1 //===-- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass transforms loops that contain branches on loop-invariant conditions
11 // to have multiple loops. For example, it turns the left into the right code:
12 //
13 // for (...) if (lic)
14 // A for (...)
15 // if (lic) A; B; C
16 // B else
17 // C for (...)
18 // A; C
19 //
20 // This can increase the size of the code exponentially (doubling it every time
21 // a loop is unswitched) so we only unswitch if the resultant code will be
22 // smaller than a threshold.
23 //
24 // This pass expects LICM to be run before it to hoist invariant conditions out
25 // of the loop, to make the unswitching opportunity obvious.
26 //
27 //===----------------------------------------------------------------------===//
28
29 #include "llvm/Transforms/Scalar.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/Analysis/GlobalsModRef.h"
34 #include "llvm/Analysis/AssumptionCache.h"
35 #include "llvm/Analysis/CodeMetrics.h"
36 #include "llvm/Analysis/InstructionSimplify.h"
37 #include "llvm/Analysis/LoopInfo.h"
38 #include "llvm/Analysis/LoopPass.h"
39 #include "llvm/Analysis/ScalarEvolution.h"
40 #include "llvm/Analysis/TargetTransformInfo.h"
41 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
42 #include "llvm/Analysis/BlockFrequencyInfo.h"
43 #include "llvm/Analysis/BranchProbabilityInfo.h"
44 #include "llvm/Support/BranchProbability.h"
45 #include "llvm/IR/Constants.h"
46 #include "llvm/IR/DerivedTypes.h"
47 #include "llvm/IR/Dominators.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/Instructions.h"
50 #include "llvm/IR/Module.h"
51 #include "llvm/IR/MDBuilder.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
56 #include "llvm/Transforms/Utils/Cloning.h"
57 #include "llvm/Transforms/Utils/Local.h"
58 #include "llvm/Transforms/Utils/LoopUtils.h"
59 #include <algorithm>
60 #include <map>
61 #include <set>
62 using namespace llvm;
63
64 #define DEBUG_TYPE "loop-unswitch"
65
66 STATISTIC(NumBranches, "Number of branches unswitched");
67 STATISTIC(NumSwitches, "Number of switches unswitched");
68 STATISTIC(NumGuards, "Number of guards unswitched");
69 STATISTIC(NumSelects , "Number of selects unswitched");
70 STATISTIC(NumTrivial , "Number of unswitches that are trivial");
71 STATISTIC(NumSimplify, "Number of simplifications of unswitched code");
72 STATISTIC(TotalInsts, "Total number of instructions analyzed");
73
74 // The specific value of 100 here was chosen based only on intuition and a
75 // few specific examples.
76 static cl::opt<unsigned>
77 Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
78 cl::init(100), cl::Hidden);
79
80 static cl::opt<bool>
81 LoopUnswitchWithBlockFrequency("loop-unswitch-with-block-frequency",
82 cl::init(false), cl::Hidden,
83 cl::desc("Enable the use of the block frequency analysis to access PGO "
84 "heuristics to minimize code growth in cold regions."));
85
86 static cl::opt<unsigned>
87 ColdnessThreshold("loop-unswitch-coldness-threshold", cl::init(1), cl::Hidden,
88 cl::desc("Coldness threshold in percentage. The loop header frequency "
89 "(relative to the entry frequency) is compared with this "
90 "threshold to determine if non-trivial unswitching should be "
91 "enabled."));
92
93 namespace {
94
95 class LUAnalysisCache {
96
97 typedef DenseMap<const SwitchInst*, SmallPtrSet<const Value *, 8> >
98 UnswitchedValsMap;
99
100 typedef UnswitchedValsMap::iterator UnswitchedValsIt;
101
102 struct LoopProperties {
103 unsigned CanBeUnswitchedCount;
104 unsigned WasUnswitchedCount;
105 unsigned SizeEstimation;
106 UnswitchedValsMap UnswitchedVals;
107 };
108
109 // Here we use std::map instead of DenseMap, since we need to keep valid
110 // LoopProperties pointer for current loop for better performance.
111 typedef std::map<const Loop*, LoopProperties> LoopPropsMap;
112 typedef LoopPropsMap::iterator LoopPropsMapIt;
113
114 LoopPropsMap LoopsProperties;
115 UnswitchedValsMap *CurLoopInstructions;
116 LoopProperties *CurrentLoopProperties;
117
118 // A loop unswitching with an estimated cost above this threshold
119 // is not performed. MaxSize is turned into unswitching quota for
120 // the current loop, and reduced correspondingly, though note that
121 // the quota is returned by releaseMemory() when the loop has been
122 // processed, so that MaxSize will return to its previous
123 // value. So in most cases MaxSize will equal the Threshold flag
124 // when a new loop is processed. An exception to that is that
125 // MaxSize will have a smaller value while processing nested loops
126 // that were introduced due to loop unswitching of an outer loop.
127 //
128 // FIXME: The way that MaxSize works is subtle and depends on the
129 // pass manager processing loops and calling releaseMemory() in a
130 // specific order. It would be good to find a more straightforward
131 // way of doing what MaxSize does.
132 unsigned MaxSize;
133
134 public:
LUAnalysisCache()135 LUAnalysisCache()
136 : CurLoopInstructions(nullptr), CurrentLoopProperties(nullptr),
137 MaxSize(Threshold) {}
138
139 // Analyze loop. Check its size, calculate is it possible to unswitch
140 // it. Returns true if we can unswitch this loop.
141 bool countLoop(const Loop *L, const TargetTransformInfo &TTI,
142 AssumptionCache *AC);
143
144 // Clean all data related to given loop.
145 void forgetLoop(const Loop *L);
146
147 // Mark case value as unswitched.
148 // Since SI instruction can be partly unswitched, in order to avoid
149 // extra unswitching in cloned loops keep track all unswitched values.
150 void setUnswitched(const SwitchInst *SI, const Value *V);
151
152 // Check was this case value unswitched before or not.
153 bool isUnswitched(const SwitchInst *SI, const Value *V);
154
155 // Returns true if another unswitching could be done within the cost
156 // threshold.
157 bool CostAllowsUnswitching();
158
159 // Clone all loop-unswitch related loop properties.
160 // Redistribute unswitching quotas.
161 // Note, that new loop data is stored inside the VMap.
162 void cloneData(const Loop *NewLoop, const Loop *OldLoop,
163 const ValueToValueMapTy &VMap);
164 };
165
166 class LoopUnswitch : public LoopPass {
167 LoopInfo *LI; // Loop information
168 LPPassManager *LPM;
169 AssumptionCache *AC;
170
171 // Used to check if second loop needs processing after
172 // RewriteLoopBodyWithConditionConstant rewrites first loop.
173 std::vector<Loop*> LoopProcessWorklist;
174
175 LUAnalysisCache BranchesInfo;
176
177 bool EnabledPGO;
178
179 // BFI and ColdEntryFreq are only used when PGO and
180 // LoopUnswitchWithBlockFrequency are enabled.
181 BlockFrequencyInfo BFI;
182 BlockFrequency ColdEntryFreq;
183
184 bool OptimizeForSize;
185 bool redoLoop;
186
187 Loop *currentLoop;
188 DominatorTree *DT;
189 BasicBlock *loopHeader;
190 BasicBlock *loopPreheader;
191
192 bool SanitizeMemory;
193 LoopSafetyInfo SafetyInfo;
194
195 // LoopBlocks contains all of the basic blocks of the loop, including the
196 // preheader of the loop, the body of the loop, and the exit blocks of the
197 // loop, in that order.
