1 // Copyright 2007, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 //
30 // Author: wan@google.com (Zhanyong Wan)
31
32 // Google Mock - a framework for writing C++ mock classes.
33 //
34 // This file implements some commonly used actions.
35
36 #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
37 #define GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
38
39 #ifndef _WIN32_WCE
40 # include <errno.h>
41 #endif
42
43 #include <algorithm>
44 #include <string>
45
46 #include "gmock/internal/gmock-internal-utils.h"
47 #include "gmock/internal/gmock-port.h"
48
49 namespace testing {
50
51 // To implement an action Foo, define:
52 // 1. a class FooAction that implements the ActionInterface interface, and
53 // 2. a factory function that creates an Action object from a
54 // const FooAction*.
55 //
56 // The two-level delegation design follows that of Matcher, providing
57 // consistency for extension developers. It also eases ownership
58 // management as Action objects can now be copied like plain values.
59
60 namespace internal {
61
62 template <typename F1, typename F2>
63 class ActionAdaptor;
64
65 // BuiltInDefaultValue<T>::Get() returns the "built-in" default
66 // value for type T, which is NULL when T is a pointer type, 0 when T
67 // is a numeric type, false when T is bool, or "" when T is string or
68 // std::string. For any other type T, this value is undefined and the
69 // function will abort the process.
70 template <typename T>
71 class BuiltInDefaultValue {
72 public:
73 // This function returns true iff type T has a built-in default value.
Exists()74 static bool Exists() { return false; }
Get()75 static T Get() {
76 Assert(false, __FILE__, __LINE__,
77 "Default action undefined for the function return type.");
78 return internal::Invalid<T>();
79 // The above statement will never be reached, but is required in
80 // order for this function to compile.
81 }
82 };
83
84 // This partial specialization says that we use the same built-in
85 // default value for T and const T.
86 template <typename T>
87 class BuiltInDefaultValue<const T> {
88 public:
Exists()89 static bool Exists() { return BuiltInDefaultValue<T>::Exists(); }
Get()90 static T Get() { return BuiltInDefaultValue<T>::Get(); }
91 };
92
93 // This partial specialization defines the default values for pointer
94 // types.
95 template <typename T>
96 class BuiltInDefaultValue<T*> {
97 public:
Exists()98 static bool Exists() { return true; }
Get()99 static T* Get() { return NULL; }
100 };
101
102 // The following specializations define the default values for
103 // specific types we care about.
104 #define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \
105 template <> \
106 class BuiltInDefaultValue<type> { \
107 public: \
108 static bool Exists() { return true; } \
109 static type Get() { return value; } \
110 }
111
112 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, ); // NOLINT
113 #if GTEST_HAS_GLOBAL_STRING
114 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::string, "");
115 #endif // GTEST_HAS_GLOBAL_STRING
116 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, "");
117 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false);
118 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0');
119 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0');
120 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0');
121
122 // There's no need for a default action for signed wchar_t, as that
123 // type is the same as wchar_t for gcc, and invalid for MSVC.
124 //
125 // There's also no need for a default action for unsigned wchar_t, as
126 // that type is the same as unsigned int for gcc, and invalid for
127 // MSVC.
128 #if GMOCK_WCHAR_T_IS_NATIVE_
129 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U); // NOLINT
130 #endif
131
132 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U); // NOLINT
133 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0); // NOLINT
134 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U);
135 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0);
136 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL); // NOLINT
137 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L); // NOLINT
138 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(UInt64, 0);
139 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(Int64, 0);
140 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0);
141 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0);
142
143 #undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_
144
145 } // namespace internal
146
147 // When an unexpected function call is encountered, Google Mock will
148 // let it return a default value if the user has specified one for its
149 // return type, or if the return type has a built-in default value;
150 // otherwise Google Mock won't know what value to return and will have
151 // to abort the process.
152 //
153 // The DefaultValue<T> class allows a user to specify the
154 // default value for a type T that is both copyable and publicly
155 // destructible (i.e. anything that can be used as a function return
156 // type). The usage is:
157 //
158 // // Sets the default value for type T to be foo.
159 // DefaultValue<T>::Set(foo);
160 template <typename T>
161 class DefaultValue {
162 public:
163 // Sets the default value for type T; requires T to be
164 // copy-constructable and have a public destructor.
Set(T x)165 static void Set(T x) {
166 delete value_;
167 value_ = new T(x);
168 }
169
170 // Unsets the default value for type T.
Clear()171 static void Clear() {
172 delete value_;
173 value_ = NULL;
174 }
175
176 // Returns true iff the user has set the default value for type T.
IsSet()177 static bool IsSet() { return value_ != NULL; }
178
179 // Returns true if T has a default return value set by the user or there
180 // exists a built-in default value.
Exists()181 static bool Exists() {
182 return IsSet() || internal::BuiltInDefaultValue<T>::Exists();
183 }
184
185 // Returns the default value for type T if the user has set one;
186 // otherwise returns the built-in default value if there is one;
187 // otherwise aborts the process.
