasicBlock *NewExit = cast<BasicBlock>(VMap[ExitBlocks[i]]);
1101     // The new exit block should be in the same loop as the old one.
1102     if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i]))
1103       ExitBBLoop->addBasicBlockToLoop(NewExit, *LI);
1104 
1105     assert(NewExit->getTerminator()->getNumSuccessors() == 1 &&
1106            "Exit block should have been split to have one successor!");
1107     BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
1108 
1109     // If the successor of the exit block had PHI nodes, add an entry for
1110     // NewExit.
1111     for (BasicBlock::iterator I = ExitSucc->begin();
1112          PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1113       Value *V = PN->getIncomingValueForBlock(ExitBlocks[i]);
1114       ValueToValueMapTy::iterator It = VMap.find(V);
1115       if (It != VMap.end()) V = It->second;
1116       PN->addIncoming(V, NewExit);
1117     }
1118 
1119     if (LandingPadInst *LPad = NewExit->getLandingPadInst()) {
1120       PHINode *PN = PHINode::Create(LPad->getType(), 0, "",
1121                                     &*ExitSucc->getFirstInsertionPt());
1122 
1123       for (pred_iterator I = pred_begin(ExitSucc), E = pred_end(ExitSucc);
1124            I != E; ++I) {
1125         BasicBlock *BB = *I;
1126         LandingPadInst *LPI = BB->getLandingPadInst();
1127         LPI->replaceAllUsesWith(PN);
1128         PN->addIncoming(LPI, BB);
1129       }
1130     }
1131   }
1132 
1133   // Rewrite the code to refer to itself.
1134   for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i)
1135     for (Instruction &I : *NewBlocks[i])
1136       RemapInstruction(&I, VMap,
1137                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1138 
1139   // Rewrite the original preheader to select between versions of the loop.
1140   BranchInst *OldBR = cast<BranchInst>(loopPreheader->getTerminator());
1141   assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] &&
1142          "Preheader splitting did not work correctly!");
1143 
1144   // Emit the new branch that selects between the two versions of this loop.
1145   EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR,
1146                                  TI);
1147   LPM->deleteSimpleAnalysisValue(OldBR, L);
1148   OldBR->eraseFromParent();
1149 
1150   LoopProcessWorklist.push_back(NewLoop);
1151   redoLoop = true;
1152 
1153   // Keep a WeakVH holding onto LIC.  If the first call to RewriteLoopBody
1154   // deletes the instruction (for example by simplifying a PHI that feeds into
1155   // the condition that we're unswitching on), we don't rewrite the second
1156   // iteration.
1157   WeakVH LICHandle(LIC);
1158 
1159   // Now we rewrite the original code to know that the condition is true and the
1160   // new code to know that the condition is false.
1161   RewriteLoopBodyWithConditionConstant(L, LIC, Val, false);
1162 
1163   // It's possible that simplifying one loop could cause the other to be
1164   // changed to another value or a constant.  If its a constant, don't simplify
1165   // it.
1166   if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop &&
1167       LICHandle && !isa<Constant>(LICHandle))
1168     RewriteLoopBodyWithConditionConstant(NewLoop, LICHandle, Val, true);
1169 }
1170 
1171 /// Remove all instances of I from the worklist vector specified.
RemoveFromWorklist(Instruction * I,std::vector<Instruction * > & Worklist)1172 static void RemoveFromWorklist(Instruction *I,
1173                                std::vector<Instruction*> &Worklist) {
1174 
1175   Worklist.erase(std::remove(Worklist.begin(), Worklist.end(), I),
1176                  Worklist.end());
1177 }
1178 
1179 /// When we find that I really equals V, remove I from the
1180 /// program, replacing all uses with V and update the worklist.
ReplaceUsesOfWith(Instruction * I,Value * V,std::vector<Instruction * > & Worklist,Loop * L,LPPassManager * LPM)1181 static void ReplaceUsesOfWith(Instruction *I, Value *V,
1182                               std::vector<Instruction*> &Worklist,
1183                               Loop *L, LPPassManager *LPM) {
1184   DEBUG(dbgs() << "Replace with '" << *V << "': " << *I);
1185 
1186   // Add uses to the worklist, which may be dead now.
1187   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1188     if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
1189       Worklist.push_back(Use);
1190 
1191   // Add users to the worklist which may be simplified now.