198 std::vector<BasicBlock*> LoopBlocks;
199 // NewBlocks contained cloned copy of basic blocks from LoopBlocks.
200 std::vector<BasicBlock*> NewBlocks;
201
202 public:
203 static char ID; // Pass ID, replacement for typeid
LoopUnswitch(bool Os=false)204 explicit LoopUnswitch(bool Os = false) :
205 LoopPass(ID), OptimizeForSize(Os), redoLoop(false),
206 currentLoop(nullptr), DT(nullptr), loopHeader(nullptr),
207 loopPreheader(nullptr) {
208 initializeLoopUnswitchPass(*PassRegistry::getPassRegistry());
209 }
210
211 bool runOnLoop(Loop *L, LPPassManager &LPM) override;
212 bool processCurrentLoop();
213
214 /// This transformation requires natural loop information & requires that
215 /// loop preheaders be inserted into the CFG.
216 ///
getAnalysisUsage(AnalysisUsage & AU) const217 void getAnalysisUsage(AnalysisUsage &AU) const override {
218 AU.addRequired<AssumptionCacheTracker>();
219 AU.addRequired<TargetTransformInfoWrapperPass>();
220 getLoopAnalysisUsage(AU);
221 }
222
223 private:
224
releaseMemory()225 void releaseMemory() override {
226 BranchesInfo.forgetLoop(currentLoop);
227 }
228
initLoopData()229 void initLoopData() {
230 loopHeader = currentLoop->getHeader();
231 loopPreheader = currentLoop->getLoopPreheader();
232 }
233
234 /// Split all of the edges from inside the loop to their exit blocks.
235 /// Update the appropriate Phi nodes as we do so.
236 void SplitExitEdges(Loop *L,
237 const SmallVectorImpl<BasicBlock *> &ExitBlocks);
238
239 bool TryTrivialLoopUnswitch(bool &Changed);
240
241 bool UnswitchIfProfitable(Value *LoopCond, Constant *Val,
242 TerminatorInst *TI = nullptr);
243 void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
244 BasicBlock *ExitBlock, TerminatorInst *TI);
245 void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L,
246 TerminatorInst *TI);
247
248 void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
249 Constant *Val, bool isEqual);
250
251 void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
252 BasicBlock *TrueDest,
253 BasicBlock *FalseDest,
254 Instruction *InsertPt,
255 TerminatorInst *TI);
256
257 void SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L);
258 };
259 }
260
261 // Analyze loop. Check its size, calculate is it possible to unswitch
262 // it. Returns true if we can unswitch this loop.
countLoop(const Loop * L,const TargetTransformInfo & TTI,AssumptionCache * AC)263 bool LUAnalysisCache::countLoop(const Loop *L, const TargetTransformInfo &TTI,
264 AssumptionCache *AC) {
265
266 LoopPropsMapIt PropsIt;
267 bool Inserted;
268 std::tie(PropsIt, Inserted) =
269 LoopsProperties.insert(std::make_pair(L, LoopProperties()));
270
271 LoopProperties &Props = PropsIt->second;
272
273 if (Inserted) {
274 // New loop.
275
276 // Limit the number of instructions to avoid causing significant code
277 // expansion, and the number of basic blocks, to avoid loops with
278 // large numbers of branches which cause loop unswitching to go crazy.
279 // This is a very ad-hoc heuristic.
280
281 SmallPtrSet<const Value *, 32> EphValues;
282 CodeMetrics::collectEphemeralValues(L, AC, EphValues);
283
284 // FIXME: This is overly conservative because it does not take into
285 // consideration code simplification opportunities and code that can
286 // be shared by the resultant unswitched loops.
287 CodeMetrics Metrics;
288 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); I != E;
289 ++I)
290 Metrics.analyzeBasicBlock(*I, TTI, EphValues);
291
292 Props.SizeEstimation = Metrics.NumInsts;
293 Props.CanBeUnswitchedCount = MaxSize / (Props.SizeEstimation);
294 Props.WasUnswitchedCount = 0;
295 MaxSize -= Props.SizeEstimation * Props.CanBeUnswitchedCount;
296
297 if (Metrics.notDuplicatable) {
298 DEBUG(dbgs() << "NOT unswitching loop %"
299 << L->getHeader()->getName() << ", contents cannot be "
300 << "duplicated!\n");
301 return false;
302 }
303 }
304
305 // Be careful. This links are good only before new loop addition.
306 CurrentLoopProperties = &Props;
307 CurLoopInstructions = &Props.UnswitchedVals;
308
309 return true;
310 }
311
312 // Clean all data related to given loop.
forgetLoop(const Loop * L)313 void LUAnalysisCache::forgetLoop(const Loop *L) {
314
315 LoopPropsMapIt LIt = LoopsProperties.find(L);
316
317 if (LIt != LoopsProperties.end()) {
318 LoopProperties &Props = LIt->second;
319 MaxSize += (Props.CanBeUnswitchedCount + Props.WasUnswitchedCount) *
320 Props.SizeEstimation;
321 LoopsProperties.erase(LIt);
322 }
323
324 CurrentLoopProperties = nullptr;
325 CurLoopInstructions = nullptr;
326 }
327
328 // Mark case value as unswitched.
329 // Since SI instruction can be partly unswitched, in order to avoid
330 // extra unswitching in cloned loops keep track all unswitched values.
setUnswitched(const SwitchInst * SI,const Value * V)331 void LUAnalysisCache::setUnswitched(const SwitchInst *SI, const Value *V) {
332 (*CurLoopInstructions)[SI].insert(V);
333 }
334
335 // Check was this case value unswitched before or not.
isUnswitched(const SwitchInst * SI,const Value * V)336 bool LUAnalysisCache::isUnswitched(const SwitchInst *SI, const Value *V) {
337 return (*CurLoopInstructions)[SI].count(V);
338 }
339
CostAllowsUnswitching()340 bool LUAnalysisCache::CostAllowsUnswitching() {
341 return CurrentLoopProperties->CanBeUnswitchedCount > 0;
342 }
343
344 // Clone all loop-unswitch related loop properties.
345 // Redistribute unswitching quotas.
346 // Note, that new loop data is stored inside the VMap.
cloneData(const Loop * NewLoop,const Loop * OldLoop,const ValueToValueMapTy & VMap)347 void LUAnalysisCache::cloneData(const Loop *NewLoop, const Loop *OldLoop,
348 const ValueToValueMapTy &VMap) {
349
350 LoopProperties &NewLoopProps = LoopsProperties[NewLoop];
351 LoopProperties &OldLoopProps = *CurrentLoopProperties;
352 UnswitchedValsMap &Insts = OldLoopProps.UnswitchedVals;
353
354 // Reallocate "can-be-unswitched quota"
355
356 --OldLoopProps.CanBeUnswitchedCount;
357 ++OldLoopProps.WasUnswitchedCount;
358 NewLoopProps.WasUnswitchedCount = 0;
359 unsigned Quota = OldLoopProps.CanBeUnswitchedCount;
360 NewLoopProps.CanBeUnswitchedCount = Quota / 2;
361 OldLoopProps.CanBeUnswitchedCount = Quota - Quota / 2;
362
363 NewLoopProps.SizeEstimation = OldLoopProps.SizeEstimation;
364
365 // Clone unswitched values info:
366 // for new loop switches we clone info about values that was
367 // already unswitched and has redundant successors.
