• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include <iomanip>
6 
7 #include "src/ast/ast-types.h"
8 
9 #include "src/handles-inl.h"
10 #include "src/objects-inl.h"
11 #include "src/ostreams.h"
12 
13 namespace v8 {
14 namespace internal {
15 
16 // NOTE: If code is marked as being a "shortcut", this means that removing
17 // the code won't affect the semantics of the surrounding function definition.
18 
19 // static
IsInteger(i::Object * x)20 bool AstType::IsInteger(i::Object* x) {
21   return x->IsNumber() && AstType::IsInteger(x->Number());
22 }
23 
24 // -----------------------------------------------------------------------------
25 // Range-related helper functions.
26 
IsEmpty()27 bool AstRangeType::Limits::IsEmpty() { return this->min > this->max; }
28 
Intersect(Limits lhs,Limits rhs)29 AstRangeType::Limits AstRangeType::Limits::Intersect(Limits lhs, Limits rhs) {
30   DisallowHeapAllocation no_allocation;
31   Limits result(lhs);
32   if (lhs.min < rhs.min) result.min = rhs.min;
33   if (lhs.max > rhs.max) result.max = rhs.max;
34   return result;
35 }
36 
Union(Limits lhs,Limits rhs)37 AstRangeType::Limits AstRangeType::Limits::Union(Limits lhs, Limits rhs) {
38   DisallowHeapAllocation no_allocation;
39   if (lhs.IsEmpty()) return rhs;
40   if (rhs.IsEmpty()) return lhs;
41   Limits result(lhs);
42   if (lhs.min > rhs.min) result.min = rhs.min;
43   if (lhs.max < rhs.max) result.max = rhs.max;
44   return result;
45 }
46 
Overlap(AstRangeType * lhs,AstRangeType * rhs)47 bool AstType::Overlap(AstRangeType* lhs, AstRangeType* rhs) {
48   DisallowHeapAllocation no_allocation;
49   return !AstRangeType::Limits::Intersect(AstRangeType::Limits(lhs),
50                                           AstRangeType::Limits(rhs))
51               .IsEmpty();
52 }
53 
Contains(AstRangeType * lhs,AstRangeType * rhs)54 bool AstType::Contains(AstRangeType* lhs, AstRangeType* rhs) {
55   DisallowHeapAllocation no_allocation;
56   return lhs->Min() <= rhs->Min() && rhs->Max() <= lhs->Max();
57 }
58 
Contains(AstRangeType * lhs,AstConstantType * rhs)59 bool AstType::Contains(AstRangeType* lhs, AstConstantType* rhs) {
60   DisallowHeapAllocation no_allocation;
61   return IsInteger(*rhs->Value()) && lhs->Min() <= rhs->Value()->Number() &&
62          rhs->Value()->Number() <= lhs->Max();
63 }
64 
Contains(AstRangeType * range,i::Object * val)65 bool AstType::Contains(AstRangeType* range, i::Object* val) {
66   DisallowHeapAllocation no_allocation;
67   return IsInteger(val) && range->Min() <= val->Number() &&
68          val->Number() <= range->Max();
69 }
70 
71 // -----------------------------------------------------------------------------
72 // Min and Max computation.
73 
Min()74 double AstType::Min() {
75   DCHECK(this->SemanticIs(Number()));
76   if (this->IsBitset()) return AstBitsetType::Min(this->AsBitset());
77   if (this->IsUnion()) {
78     double min = +V8_INFINITY;
79     for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) {
80       min = std::min(min, this->AsUnion()->Get(i)->Min());
81     }
82     return min;
83   }
84   if (this->IsRange()) return this->AsRange()->Min();
85   if (this->IsConstant()) return this->AsConstant()->Value()->Number();
86   UNREACHABLE();
87   return 0;
88 }
89 
Max()90 double AstType::Max() {
91   DCHECK(this->SemanticIs(Number()));
92   if (this->IsBitset()) return AstBitsetType::Max(this->AsBitset());
93   if (this->IsUnion()) {
94     double max = -V8_INFINITY;
95     for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) {
96       max = std::max(max, this->AsUnion()->Get(i)->Max());
97     }
98     return max;
99   }
100   if (this->IsRange()) return this->AsRange()->Max();
101   if (this->IsConstant()) return this->AsConstant()->Value()->Number();
102   UNREACHABLE();
103   return 0;
104 }
105 
106 // -----------------------------------------------------------------------------
107 // Glb and lub computation.
108 
109 // The largest bitset subsumed by this type.
Glb(AstType * type)110 AstType::bitset AstBitsetType::Glb(AstType* type) {
111   DisallowHeapAllocation no_allocation;
112   // Fast case.
113   if (IsBitset(type)) {
114     return type->AsBitset();
115   } else if (type->IsUnion()) {
116     SLOW_DCHECK(type->AsUnion()->Wellformed());
117     return type->AsUnion()->Get(0)->BitsetGlb() |
118            AST_SEMANTIC(type->AsUnion()->Get(1)->BitsetGlb());  // Shortcut.
119   } else if (type->IsRange()) {
120     bitset glb = AST_SEMANTIC(
121         AstBitsetType::Glb(type->AsRange()->Min(), type->AsRange()->Max()));
122     return glb | AST_REPRESENTATION(type->BitsetLub());
123   } else {
124     return type->Representation();
125   }
126 }
127 
128 // The smallest bitset subsuming this type, possibly not a proper one.
Lub(AstType * type)129 AstType::bitset AstBitsetType::Lub(AstType* type) {
130   DisallowHeapAllocation no_allocation;
131   if (IsBitset(type)) return type->AsBitset();
132   if (type->IsUnion()) {
133     // Take the representation from the first element, which is always
134     // a bitset.
135     int bitset = type->AsUnion()->Get(0)->BitsetLub();
136     for (int i = 0, n = type->AsUnion()->Length(); i < n; ++i) {
137       // Other elements only contribute their semantic part.