Get()188 static T Get() {
189 return value_ == NULL ?
190 internal::BuiltInDefaultValue<T>::Get() : *value_;
191 }
192
193 private:
194 static const T* value_;
195 };
196
197 // This partial specialization allows a user to set default values for
198 // reference types.
199 template <typename T>
200 class DefaultValue<T&> {
201 public:
202 // Sets the default value for type T&.
Set(T & x)203 static void Set(T& x) { // NOLINT
204 address_ = &x;
205 }
206
207 // Unsets the default value for type T&.
Clear()208 static void Clear() {
209 address_ = NULL;
210 }
211
212 // Returns true iff the user has set the default value for type T&.
IsSet()213 static bool IsSet() { return address_ != NULL; }
214
215 // Returns true if T has a default return value set by the user or there
216 // exists a built-in default value.
Exists()217 static bool Exists() {
218 return IsSet() || internal::BuiltInDefaultValue<T&>::Exists();
219 }
220
221 // Returns the default value for type T& if the user has set one;
222 // otherwise returns the built-in default value if there is one;
223 // otherwise aborts the process.
Get()224 static T& Get() {
225 return address_ == NULL ?
226 internal::BuiltInDefaultValue<T&>::Get() : *address_;
227 }
228
229 private:
230 static T* address_;
231 };
232
233 // This specialization allows DefaultValue<void>::Get() to
234 // compile.
235 template <>
236 class DefaultValue<void> {
237 public:
Exists()238 static bool Exists() { return true; }
Get()239 static void Get() {}
240 };
241
242 // Points to the user-set default value for type T.
243 template <typename T>
244 const T* DefaultValue<T>::value_ = NULL;
245
246 // Points to the user-set default value for type T&.
247 template <typename T>
248 T* DefaultValue<T&>::address_ = NULL;
249
250 // Implement this interface to define an action for function type F.
251 template <typename F>
252 class ActionInterface {
253 public:
254 typedef typename internal::Function<F>::Result Result;
255 typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
256
ActionInterface()257 ActionInterface() {}
~ActionInterface()258 virtual ~ActionInterface() {}
259
260 // Performs the action. This method is not const, as in general an
261 // action can have side effects and be stateful. For example, a
262 // get-the-next-element-from-the-collection action will need to
263 // remember the current element.
264 virtual Result Perform(const ArgumentTuple& args) = 0;
265
266 private:
267 GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionInterface);
268 };
269
270 // An Action<F> is a copyable and IMMUTABLE (except by assignment)
271 // object that represents an action to be taken when a mock function
272 // of type F is called. The implementation of Action<T> is just a
273 // linked_ptr to const ActionInterface<T>, so copying is fairly cheap.
274 // Don't inherit from Action!
275 //
276 // You can view an object implementing ActionInterface<F> as a
277 // concrete action (including its current state), and an Action<F>
278 // object as a handle to it.
279 template <typename F>
280 class Action {
281 public:
282 typedef typename internal::Function<F>::Result Result;
283 typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
284
285 // Constructs a null Action. Needed for storing Action objects in
286 // STL containers.
Action()287 Action() : impl_(NULL) {}
288
289 // Constructs an Action from its implementation. A NULL impl is
290 // used to represent the "do-default" action.
Action(ActionInterface<F> * impl)291 explicit Action(ActionInterface<F>* impl) : impl_(impl) {}
292
293 // Copy constructor.
Action(const Action & action)294 Action(const Action& action) : impl_(action.impl_) {}
295
296 // This constructor allows us to turn an Action<Func> object into an
297 // Action<F>, as long as F's arguments can be implicitly converted
298 // to Func's and Func's return type can be implicitly converted to
299 // F's.
300 template <typename Func>
301 explicit Action(const Action<Func>& action);
302
303 // Returns true iff this is the DoDefault() action.
IsDoDefault()304 bool IsDoDefault() const { return impl_.get() == NULL; }
305
306 // Performs the action. Note that this method is const even though
307 // the corresponding method in ActionInterface is not. The reason
308 // is that a const Action<F> means that it cannot be re-bound to
309 // another concrete action, not that the concrete action it binds to
310 // cannot change state. (Think of the difference between a const
311 // pointer and a pointer to const.)
Perform(const ArgumentTuple & args)312 Result Perform(const ArgumentTuple& args) const {
313 internal::Assert(
314 !IsDoDefault(), __FILE__, __LINE__,
315 "You are using DoDefault() inside a composite action like "
316 "DoAll() or WithArgs(). This is not supported for technical "
317 "reasons. Please instead spell out the default action, or "
318 "assign the default action to an Action variable and use "
319 "the variable in various places.");
320 return impl_->Perform(args);
321 }
322
323 private:
324 template <typename F1, typename F2>
325 friend class internal::ActionAdaptor;
326
327 internal::linked_ptr<ActionInterface<F> > impl_;
328 };
329
330 // The PolymorphicAction class template makes it easy to implement a
331 // polymorphic action (i.e. an action that can be used in mock
332 // functions of than one type, e.g. Return()).