368 for (UnswitchedValsIt I = Insts.begin(); I != Insts.end(); ++I) {
369 const SwitchInst *OldInst = I->first;
370 Value *NewI = VMap.lookup(OldInst);
371 const SwitchInst *NewInst = cast_or_null<SwitchInst>(NewI);
372 assert(NewInst && "All instructions that are in SrcBB must be in VMap.");
373
374 NewLoopProps.UnswitchedVals[NewInst] = OldLoopProps.UnswitchedVals[OldInst];
375 }
376 }
377
378 char LoopUnswitch::ID = 0;
379 INITIALIZE_PASS_BEGIN(LoopUnswitch, "loop-unswitch", "Unswitch loops",
380 false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)381 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
382 INITIALIZE_PASS_DEPENDENCY(LoopPass)
383 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
384 INITIALIZE_PASS_END(LoopUnswitch, "loop-unswitch", "Unswitch loops",
385 false, false)
386
387 Pass *llvm::createLoopUnswitchPass(bool Os) {
388 return new LoopUnswitch(Os);
389 }
390
391 /// Cond is a condition that occurs in L. If it is invariant in the loop, or has
392 /// an invariant piece, return the invariant. Otherwise, return null.
FindLIVLoopCondition(Value * Cond,Loop * L,bool & Changed,DenseMap<Value *,Value * > & Cache)393 static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed,
394 DenseMap<Value *, Value *> &Cache) {
395 auto CacheIt = Cache.find(Cond);
396 if (CacheIt != Cache.end())
397 return CacheIt->second;
398
399 // We started analyze new instruction, increment scanned instructions counter.
400 ++TotalInsts;
401
402 // We can never unswitch on vector conditions.
403 if (Cond->getType()->isVectorTy())
404 return nullptr;
405
406 // Constants should be folded, not unswitched on!
407 if (isa<Constant>(Cond)) return nullptr;
408
409 // TODO: Handle: br (VARIANT|INVARIANT).
410
411 // Hoist simple values out.
412 if (L->makeLoopInvariant(Cond, Changed)) {
413 Cache[Cond] = Cond;
414 return Cond;
415 }
416
417 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
418 if (BO->getOpcode() == Instruction::And ||
419 BO->getOpcode() == Instruction::Or) {
420 // If either the left or right side is invariant, we can unswitch on this,
421 // which will cause the branch to go away in one loop and the condition to
422 // simplify in the other one.
423 if (Value *LHS =
424 FindLIVLoopCondition(BO->getOperand(0), L, Changed, Cache)) {
425 Cache[Cond] = LHS;
426 return LHS;
427 }
428 if (Value *RHS =
429 FindLIVLoopCondition(BO->getOperand(1), L, Changed, Cache)) {
430 Cache[Cond] = RHS;
431 return RHS;
432 }
433 }
434
435 Cache[Cond] = nullptr;
436 return nullptr;
437 }
438
FindLIVLoopCondition(Value * Cond,Loop * L,bool & Changed)439 static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed) {
440 DenseMap<Value *, Value *> Cache;
441 return FindLIVLoopCondition(Cond, L, Changed, Cache);
442 }
443
runOnLoop(Loop * L,LPPassManager & LPM_Ref)444 bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) {
445 if (skipLoop(L))
446 return false;
447
448 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
449 *L->getHeader()->getParent());
450 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
451 LPM = &LPM_Ref;
452 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
453 currentLoop = L;
454 Function *F = currentLoop->getHeader()->getParent();
455
456 SanitizeMemory = F->hasFnAttribute(Attribute::SanitizeMemory);
457 if (SanitizeMemory)
458 computeLoopSafetyInfo(&SafetyInfo, L);
459
460 EnabledPGO = F->getEntryCount().hasValue();
461
462 if (LoopUnswitchWithBlockFrequency && EnabledPGO) {
463 BranchProbabilityInfo BPI(*F, *LI);
464 BFI.calculate(*L->getHeader()->getParent(), BPI, *LI);
465
466 // Use BranchProbability to compute a minimum frequency based on
467 // function entry baseline frequency. Loops with headers below this
468 // frequency are considered as cold.
469 const BranchProbability ColdProb(ColdnessThreshold, 100);
470 ColdEntryFreq = BlockFrequency(BFI.getEntryFreq()) * ColdProb;
471 }
472
473 bool Changed = false;
474 do {
475 assert(currentLoop->isLCSSAForm(*DT));
476 redoLoop = false;
477 Changed |= processCurrentLoop();
478 } while(redoLoop);
479
480 // FIXME: Reconstruct dom info, because it is not preserved properly.
481 if (Changed)
482 DT->recalculate(*F);
483 return Changed;
484 }
485
486 /// Do actual work and unswitch loop if possible and profitable.
processCurrentLoop()487 bool LoopUnswitch::processCurrentLoop() {
488 bool Changed = false;
489
490 initLoopData();
491
492 // If LoopSimplify was unable to form a preheader, don't do any unswitching.
493 if (!loopPreheader)
494 return false;
495
496 // Loops with indirectbr cannot be cloned.
497 if (!currentLoop->isSafeToClone())
498 return false;
499
500 // Without dedicated exits, splitting the exit edge may fail.
501 if (!currentLoop->hasDedicatedExits())
502 return false;
503
504 LLVMContext &Context = loopHeader->getContext();
505
506 // Analyze loop cost, and stop unswitching if loop content can not be duplicated.
507 if (!BranchesInfo.countLoop(
508 currentLoop, getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
509 *currentLoop->getHeader()->getParent()),
510 AC))
511 return false;
512
513 // Try trivial unswitch first before loop over other basic blocks in the loop.
514 if (TryTrivialLoopUnswitch(Changed)) {
515 return true;
516 }
517
518 // Run through the instructions in the loop, keeping track of three things:
519 //
520 // - That we do not unswitch loops containing convergent operations, as we
521 // might be making them control dependent on the unswitch value when they
522 // were not before.
523 // FIXME: This could be refined to only bail if the convergent operation is
524 // not already control-dependent on the unswitch value.
525 //
526 // - That basic blocks in the loop contain invokes whose predecessor edges we
527 // cannot split.
528 //
529 // - The set of guard intrinsics encountered (these are non terminator
530 // instructions that are also profitable to be unswitched).
531
532 SmallVector<IntrinsicInst *, 4> Guards;
533
534 for (const auto BB : currentLoop->blocks()) {
535 for (auto &I : *BB) {
536 auto CS = CallSite(&I);
537 if (!CS) continue;
538 if (CS.hasFnAttr(Attribute::Convergent))
539 return false;
540 if (auto *II = dyn_cast<InvokeInst>(&I))
541 if (!II->getUnwindDest()->canSplitPredecessors())
542 return false;
543 if (auto *II = dyn_cast<IntrinsicInst>(&I))
544 if (II->getIntrinsicID() == Intrinsic::experimental_guard)
545 Guards.push_back(II);
546 }
547 }
548
549 // Do not do non-trivial unswitch while optimizing for size.