138       bitset |= AST_SEMANTIC(type->AsUnion()->Get(i)->BitsetLub());
139     }
140     return bitset;
141   }
142   if (type->IsClass()) return type->AsClass()->Lub();
143   if (type->IsConstant()) return type->AsConstant()->Lub();
144   if (type->IsRange()) return type->AsRange()->Lub();
145   if (type->IsContext()) return kOtherInternal & kTaggedPointer;
146   if (type->IsArray()) return kOtherObject;
147   if (type->IsFunction()) return kFunction;
148   if (type->IsTuple()) return kOtherInternal;
149   UNREACHABLE();
150   return kNone;
151 }
152 
Lub(i::Map * map)153 AstType::bitset AstBitsetType::Lub(i::Map* map) {
154   DisallowHeapAllocation no_allocation;
155   switch (map->instance_type()) {
156     case STRING_TYPE:
157     case ONE_BYTE_STRING_TYPE:
158     case CONS_STRING_TYPE:
159     case CONS_ONE_BYTE_STRING_TYPE:
160     case THIN_STRING_TYPE:
161     case THIN_ONE_BYTE_STRING_TYPE:
162     case SLICED_STRING_TYPE:
163     case SLICED_ONE_BYTE_STRING_TYPE:
164     case EXTERNAL_STRING_TYPE:
165     case EXTERNAL_ONE_BYTE_STRING_TYPE:
166     case EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE:
167     case SHORT_EXTERNAL_STRING_TYPE:
168     case SHORT_EXTERNAL_ONE_BYTE_STRING_TYPE:
169     case SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE:
170       return kOtherString;
171     case INTERNALIZED_STRING_TYPE:
172     case ONE_BYTE_INTERNALIZED_STRING_TYPE:
173     case EXTERNAL_INTERNALIZED_STRING_TYPE:
174     case EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE:
175     case EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE:
176     case SHORT_EXTERNAL_INTERNALIZED_STRING_TYPE:
177     case SHORT_EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE:
178     case SHORT_EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE:
179       return kInternalizedString;
180     case SYMBOL_TYPE:
181       return kSymbol;
182     case ODDBALL_TYPE: {
183       Heap* heap = map->GetHeap();
184       if (map == heap->undefined_map()) return kUndefined;
185       if (map == heap->null_map()) return kNull;
186       if (map == heap->boolean_map()) return kBoolean;
187       if (map == heap->the_hole_map()) return kHole;
188       DCHECK(map == heap->uninitialized_map() ||
189              map == heap->no_interceptor_result_sentinel_map() ||
190              map == heap->termination_exception_map() ||
191              map == heap->arguments_marker_map() ||
192              map == heap->optimized_out_map() ||
193              map == heap->stale_register_map());
194       return kOtherInternal & kTaggedPointer;
195     }
196     case HEAP_NUMBER_TYPE:
197       return kNumber & kTaggedPointer;
198     case JS_OBJECT_TYPE:
199     case JS_ARGUMENTS_TYPE:
200     case JS_ERROR_TYPE:
201     case JS_GLOBAL_OBJECT_TYPE:
202     case JS_GLOBAL_PROXY_TYPE:
203     case JS_API_OBJECT_TYPE:
204     case JS_SPECIAL_API_OBJECT_TYPE:
205       if (map->is_undetectable()) return kOtherUndetectable;
206       return kOtherObject;
207     case JS_VALUE_TYPE:
208     case JS_MESSAGE_OBJECT_TYPE:
209     case JS_DATE_TYPE:
210     case JS_CONTEXT_EXTENSION_OBJECT_TYPE:
211     case JS_GENERATOR_OBJECT_TYPE:
212     case JS_MODULE_NAMESPACE_TYPE:
213     case JS_ARRAY_BUFFER_TYPE:
214     case JS_ARRAY_TYPE:
215     case JS_REGEXP_TYPE:  // TODO(rossberg): there should be a RegExp type.
216     case JS_TYPED_ARRAY_TYPE:
217     case JS_DATA_VIEW_TYPE:
218     case JS_SET_TYPE:
219     case JS_MAP_TYPE:
220     case JS_SET_ITERATOR_TYPE:
221     case JS_MAP_ITERATOR_TYPE:
222     case JS_STRING_ITERATOR_TYPE:
223     case JS_ASYNC_FROM_SYNC_ITERATOR_TYPE:
224 
225     case JS_TYPED_ARRAY_KEY_ITERATOR_TYPE:
226     case JS_FAST_ARRAY_KEY_ITERATOR_TYPE:
227     case JS_GENERIC_ARRAY_KEY_ITERATOR_TYPE:
228     case JS_UINT8_ARRAY_KEY_VALUE_ITERATOR_TYPE:
229     case JS_INT8_ARRAY_KEY_VALUE_ITERATOR_TYPE:
230     case JS_UINT16_ARRAY_KEY_VALUE_ITERATOR_TYPE:
231     case JS_INT16_ARRAY_KEY_VALUE_ITERATOR_TYPE:
232     case JS_UINT32_ARRAY_KEY_VALUE_ITERATOR_TYPE:
233     case JS_INT32_ARRAY_KEY_VALUE_ITERATOR_TYPE:
234     case JS_FLOAT32_ARRAY_KEY_VALUE_ITERATOR_TYPE:
235     case JS_FLOAT64_ARRAY_KEY_VALUE_ITERATOR_TYPE:
236     case JS_UINT8_CLAMPED_ARRAY_KEY_VALUE_ITERATOR_TYPE:
237     case JS_FAST_SMI_ARRAY_KEY_VALUE_ITERATOR_TYPE:
238     case JS_FAST_HOLEY_SMI_ARRAY_KEY_VALUE_ITERATOR_TYPE:
239     case JS_FAST_ARRAY_KEY_VALUE_ITERATOR_TYPE:
240     case JS_FAST_HOLEY_ARRAY_KEY_VALUE_ITERATOR_TYPE:
241     case JS_FAST_DOUBLE_ARRAY_KEY_VALUE_ITERATOR_TYPE:
242     case JS_FAST_HOLEY_DOUBLE_ARRAY_KEY_VALUE_ITERATOR_TYPE:
243     case JS_GENERIC_ARRAY_KEY_VALUE_ITERATOR_TYPE:
244     case JS_UINT8_ARRAY_VALUE_ITERATOR_TYPE:
245     case JS_INT8_ARRAY_VALUE_ITERATOR_TYPE:
246     case JS_UINT16_ARRAY_VALUE_ITERATOR_TYPE:
247     case JS_INT16_ARRAY_VALUE_ITERATOR_TYPE:
248     case JS_UINT32_ARRAY_VALUE_ITERATOR_TYPE:
249     case JS_INT32_ARRAY_VALUE_ITERATOR_TYPE:
250     case JS_FLOAT32_ARRAY_VALUE_ITERATOR_TYPE:
251     case JS_FLOAT64_ARRAY_VALUE_ITERATOR_TYPE:
252     case JS_UINT8_CLAMPED_ARRAY_VALUE_ITERATOR_TYPE:
253     case JS_FAST_SMI_ARRAY_VALUE_ITERATOR_TYPE:
254     case JS_FAST_HOLEY_SMI_ARRAY_VALUE_ITERATOR_TYPE:
255     case JS_FAST_ARRAY_VALUE_ITERATOR_TYPE:
256     case JS_FAST_HOLEY_ARRAY_VALUE_ITERATOR_TYPE:
257     case JS_FAST_DOUBLE_ARRAY_VALUE_ITERATOR_TYPE:
258     case JS_FAST_HOLEY_DOUBLE_ARRAY_VALUE_ITERATOR_TYPE:
259     case JS_GENERIC_ARRAY_VALUE_ITERATOR_TYPE:
260 
261     case JS_WEAK_MAP_TYPE:
262     case JS_WEAK_SET_TYPE:
263     case JS_PROMISE_CAPABILITY_TYPE:
264     case JS_PROMISE_TYPE:
265     case JS_BOUND_FUNCTION_TYPE:
266       DCHECK(!map->is_undetectable());
267       return kOtherObject;
268     case JS_FUNCTION_TYPE:
269       DCHECK(!map->is_undetectable());
270       return kFunction;
271     case JS_PROXY_TYPE:
272       DCHECK(!map->is_undetectable());
273       return kProxy;
274     case MAP_TYPE:
275     case ALLOCATION_SITE_TYPE:
276     case ACCESSOR_INFO_TYPE:
277     case SHARED_FUNCTION_INFO_TYPE:
278     case ACCESSOR_PAIR_TYPE:
279     case FIXED_ARRAY_TYPE:
280     case FIXED_DOUBLE_ARRAY_TYPE:
281     case BYTE_ARRAY_TYPE:
282     case BYTECODE_ARRAY_TYPE:
283     case TRANSITION_ARRAY_TYPE:
284     case FOREIGN_TYPE:
285     case SCRIPT_TYPE:
286     case CODE_TYPE:
287     case PROPERTY_CELL_TYPE:
288     case MODULE_TYPE:
289     case MODULE_INFO_ENTRY_TYPE:
290       return kOtherInternal & kTaggedPointer;
291 
292     // Remaining instance types are unsupported for now. If any of them do
293     // require bit set types, they should get kOtherInternal & kTaggedPointer.