1192   for (User *U : I->users())
1193     Worklist.push_back(cast<Instruction>(U));
1194   LPM->deleteSimpleAnalysisValue(I, L);
1195   RemoveFromWorklist(I, Worklist);
1196   I->replaceAllUsesWith(V);
1197   I->eraseFromParent();
1198   ++NumSimplify;
1199 }
1200 
1201 /// We know either that the value LIC has the value specified by Val in the
1202 /// specified loop, or we know it does NOT have that value.
1203 /// Rewrite any uses of LIC or of properties correlated to it.
RewriteLoopBodyWithConditionConstant(Loop * L,Value * LIC,Constant * Val,bool IsEqual)1204 void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
1205                                                         Constant *Val,
1206                                                         bool IsEqual) {
1207   assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
1208 
1209   // FIXME: Support correlated properties, like:
1210   //  for (...)
1211   //    if (li1 < li2)
1212   //      ...
1213   //    if (li1 > li2)
1214   //      ...
1215 
1216   // FOLD boolean conditions (X|LIC), (X&LIC).  Fold conditional branches,
1217   // selects, switches.
1218   std::vector<Instruction*> Worklist;
1219   LLVMContext &Context = Val->getContext();
1220 
1221   // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
1222   // in the loop with the appropriate one directly.
1223   if (IsEqual || (isa<ConstantInt>(Val) &&
1224       Val->getType()->isIntegerTy(1))) {
1225     Value *Replacement;
1226     if (IsEqual)
1227       Replacement = Val;
1228     else
1229       Replacement = ConstantInt::get(Type::getInt1Ty(Val->getContext()),
1230                                      !cast<ConstantInt>(Val)->getZExtValue());
1231 
1232     for (User *U : LIC->users()) {
1233       Instruction *UI = dyn_cast<Instruction>(U);
1234       if (!UI || !L->contains(UI))
1235         continue;
1236       Worklist.push_back(UI);
1237     }
1238 
1239     for (Instruction *UI : Worklist)
1240       UI->replaceUsesOfWith(LIC, Replacement);
1241 
1242     SimplifyCode(Worklist, L);
1243     return;
1244   }
1245 
1246   // Otherwise, we don't know the precise value of LIC, but we do know that it
1247   // is certainly NOT "Val".  As such, simplify any uses in the loop that we
1248   // can.  This case occurs when we unswitch switch statements.
1249   for (User *U : LIC->users()) {
1250     Instruction *UI = dyn_cast<Instruction>(U);
1251     if (!UI || !L->contains(UI))
1252       continue;
1253 
1254     Worklist.push_back(UI);
1255 
1256     // TODO: We could do other simplifications, for example, turning
1257     // 'icmp eq LIC, Val' -> false.
1258 
1259     // If we know that LIC is not Val, use this info to simplify code.
1260     SwitchInst *SI = dyn_cast<SwitchInst>(UI);
1261     if (!SI || !isa<ConstantInt>(Val)) continue;
1262 
1263     SwitchInst::CaseIt DeadCase = SI->findCaseValue(cast<ConstantInt>(Val));
1264     // Default case is live for multiple values.
1265     if (DeadCase == SI->case_default()) continue;
1266 
1267     // Found a dead case value.  Don't remove PHI nodes in the
1268     // successor if they become single-entry, those PHI nodes may
1269     // be in the Users list.
1270 
1271     BasicBlock *Switch = SI->getParent();
1272     BasicBlock *SISucc = DeadCase.getCaseSuccessor();
1273     BasicBlock *Latch = L->getLoopLatch();
1274 
1275     BranchesInfo.setUnswitched(SI, Val);
1276 
1277     if (!SI->findCaseDest(SISucc)) continue;  // Edge is critical.
1278     // If the DeadCase successor dominates the loop latch, then the
1279     // transformation isn't safe since it will delete the sole predecessor edge
1280     // to the latch.
1281     if (Latch && DT->dominates(SISucc, Latch))
1282       continue;
1283 
1284     // FIXME: This is a hack.  We need to keep the successor around
1285     // and hooked up so as to preserve the loop structure, because
1286     // trying to update it is complicated.  So instead we preserve the
1287     // loop structure and put the block on a dead code path.
1288     SplitEdge(Switch, SISucc, DT, LI);
1289     // Compute the successors instead of relying on the return value
1290     // of SplitEdge, since it may have split the switch successor
1291     // after PHI nodes.
1292     BasicBlock *NewSISucc = DeadCase.getCaseSuccessor();
1293     BasicBlock *OldSISucc = *succ_begin(NewSISucc);
1294     // Create an "unreachable" destination.