550 // FIXME: Use Function::optForSize().
551 if (OptimizeForSize ||
552 loopHeader->getParent()->hasFnAttribute(Attribute::OptimizeForSize))
553 return false;
554
555 if (LoopUnswitchWithBlockFrequency && EnabledPGO) {
556 // Compute the weighted frequency of the hottest block in the
557 // loop (loopHeader in this case since inner loops should be
558 // processed before outer loop). If it is less than ColdFrequency,
559 // we should not unswitch.
560 BlockFrequency LoopEntryFreq = BFI.getBlockFreq(loopHeader);
561 if (LoopEntryFreq < ColdEntryFreq)
562 return false;
563 }
564
565 for (IntrinsicInst *Guard : Guards) {
566 Value *LoopCond =
567 FindLIVLoopCondition(Guard->getOperand(0), currentLoop, Changed);
568 if (LoopCond &&
569 UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(Context))) {
570 // NB! Unswitching (if successful) could have erased some of the
571 // instructions in Guards leaving dangling pointers there. This is fine
572 // because we're returning now, and won't look at Guards again.
573 ++NumGuards;
574 return true;
575 }
576 }
577
578 // Loop over all of the basic blocks in the loop. If we find an interior
579 // block that is branching on a loop-invariant condition, we can unswitch this
580 // loop.
581 for (Loop::block_iterator I = currentLoop->block_begin(),
582 E = currentLoop->block_end(); I != E; ++I) {
583 TerminatorInst *TI = (*I)->getTerminator();
584
585 // Unswitching on a potentially uninitialized predicate is not
586 // MSan-friendly. Limit this to the cases when the original predicate is
587 // guaranteed to execute, to avoid creating a use-of-uninitialized-value
588 // in the code that did not have one.
589 // This is a workaround for the discrepancy between LLVM IR and MSan
590 // semantics. See PR28054 for more details.
591 if (SanitizeMemory &&
592 !isGuaranteedToExecute(*TI, DT, currentLoop, &SafetyInfo))
593 continue;
594
595 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
596 // If this isn't branching on an invariant condition, we can't unswitch
597 // it.
598 if (BI->isConditional()) {
599 // See if this, or some part of it, is loop invariant. If so, we can
600 // unswitch on it if we desire.
601 Value *LoopCond = FindLIVLoopCondition(BI->getCondition(),
602 currentLoop, Changed);
603 if (LoopCond &&
604 UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(Context), TI)) {
605 ++NumBranches;
606 return true;
607 }
608 }
609 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
610 Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
611 currentLoop, Changed);
612 unsigned NumCases = SI->getNumCases();
613 if (LoopCond && NumCases) {
614 // Find a value to unswitch on:
615 // FIXME: this should chose the most expensive case!
616 // FIXME: scan for a case with a non-critical edge?
617 Constant *UnswitchVal = nullptr;
618
619 // Do not process same value again and again.
620 // At this point we have some cases already unswitched and
621 // some not yet unswitched. Let's find the first not yet unswitched one.
622 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
623 i != e; ++i) {
624 Constant *UnswitchValCandidate = i.getCaseValue();
625 if (!BranchesInfo.isUnswitched(SI, UnswitchValCandidate)) {
626 UnswitchVal = UnswitchValCandidate;
627 break;
628 }
629 }
630
631 if (!UnswitchVal)
632 continue;
633
634 if (UnswitchIfProfitable(LoopCond, UnswitchVal)) {
635 ++NumSwitches;
636 return true;
637 }
638 }
639 }
640
641 // Scan the instructions to check for unswitchable values.
642 for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
643 BBI != E; ++BBI)
644 if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) {
645 Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
646 currentLoop, Changed);
647 if (LoopCond && UnswitchIfProfitable(LoopCond,
648 ConstantInt::getTrue(Context))) {
649 ++NumSelects;
650 return true;
651 }
652 }
653 }
654 return Changed;
655 }
656
657 /// Check to see if all paths from BB exit the loop with no side effects
658 /// (including infinite loops).
659 ///
660 /// If true, we return true and set ExitBB to the block we
661 /// exit through.
662 ///
isTrivialLoopExitBlockHelper(Loop * L,BasicBlock * BB,BasicBlock * & ExitBB,std::set<BasicBlock * > & Visited)663 static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB,
664 BasicBlock *&ExitBB,
665 std::set<BasicBlock*> &Visited) {
666 if (!Visited.insert(BB).second) {
667 // Already visited. Without more analysis, this could indicate an infinite
668 // loop.
669 return false;
670 }
671 if (!L->contains(BB)) {
672 // Otherwise, this is a loop exit, this is fine so long as this is the
673 // first exit.
674 if (ExitBB) return false;
675 ExitBB = BB;
676 return true;
677 }
678
679 // Otherwise, this is an unvisited intra-loop node. Check all successors.
680 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
681 // Check to see if the successor is a trivial loop exit.
682 if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited))
683 return false;
684 }
685
686 // Okay, everything after this looks good, check to make sure that this block
687 // doesn't include any side effects.
688 for (Instruction &I : *BB)
689 if (I.mayHaveSideEffects())
690 return false;
691
692 return true;
693 }
694
695 /// Return true if the specified block unconditionally leads to an exit from
696 /// the specified loop, and has no side-effects in the process. If so, return
697 /// the block that is exited to, otherwise return null.
isTrivialLoopExitBlock(Loop * L,BasicBlock * BB)698 static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) {
699 std::set<BasicBlock*> Visited;
700 Visited.insert(L->getHeader()); // Branches to header make infinite loops.
701 BasicBlock *ExitBB = nullptr;
702 if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited))
703 return ExitBB;
704 return nullptr;
705 }
706
707 /// We have found that we can unswitch currentLoop when LoopCond == Val to
708 /// simplify the loop. If we decide that this is profitable,
709 /// unswitch the loop, reprocess the pieces, then return true.
UnswitchIfProfitable(Value * LoopCond,Constant * Val,TerminatorInst * TI)710 bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val,
711 TerminatorInst *TI) {
712 // Check to see if it would be profitable to unswitch current loop.
713 if (!BranchesInfo.CostAllowsUnswitching()) {
714 DEBUG(dbgs() << "NOT unswitching loop %"
715 << currentLoop->getHeader()->getName()
716 << " at non-trivial condition '" << *Val
717 << "' == " << *LoopCond << "\n"
718 << ". Cost too high.\n");
719 return false;
720 }
721
722 UnswitchNontrivialCondition(LoopCond, Val, currentLoop, TI);
723 return true;
724 }
725
726 /// Recursively clone the specified loop and all of its children,
727 /// mapping the blocks with the specified map.
CloneLoop(Loop * L,Loop * PL,ValueToValueMapTy & VM,LoopInfo * LI,LPPassManager * LPM)728 static Loop *CloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
729 LoopInfo *LI, LPPassManager *LPM) {
730 Loop &New = LPM->addLoop(PL);
731
732 // Add all of the blocks in L to the new loop.
733 for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
734 I != E; ++I)
735 if (LI->getLoopFor(*I) == L)
736 New.addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI);
737
738 // Add all of the subloops to the new loop.