294     case MUTABLE_HEAP_NUMBER_TYPE:
295     case FREE_SPACE_TYPE:
296 #define FIXED_TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
297   case FIXED_##TYPE##_ARRAY_TYPE:
298 
299       TYPED_ARRAYS(FIXED_TYPED_ARRAY_CASE)
300 #undef FIXED_TYPED_ARRAY_CASE
301     case FILLER_TYPE:
302     case ACCESS_CHECK_INFO_TYPE:
303     case INTERCEPTOR_INFO_TYPE:
304     case CALL_HANDLER_INFO_TYPE:
305     case PROMISE_RESOLVE_THENABLE_JOB_INFO_TYPE:
306     case PROMISE_REACTION_JOB_INFO_TYPE:
307     case FUNCTION_TEMPLATE_INFO_TYPE:
308     case OBJECT_TEMPLATE_INFO_TYPE:
309     case ALLOCATION_MEMENTO_TYPE:
310     case TYPE_FEEDBACK_INFO_TYPE:
311     case ALIASED_ARGUMENTS_ENTRY_TYPE:
312     case DEBUG_INFO_TYPE:
313     case BREAK_POINT_INFO_TYPE:
314     case CELL_TYPE:
315     case WEAK_CELL_TYPE:
316     case PROTOTYPE_INFO_TYPE:
317     case TUPLE2_TYPE:
318     case TUPLE3_TYPE:
319     case CONTEXT_EXTENSION_TYPE:
320     case CONSTANT_ELEMENTS_PAIR_TYPE:
321       UNREACHABLE();
322       return kNone;
323   }
324   UNREACHABLE();
325   return kNone;
326 }
327 
Lub(i::Object * value)328 AstType::bitset AstBitsetType::Lub(i::Object* value) {
329   DisallowHeapAllocation no_allocation;
330   if (value->IsNumber()) {
331     return Lub(value->Number()) &
332            (value->IsSmi() ? kTaggedSigned : kTaggedPointer);
333   }
334   return Lub(i::HeapObject::cast(value)->map());
335 }
336 
Lub(double value)337 AstType::bitset AstBitsetType::Lub(double value) {
338   DisallowHeapAllocation no_allocation;
339   if (i::IsMinusZero(value)) return kMinusZero;
340   if (std::isnan(value)) return kNaN;
341   if (IsUint32Double(value) || IsInt32Double(value)) return Lub(value, value);
342   return kOtherNumber;
343 }
344 
345 // Minimum values of plain numeric bitsets.
346 const AstBitsetType::Boundary AstBitsetType::BoundariesArray[] = {
347     {kOtherNumber, kPlainNumber, -V8_INFINITY},
348     {kOtherSigned32, kNegative32, kMinInt},
349     {kNegative31, kNegative31, -0x40000000},
350     {kUnsigned30, kUnsigned30, 0},
351     {kOtherUnsigned31, kUnsigned31, 0x40000000},
352     {kOtherUnsigned32, kUnsigned32, 0x80000000},
353     {kOtherNumber, kPlainNumber, static_cast<double>(kMaxUInt32) + 1}};
354 
Boundaries()355 const AstBitsetType::Boundary* AstBitsetType::Boundaries() {
356   return BoundariesArray;
357 }
358 
BoundariesSize()359 size_t AstBitsetType::BoundariesSize() {
360   // Windows doesn't like arraysize here.
361   // return arraysize(BoundariesArray);
362   return 7;
363 }
364 
ExpandInternals(AstType::bitset bits)365 AstType::bitset AstBitsetType::ExpandInternals(AstType::bitset bits) {
366   DisallowHeapAllocation no_allocation;
367   if (!(bits & AST_SEMANTIC(kPlainNumber))) return bits;  // Shortcut.
368   const Boundary* boundaries = Boundaries();
369   for (size_t i = 0; i < BoundariesSize(); ++i) {
370     DCHECK(AstBitsetType::Is(boundaries[i].internal, boundaries[i].external));
371     if (bits & AST_SEMANTIC(boundaries[i].internal))
372       bits |= AST_SEMANTIC(boundaries[i].external);
373   }
374   return bits;
375 }
376 
Lub(double min,double max)377 AstType::bitset AstBitsetType::Lub(double min, double max) {
378   DisallowHeapAllocation no_allocation;
379   int lub = kNone;
380   const Boundary* mins = Boundaries();
381 
382   for (size_t i = 1; i < BoundariesSize(); ++i) {
383     if (min < mins[i].min) {
384       lub |= mins[i - 1].internal;
385       if (max < mins[i].min) return lub;
386     }
387   }
388   return lub | mins[BoundariesSize() - 1].internal;
389 }
390 
NumberBits(bitset bits)391 AstType::bitset AstBitsetType::NumberBits(bitset bits) {
392   return AST_SEMANTIC(bits & kPlainNumber);
393 }
394 
Glb(double min,double max)395 AstType::bitset AstBitsetType::Glb(double min, double max) {
396   DisallowHeapAllocation no_allocation;
397   int glb = kNone;
398   const Boundary* mins = Boundaries();
399 
400   // If the range does not touch 0, the bound is empty.
401   if (max < -1 || min > 0) return glb;
402 
403   for (size_t i = 1; i + 1 < BoundariesSize(); ++i) {
404     if (min <= mins[i].min) {
405       if (max + 1 < mins[i + 1].min) break;
406       glb |= mins[i].external;
407     }
408   }
409   // OtherNumber also contains float numbers, so it can never be
410   // in the greatest lower bound.
411   return glb & ~(AST_SEMANTIC(kOtherNumber));
412 }
413 
Min(bitset bits)414 double AstBitsetType::Min(bitset bits) {
415   DisallowHeapAllocation no_allocation;
416   DCHECK(Is(AST_SEMANTIC(bits), kNumber));
417   const Boundary* mins = Boundaries();
418   bool mz = AST_SEMANTIC(bits & kMinusZero);
419   for (size_t i = 0; i < BoundariesSize(); ++i) {
420     if (Is(AST_SEMANTIC(mins[i].internal), bits)) {
421       return mz ? std::min(0.0, mins[i].min) : mins[i].min;
422     }
423   }
424   if (mz) return 0;
425   return std::numeric_limits<double>::quiet_NaN();
426 }
427 
Max(bitset bits)428 double AstBitsetType::Max(bitset bits) {
429   DisallowHeapAllocation no_allocation;
430   DCHECK(Is(AST_SEMANTIC(bits), kNumber));
431   const Boundary* mins = Boundaries();
432   bool mz = AST_SEMANTIC(bits & kMinusZero);
433   if (AstBitsetType::Is(AST_SEMANTIC(mins[BoundariesSize() - 1].internal),
434                         bits)) {
435     return +V8_INFINITY;
436   }
437   for (size_t i = BoundariesSize() - 1; i-- > 0;) {
438     if (Is(AST_SEMANTIC(mins[i].internal), bits)) {
439       return mz ? std::max(0.0, mins[i + 1].min - 1) : mins[i + 1].min - 1;
440     }
441   }
442   if (mz) return 0;
443   return std::numeric_limits<double>::quiet_NaN();
444 }
445 
446 // -----------------------------------------------------------------------------
447 // Predicates.
