1 /*
2 * Copyright 2006 The Android Open Source Project
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "SkGeometry.h"
9 #include "SkMatrix.h"
10 #include "SkNx.h"
11
to_vector(const Sk2s & x)12 static SkVector to_vector(const Sk2s& x) {
13 SkVector vector;
14 x.store(&vector);
15 return vector;
16 }
17
18 ////////////////////////////////////////////////////////////////////////
19
is_not_monotonic(SkScalar a,SkScalar b,SkScalar c)20 static int is_not_monotonic(SkScalar a, SkScalar b, SkScalar c) {
21 SkScalar ab = a - b;
22 SkScalar bc = b - c;
23 if (ab < 0) {
24 bc = -bc;
25 }
26 return ab == 0 || bc < 0;
27 }
28
29 ////////////////////////////////////////////////////////////////////////
30
is_unit_interval(SkScalar x)31 static bool is_unit_interval(SkScalar x) {
32 return x > 0 && x < SK_Scalar1;
33 }
34
valid_unit_divide(SkScalar numer,SkScalar denom,SkScalar * ratio)35 static int valid_unit_divide(SkScalar numer, SkScalar denom, SkScalar* ratio) {
36 SkASSERT(ratio);
37
38 if (numer < 0) {
39 numer = -numer;
40 denom = -denom;
41 }
42
43 if (denom == 0 || numer == 0 || numer >= denom) {
44 return 0;
45 }
46
47 SkScalar r = numer / denom;
48 if (SkScalarIsNaN(r)) {
49 return 0;
50 }
51 SkASSERTF(r >= 0 && r < SK_Scalar1, "numer %f, denom %f, r %f", numer, denom, r);
52 if (r == 0) { // catch underflow if numer <<<< denom
53 return 0;
54 }
55 *ratio = r;
56 return 1;
57 }
58
59 /** From Numerical Recipes in C.
60
61 Q = -1/2 (B + sign(B) sqrt[B*B - 4*A*C])
62 x1 = Q / A
63 x2 = C / Q
64 */
SkFindUnitQuadRoots(SkScalar A,SkScalar B,SkScalar C,SkScalar roots[2])65 int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]) {
66 SkASSERT(roots);
67
68 if (A == 0) {
69 return valid_unit_divide(-C, B, roots);
70 }
71
72 SkScalar* r = roots;
73
74 SkScalar R = B*B - 4*A*C;
75 if (R < 0 || !SkScalarIsFinite(R)) { // complex roots
76 // if R is infinite, it's possible that it may still produce
77 // useful results if the operation was repeated in doubles
78 // the flipside is determining if the more precise answer
79 // isn't useful because surrounding machinery (e.g., subtracting
80 // the axis offset from C) already discards the extra precision
81 // more investigation and unit tests required...
82 return 0;
83 }
84 R = SkScalarSqrt(R);
85
86 SkScalar Q = (B < 0) ? -(B-R)/2 : -(B+R)/2;
87 r += valid_unit_divide(Q, A, r);
88 r += valid_unit_divide(C, Q, r);
89 if (r - roots == 2) {
90 if (roots[0] > roots[1])
91 SkTSwap<SkScalar>(roots[0], roots[1]);
92 else if (roots[0] == roots[1]) // nearly-equal?
93 r -= 1; // skip the double root
94 }
95 return (int)(r - roots);
96 }
97
98 ///////////////////////////////////////////////////////////////////////////////
99 ///////////////////////////////////////////////////////////////////////////////
100
SkEvalQuadAt(const SkPoint src[3],SkScalar t,SkPoint * pt,SkVector * tangent)101 void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent) {
102 SkASSERT(src);
103 SkASSERT(t >= 0 && t <= SK_Scalar1);
104
105 if (pt) {
106 *pt = SkEvalQuadAt(src, t);
107 }
108 if (tangent) {
109 *tangent = SkEvalQuadTangentAt(src, t);
110 }
111 }
112
SkEvalQuadAt(const SkPoint src[3],SkScalar t)113 SkPoint SkEvalQuadAt(const SkPoint src[3], SkScalar t) {
114 return to_point(SkQuadCoeff(src).eval(t));
115 }
116
SkEvalQuadTangentAt(const SkPoint src[3],SkScalar t)117 SkVector SkEvalQuadTangentAt(const SkPoint src[3], SkScalar t) {
118 // The derivative equation is 2(b - a +(a - 2b +c)t). This returns a
119 // zero tangent vector when t is 0 or 1, and the control point is equal
120 // to the end point. In this case, use the quad end points to compute the tangent.