739 for (Loop *I : *L)
740 CloneLoop(I, &New, VM, LI, LPM);
741
742 return &New;
743 }
744
copyMetadata(Instruction * DstInst,const Instruction * SrcInst,bool Swapped)745 static void copyMetadata(Instruction *DstInst, const Instruction *SrcInst,
746 bool Swapped) {
747 if (!SrcInst || !SrcInst->hasMetadata())
748 return;
749
750 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
751 SrcInst->getAllMetadata(MDs);
752 for (auto &MD : MDs) {
753 switch (MD.first) {
754 default:
755 break;
756 case LLVMContext::MD_prof:
757 if (Swapped && MD.second->getNumOperands() == 3 &&
758 isa<MDString>(MD.second->getOperand(0))) {
759 MDString *MDName = cast<MDString>(MD.second->getOperand(0));
760 if (MDName->getString() == "branch_weights") {
761 auto *ValT = cast_or_null<ConstantAsMetadata>(
762 MD.second->getOperand(1))->getValue();
763 auto *ValF = cast_or_null<ConstantAsMetadata>(
764 MD.second->getOperand(2))->getValue();
765 assert(ValT && ValF && "Invalid Operands of branch_weights");
766 auto NewMD =
767 MDBuilder(DstInst->getParent()->getContext())
768 .createBranchWeights(cast<ConstantInt>(ValF)->getZExtValue(),
769 cast<ConstantInt>(ValT)->getZExtValue());
770 MD.second = NewMD;
771 }
772 }
773 // fallthrough.
774 case LLVMContext::MD_make_implicit:
775 case LLVMContext::MD_dbg:
776 DstInst->setMetadata(MD.first, MD.second);
777 }
778 }
779 }
780
781 /// Emit a conditional branch on two values if LIC == Val, branch to TrueDst,
782 /// otherwise branch to FalseDest. Insert the code immediately before InsertPt.
EmitPreheaderBranchOnCondition(Value * LIC,Constant * Val,BasicBlock * TrueDest,BasicBlock * FalseDest,Instruction * InsertPt,TerminatorInst * TI)783 void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
784 BasicBlock *TrueDest,
785 BasicBlock *FalseDest,
786 Instruction *InsertPt,
787 TerminatorInst *TI) {
788 // Insert a conditional branch on LIC to the two preheaders. The original
789 // code is the true version and the new code is the false version.
790 Value *BranchVal = LIC;
791 bool Swapped = false;
792 if (!isa<ConstantInt>(Val) ||
793 Val->getType() != Type::getInt1Ty(LIC->getContext()))
794 BranchVal = new ICmpInst(InsertPt, ICmpInst::ICMP_EQ, LIC, Val);
795 else if (Val != ConstantInt::getTrue(Val->getContext())) {
796 // We want to enter the new loop when the condition is true.
797 std::swap(TrueDest, FalseDest);
798 Swapped = true;
799 }
800
801 // Insert the new branch.
802 BranchInst *BI = BranchInst::Create(TrueDest, FalseDest, BranchVal, InsertPt);
803 copyMetadata(BI, TI, Swapped);
804
805 // If either edge is critical, split it. This helps preserve LoopSimplify
806 // form for enclosing loops.
807 auto Options = CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA();
808 SplitCriticalEdge(BI, 0, Options);
809 SplitCriticalEdge(BI, 1, Options);
810 }
811
812 /// Given a loop that has a trivial unswitchable condition in it (a cond branch
813 /// from its header block to its latch block, where the path through the loop
814 /// that doesn't execute its body has no side-effects), unswitch it. This
815 /// doesn't involve any code duplication, just moving the conditional branch
816 /// outside of the loop and updating loop info.
UnswitchTrivialCondition(Loop * L,Value * Cond,Constant * Val,BasicBlock * ExitBlock,TerminatorInst * TI)817 void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
818 BasicBlock *ExitBlock,
819 TerminatorInst *TI) {
820 DEBUG(dbgs() << "loop-unswitch: Trivial-Unswitch loop %"
821 << loopHeader->getName() << " [" << L->getBlocks().size()
822 << " blocks] in Function "
823 << L->getHeader()->getParent()->getName() << " on cond: " << *Val
824 << " == " << *Cond << "\n");
825
826 // First step, split the preheader, so that we know that there is a safe place
827 // to insert the conditional branch. We will change loopPreheader to have a
828 // conditional branch on Cond.
829 BasicBlock *NewPH = SplitEdge(loopPreheader, loopHeader, DT, LI);
830
831 // Now that we have a place to insert the conditional branch, create a place
832 // to branch to: this is the exit block out of the loop that we should
833 // short-circuit to.
834
835 // Split this block now, so that the loop maintains its exit block, and so
836 // that the jump from the preheader can execute the contents of the exit block
837 // without actually branching to it (the exit block should be dominated by the
838 // loop header, not the preheader).
839 assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
840 BasicBlock *NewExit = SplitBlock(ExitBlock, &ExitBlock->front(), DT, LI);
841
842 // Okay, now we have a position to branch from and a position to branch to,
843 // insert the new conditional branch.
844 EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH,
845 loopPreheader->getTerminator(), TI);
846 LPM->deleteSimpleAnalysisValue(loopPreheader->getTerminator(), L);
847 loopPreheader->getTerminator()->eraseFromParent();
848
849 // We need to reprocess this loop, it could be unswitched again.
850 redoLoop = true;
851
852 // Now that we know that the loop is never entered when this condition is a
853 // particular value, rewrite the loop with this info. We know that this will
854 // at least eliminate the old branch.
855 RewriteLoopBodyWithConditionConstant(L, Cond, Val, false);
856 ++NumTrivial;
857 }
858
859 /// Check if the first non-constant condition starting from the loop header is
860 /// a trivial unswitch condition: that is, a condition controls whether or not
861 /// the loop does anything at all. If it is a trivial condition, unswitching
862 /// produces no code duplications (equivalently, it produces a simpler loop and
863 /// a new empty loop, which gets deleted). Therefore always unswitch trivial
864 /// condition.
TryTrivialLoopUnswitch(bool & Changed)865 bool LoopUnswitch::TryTrivialLoopUnswitch(bool &Changed) {
866 BasicBlock *CurrentBB = currentLoop->getHeader();
867 TerminatorInst *CurrentTerm = CurrentBB->getTerminator();
868 LLVMContext &Context = CurrentBB->getContext();
869
870 // If loop header has only one reachable successor (currently via an
871 // unconditional branch or constant foldable conditional branch, but
872 // should also consider adding constant foldable switch instruction in
873 // future), we should keep looking for trivial condition candidates in
874 // the successor as well. An alternative is to constant fold conditions
875 // and merge successors into loop header (then we only need to check header's
876 // terminator). The reason for not doing this in LoopUnswitch pass is that
877 // it could potentially break LoopPassManager's invariants. Folding dead
878 // branches could either eliminate the current loop or make other loops
879 // unreachable. LCSSA form might also not be preserved after deleting
880 // branches. The following code keeps traversing loop header's successors
881 // until it finds the trivial condition candidate (condition that is not a
882 // constant). Since unswitching generates branches with constant conditions,
883 // this scenario could be very common in practice.
884 SmallSet<BasicBlock*, 8> Visited;
885
886 while (true) {
887 // If we exit loop or reach a previous visited block, then
888 // we can not reach any trivial condition candidates (unfoldable
889 // branch instructions or switch instructions) and no unswitch
890 // can happen. Exit and return false.