333 //
334 // To define a polymorphic action, a user first provides a COPYABLE
335 // implementation class that has a Perform() method template:
336 //
337 // class FooAction {
338 // public:
339 // template <typename Result, typename ArgumentTuple>
340 // Result Perform(const ArgumentTuple& args) const {
341 // // Processes the arguments and returns a result, using
342 // // tr1::get<N>(args) to get the N-th (0-based) argument in the tuple.
343 // }
344 // ...
345 // };
346 //
347 // Then the user creates the polymorphic action using
348 // MakePolymorphicAction(object) where object has type FooAction. See
349 // the definition of Return(void) and SetArgumentPointee<N>(value) for
350 // complete examples.
351 template <typename Impl>
352 class PolymorphicAction {
353 public:
PolymorphicAction(const Impl & impl)354 explicit PolymorphicAction(const Impl& impl) : impl_(impl) {}
355
356 template <typename F>
357 operator Action<F>() const {
358 return Action<F>(new MonomorphicImpl<F>(impl_));
359 }
360
361 private:
362 template <typename F>
363 class MonomorphicImpl : public ActionInterface<F> {
364 public:
365 typedef typename internal::Function<F>::Result Result;
366 typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
367
MonomorphicImpl(const Impl & impl)368 explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}
369
Perform(const ArgumentTuple & args)370 virtual Result Perform(const ArgumentTuple& args) {
371 return impl_.template Perform<Result>(args);
372 }
373
374 private:
375 Impl impl_;
376
377 GTEST_DISALLOW_ASSIGN_(MonomorphicImpl);
378 };
379
380 Impl impl_;
381
382 GTEST_DISALLOW_ASSIGN_(PolymorphicAction);
383 };
384
385 // Creates an Action from its implementation and returns it. The
386 // created Action object owns the implementation.
387 template <typename F>
MakeAction(ActionInterface<F> * impl)388 Action<F> MakeAction(ActionInterface<F>* impl) {
389 return Action<F>(impl);
390 }
391
392 // Creates a polymorphic action from its implementation. This is
393 // easier to use than the PolymorphicAction<Impl> constructor as it
394 // doesn't require you to explicitly write the template argument, e.g.
395 //
396 // MakePolymorphicAction(foo);
397 // vs
398 // PolymorphicAction<TypeOfFoo>(foo);
399 template <typename Impl>
MakePolymorphicAction(const Impl & impl)400 inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) {
401 return PolymorphicAction<Impl>(impl);
402 }
403
404 namespace internal {
405
406 // Allows an Action<F2> object to pose as an Action<F1>, as long as F2
407 // and F1 are compatible.
408 template <typename F1, typename F2>
409 class ActionAdaptor : public ActionInterface<F1> {
410 public:
411 typedef typename internal::Function<F1>::Result Result;
412 typedef typename internal::Function<F1>::ArgumentTuple ArgumentTuple;
413
ActionAdaptor(const Action<F2> & from)414 explicit ActionAdaptor(const Action<F2>& from) : impl_(from.impl_) {}
415
Perform(const ArgumentTuple & args)416 virtual Result Perform(const ArgumentTuple& args) {
417 return impl_->Perform(args);
418 }
419
420 private:
421 const internal::linked_ptr<ActionInterface<F2> > impl_;
422
423 GTEST_DISALLOW_ASSIGN_(ActionAdaptor);
424 };
425
426 // Implements the polymorphic Return(x) action, which can be used in
427 // any function that returns the type of x, regardless of the argument
428 // types.
429 //
430 // Note: The value passed into Return must be converted into
431 // Function<F>::Result when this action is cast to Action<F> rather than
432 // when that action is performed. This is important in scenarios like
433 //
434 // MOCK_METHOD1(Method, T(U));
435 // ...
436 // {
437 // Foo foo;
438 // X x(&foo);
439 // EXPECT_CALL(mock, Method(_)).WillOnce(Return(x));
440 // }
441 //
442 // In the example above the variable x holds reference to foo which leaves
443 // scope and gets destroyed. If copying X just copies a reference to foo,
444 // that copy will be left with a hanging reference. If conversion to T
445 // makes a copy of foo, the above code is safe. To support that scenario, we
446 // need to make sure that the type conversion happens inside the EXPECT_CALL
447 // statement, and conversion of the result of Return to Action<T(U)> is a
448 // good place for that.
449 //
450 template <typename R>
451 class ReturnAction {
452 public:
453 // Constructs a ReturnAction object from the value to be returned.
454 // 'value' is passed by value instead of by const reference in order
455 // to allow Return("string literal") to compile.
ReturnAction(R value)456 explicit ReturnAction(R value) : value_(value) {}
457
458 // This template type conversion operator allows Return(x) to be
459 // used in ANY function that returns x's type.
460 template <typename F>
461 operator Action<F>() const {
462 // Assert statement belongs here because this is the best place to verify
463 // conditions on F. It produces the clearest error messages
464 // in most compilers.