448 
SimplyEquals(AstType * that)449 bool AstType::SimplyEquals(AstType* that) {
450   DisallowHeapAllocation no_allocation;
451   if (this->IsClass()) {
452     return that->IsClass() &&
453            *this->AsClass()->Map() == *that->AsClass()->Map();
454   }
455   if (this->IsConstant()) {
456     return that->IsConstant() &&
457            *this->AsConstant()->Value() == *that->AsConstant()->Value();
458   }
459   if (this->IsContext()) {
460     return that->IsContext() &&
461            this->AsContext()->Outer()->Equals(that->AsContext()->Outer());
462   }
463   if (this->IsArray()) {
464     return that->IsArray() &&
465            this->AsArray()->Element()->Equals(that->AsArray()->Element());
466   }
467   if (this->IsFunction()) {
468     if (!that->IsFunction()) return false;
469     AstFunctionType* this_fun = this->AsFunction();
470     AstFunctionType* that_fun = that->AsFunction();
471     if (this_fun->Arity() != that_fun->Arity() ||
472         !this_fun->Result()->Equals(that_fun->Result()) ||
473         !this_fun->Receiver()->Equals(that_fun->Receiver())) {
474       return false;
475     }
476     for (int i = 0, n = this_fun->Arity(); i < n; ++i) {
477       if (!this_fun->Parameter(i)->Equals(that_fun->Parameter(i))) return false;
478     }
479     return true;
480   }
481   if (this->IsTuple()) {
482     if (!that->IsTuple()) return false;
483     AstTupleType* this_tuple = this->AsTuple();
484     AstTupleType* that_tuple = that->AsTuple();
485     if (this_tuple->Arity() != that_tuple->Arity()) {
486       return false;
487     }
488     for (int i = 0, n = this_tuple->Arity(); i < n; ++i) {
489       if (!this_tuple->Element(i)->Equals(that_tuple->Element(i))) return false;
490     }
491     return true;
492   }
493   UNREACHABLE();
494   return false;
495 }
496 
Representation()497 AstType::bitset AstType::Representation() {
498   return AST_REPRESENTATION(this->BitsetLub());
499 }
500 
501 // Check if [this] <= [that].
SlowIs(AstType * that)502 bool AstType::SlowIs(AstType* that) {
503   DisallowHeapAllocation no_allocation;
504 
505   // Fast bitset cases
506   if (that->IsBitset()) {
507     return AstBitsetType::Is(this->BitsetLub(), that->AsBitset());
508   }
509 
510   if (this->IsBitset()) {
511     return AstBitsetType::Is(this->AsBitset(), that->BitsetGlb());
512   }
513 
514   // Check the representations.
515   if (!AstBitsetType::Is(Representation(), that->Representation())) {
516     return false;
517   }
518 
519   // Check the semantic part.
520   return SemanticIs(that);
521 }
522 
523 // Check if AST_SEMANTIC([this]) <= AST_SEMANTIC([that]). The result of the
524 // method
525 // should be independent of the representation axis of the types.
SemanticIs(AstType * that)526 bool AstType::SemanticIs(AstType* that) {
527   DisallowHeapAllocation no_allocation;
528 
529   if (this == that) return true;
530 
531   if (that->IsBitset()) {
532     return AstBitsetType::Is(AST_SEMANTIC(this->BitsetLub()), that->AsBitset());
533   }
534   if (this->IsBitset()) {
535     return AstBitsetType::Is(AST_SEMANTIC(this->AsBitset()), that->BitsetGlb());
536   }
537 
538   // (T1 \/ ... \/ Tn) <= T  if  (T1 <= T) /\ ... /\ (Tn <= T)
539   if (this->IsUnion()) {
540     for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) {
541       if (!this->AsUnion()->Get(i)->SemanticIs(that)) return false;
542     }
543     return true;
544   }
545 
546   // T <= (T1 \/ ... \/ Tn)  if  (T <= T1) \/ ... \/ (T <= Tn)
547   if (that->IsUnion()) {
548     for (int i = 0, n = that->AsUnion()->Length(); i < n; ++i) {
549       if (this->SemanticIs(that->AsUnion()->Get(i))) return true;
550       if (i > 1 && this->IsRange()) return false;  // Shortcut.
551     }
552     return false;
553   }
554 
555   if (that->IsRange()) {
556     return (this->IsRange() && Contains(that->AsRange(), this->AsRange())) ||
557            (this->IsConstant() &&
558             Contains(that->AsRange(), this->AsConstant()));
559   }
560   if (this->IsRange()) return false;
561 
562   return this->SimplyEquals(that);
563 }
564 
565 // Most precise _current_ type of a value (usually its class).
NowOf(i::Object * value,Zone * zone)566 AstType* AstType::NowOf(i::Object* value, Zone* zone) {
567   if (value->IsSmi() ||
568       i::HeapObject::cast(value)->map()->instance_type() == HEAP_NUMBER_TYPE) {
569     return Of(value, zone);
570   }
571   return Class(i::handle(i::HeapObject::cast(value)->map()), zone);
572 }
573 
NowContains(i::Object * value)574 bool AstType::NowContains(i::Object* value) {
575   DisallowHeapAllocation no_allocation;
576   if (this->IsAny()) return true;
577   if (value->IsHeapObject()) {
578     i::Map* map = i::HeapObject::cast(value)->map();
579     for (Iterator<i::Map> it = this->Classes(); !it.Done(); it.Advance()) {
580       if (*it.Current() == map) return true;
581     }
582   }
583   return this->Contains(value);
584 }
585 
NowIs(AstType * that)586 bool AstType::NowIs(AstType* that) {
587   DisallowHeapAllocation no_allocation;
588 
589   // TODO(rossberg): this is incorrect for
590   //   Union(Constant(V), T)->NowIs(Class(M))
591   // but fuzzing does not cover that!
592   if (this->IsConstant()) {
593     i::Object* object = *this->AsConstant()->Value();
594     if (object->IsHeapObject()) {
595       i::Map* map = i::HeapObject::cast(object)->map();
596       for (Iterator<i::Map> it = that->Classes(); !it.Done(); it.Advance()) {
597         if (*it.Current() == map) return true;
598       }
599     }
600   }
601   return this->Is(that);
602 }
603 
604 // Check if [this] contains only (currently) stable classes.
NowStable()605 bool AstType::NowStable() {
606   DisallowHeapAllocation no_allocation;
607   return !this->IsClass() || this->AsClass()->Map()->is_stable();
608 }
609 
610 // Check if [this] and [that] overlap.
Maybe(AstType * that)611 bool AstType::Maybe(AstType* that) {
612   DisallowHeapAllocation no_allocation;
613 
614   // Take care of the representation part (and also approximate
615   // the semantic part).