891 if (!currentLoop->contains(CurrentBB) || !Visited.insert(CurrentBB).second)
892 return false;
893
894 // Check if this loop will execute any side-effecting instructions (e.g.
895 // stores, calls, volatile loads) in the part of the loop that the code
896 // *would* execute. Check the header first.
897 for (Instruction &I : *CurrentBB)
898 if (I.mayHaveSideEffects())
899 return false;
900
901 // FIXME: add check for constant foldable switch instructions.
902 if (BranchInst *BI = dyn_cast<BranchInst>(CurrentTerm)) {
903 if (BI->isUnconditional()) {
904 CurrentBB = BI->getSuccessor(0);
905 } else if (BI->getCondition() == ConstantInt::getTrue(Context)) {
906 CurrentBB = BI->getSuccessor(0);
907 } else if (BI->getCondition() == ConstantInt::getFalse(Context)) {
908 CurrentBB = BI->getSuccessor(1);
909 } else {
910 // Found a trivial condition candidate: non-foldable conditional branch.
911 break;
912 }
913 } else {
914 break;
915 }
916
917 CurrentTerm = CurrentBB->getTerminator();
918 }
919
920 // CondVal is the condition that controls the trivial condition.
921 // LoopExitBB is the BasicBlock that loop exits when meets trivial condition.
922 Constant *CondVal = nullptr;
923 BasicBlock *LoopExitBB = nullptr;
924
925 if (BranchInst *BI = dyn_cast<BranchInst>(CurrentTerm)) {
926 // If this isn't branching on an invariant condition, we can't unswitch it.
927 if (!BI->isConditional())
928 return false;
929
930 Value *LoopCond = FindLIVLoopCondition(BI->getCondition(),
931 currentLoop, Changed);
932
933 // Unswitch only if the trivial condition itself is an LIV (not
934 // partial LIV which could occur in and/or)
935 if (!LoopCond || LoopCond != BI->getCondition())
936 return false;
937
938 // Check to see if a successor of the branch is guaranteed to
939 // exit through a unique exit block without having any
940 // side-effects. If so, determine the value of Cond that causes
941 // it to do this.
942 if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
943 BI->getSuccessor(0)))) {
944 CondVal = ConstantInt::getTrue(Context);
945 } else if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
946 BI->getSuccessor(1)))) {
947 CondVal = ConstantInt::getFalse(Context);
948 }
949
950 // If we didn't find a single unique LoopExit block, or if the loop exit
951 // block contains phi nodes, this isn't trivial.
952 if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
953 return false; // Can't handle this.
954
955 UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, LoopExitBB,
956 CurrentTerm);
957 ++NumBranches;
958 return true;
959 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
960 // If this isn't switching on an invariant condition, we can't unswitch it.
961 Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
962 currentLoop, Changed);
963
964 // Unswitch only if the trivial condition itself is an LIV (not
965 // partial LIV which could occur in and/or)
966 if (!LoopCond || LoopCond != SI->getCondition())
967 return false;
968
969 // Check to see if a successor of the switch is guaranteed to go to the
970 // latch block or exit through a one exit block without having any
971 // side-effects. If so, determine the value of Cond that causes it to do
972 // this.
973 // Note that we can't trivially unswitch on the default case or
974 // on already unswitched cases.
975 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
976 i != e; ++i) {
977 BasicBlock *LoopExitCandidate;
978 if ((LoopExitCandidate = isTrivialLoopExitBlock(currentLoop,
979 i.getCaseSuccessor()))) {
980 // Okay, we found a trivial case, remember the value that is trivial.
981 ConstantInt *CaseVal = i.getCaseValue();
982
983 // Check that it was not unswitched before, since already unswitched
984 // trivial vals are looks trivial too.
985 if (BranchesInfo.isUnswitched(SI, CaseVal))
986 continue;
987 LoopExitBB = LoopExitCandidate;
988 CondVal = CaseVal;
989 break;
990 }
991 }
992
993 // If we didn't find a single unique LoopExit block, or if the loop exit
994 // block contains phi nodes, this isn't trivial.
995 if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
996 return false; // Can't handle this.
997
998 UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, LoopExitBB,
999 nullptr);
1000 ++NumSwitches;
1001 return true;
1002 }
1003 return false;
1004 }
1005
1006 /// Split all of the edges from inside the loop to their exit blocks.
1007 /// Update the appropriate Phi nodes as we do so.
SplitExitEdges(Loop * L,const SmallVectorImpl<BasicBlock * > & ExitBlocks)1008 void LoopUnswitch::SplitExitEdges(Loop *L,
1009 const SmallVectorImpl<BasicBlock *> &ExitBlocks){
1010
1011 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
1012 BasicBlock *ExitBlock = ExitBlocks[i];
1013 SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBlock),
1014 pred_end(ExitBlock));
1015
1016 // Although SplitBlockPredecessors doesn't preserve loop-simplify in
1017 // general, if we call it on all predecessors of all exits then it does.
1018 SplitBlockPredecessors(ExitBlock, Preds, ".us-lcssa", DT, LI,
1019 /*PreserveLCSSA*/ true);
1020 }
1021 }
1022
1023 /// We determined that the loop is profitable to unswitch when LIC equal Val.
1024 /// Split it into loop versions and test the condition outside of either loop.
1025 /// Return the loops created as Out1/Out2.
UnswitchNontrivialCondition(Value * LIC,Constant * Val,Loop * L,TerminatorInst * TI)1026 void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val,
1027 Loop *L, TerminatorInst *TI) {
1028 Function *F = loopHeader->getParent();
1029 DEBUG(dbgs() << "loop-unswitch: Unswitching loop %"
1030 << loopHeader->getName() << " [" << L->getBlocks().size()
1031 << " blocks] in Function " << F->getName()
1032 << " when '" << *Val << "' == " << *LIC << "\n");
1033
1034 if (auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>())
1035 SEWP->getSE().forgetLoop(L);
1036
1037 LoopBlocks.clear();
1038 NewBlocks.clear();
1039
1040 // First step, split the preheader and exit blocks, and add these blocks to
1041 // the LoopBlocks list.
1042 BasicBlock *NewPreheader = SplitEdge(loopPreheader, loopHeader, DT, LI);
1043 LoopBlocks.push_back(NewPreheader);
1044
1045 // We want the loop to come after the preheader, but before the exit blocks.
1046 LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
1047
1048 SmallVector<BasicBlock*, 8> ExitBlocks;
1049 L->getUniqueExitBlocks(ExitBlocks);
1050
1051 // Split all of the edges from inside the loop to their exit blocks. Update
1052 // the appropriate Phi nodes as we do so.
1053 SplitExitEdges(L, ExitBlocks);
1054
1055 // The exit blocks may have been changed due to edge splitting, recompute.
1056 ExitBlocks.clear();
1057 L->getUniqueExitBlocks(ExitBlocks);
1058
1059 // Add exit blocks to the loop blocks.
1060 LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end());
1061
1062 // Next step, clone all of the basic blocks that make up the loop (including
1063 // the loop preheader and exit blocks), keeping track of the mapping between
1064 // the instructions and blocks.