465 // Impl really belongs in this scope as a local class but can't
466 // because MSVC produces duplicate symbols in different translation units
467 // in this case. Until MS fixes that bug we put Impl into the class scope
468 // and put the typedef both here (for use in assert statement) and
469 // in the Impl class. But both definitions must be the same.
470 typedef typename Function<F>::Result Result;
471 GTEST_COMPILE_ASSERT_(
472 !internal::is_reference<Result>::value,
473 use_ReturnRef_instead_of_Return_to_return_a_reference);
474 return Action<F>(new Impl<F>(value_));
475 }
476
477 private:
478 // Implements the Return(x) action for a particular function type F.
479 template <typename F>
480 class Impl : public ActionInterface<F> {
481 public:
482 typedef typename Function<F>::Result Result;
483 typedef typename Function<F>::ArgumentTuple ArgumentTuple;
484
485 // The implicit cast is necessary when Result has more than one
486 // single-argument constructor (e.g. Result is std::vector<int>) and R
487 // has a type conversion operator template. In that case, value_(value)
488 // won't compile as the compiler doesn't known which constructor of
489 // Result to call. ImplicitCast_ forces the compiler to convert R to
490 // Result without considering explicit constructors, thus resolving the
491 // ambiguity. value_ is then initialized using its copy constructor.
Impl(R value)492 explicit Impl(R value)
493 : value_(::testing::internal::ImplicitCast_<Result>(value)) {}
494
Perform(const ArgumentTuple &)495 virtual Result Perform(const ArgumentTuple&) { return value_; }
496
497 private:
498 GTEST_COMPILE_ASSERT_(!internal::is_reference<Result>::value,
499 Result_cannot_be_a_reference_type);
500 Result value_;
501
502 GTEST_DISALLOW_ASSIGN_(Impl);
503 };
504
505 R value_;
506
507 GTEST_DISALLOW_ASSIGN_(ReturnAction);
508 };
509
510 // Implements the ReturnNull() action.
511 class ReturnNullAction {
512 public:
513 // Allows ReturnNull() to be used in any pointer-returning function.
514 template <typename Result, typename ArgumentTuple>
Perform(const ArgumentTuple &)515 static Result Perform(const ArgumentTuple&) {
516 GTEST_COMPILE_ASSERT_(internal::is_pointer<Result>::value,
517 ReturnNull_can_be_used_to_return_a_pointer_only);
518 return NULL;
519 }
520 };
521
522 // Implements the Return() action.
523 class ReturnVoidAction {
524 public:
525 // Allows Return() to be used in any void-returning function.
526 template <typename Result, typename ArgumentTuple>
Perform(const ArgumentTuple &)527 static void Perform(const ArgumentTuple&) {
528 CompileAssertTypesEqual<void, Result>();
529 }
530 };
531
532 // Implements the polymorphic ReturnRef(x) action, which can be used
533 // in any function that returns a reference to the type of x,
534 // regardless of the argument types.
535 template <typename T>
536 class ReturnRefAction {
537 public:
538 // Constructs a ReturnRefAction object from the reference to be returned.
ReturnRefAction(T & ref)539 explicit ReturnRefAction(T& ref) : ref_(ref) {} // NOLINT
540
541 // This template type conversion operator allows ReturnRef(x) to be
542 // used in ANY function that returns a reference to x's type.
543 template <typename F>
544 operator Action<F>() const {
545 typedef typename Function<F>::Result Result;
546 // Asserts that the function return type is a reference. This
547 // catches the user error of using ReturnRef(x) when Return(x)
548 // should be used, and generates some helpful error message.
549 GTEST_COMPILE_ASSERT_(internal::is_reference<Result>::value,
550 use_Return_instead_of_ReturnRef_to_return_a_value);
551 return Action<F>(new Impl<F>(ref_));
552 }
553
554 private:
555 // Implements the ReturnRef(x) action for a particular function type F.
556 template <typename F>
557 class Impl : public ActionInterface<F> {
558 public:
559 typedef typename Function<F>::Result Result;
560 typedef typename Function<F>::ArgumentTuple ArgumentTuple;
561
Impl(T & ref)562 explicit Impl(T& ref) : ref_(ref) {} // NOLINT
563
Perform(const ArgumentTuple &)564 virtual Result Perform(const ArgumentTuple&) {
565 return ref_;
566 }
567
568 private:
569 T& ref_;
570
571 GTEST_DISALLOW_ASSIGN_(Impl);
572 };
573
574 T& ref_;
575
576 GTEST_DISALLOW_ASSIGN_(ReturnRefAction);
577 };
578
579 // Implements the polymorphic ReturnRefOfCopy(x) action, which can be
580 // used in any function that returns a reference to the type of x,
581 // regardless of the argument types.
582 template <typename T>
583 class ReturnRefOfCopyAction {
584 public:
585 // Constructs a ReturnRefOfCopyAction object from the reference to
586 // be returned.
ReturnRefOfCopyAction(const T & value)587 explicit ReturnRefOfCopyAction(const T& value) : value_(value) {} // NOLINT
588
589 // This template type conversion operator allows ReturnRefOfCopy(x) to be
590 // used in ANY function that returns a reference to x's type.