121 if ((t == 0 && src[0] == src[1]) || (t == 1 && src[1] == src[2])) {
122 return src[2] - src[0];
123 }
124 SkASSERT(src);
125 SkASSERT(t >= 0 && t <= SK_Scalar1);
126
127 Sk2s P0 = from_point(src[0]);
128 Sk2s P1 = from_point(src[1]);
129 Sk2s P2 = from_point(src[2]);
130
131 Sk2s B = P1 - P0;
132 Sk2s A = P2 - P1 - B;
133 Sk2s T = A * Sk2s(t) + B;
134
135 return to_vector(T + T);
136 }
137
interp(const Sk2s & v0,const Sk2s & v1,const Sk2s & t)138 static inline Sk2s interp(const Sk2s& v0, const Sk2s& v1, const Sk2s& t) {
139 return v0 + (v1 - v0) * t;
140 }
141
SkChopQuadAt(const SkPoint src[3],SkPoint dst[5],SkScalar t)142 void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t) {
143 SkASSERT(t > 0 && t < SK_Scalar1);
144
145 Sk2s p0 = from_point(src[0]);
146 Sk2s p1 = from_point(src[1]);
147 Sk2s p2 = from_point(src[2]);
148 Sk2s tt(t);
149
150 Sk2s p01 = interp(p0, p1, tt);
151 Sk2s p12 = interp(p1, p2, tt);
152
153 dst[0] = to_point(p0);
154 dst[1] = to_point(p01);
155 dst[2] = to_point(interp(p01, p12, tt));
156 dst[3] = to_point(p12);
157 dst[4] = to_point(p2);
158 }
159
SkChopQuadAtHalf(const SkPoint src[3],SkPoint dst[5])160 void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]) {
161 SkChopQuadAt(src, dst, 0.5f);
162 }
163
164 /** Quad'(t) = At + B, where
165 A = 2(a - 2b + c)
166 B = 2(b - a)
167 Solve for t, only if it fits between 0 < t < 1
168 */
SkFindQuadExtrema(SkScalar a,SkScalar b,SkScalar c,SkScalar tValue[1])169 int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValue[1]) {
170 /* At + B == 0
171 t = -B / A
172 */
173 return valid_unit_divide(a - b, a - b - b + c, tValue);
174 }
175
flatten_double_quad_extrema(SkScalar coords[14])176 static inline void flatten_double_quad_extrema(SkScalar coords[14]) {
177 coords[2] = coords[6] = coords[4];
178 }
179
180 /* Returns 0 for 1 quad, and 1 for two quads, either way the answer is
181 stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
182 */
SkChopQuadAtYExtrema(const SkPoint src[3],SkPoint dst[5])183 int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]) {
184 SkASSERT(src);
185 SkASSERT(dst);
186
187 SkScalar a = src[0].fY;
188 SkScalar b = src[1].fY;
189 SkScalar c = src[2].fY;
190
191 if (is_not_monotonic(a, b, c)) {
192 SkScalar tValue;
193 if (valid_unit_divide(a - b, a - b - b + c, &tValue)) {
194 SkChopQuadAt(src, dst, tValue);
195 flatten_double_quad_extrema(&dst[0].fY);
196 return 1;
197 }
198 // if we get here, we need to force dst to be monotonic, even though
199 // we couldn't compute a unit_divide value (probably underflow).
200 b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
201 }
202 dst[0].set(src[0].fX, a);
203 dst[1].set(src[1].fX, b);
204 dst[2].set(src[2].fX, c);
205 return 0;
206 }
207
208 /* Returns 0 for 1 quad, and 1 for two quads, either way the answer is
209 stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
210 */
SkChopQuadAtXExtrema(const SkPoint src[3],SkPoint dst[5])211 int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]) {
212 SkASSERT(src);
213 SkASSERT(dst);
214
215 SkScalar a = src[0].fX;
216 SkScalar b = src[1].fX;
217 SkScalar c = src[2].fX;
218
219 if (is_not_monotonic(a, b, c)) {
220 SkScalar tValue;
221 if (valid_unit_divide(a - b, a - b - b + c, &tValue)) {
222 SkChopQuadAt(src, dst, tValue);
223 flatten_double_quad_extrema(&dst[0].fX);
224 return 1;
225 }
226 // if we get here, we need to force dst to be monotonic, even though
227 // we couldn't compute a unit_divide value (probably underflow).