1065 NewBlocks.reserve(LoopBlocks.size());
1066 ValueToValueMapTy VMap;
1067 for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
1068 BasicBlock *NewBB = CloneBasicBlock(LoopBlocks[i], VMap, ".us", F);
1069
1070 NewBlocks.push_back(NewBB);
1071 VMap[LoopBlocks[i]] = NewBB; // Keep the BB mapping.
1072 LPM->cloneBasicBlockSimpleAnalysis(LoopBlocks[i], NewBB, L);
1073 }
1074
1075 // Splice the newly inserted blocks into the function right before the
1076 // original preheader.
1077 F->getBasicBlockList().splice(NewPreheader->getIterator(),
1078 F->getBasicBlockList(),
1079 NewBlocks[0]->getIterator(), F->end());
1080
1081 // FIXME: We could register any cloned assumptions instead of clearing the
1082 // whole function's cache.
1083 AC->clear();
1084
1085 // Now we create the new Loop object for the versioned loop.
1086 Loop *NewLoop = CloneLoop(L, L->getParentLoop(), VMap, LI, LPM);
1087
1088 // Recalculate unswitching quota, inherit simplified switches info for NewBB,
1089 // Probably clone more loop-unswitch related loop properties.
1090 BranchesInfo.cloneData(NewLoop, L, VMap);
1091
1092 Loop *ParentLoop = L->getParentLoop();
1093 if (ParentLoop) {
1094 // Make sure to add the cloned preheader and exit blocks to the parent loop
1095 // as well.
1096 ParentLoop->addBasicBlockToLoop(NewBlocks[0], *LI);
1097 }
1098
1099 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
1100 BasicBlock *NewExit = cast<BasicBlock>(VMap[ExitBlocks[i]]);
1101 // The new exit block should be in the same loop as the old one.
1102 if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i]))
1103 ExitBBLoop->addBasicBlockToLoop(NewExit, *LI);
1104
1105 assert(NewExit->getTerminator()->getNumSuccessors() == 1 &&
1106 "Exit block should have been split to have one successor!");
1107 BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
1108
1109 // If the successor of the exit block had PHI nodes, add an entry for
1110 // NewExit.
1111 for (BasicBlock::iterator I = ExitSucc->begin();
1112 PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1113 Value *V = PN->getIncomingValueForBlock(ExitBlocks[i]);
1114 ValueToValueMapTy::iterator It = VMap.find(V);
1115 if (It != VMap.end()) V = It->second;
1116 PN->addIncoming(V, NewExit);
1117 }
1118
1119 if (LandingPadInst *LPad = NewExit->getLandingPadInst()) {
1120 PHINode *PN = PHINode::Create(LPad->getType(), 0, "",
1121 &*ExitSucc->getFirstInsertionPt());
1122
1123 for (pred_iterator I = pred_begin(ExitSucc), E = pred_end(ExitSucc);
1124 I != E; ++I) {
1125 BasicBlock *BB = *I;
1126 LandingPadInst *LPI = BB->getLandingPadInst();
1127 LPI->replaceAllUsesWith(PN);
1128 PN->addIncoming(LPI, BB);
1129 }
1130 }
1131 }
1132
1133 // Rewrite the code to refer to itself.
1134 for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i)
1135 for (Instruction &I : *NewBlocks[i])
1136 RemapInstruction(&I, VMap,
1137 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1138
1139 // Rewrite the original preheader to select between versions of the loop.
1140 BranchInst *OldBR = cast<BranchInst>(loopPreheader->getTerminator());
1141 assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] &&
1142 "Preheader splitting did not work correctly!");
1143
1144 // Emit the new branch that selects between the two versions of this loop.
1145 EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR,
1146 TI);
1147 LPM->deleteSimpleAnalysisValue(OldBR, L);
1148 OldBR->eraseFromParent();
1149
1150 LoopProcessWorklist.push_back(NewLoop);
1151 redoLoop = true;
1152
1153 // Keep a WeakVH holding onto LIC. If the first call to RewriteLoopBody
1154 // deletes the instruction (for example by simplifying a PHI that feeds into
1155 // the condition that we're unswitching on), we don't rewrite the second
1156 // iteration.
1157 WeakVH LICHandle(LIC);
1158
1159 // Now we rewrite the original code to know that the condition is true and the
1160 // new code to know that the condition is false.
1161 RewriteLoopBodyWithConditionConstant(L, LIC, Val, false);
1162
1163 // It's possible that simplifying one loop could cause the other to be
1164 // changed to another value or a constant. If its a constant, don't simplify
1165 // it.
1166 if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop &&
1167 LICHandle && !isa<Constant>(LICHandle))
1168 RewriteLoopBodyWithConditionConstant(NewLoop, LICHandle, Val, true);
1169 }
1170
1171 /// Remove all instances of I from the worklist vector specified.
RemoveFromWorklist(Instruction * I,std::vector<Instruction * > & Worklist)1172 static void RemoveFromWorklist(Instruction *I,
1173 std::vector<Instruction*> &Worklist) {
1174
1175 Worklist.erase(std::remove(Worklist.begin(), Worklist.end(), I),
1176 Worklist.end());
1177 }
1178
1179 /// When we find that I really equals V, remove I from the
1180 /// program, replacing all uses with V and update the worklist.
ReplaceUsesOfWith(Instruction * I,Value * V,std::vector<Instruction * > & Worklist,Loop * L,LPPassManager * LPM)1181 static void ReplaceUsesOfWith(Instruction *I, Value *V,
1182 std::vector<Instruction*> &Worklist,
1183 Loop *L, LPPassManager *LPM) {
1184 DEBUG(dbgs() << "Replace with '" << *V << "': " << *I);
1185
1186 // Add uses to the worklist, which may be dead now.
1187 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1188 if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
1189 Worklist.push_back(Use);
1190
1191 // Add users to the worklist which may be simplified now.
1192 for (User *U : I->users())
1193 Worklist.push_back(cast<Instruction>(U));
1194 LPM->deleteSimpleAnalysisValue(I, L);
1195 RemoveFromWorklist(I, Worklist);
1196 I->replaceAllUsesWith(V);
1197 I->eraseFromParent();
1198 ++NumSimplify;
1199 }
1200
1201 /// We know either that the value LIC has the value specified by Val in the
1202 /// specified loop, or we know it does NOT have that value.
1203 /// Rewrite any uses of LIC or of properties correlated to it.
RewriteLoopBodyWithConditionConstant(Loop * L,Value * LIC,Constant * Val,bool IsEqual)1204 void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
1205 Constant *Val,
1206 bool IsEqual) {
1207 assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
1208
1209 // FIXME: Support correlated properties, like:
1210 // for (...)
1211 // if (li1 < li2)
1212 // ...
1213 // if (li1 > li2)
1214 // ...
1215
1216 // FOLD boolean conditions (X|LIC), (X&LIC). Fold conditional branches,
1217 // selects, switches.
1218 std::vector<Instruction*> Worklist;
1219 LLVMContext &Context = Val->getContext();
1220
1221 // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
1222 // in the loop with the appropriate one directly.