616   if (!AstBitsetType::IsInhabited(this->BitsetLub() & that->BitsetLub()))
617     return false;
618 
619   return SemanticMaybe(that);
620 }
621 
SemanticMaybe(AstType * that)622 bool AstType::SemanticMaybe(AstType* that) {
623   DisallowHeapAllocation no_allocation;
624 
625   // (T1 \/ ... \/ Tn) overlaps T  if  (T1 overlaps T) \/ ... \/ (Tn overlaps T)
626   if (this->IsUnion()) {
627     for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) {
628       if (this->AsUnion()->Get(i)->SemanticMaybe(that)) return true;
629     }
630     return false;
631   }
632 
633   // T overlaps (T1 \/ ... \/ Tn)  if  (T overlaps T1) \/ ... \/ (T overlaps Tn)
634   if (that->IsUnion()) {
635     for (int i = 0, n = that->AsUnion()->Length(); i < n; ++i) {
636       if (this->SemanticMaybe(that->AsUnion()->Get(i))) return true;
637     }
638     return false;
639   }
640 
641   if (!AstBitsetType::SemanticIsInhabited(this->BitsetLub() &
642                                           that->BitsetLub()))
643     return false;
644 
645   if (this->IsBitset() && that->IsBitset()) return true;
646 
647   if (this->IsClass() != that->IsClass()) return true;
648 
649   if (this->IsRange()) {
650     if (that->IsConstant()) {
651       return Contains(this->AsRange(), that->AsConstant());
652     }
653     if (that->IsRange()) {
654       return Overlap(this->AsRange(), that->AsRange());
655     }
656     if (that->IsBitset()) {
657       bitset number_bits = AstBitsetType::NumberBits(that->AsBitset());
658       if (number_bits == AstBitsetType::kNone) {
659         return false;
660       }
661       double min = std::max(AstBitsetType::Min(number_bits), this->Min());
662       double max = std::min(AstBitsetType::Max(number_bits), this->Max());
663       return min <= max;
664     }
665   }
666   if (that->IsRange()) {
667     return that->SemanticMaybe(this);  // This case is handled above.
668   }
669 
670   if (this->IsBitset() || that->IsBitset()) return true;
671 
672   return this->SimplyEquals(that);
673 }
674 
675 // Return the range in [this], or [NULL].
GetRange()676 AstType* AstType::GetRange() {
677   DisallowHeapAllocation no_allocation;
678   if (this->IsRange()) return this;
679   if (this->IsUnion() && this->AsUnion()->Get(1)->IsRange()) {
680     return this->AsUnion()->Get(1);
681   }
682   return NULL;
683 }
684 
Contains(i::Object * value)685 bool AstType::Contains(i::Object* value) {
686   DisallowHeapAllocation no_allocation;
687   for (Iterator<i::Object> it = this->Constants(); !it.Done(); it.Advance()) {
688     if (*it.Current() == value) return true;
689   }
690   if (IsInteger(value)) {
691     AstType* range = this->GetRange();
692     if (range != NULL && Contains(range->AsRange(), value)) return true;
693   }
694   return AstBitsetType::New(AstBitsetType::Lub(value))->Is(this);
695 }
696 
Wellformed()697 bool AstUnionType::Wellformed() {
698   DisallowHeapAllocation no_allocation;
699   // This checks the invariants of the union representation:
700   // 1. There are at least two elements.
701   // 2. The first element is a bitset, no other element is a bitset.
702   // 3. At most one element is a range, and it must be the second one.
703   // 4. No element is itself a union.
704   // 5. No element (except the bitset) is a subtype of any other.
705   // 6. If there is a range, then the bitset type does not contain
706   //    plain number bits.
707   DCHECK(this->Length() >= 2);       // (1)
708   DCHECK(this->Get(0)->IsBitset());  // (2a)
709 
710   for (int i = 0; i < this->Length(); ++i) {
711     if (i != 0) DCHECK(!this->Get(i)->IsBitset());  // (2b)
712     if (i != 1) DCHECK(!this->Get(i)->IsRange());   // (3)
713     DCHECK(!this->Get(i)->IsUnion());               // (4)
714     for (int j = 0; j < this->Length(); ++j) {
715       if (i != j && i != 0)
716         DCHECK(!this->Get(i)->SemanticIs(this->Get(j)));  // (5)
717     }
718   }
719   DCHECK(!this->Get(1)->IsRange() ||
720          (AstBitsetType::NumberBits(this->Get(0)->AsBitset()) ==
721           AstBitsetType::kNone));  // (6)
722   return true;
723 }
724 
725 // -----------------------------------------------------------------------------
726 // Union and intersection
727 
AddIsSafe(int x,int y)728 static bool AddIsSafe(int x, int y) {
729   return x >= 0 ? y <= std::numeric_limits<int>::max() - x
730                 : y >= std::numeric_limits<int>::min() - x;
731 }
732 
Intersect(AstType * type1,AstType * type2,Zone * zone)733 AstType* AstType::Intersect(AstType* type1, AstType* type2, Zone* zone) {
734   // Fast case: bit sets.
735   if (type1->IsBitset() && type2->IsBitset()) {
736     return AstBitsetType::New(type1->AsBitset() & type2->AsBitset());
737   }
738 
739   // Fast case: top or bottom types.
740   if (type1->IsNone() || type2->IsAny()) return type1;  // Shortcut.
741   if (type2->IsNone() || type1->IsAny()) return type2;  // Shortcut.
742 
743   // Semi-fast case.
744   if (type1->Is(type2)) return type1;
745   if (type2->Is(type1)) return type2;
746 
747   // Slow case: create union.
748 
749   // Figure out the representation of the result first.
750   // The rest of the method should not change this representation and
751   // it should not make any decisions based on representations (i.e.,
752   // it should only use the semantic part of types).
753   const bitset representation =
754       type1->Representation() & type2->Representation();
755 
756   // Semantic subtyping check - this is needed for consistency with the
757   // semi-fast case above - we should behave the same way regardless of
758   // representations. Intersection with a universal bitset should only update
759   // the representations.
760   if (type1->SemanticIs(type2)) {
761     type2 = Any();
762   } else if (type2->SemanticIs(type1)) {
763     type1 = Any();
764   }
765 
766   bitset bits =
767       AST_SEMANTIC(type1->BitsetGlb() & type2->BitsetGlb()) | representation;
768   int size1 = type1->IsUnion() ? type1->AsUnion()->Length() : 1;
769   int size2 = type2->IsUnion() ? type2->AsUnion()->Length() : 1;
770   if (!AddIsSafe(size1, size2)) return Any();
771   int size = size1 + size2;
772   if (!AddIsSafe(size, 2)) return Any();
773   size += 2;
774   AstType* result_type = AstUnionType::New(size, zone);
775   AstUnionType* result = result_type->AsUnion();
776   size = 0;
777 
778   // Deal with bitsets.
779   result->Set(size++, AstBitsetType::New(bits));
780 
781   AstRangeType::Limits lims = AstRangeType::Limits::Empty();
782   size = IntersectAux(type1, type2, result, size, &lims, zone);
783 
784   // If the range is not empty, then insert it into the union and
785   // remove the number bits from the bitset.
786   if (!lims.IsEmpty()) {
787     size = UpdateRange(AstRangeType::New(lims, representation, zone), result,
788                        size, zone);
789 
790     // Remove the number bits.