228 b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
229 }
230 dst[0].set(a, src[0].fY);
231 dst[1].set(b, src[1].fY);
232 dst[2].set(c, src[2].fY);
233 return 0;
234 }
235
236 // F(t) = a (1 - t) ^ 2 + 2 b t (1 - t) + c t ^ 2
237 // F'(t) = 2 (b - a) + 2 (a - 2b + c) t
238 // F''(t) = 2 (a - 2b + c)
239 //
240 // A = 2 (b - a)
241 // B = 2 (a - 2b + c)
242 //
243 // Maximum curvature for a quadratic means solving
244 // Fx' Fx'' + Fy' Fy'' = 0
245 //
246 // t = - (Ax Bx + Ay By) / (Bx ^ 2 + By ^ 2)
247 //
SkFindQuadMaxCurvature(const SkPoint src[3])248 SkScalar SkFindQuadMaxCurvature(const SkPoint src[3]) {
249 SkScalar Ax = src[1].fX - src[0].fX;
250 SkScalar Ay = src[1].fY - src[0].fY;
251 SkScalar Bx = src[0].fX - src[1].fX - src[1].fX + src[2].fX;
252 SkScalar By = src[0].fY - src[1].fY - src[1].fY + src[2].fY;
253 SkScalar t = 0; // 0 means don't chop
254
255 (void)valid_unit_divide(-(Ax * Bx + Ay * By), Bx * Bx + By * By, &t);
256 return t;
257 }
258
SkChopQuadAtMaxCurvature(const SkPoint src[3],SkPoint dst[5])259 int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]) {
260 SkScalar t = SkFindQuadMaxCurvature(src);
261 if (t == 0) {
262 memcpy(dst, src, 3 * sizeof(SkPoint));
263 return 1;
264 } else {
265 SkChopQuadAt(src, dst, t);
266 return 2;
267 }
268 }
269
SkConvertQuadToCubic(const SkPoint src[3],SkPoint dst[4])270 void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]) {
271 Sk2s scale(SkDoubleToScalar(2.0 / 3.0));
272 Sk2s s0 = from_point(src[0]);
273 Sk2s s1 = from_point(src[1]);
274 Sk2s s2 = from_point(src[2]);
275
276 dst[0] = src[0];
277 dst[1] = to_point(s0 + (s1 - s0) * scale);
278 dst[2] = to_point(s2 + (s1 - s2) * scale);
279 dst[3] = src[2];
280 }
281
282 //////////////////////////////////////////////////////////////////////////////
283 ///// CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS /////
284 //////////////////////////////////////////////////////////////////////////////
285
eval_cubic_derivative(const SkPoint src[4],SkScalar t)286 static SkVector eval_cubic_derivative(const SkPoint src[4], SkScalar t) {
287 SkQuadCoeff coeff;
288 Sk2s P0 = from_point(src[0]);
289 Sk2s P1 = from_point(src[1]);
290 Sk2s P2 = from_point(src[2]);
291 Sk2s P3 = from_point(src[3]);
292
293 coeff.fA = P3 + Sk2s(3) * (P1 - P2) - P0;
294 coeff.fB = times_2(P2 - times_2(P1) + P0);
295 coeff.fC = P1 - P0;
296 return to_vector(coeff.eval(t));
297 }
298
eval_cubic_2ndDerivative(const SkPoint src[4],SkScalar t)299 static SkVector eval_cubic_2ndDerivative(const SkPoint src[4], SkScalar t) {
300 Sk2s P0 = from_point(src[0]);
301 Sk2s P1 = from_point(src[1]);
302 Sk2s P2 = from_point(src[2]);
303 Sk2s P3 = from_point(src[3]);
304 Sk2s A = P3 + Sk2s(3) * (P1 - P2) - P0;
305 Sk2s B = P2 - times_2(P1) + P0;
306
307 return to_vector(A * Sk2s(t) + B);
308 }
309
SkEvalCubicAt(const SkPoint src[4],SkScalar t,SkPoint * loc,SkVector * tangent,SkVector * curvature)310 void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* loc,
311 SkVector* tangent, SkVector* curvature) {
312 SkASSERT(src);
313 SkASSERT(t >= 0 && t <= SK_Scalar1);
314
315 if (loc) {
316 *loc = to_point(SkCubicCoeff(src).eval(t));
317 }
318 if (tangent) {
319 // The derivative equation returns a zero tangent vector when t is 0 or 1, and the
320 // adjacent control point is equal to the end point. In this case, use the
321 // next control point or the end points to compute the tangent.