1295     BasicBlock *Abort = BasicBlock::Create(Context, "us-unreachable",
1296                                            Switch->getParent(),
1297                                            OldSISucc);
1298     new UnreachableInst(Context, Abort);
1299     // Force the new case destination to branch to the "unreachable"
1300     // block while maintaining a (dead) CFG edge to the old block.
1301     NewSISucc->getTerminator()->eraseFromParent();
1302     BranchInst::Create(Abort, OldSISucc,
1303                        ConstantInt::getTrue(Context), NewSISucc);
1304     // Release the PHI operands for this edge.
1305     for (BasicBlock::iterator II = NewSISucc->begin();
1306          PHINode *PN = dyn_cast<PHINode>(II); ++II)
1307       PN->setIncomingValue(PN->getBasicBlockIndex(Switch),
1308                            UndefValue::get(PN->getType()));
1309     // Tell the domtree about the new block. We don't fully update the
1310     // domtree here -- instead we force it to do a full recomputation
1311     // after the pass is complete -- but we do need to inform it of
1312     // new blocks.
1313     DT->addNewBlock(Abort, NewSISucc);
1314   }
1315 
1316   SimplifyCode(Worklist, L);
1317 }
1318 
1319 /// Now that we have simplified some instructions in the loop, walk over it and
1320 /// constant prop, dce, and fold control flow where possible. Note that this is
1321 /// effectively a very simple loop-structure-aware optimizer. During processing
1322 /// of this loop, L could very well be deleted, so it must not be used.
1323 ///
1324 /// FIXME: When the loop optimizer is more mature, separate this out to a new
1325 /// pass.
1326 ///
SimplifyCode(std::vector<Instruction * > & Worklist,Loop * L)1327 void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
1328   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
1329   while (!Worklist.empty()) {
1330     Instruction *I = Worklist.back();
1331     Worklist.pop_back();
1332 
1333     // Simple DCE.
1334     if (isInstructionTriviallyDead(I)) {
1335       DEBUG(dbgs() << "Remove dead instruction '" << *I);
1336 
1337       // Add uses to the worklist, which may be dead now.
1338       for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1339         if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
1340           Worklist.push_back(Use);
1341       LPM->deleteSimpleAnalysisValue(I, L);
1342       RemoveFromWorklist(I, Worklist);
1343       I->eraseFromParent();
1344       ++NumSimplify;
1345       continue;
1346     }
1347 
1348     // See if instruction simplification can hack this up.  This is common for
1349     // things like "select false, X, Y" after unswitching made the condition be
1350     // 'false'.  TODO: update the domtree properly so we can pass it here.
1351     if (Value *V = SimplifyInstruction(I, DL))
1352       if (LI->replacementPreservesLCSSAForm(I, V)) {
1353         ReplaceUsesOfWith(I, V, Worklist, L, LPM);
1354         continue;
1355       }
1356 
1357     // Special case hacks that appear commonly in unswitched code.
1358     if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1359       if (BI->isUnconditional()) {
1360         // If BI's parent is the only pred of the successor, fold the two blocks
1361         // together.
1362         BasicBlock *Pred = BI->getParent();
1363         BasicBlock *Succ = BI->getSuccessor(0);
1364         BasicBlock *SinglePred = Succ->getSinglePredecessor();
1365         if (!SinglePred) continue;  // Nothing to do.
1366         assert(SinglePred == Pred && "CFG broken");
1367 
1368         DEBUG(dbgs() << "Merging blocks: " << Pred->getName() << " <- "
1369               << Succ->getName() << "\n");
1370 
1371         // Resolve any single entry PHI nodes in Succ.
1372         while (PHINode *PN = dyn_cast<PHINode>(Succ->begin()))
1373           ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist, L, LPM);
1374 
1375         // If Succ has any successors with PHI nodes, update them to have
1376         // entries coming from Pred instead of Succ.
1377         Succ->replaceAllUsesWith(Pred);
1378 
1379         // Move all of the successor contents from Succ to Pred.
1380         Pred->getInstList().splice(BI->getIterator(), Succ->getInstList(),
1381                                    Succ->begin(), Succ->end());
1382         LPM->deleteSimpleAnalysisValue(BI, L);
1383         BI->eraseFromParent();
1384         RemoveFromWorklist(BI, Worklist);
1385 
1386         // Remove Succ from the loop tree.
1387         LI->removeBlock(Succ);
1388         LPM->deleteSimpleAnalysisValue(Succ, L);
1389         Succ->eraseFromParent();
1390         ++NumSimplify;
1391         continue;
1392       }
1393 
1394       continue;
1395     }
1396   }
1397 }
1398