791     bitset number_bits = AstBitsetType::NumberBits(bits);
792     bits &= ~number_bits;
793     result->Set(0, AstBitsetType::New(bits));
794   }
795   return NormalizeUnion(result_type, size, zone);
796 }
797 
UpdateRange(AstType * range,AstUnionType * result,int size,Zone * zone)798 int AstType::UpdateRange(AstType* range, AstUnionType* result, int size,
799                          Zone* zone) {
800   if (size == 1) {
801     result->Set(size++, range);
802   } else {
803     // Make space for the range.
804     result->Set(size++, result->Get(1));
805     result->Set(1, range);
806   }
807 
808   // Remove any components that just got subsumed.
809   for (int i = 2; i < size;) {
810     if (result->Get(i)->SemanticIs(range)) {
811       result->Set(i, result->Get(--size));
812     } else {
813       ++i;
814     }
815   }
816   return size;
817 }
818 
ToLimits(bitset bits,Zone * zone)819 AstRangeType::Limits AstType::ToLimits(bitset bits, Zone* zone) {
820   bitset number_bits = AstBitsetType::NumberBits(bits);
821 
822   if (number_bits == AstBitsetType::kNone) {
823     return AstRangeType::Limits::Empty();
824   }
825 
826   return AstRangeType::Limits(AstBitsetType::Min(number_bits),
827                               AstBitsetType::Max(number_bits));
828 }
829 
IntersectRangeAndBitset(AstType * range,AstType * bitset,Zone * zone)830 AstRangeType::Limits AstType::IntersectRangeAndBitset(AstType* range,
831                                                       AstType* bitset,
832                                                       Zone* zone) {
833   AstRangeType::Limits range_lims(range->AsRange());
834   AstRangeType::Limits bitset_lims = ToLimits(bitset->AsBitset(), zone);
835   return AstRangeType::Limits::Intersect(range_lims, bitset_lims);
836 }
837 
IntersectAux(AstType * lhs,AstType * rhs,AstUnionType * result,int size,AstRangeType::Limits * lims,Zone * zone)838 int AstType::IntersectAux(AstType* lhs, AstType* rhs, AstUnionType* result,
839                           int size, AstRangeType::Limits* lims, Zone* zone) {
840   if (lhs->IsUnion()) {
841     for (int i = 0, n = lhs->AsUnion()->Length(); i < n; ++i) {
842       size =
843           IntersectAux(lhs->AsUnion()->Get(i), rhs, result, size, lims, zone);
844     }
845     return size;
846   }
847   if (rhs->IsUnion()) {
848     for (int i = 0, n = rhs->AsUnion()->Length(); i < n; ++i) {
849       size =
850           IntersectAux(lhs, rhs->AsUnion()->Get(i), result, size, lims, zone);
851     }
852     return size;
853   }
854 
855   if (!AstBitsetType::SemanticIsInhabited(lhs->BitsetLub() &
856                                           rhs->BitsetLub())) {
857     return size;
858   }
859 
860   if (lhs->IsRange()) {
861     if (rhs->IsBitset()) {
862       AstRangeType::Limits lim = IntersectRangeAndBitset(lhs, rhs, zone);
863 
864       if (!lim.IsEmpty()) {
865         *lims = AstRangeType::Limits::Union(lim, *lims);
866       }
867       return size;
868     }
869     if (rhs->IsClass()) {
870       *lims = AstRangeType::Limits::Union(AstRangeType::Limits(lhs->AsRange()),
871                                           *lims);
872     }
873     if (rhs->IsConstant() && Contains(lhs->AsRange(), rhs->AsConstant())) {
874       return AddToUnion(rhs, result, size, zone);
875     }
876     if (rhs->IsRange()) {
877       AstRangeType::Limits lim =
878           AstRangeType::Limits::Intersect(AstRangeType::Limits(lhs->AsRange()),
879                                           AstRangeType::Limits(rhs->AsRange()));
880       if (!lim.IsEmpty()) {
881         *lims = AstRangeType::Limits::Union(lim, *lims);
882       }
883     }
884     return size;
885   }
886   if (rhs->IsRange()) {
887     // This case is handled symmetrically above.
888     return IntersectAux(rhs, lhs, result, size, lims, zone);
889   }
890   if (lhs->IsBitset() || rhs->IsBitset()) {
891     return AddToUnion(lhs->IsBitset() ? rhs : lhs, result, size, zone);
892   }
893   if (lhs->IsClass() != rhs->IsClass()) {
894     return AddToUnion(lhs->IsClass() ? rhs : lhs, result, size, zone);
895   }
896   if (lhs->SimplyEquals(rhs)) {
897     return AddToUnion(lhs, result, size, zone);
898   }
899   return size;
900 }
901 
902 // Make sure that we produce a well-formed range and bitset:
903 // If the range is non-empty, the number bits in the bitset should be
904 // clear. Moreover, if we have a canonical range (such as Signed32),
905 // we want to produce a bitset rather than a range.
NormalizeRangeAndBitset(AstType * range,bitset * bits,Zone * zone)906 AstType* AstType::NormalizeRangeAndBitset(AstType* range, bitset* bits,
907                                           Zone* zone) {
908   // Fast path: If the bitset does not mention numbers, we can just keep the
909   // range.
910   bitset number_bits = AstBitsetType::NumberBits(*bits);
911   if (number_bits == 0) {
912     return range;
913   }
914 
915   // If the range is semantically contained within the bitset, return None and
916   // leave the bitset untouched.
917   bitset range_lub = AST_SEMANTIC(range->BitsetLub());
918   if (AstBitsetType::Is(range_lub, *bits)) {
919     return None();
920   }
921 
922   // Slow path: reconcile the bitset range and the range.
923   double bitset_min = AstBitsetType::Min(number_bits);
924   double bitset_max = AstBitsetType::Max(number_bits);
925 
926   double range_min = range->Min();
927   double range_max = range->Max();
928 
929   // Remove the number bits from the bitset, they would just confuse us now.
930   // NOTE: bits contains OtherNumber iff bits contains PlainNumber, in which
931   // case we already returned after the subtype check above.
932   *bits &= ~number_bits;
933 
934   if (range_min <= bitset_min && range_max >= bitset_max) {
935     // Bitset is contained within the range, just return the range.
936     return range;
937   }
938 
939   if (bitset_min < range_min) {
940     range_min = bitset_min;
941   }
942   if (bitset_max > range_max) {
943     range_max = bitset_max;
944   }
945   return AstRangeType::New(range_min, range_max, AstBitsetType::kNone, zone);
946 }
947 
Union(AstType * type1,AstType * type2,Zone * zone)948 AstType* AstType::Union(AstType* type1, AstType* type2, Zone* zone) {
949   // Fast case: bit sets.
950   if (type1->IsBitset() && type2->IsBitset()) {
951     return AstBitsetType::New(type1->AsBitset() | type2->AsBitset());
952   }
953 
954   // Fast case: top or bottom types.
955   if (type1->IsAny() || type2->IsNone()) return type1;
956   if (type2->IsAny() || type1->IsNone()) return type2;
957 
958   // Semi-fast case.
959   if (type1->Is(type2)) return type2;
960   if (type2->Is(type1)) return type1;
961 
962   // Figure out the representation of the result.
963   // The rest of the method should not change this representation and
964   // it should not make any decisions based on representations (i.e.,
965   // it should only use the semantic part of types).