591 template <typename F>
592 operator Action<F>() const {
593 typedef typename Function<F>::Result Result;
594 // Asserts that the function return type is a reference. This
595 // catches the user error of using ReturnRefOfCopy(x) when Return(x)
596 // should be used, and generates some helpful error message.
597 GTEST_COMPILE_ASSERT_(
598 internal::is_reference<Result>::value,
599 use_Return_instead_of_ReturnRefOfCopy_to_return_a_value);
600 return Action<F>(new Impl<F>(value_));
601 }
602
603 private:
604 // Implements the ReturnRefOfCopy(x) action for a particular function type F.
605 template <typename F>
606 class Impl : public ActionInterface<F> {
607 public:
608 typedef typename Function<F>::Result Result;
609 typedef typename Function<F>::ArgumentTuple ArgumentTuple;
610
Impl(const T & value)611 explicit Impl(const T& value) : value_(value) {} // NOLINT
612
Perform(const ArgumentTuple &)613 virtual Result Perform(const ArgumentTuple&) {
614 return value_;
615 }
616
617 private:
618 T value_;
619
620 GTEST_DISALLOW_ASSIGN_(Impl);
621 };
622
623 const T value_;
624
625 GTEST_DISALLOW_ASSIGN_(ReturnRefOfCopyAction);
626 };
627
628 // Implements the polymorphic DoDefault() action.
629 class DoDefaultAction {
630 public:
631 // This template type conversion operator allows DoDefault() to be
632 // used in any function.
633 template <typename F>
634 operator Action<F>() const { return Action<F>(NULL); }
635 };
636
637 // Implements the Assign action to set a given pointer referent to a
638 // particular value.
639 template <typename T1, typename T2>
640 class AssignAction {
641 public:
AssignAction(T1 * ptr,T2 value)642 AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {}
643
644 template <typename Result, typename ArgumentTuple>
Perform(const ArgumentTuple &)645 void Perform(const ArgumentTuple& /* args */) const {
646 *ptr_ = value_;
647 }
648
649 private:
650 T1* const ptr_;
651 const T2 value_;
652
653 GTEST_DISALLOW_ASSIGN_(AssignAction);
654 };
655
656 #if !GTEST_OS_WINDOWS_MOBILE
657
658 // Implements the SetErrnoAndReturn action to simulate return from
659 // various system calls and libc functions.
660 template <typename T>
661 class SetErrnoAndReturnAction {
662 public:
SetErrnoAndReturnAction(int errno_value,T result)663 SetErrnoAndReturnAction(int errno_value, T result)
664 : errno_(errno_value),
665 result_(result) {}
666 template <typename Result, typename ArgumentTuple>
Perform(const ArgumentTuple &)667 Result Perform(const ArgumentTuple& /* args */) const {
668 errno = errno_;
669 return result_;
670 }
671
672 private:
673 const int errno_;
674 const T result_;
675
676 GTEST_DISALLOW_ASSIGN_(SetErrnoAndReturnAction);
677 };
678
679 #endif // !GTEST_OS_WINDOWS_MOBILE
680
681 // Implements the SetArgumentPointee<N>(x) action for any function
682 // whose N-th argument (0-based) is a pointer to x's type. The
683 // template parameter kIsProto is true iff type A is ProtocolMessage,
684 // proto2::Message, or a sub-class of those.
685 template <size_t N, typename A, bool kIsProto>
686 class SetArgumentPointeeAction {
687 public:
688 // Constructs an action that sets the variable pointed to by the
689 // N-th function argument to 'value'.
SetArgumentPointeeAction(const A & value)690 explicit SetArgumentPointeeAction(const A& value) : value_(value) {}
691
692 template <typename Result, typename ArgumentTuple>
Perform(const ArgumentTuple & args)693 void Perform(const ArgumentTuple& args) const {
694 CompileAssertTypesEqual<void, Result>();
695 *::std::tr1::get<N>(args) = value_;
696 }
697
698 private:
699 const A value_;
700
701 GTEST_DISALLOW_ASSIGN_(SetArgumentPointeeAction);
702 };
703
704 template <size_t N, typename Proto>
705 class SetArgumentPointeeAction<N, Proto, true> {
706 public:
707 // Constructs an action that sets the variable pointed to by the
708 // N-th function argument to 'proto'. Both ProtocolMessage and
709 // proto2::Message have the CopyFrom() method, so the same
710 // implementation works for both.
SetArgumentPointeeAction(const Proto & proto)711 explicit SetArgumentPointeeAction(const Proto& proto) : proto_(new Proto) {
712 proto_->CopyFrom(proto);
713 }
714
715 template <typename Result, typename ArgumentTuple>
Perform(const ArgumentTuple & args)716 void Perform(const ArgumentTuple& args) const {
717 CompileAssertTypesEqual<void, Result>();
718 ::std::tr1::get<N>(args)->CopyFrom(*proto_);
719 }
720
721 private:
722 const internal::linked_ptr<Proto> proto_;
723
724 GTEST_DISALLOW_ASSIGN_(SetArgumentPointeeAction);
725 };
726
727 // Implements the InvokeWithoutArgs(f) action. The template argument
728 // FunctionImpl is the implementation type of f, which can be either a
729 // function pointer or a functor. InvokeWithoutArgs(f) can be used as an
730 // Action<F> as long as f's type is compatible with F (i.e. f can be
731 // assigned to a tr1::function<F>).