1223 if (IsEqual || (isa<ConstantInt>(Val) &&
1224 Val->getType()->isIntegerTy(1))) {
1225 Value *Replacement;
1226 if (IsEqual)
1227 Replacement = Val;
1228 else
1229 Replacement = ConstantInt::get(Type::getInt1Ty(Val->getContext()),
1230 !cast<ConstantInt>(Val)->getZExtValue());
1231
1232 for (User *U : LIC->users()) {
1233 Instruction *UI = dyn_cast<Instruction>(U);
1234 if (!UI || !L->contains(UI))
1235 continue;
1236 Worklist.push_back(UI);
1237 }
1238
1239 for (Instruction *UI : Worklist)
1240 UI->replaceUsesOfWith(LIC, Replacement);
1241
1242 SimplifyCode(Worklist, L);
1243 return;
1244 }
1245
1246 // Otherwise, we don't know the precise value of LIC, but we do know that it
1247 // is certainly NOT "Val". As such, simplify any uses in the loop that we
1248 // can. This case occurs when we unswitch switch statements.
1249 for (User *U : LIC->users()) {
1250 Instruction *UI = dyn_cast<Instruction>(U);
1251 if (!UI || !L->contains(UI))
1252 continue;
1253
1254 Worklist.push_back(UI);
1255
1256 // TODO: We could do other simplifications, for example, turning
1257 // 'icmp eq LIC, Val' -> false.
1258
1259 // If we know that LIC is not Val, use this info to simplify code.
1260 SwitchInst *SI = dyn_cast<SwitchInst>(UI);
1261 if (!SI || !isa<ConstantInt>(Val)) continue;
1262
1263 SwitchInst::CaseIt DeadCase = SI->findCaseValue(cast<ConstantInt>(Val));
1264 // Default case is live for multiple values.
1265 if (DeadCase == SI->case_default()) continue;
1266
1267 // Found a dead case value. Don't remove PHI nodes in the
1268 // successor if they become single-entry, those PHI nodes may
1269 // be in the Users list.
1270
1271 BasicBlock *Switch = SI->getParent();
1272 BasicBlock *SISucc = DeadCase.getCaseSuccessor();
1273 BasicBlock *Latch = L->getLoopLatch();
1274
1275 BranchesInfo.setUnswitched(SI, Val);
1276
1277 if (!SI->findCaseDest(SISucc)) continue; // Edge is critical.
1278 // If the DeadCase successor dominates the loop latch, then the
1279 // transformation isn't safe since it will delete the sole predecessor edge
1280 // to the latch.
1281 if (Latch && DT->dominates(SISucc, Latch))
1282 continue;
1283
1284 // FIXME: This is a hack. We need to keep the successor around
1285 // and hooked up so as to preserve the loop structure, because
1286 // trying to update it is complicated. So instead we preserve the
1287 // loop structure and put the block on a dead code path.
1288 SplitEdge(Switch, SISucc, DT, LI);
1289 // Compute the successors instead of relying on the return value
1290 // of SplitEdge, since it may have split the switch successor
1291 // after PHI nodes.
1292 BasicBlock *NewSISucc = DeadCase.getCaseSuccessor();
1293 BasicBlock *OldSISucc = *succ_begin(NewSISucc);
1294 // Create an "unreachable" destination.
1295 BasicBlock *Abort = BasicBlock::Create(Context, "us-unreachable",
1296 Switch->getParent(),
1297 OldSISucc);
1298 new UnreachableInst(Context, Abort);
1299 // Force the new case destination to branch to the "unreachable"
1300 // block while maintaining a (dead) CFG edge to the old block.
1301 NewSISucc->getTerminator()->eraseFromParent();
1302 BranchInst::Create(Abort, OldSISucc,
1303 ConstantInt::getTrue(Context), NewSISucc);
1304 // Release the PHI operands for this edge.
1305 for (BasicBlock::iterator II = NewSISucc->begin();
1306 PHINode *PN = dyn_cast<PHINode>(II); ++II)
1307 PN->setIncomingValue(PN->getBasicBlockIndex(Switch),
1308 UndefValue::get(PN->getType()));
1309 // Tell the domtree about the new block. We don't fully update the
1310 // domtree here -- instead we force it to do a full recomputation
1311 // after the pass is complete -- but we do need to inform it of
1312 // new blocks.
1313 DT->addNewBlock(Abort, NewSISucc);
1314 }
1315
1316 SimplifyCode(Worklist, L);
1317 }
1318
1319 /// Now that we have simplified some instructions in the loop, walk over it and
1320 /// constant prop, dce, and fold control flow where possible. Note that this is
1321 /// effectively a very simple loop-structure-aware optimizer. During processing
1322 /// of this loop, L could very well be deleted, so it must not be used.
1323 ///
1324 /// FIXME: When the loop optimizer is more mature, separate this out to a new
1325 /// pass.
1326 ///
SimplifyCode(std::vector<Instruction * > & Worklist,Loop * L)1327 void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
1328 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
1329 while (!Worklist.empty()) {
1330 Instruction *I = Worklist.back();
1331 Worklist.pop_back();
1332
1333 // Simple DCE.
1334 if (isInstructionTriviallyDead(I)) {
1335 DEBUG(dbgs() << "Remove dead instruction '" << *I);
1336
1337 // Add uses to the worklist, which may be dead now.
1338 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1339 if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
1340 Worklist.push_back(Use);
1341 LPM->deleteSimpleAnalysisValue(I, L);
1342 RemoveFromWorklist(I, Worklist);
1343 I->eraseFromParent();
1344 ++NumSimplify;
1345 continue;
1346 }
1347
1348 // See if instruction simplification can hack this up. This is common for
1349 // things like "select false, X, Y" after unswitching made the condition be
1350 // 'false'. TODO: update the domtree properly so we can pass it here.
1351 if (Value *V = SimplifyInstruction(I, DL))
1352 if (LI->replacementPreservesLCSSAForm(I, V)) {
1353 ReplaceUsesOfWith(I, V, Worklist, L, LPM);
1354 continue;
1355 }
1356
1357 // Special case hacks that appear commonly in unswitched code.
1358 if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1359 if (BI->isUnconditional()) {
1360 // If BI's parent is the only pred of the successor, fold the two blocks
1361 // together.
1362 BasicBlock *Pred = BI->getParent();
1363 BasicBlock *Succ = BI->getSuccessor(0);
1364 BasicBlock *SinglePred = Succ->getSinglePredecessor();
1365 if (!SinglePred) continue; // Nothing to do.
1366 assert(SinglePred == Pred && "CFG broken");
1367
1368 DEBUG(dbgs() << "Merging blocks: " << Pred->getName() << " <- "
1369 << Succ->getName() << "\n");
1370
1371 // Resolve any single entry PHI nodes in Succ.
1372 while (PHINode *PN = dyn_cast<PHINode>(Succ->begin()))
1373 ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist, L, LPM);
1374
1375 // If Succ has any successors with PHI nodes, update them to have
1376 // entries coming from Pred instead of Succ.
1377 Succ->replaceAllUsesWith(Pred);
1378
1379 // Move all of the successor contents from Succ to Pred.
1380 Pred->getInstList().splice(BI->getIterator(), Succ->getInstList(),
1381 Succ->begin(), Succ->end());
1382 LPM->deleteSimpleAnalysisValue(BI, L);
1383 BI->eraseFromParent();
1384 RemoveFromWorklist(BI, Worklist);
1385
1386 // Remove Succ from the loop tree.
1387 LI->removeBlock(Succ);
1388 LPM->deleteSimpleAnalysisValue(Succ, L);
1389 Succ->eraseFromParent();
1390 ++NumSimplify;
1391 continue;
1392 }
1393
1394 continue;
1395 }
1396 }
1397 }
1398