966   const bitset representation =
967       type1->Representation() | type2->Representation();
968 
969   // Slow case: create union.
970   int size1 = type1->IsUnion() ? type1->AsUnion()->Length() : 1;
971   int size2 = type2->IsUnion() ? type2->AsUnion()->Length() : 1;
972   if (!AddIsSafe(size1, size2)) return Any();
973   int size = size1 + size2;
974   if (!AddIsSafe(size, 2)) return Any();
975   size += 2;
976   AstType* result_type = AstUnionType::New(size, zone);
977   AstUnionType* result = result_type->AsUnion();
978   size = 0;
979 
980   // Compute the new bitset.
981   bitset new_bitset = AST_SEMANTIC(type1->BitsetGlb() | type2->BitsetGlb());
982 
983   // Deal with ranges.
984   AstType* range = None();
985   AstType* range1 = type1->GetRange();
986   AstType* range2 = type2->GetRange();
987   if (range1 != NULL && range2 != NULL) {
988     AstRangeType::Limits lims =
989         AstRangeType::Limits::Union(AstRangeType::Limits(range1->AsRange()),
990                                     AstRangeType::Limits(range2->AsRange()));
991     AstType* union_range = AstRangeType::New(lims, representation, zone);
992     range = NormalizeRangeAndBitset(union_range, &new_bitset, zone);
993   } else if (range1 != NULL) {
994     range = NormalizeRangeAndBitset(range1, &new_bitset, zone);
995   } else if (range2 != NULL) {
996     range = NormalizeRangeAndBitset(range2, &new_bitset, zone);
997   }
998   new_bitset = AST_SEMANTIC(new_bitset) | representation;
999   AstType* bits = AstBitsetType::New(new_bitset);
1000   result->Set(size++, bits);
1001   if (!range->IsNone()) result->Set(size++, range);
1002 
1003   size = AddToUnion(type1, result, size, zone);
1004   size = AddToUnion(type2, result, size, zone);
1005   return NormalizeUnion(result_type, size, zone);
1006 }
1007 
1008 // Add [type] to [result] unless [type] is bitset, range, or already subsumed.
1009 // Return new size of [result].
AddToUnion(AstType * type,AstUnionType * result,int size,Zone * zone)1010 int AstType::AddToUnion(AstType* type, AstUnionType* result, int size,
1011                         Zone* zone) {
1012   if (type->IsBitset() || type->IsRange()) return size;
1013   if (type->IsUnion()) {
1014     for (int i = 0, n = type->AsUnion()->Length(); i < n; ++i) {
1015       size = AddToUnion(type->AsUnion()->Get(i), result, size, zone);
1016     }
1017     return size;
1018   }
1019   for (int i = 0; i < size; ++i) {
1020     if (type->SemanticIs(result->Get(i))) return size;
1021   }
1022   result->Set(size++, type);
1023   return size;
1024 }
1025 
NormalizeUnion(AstType * union_type,int size,Zone * zone)1026 AstType* AstType::NormalizeUnion(AstType* union_type, int size, Zone* zone) {
1027   AstUnionType* unioned = union_type->AsUnion();
1028   DCHECK(size >= 1);
1029   DCHECK(unioned->Get(0)->IsBitset());
1030   // If the union has just one element, return it.
1031   if (size == 1) {
1032     return unioned->Get(0);
1033   }
1034   bitset bits = unioned->Get(0)->AsBitset();
1035   // If the union only consists of a range, we can get rid of the union.
1036   if (size == 2 && AST_SEMANTIC(bits) == AstBitsetType::kNone) {
1037     bitset representation = AST_REPRESENTATION(bits);
1038     if (representation == unioned->Get(1)->Representation()) {
1039       return unioned->Get(1);
1040     }
1041     if (unioned->Get(1)->IsRange()) {
1042       return AstRangeType::New(unioned->Get(1)->AsRange()->Min(),
1043                                unioned->Get(1)->AsRange()->Max(),
1044                                unioned->Get(0)->AsBitset(), zone);
1045     }
1046   }
1047   unioned->Shrink(size);
1048   SLOW_DCHECK(unioned->Wellformed());
1049   return union_type;
1050 }
1051 
1052 // -----------------------------------------------------------------------------
1053 // Component extraction
1054 
1055 // static
Representation(AstType * t,Zone * zone)1056 AstType* AstType::Representation(AstType* t, Zone* zone) {
1057   return AstBitsetType::New(t->Representation());
1058 }
1059 
1060 // static
Semantic(AstType * t,Zone * zone)1061 AstType* AstType::Semantic(AstType* t, Zone* zone) {
1062   return Intersect(t, AstBitsetType::New(AstBitsetType::kSemantic), zone);
1063 }
1064 
1065 // -----------------------------------------------------------------------------
1066 // Iteration.
1067 
NumClasses()1068 int AstType::NumClasses() {
1069   DisallowHeapAllocation no_allocation;
1070   if (this->IsClass()) {
1071     return 1;
1072   } else if (this->IsUnion()) {
1073     int result = 0;
1074     for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) {
1075       if (this->AsUnion()->Get(i)->IsClass()) ++result;
1076     }
1077     return result;
1078   } else {
1079     return 0;
1080   }
1081 }
1082 
NumConstants()1083 int AstType::NumConstants() {
1084   DisallowHeapAllocation no_allocation;
1085   if (this->IsConstant()) {
1086     return 1;
1087   } else if (this->IsUnion()) {
1088     int result = 0;
1089     for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) {
1090       if (this->AsUnion()->Get(i)->IsConstant()) ++result;
1091     }
1092     return result;
1093   } else {
1094     return 0;
1095   }
1096 }
1097 
1098 template <class T>
get_type()1099 AstType* AstType::Iterator<T>::get_type() {
1100   DCHECK(!Done());
1101   return type_->IsUnion() ? type_->AsUnion()->Get(index_) : type_;
1102 }
1103 
1104 // C++ cannot specialise nested templates, so we have to go through this
1105 // contortion with an auxiliary template to simulate it.
1106 template <class T>
1107 struct TypeImplIteratorAux {
1108   static bool matches(AstType* type);
1109   static i::Handle<T> current(AstType* type);
1110 };
1111 
1112 template <>
1113 struct TypeImplIteratorAux<i::Map> {
matchesv8::internal::TypeImplIteratorAux1114   static bool matches(AstType* type) { return type->IsClass(); }
currentv8::internal::TypeImplIteratorAux1115   static i::Handle<i::Map> current(AstType* type) {
1116     return type->AsClass()->Map();
1117   }
1118 };
1119 
1120 template <>
1121 struct TypeImplIteratorAux<i::Object> {
matchesv8::internal::TypeImplIteratorAux1122   static bool matches(AstType* type) { return type->IsConstant(); }
currentv8::internal::TypeImplIteratorAux1123   static i::Handle<i::Object> current(AstType* type) {
1124     return type->AsConstant()->Value();
1125   }
1126 };
1127 
1128 template <class T>
matches(AstType * type)1129 bool AstType::Iterator<T>::matches(AstType* type) {
1130   return TypeImplIteratorAux<T>::matches(type);
1131 }
1132 
1133 template <class T>
Current()1134 i::Handle<T> AstType::Iterator<T>::Current() {
1135   return TypeImplIteratorAux<T>::current(get_type());
1136 }
1137 
1138 template <class T>
Advance()1139 void AstType::Iterator<T>::Advance() {
1140   DisallowHeapAllocation no_allocation;
1141   ++index_;
1142   if (type_->IsUnion()) {
1143     for (int n = type_->AsUnion()->Length(); index_ < n; ++index_) {
1144       if (matches(type_->AsUnion()->Get(index_))) return;
1145     }
1146   } else if (index_ == 0 && matches(type_)) {
1147     return;
1148   }
1149   index_ = -1;
1150 }
1151 
1152 // -----------------------------------------------------------------------------
1153 // Printing.