732 template <typename FunctionImpl>
733 class InvokeWithoutArgsAction {
734 public:
735 // The c'tor makes a copy of function_impl (either a function
736 // pointer or a functor).
InvokeWithoutArgsAction(FunctionImpl function_impl)737 explicit InvokeWithoutArgsAction(FunctionImpl function_impl)
738 : function_impl_(function_impl) {}
739
740 // Allows InvokeWithoutArgs(f) to be used as any action whose type is
741 // compatible with f.
742 template <typename Result, typename ArgumentTuple>
Perform(const ArgumentTuple &)743 Result Perform(const ArgumentTuple&) { return function_impl_(); }
744
745 private:
746 FunctionImpl function_impl_;
747
748 GTEST_DISALLOW_ASSIGN_(InvokeWithoutArgsAction);
749 };
750
751 // Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action.
752 template <class Class, typename MethodPtr>
753 class InvokeMethodWithoutArgsAction {
754 public:
InvokeMethodWithoutArgsAction(Class * obj_ptr,MethodPtr method_ptr)755 InvokeMethodWithoutArgsAction(Class* obj_ptr, MethodPtr method_ptr)
756 : obj_ptr_(obj_ptr), method_ptr_(method_ptr) {}
757
758 template <typename Result, typename ArgumentTuple>
Perform(const ArgumentTuple &)759 Result Perform(const ArgumentTuple&) const {
760 return (obj_ptr_->*method_ptr_)();
761 }
762
763 private:
764 Class* const obj_ptr_;
765 const MethodPtr method_ptr_;
766
767 GTEST_DISALLOW_ASSIGN_(InvokeMethodWithoutArgsAction);
768 };
769
770 // Implements the IgnoreResult(action) action.
771 template <typename A>
772 class IgnoreResultAction {
773 public:
IgnoreResultAction(const A & action)774 explicit IgnoreResultAction(const A& action) : action_(action) {}
775
776 template <typename F>
777 operator Action<F>() const {
778 // Assert statement belongs here because this is the best place to verify
779 // conditions on F. It produces the clearest error messages
780 // in most compilers.
781 // Impl really belongs in this scope as a local class but can't
782 // because MSVC produces duplicate symbols in different translation units
783 // in this case. Until MS fixes that bug we put Impl into the class scope
784 // and put the typedef both here (for use in assert statement) and
785 // in the Impl class. But both definitions must be the same.
786 typedef typename internal::Function<F>::Result Result;
787
788 // Asserts at compile time that F returns void.
789 CompileAssertTypesEqual<void, Result>();
790
791 return Action<F>(new Impl<F>(action_));
792 }
793
794 private:
795 template <typename F>
796 class Impl : public ActionInterface<F> {
797 public:
798 typedef typename internal::Function<F>::Result Result;
799 typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
800
Impl(const A & action)801 explicit Impl(const A& action) : action_(action) {}
802
Perform(const ArgumentTuple & args)803 virtual void Perform(const ArgumentTuple& args) {
804 // Performs the action and ignores its result.
805 action_.Perform(args);
806 }
807
808 private:
809 // Type OriginalFunction is the same as F except that its return
810 // type is IgnoredValue.
811 typedef typename internal::Function<F>::MakeResultIgnoredValue
812 OriginalFunction;
813
814 const Action<OriginalFunction> action_;
815
816 GTEST_DISALLOW_ASSIGN_(Impl);
817 };
818
819 const A action_;
820
821 GTEST_DISALLOW_ASSIGN_(IgnoreResultAction);
822 };
823
824 // A ReferenceWrapper<T> object represents a reference to type T,
825 // which can be either const or not. It can be explicitly converted
826 // from, and implicitly converted to, a T&. Unlike a reference,
827 // ReferenceWrapper<T> can be copied and can survive template type
828 // inference. This is used to support by-reference arguments in the
829 // InvokeArgument<N>(...) action. The idea was from "reference
830 // wrappers" in tr1, which we don't have in our source tree yet.
831 template <typename T>
832 class ReferenceWrapper {
833 public:
834 // Constructs a ReferenceWrapper<T> object from a T&.
ReferenceWrapper(T & l_value)835 explicit ReferenceWrapper(T& l_value) : pointer_(&l_value) {} // NOLINT
836
837 // Allows a ReferenceWrapper<T> object to be implicitly converted to
838 // a T&.
839 operator T&() const { return *pointer_; }
840 private:
841 T* pointer_;
842 };
843
844 // Allows the expression ByRef(x) to be printed as a reference to x.
845 template <typename T>
PrintTo(const ReferenceWrapper<T> & ref,::std::ostream * os)846 void PrintTo(const ReferenceWrapper<T>& ref, ::std::ostream* os) {
847 T& value = ref;
848 UniversalPrinter<T&>::Print(value, os);
849 }
850
851 // Does two actions sequentially. Used for implementing the DoAll(a1,
852 // a2, ...) action.
853 template <typename Action1, typename Action2>
854 class DoBothAction {
855 public:
DoBothAction(Action1 action1,Action2 action2)856 DoBothAction(Action1 action1, Action2 action2)
857 : action1_(action1), action2_(action2) {}
858
859 // This template type conversion operator allows DoAll(a1, ..., a_n)
860 // to be used in ANY function of compatible type.
861 template <typename F>
862 operator Action<F>() const {
863 return Action<F>(new Impl<F>(action1_, action2_));
864 }
865
866 private:
867 // Implements the DoAll(...) action for a particular function type F.
868 template <typename F>
869 class Impl : public ActionInterface<F> {
870 public:
871 typedef typename Function<F>::Result Result;
872 typedef typename Function<F>::ArgumentTuple ArgumentTuple;
873 typedef typename Function<F>::MakeResultVoid VoidResult;
874
Impl(const Action<VoidResult> & action1,const Action<F> & action2)875 Impl(const Action<VoidResult>& action1, const Action<F>& action2)
876 : action1_(action1), action2_(action2) {}
877
Perform(const ArgumentTuple & args)878 virtual Result Perform(const ArgumentTuple& args) {
879 action1_.Perform(args);
880 return action2_.Perform(args);
881 }
882
883 private:
884 const Action<VoidResult> action1_;
885 const Action<F> action2_;
886
887 GTEST_DISALLOW_ASSIGN_(Impl);
888 };
889
890 Action1 action1_;
891 Action2 action2_;
892
893 GTEST_DISALLOW_ASSIGN_(DoBothAction);
894 };
895
896 } // namespace internal
897
898 // An Unused object can be implicitly constructed from ANY value.
899 // This is handy when defining actions that ignore some or all of the
900 // mock function arguments. For example, given
901 //
902 // MOCK_METHOD3(Foo, double(const string& label, double x, double y));
903 // MOCK_METHOD3(Bar, double(int index, double x, double y));
904 //
905 // instead of
906 //
907 // double DistanceToOriginWithLabel(const string& label, double x, double y) {
908 // return sqrt(x*x + y*y);
909 // }
910 // double DistanceToOriginWithIndex(int index, double x, double y) {
911 // return sqrt(x*x + y*y);
912 // }
913 // ...
914 // EXEPCT_CALL(mock, Foo("abc", _, _))
915 // .WillOnce(Invoke(DistanceToOriginWithLabel));
916 // EXEPCT_CALL(mock, Bar(5, _, _))
917 // .WillOnce(Invoke(DistanceToOriginWithIndex));
918 //
919 // you could write
920 //
921 // // We can declare any uninteresting argument as Unused.
922 // double DistanceToOrigin(Unused, double x, double y) {
923 // return sqrt(x*x + y*y);
924 // }
925 // ...
926 // EXEPCT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin));
927 // EXEPCT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin));
928 typedef internal::IgnoredValue Unused;
929
930 // This constructor allows us to turn an Action<From> object into an
931 // Action<To>, as long as To's arguments can be implicitly converted
932 // to From's and From's return type cann be implicitly converted to
933 // To's.
934 template <typename To>
935 template <typename From>
Action(const Action<From> & from)936 Action<To>::Action(const Action<From>& from)
937 : impl_(new internal::ActionAdaptor<To, From>(from)) {}
938
939 // Creates an action that returns 'value'. 'value' is passed by value
940 // instead of const reference - otherwise Return("string literal")
941 // will trigger a compiler error about using array as initializer.
942 template <typename R>
Return(R value)943 internal::ReturnAction<R> Return(R value) {
944 return internal::ReturnAction<R>(value);
945 }
946
947 // Creates an action that returns NULL.
ReturnNull()948 inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() {
949 return MakePolymorphicAction(internal::ReturnNullAction());
950 }
951
952 // Creates an action that returns from a void function.
Return()953 inline PolymorphicAction<internal::ReturnVoidAction> Return() {
954 return MakePolymorphicAction(internal::ReturnVoidAction());
955 }
956
957 // Creates an action that returns the reference to a variable.
958 template <typename R>
ReturnRef(R & x)959 inline internal::ReturnRefAction<R> ReturnRef(R& x) { // NOLINT
960 return internal::ReturnRefAction<R>(x);
961 }
962
963 // Creates an action that returns the reference to a copy of the
964 // argument. The copy is created when the action is constructed and
965 // lives as long as the action.
966 template <typename R>
ReturnRefOfCopy(const R & x)967 inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) {
968 return internal::ReturnRefOfCopyAction<R>(x);
969 }
970
971 // Creates an action that does the default action for the give mock function.
DoDefault()972 inline internal::DoDefaultAction DoDefault() {
973 return internal::DoDefaultAction();
974 }
975
976 // Creates an action that sets the variable pointed by the N-th
977 // (0-based) function argument to 'value'.