1154 
Name(bitset bits)1155 const char* AstBitsetType::Name(bitset bits) {
1156   switch (bits) {
1157     case AST_REPRESENTATION(kAny):
1158       return "Any";
1159 #define RETURN_NAMED_REPRESENTATION_TYPE(type, value) \
1160   case AST_REPRESENTATION(k##type):                   \
1161     return #type;
1162       AST_REPRESENTATION_BITSET_TYPE_LIST(RETURN_NAMED_REPRESENTATION_TYPE)
1163 #undef RETURN_NAMED_REPRESENTATION_TYPE
1164 
1165 #define RETURN_NAMED_SEMANTIC_TYPE(type, value) \
1166   case AST_SEMANTIC(k##type):                   \
1167     return #type;
1168       AST_SEMANTIC_BITSET_TYPE_LIST(RETURN_NAMED_SEMANTIC_TYPE)
1169       AST_INTERNAL_BITSET_TYPE_LIST(RETURN_NAMED_SEMANTIC_TYPE)
1170 #undef RETURN_NAMED_SEMANTIC_TYPE
1171 
1172     default:
1173       return NULL;
1174   }
1175 }
1176 
Print(std::ostream & os,bitset bits)1177 void AstBitsetType::Print(std::ostream& os,  // NOLINT
1178                           bitset bits) {
1179   DisallowHeapAllocation no_allocation;
1180   const char* name = Name(bits);
1181   if (name != NULL) {
1182     os << name;
1183     return;
1184   }
1185 
1186   // clang-format off
1187   static const bitset named_bitsets[] = {
1188 #define BITSET_CONSTANT(type, value) AST_REPRESENTATION(k##type),
1189     AST_REPRESENTATION_BITSET_TYPE_LIST(BITSET_CONSTANT)
1190 #undef BITSET_CONSTANT
1191 
1192 #define BITSET_CONSTANT(type, value) AST_SEMANTIC(k##type),
1193     AST_INTERNAL_BITSET_TYPE_LIST(BITSET_CONSTANT)
1194     AST_SEMANTIC_BITSET_TYPE_LIST(BITSET_CONSTANT)
1195 #undef BITSET_CONSTANT
1196   };
1197   // clang-format on
1198 
1199   bool is_first = true;
1200   os << "(";
1201   for (int i(arraysize(named_bitsets) - 1); bits != 0 && i >= 0; --i) {
1202     bitset subset = named_bitsets[i];
1203     if ((bits & subset) == subset) {
1204       if (!is_first) os << " | ";
1205       is_first = false;
1206       os << Name(subset);
1207       bits -= subset;
1208     }
1209   }
1210   DCHECK(bits == 0);
1211   os << ")";
1212 }
1213 
PrintTo(std::ostream & os,PrintDimension dim)1214 void AstType::PrintTo(std::ostream& os, PrintDimension dim) {
1215   DisallowHeapAllocation no_allocation;
1216   if (dim != REPRESENTATION_DIM) {
1217     if (this->IsBitset()) {
1218       AstBitsetType::Print(os, AST_SEMANTIC(this->AsBitset()));
1219     } else if (this->IsClass()) {
1220       os << "Class(" << static_cast<void*>(*this->AsClass()->Map()) << " < ";
1221       AstBitsetType::New(AstBitsetType::Lub(this))->PrintTo(os, dim);
1222       os << ")";
1223     } else if (this->IsConstant()) {
1224       os << "Constant(" << Brief(*this->AsConstant()->Value()) << ")";
1225     } else if (this->IsRange()) {
1226       std::ostream::fmtflags saved_flags = os.setf(std::ios::fixed);
1227       std::streamsize saved_precision = os.precision(0);
1228       os << "Range(" << this->AsRange()->Min() << ", " << this->AsRange()->Max()
1229          << ")";
1230       os.flags(saved_flags);
1231       os.precision(saved_precision);
1232     } else if (this->IsContext()) {
1233       os << "Context(";
1234       this->AsContext()->Outer()->PrintTo(os, dim);
1235       os << ")";
1236     } else if (this->IsUnion()) {
1237       os << "(";
1238       for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) {
1239         AstType* type_i = this->AsUnion()->Get(i);
1240         if (i > 0) os << " | ";
1241         type_i->PrintTo(os, dim);
1242       }
1243       os << ")";
1244     } else if (this->IsArray()) {
1245       os << "Array(";
1246       AsArray()->Element()->PrintTo(os, dim);
1247       os << ")";
1248     } else if (this->IsFunction()) {
1249       if (!this->AsFunction()->Receiver()->IsAny()) {
1250         this->AsFunction()->Receiver()->PrintTo(os, dim);
1251         os << ".";
1252       }
1253       os << "(";
1254       for (int i = 0; i < this->AsFunction()->Arity(); ++i) {
1255         if (i > 0) os << ", ";
1256         this->AsFunction()->Parameter(i)->PrintTo(os, dim);
1257       }
1258       os << ")->";
1259       this->AsFunction()->Result()->PrintTo(os, dim);
1260     } else if (this->IsTuple()) {
1261       os << "<";
1262       for (int i = 0, n = this->AsTuple()->Arity(); i < n; ++i) {
1263         AstType* type_i = this->AsTuple()->Element(i);
1264         if (i > 0) os << ", ";
1265         type_i->PrintTo(os, dim);
1266       }
1267       os << ">";
1268     } else {
1269       UNREACHABLE();
1270     }
1271   }
1272   if (dim == BOTH_DIMS) os << "/";
1273   if (dim != SEMANTIC_DIM) {
1274     AstBitsetType::Print(os, AST_REPRESENTATION(this->BitsetLub()));
1275   }
1276 }
1277 
1278 #ifdef DEBUG
Print()1279 void AstType::Print() {
1280   OFStream os(stdout);
1281   PrintTo(os);
1282   os << std::endl;
1283 }
Print(bitset bits)1284 void AstBitsetType::Print(bitset bits) {
1285   OFStream os(stdout);
1286   Print(os, bits);
1287   os << std::endl;
1288 }
1289 #endif
1290 
SignedSmall()1291 AstBitsetType::bitset AstBitsetType::SignedSmall() {
1292   return i::SmiValuesAre31Bits() ? kSigned31 : kSigned32;
1293 }
1294 
UnsignedSmall()1295 AstBitsetType::bitset AstBitsetType::UnsignedSmall() {
1296   return i::SmiValuesAre31Bits() ? kUnsigned30 : kUnsigned31;
1297 }
1298 
1299 // -----------------------------------------------------------------------------
1300 // Instantiations.
1301 
1302 template class AstType::Iterator<i::Map>;
1303 template class AstType::Iterator<i::Object>;
1304 
1305 }  // namespace internal
1306 }  // namespace v8
1307