978 template <size_t N, typename T>
979 PolymorphicAction<
980 internal::SetArgumentPointeeAction<
981 N, T, internal::IsAProtocolMessage<T>::value> >
SetArgPointee(const T & x)982 SetArgPointee(const T& x) {
983 return MakePolymorphicAction(internal::SetArgumentPointeeAction<
984 N, T, internal::IsAProtocolMessage<T>::value>(x));
985 }
986
987 #if !((GTEST_GCC_VER_ && GTEST_GCC_VER_ < 40000) || GTEST_OS_SYMBIAN)
988 // This overload allows SetArgPointee() to accept a string literal.
989 // GCC prior to the version 4.0 and Symbian C++ compiler cannot distinguish
990 // this overload from the templated version and emit a compile error.
991 template <size_t N>
992 PolymorphicAction<
993 internal::SetArgumentPointeeAction<N, const char*, false> >
SetArgPointee(const char * p)994 SetArgPointee(const char* p) {
995 return MakePolymorphicAction(internal::SetArgumentPointeeAction<
996 N, const char*, false>(p));
997 }
998
999 template <size_t N>
1000 PolymorphicAction<
1001 internal::SetArgumentPointeeAction<N, const wchar_t*, false> >
SetArgPointee(const wchar_t * p)1002 SetArgPointee(const wchar_t* p) {
1003 return MakePolymorphicAction(internal::SetArgumentPointeeAction<
1004 N, const wchar_t*, false>(p));
1005 }
1006 #endif
1007
1008 // The following version is DEPRECATED.
1009 template <size_t N, typename T>
1010 PolymorphicAction<
1011 internal::SetArgumentPointeeAction<
1012 N, T, internal::IsAProtocolMessage<T>::value> >
SetArgumentPointee(const T & x)1013 SetArgumentPointee(const T& x) {
1014 return MakePolymorphicAction(internal::SetArgumentPointeeAction<
1015 N, T, internal::IsAProtocolMessage<T>::value>(x));
1016 }
1017
1018 // Creates an action that sets a pointer referent to a given value.
1019 template <typename T1, typename T2>
Assign(T1 * ptr,T2 val)1020 PolymorphicAction<internal::AssignAction<T1, T2> > Assign(T1* ptr, T2 val) {
1021 return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val));
1022 }
1023
1024 #if !GTEST_OS_WINDOWS_MOBILE
1025
1026 // Creates an action that sets errno and returns the appropriate error.
1027 template <typename T>
1028 PolymorphicAction<internal::SetErrnoAndReturnAction<T> >
SetErrnoAndReturn(int errval,T result)1029 SetErrnoAndReturn(int errval, T result) {
1030 return MakePolymorphicAction(
1031 internal::SetErrnoAndReturnAction<T>(errval, result));
1032 }
1033
1034 #endif // !GTEST_OS_WINDOWS_MOBILE
1035
1036 // Various overloads for InvokeWithoutArgs().
1037
1038 // Creates an action that invokes 'function_impl' with no argument.
1039 template <typename FunctionImpl>
1040 PolymorphicAction<internal::InvokeWithoutArgsAction<FunctionImpl> >
InvokeWithoutArgs(FunctionImpl function_impl)1041 InvokeWithoutArgs(FunctionImpl function_impl) {
1042 return MakePolymorphicAction(
1043 internal::InvokeWithoutArgsAction<FunctionImpl>(function_impl));
1044 }
1045
1046 // Creates an action that invokes the given method on the given object
1047 // with no argument.
1048 template <class Class, typename MethodPtr>
1049 PolymorphicAction<internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> >
InvokeWithoutArgs(Class * obj_ptr,MethodPtr method_ptr)1050 InvokeWithoutArgs(Class* obj_ptr, MethodPtr method_ptr) {
1051 return MakePolymorphicAction(
1052 internal::InvokeMethodWithoutArgsAction<Class, MethodPtr>(
1053 obj_ptr, method_ptr));
1054 }
1055
1056 // Creates an action that performs an_action and throws away its
1057 // result. In other words, it changes the return type of an_action to
1058 // void. an_action MUST NOT return void, or the code won't compile.
1059 template <typename A>
IgnoreResult(const A & an_action)1060 inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) {
1061 return internal::IgnoreResultAction<A>(an_action);
1062 }
1063
1064 // Creates a reference wrapper for the given L-value. If necessary,
1065 // you can explicitly specify the type of the reference. For example,
1066 // suppose 'derived' is an object of type Derived, ByRef(derived)
1067 // would wrap a Derived&. If you want to wrap a const Base& instead,
1068 // where Base is a base class of Derived, just write:
1069 //
1070 // ByRef<const Base>(derived)
1071 template <typename T>
ByRef(T & l_value)1072 inline internal::ReferenceWrapper<T> ByRef(T& l_value) { // NOLINT
1073 return internal::ReferenceWrapper<T>(l_value);
1074 }
1075
1076 } // namespace testing
1077
1078 #endif // GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
1079