322 if ((t == 0 && src[0] == src[1]) || (t == 1 && src[2] == src[3])) {
323 if (t == 0) {
324 *tangent = src[2] - src[0];
325 } else {
326 *tangent = src[3] - src[1];
327 }
328 if (!tangent->fX && !tangent->fY) {
329 *tangent = src[3] - src[0];
330 }
331 } else {
332 *tangent = eval_cubic_derivative(src, t);
333 }
334 }
335 if (curvature) {
336 *curvature = eval_cubic_2ndDerivative(src, t);
337 }
338 }
339
340 /** Cubic'(t) = At^2 + Bt + C, where
341 A = 3(-a + 3(b - c) + d)
342 B = 6(a - 2b + c)
343 C = 3(b - a)
344 Solve for t, keeping only those that fit betwee 0 < t < 1
345 */
SkFindCubicExtrema(SkScalar a,SkScalar b,SkScalar c,SkScalar d,SkScalar tValues[2])346 int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d,
347 SkScalar tValues[2]) {
348 // we divide A,B,C by 3 to simplify
349 SkScalar A = d - a + 3*(b - c);
350 SkScalar B = 2*(a - b - b + c);
351 SkScalar C = b - a;
352
353 return SkFindUnitQuadRoots(A, B, C, tValues);
354 }
355
SkChopCubicAt(const SkPoint src[4],SkPoint dst[7],SkScalar t)356 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t) {
357 SkASSERT(t > 0 && t < SK_Scalar1);
358
359 Sk2s p0 = from_point(src[0]);
360 Sk2s p1 = from_point(src[1]);
361 Sk2s p2 = from_point(src[2]);
362 Sk2s p3 = from_point(src[3]);
363 Sk2s tt(t);
364
365 Sk2s ab = interp(p0, p1, tt);
366 Sk2s bc = interp(p1, p2, tt);
367 Sk2s cd = interp(p2, p3, tt);
368 Sk2s abc = interp(ab, bc, tt);
369 Sk2s bcd = interp(bc, cd, tt);
370 Sk2s abcd = interp(abc, bcd, tt);
371
372 dst[0] = src[0];
373 dst[1] = to_point(ab);
374 dst[2] = to_point(abc);
375 dst[3] = to_point(abcd);
376 dst[4] = to_point(bcd);
377 dst[5] = to_point(cd);
378 dst[6] = src[3];
379 }
380
381 /* http://code.google.com/p/skia/issues/detail?id=32
382
383 This test code would fail when we didn't check the return result of
384 valid_unit_divide in SkChopCubicAt(... tValues[], int roots). The reason is
385 that after the first chop, the parameters to valid_unit_divide are equal
386 (thanks to finite float precision and rounding in the subtracts). Thus
387 even though the 2nd tValue looks < 1.0, after we renormalize it, we end
388 up with 1.0, hence the need to check and just return the last cubic as
389 a degenerate clump of 4 points in the sampe place.
390
391 static void test_cubic() {
392 SkPoint src[4] = {
393 { 556.25000, 523.03003 },
394 { 556.23999, 522.96002 },
395 { 556.21997, 522.89001 },
396 { 556.21997, 522.82001 }
397 };
398 SkPoint dst[10];
399 SkScalar tval[] = { 0.33333334f, 0.99999994f };
400 SkChopCubicAt(src, dst, tval, 2);
401 }
402 */
403
SkChopCubicAt(const SkPoint src[4],SkPoint dst[],const SkScalar tValues[],int roots)404 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[],
405 const SkScalar tValues[], int roots) {
406 #ifdef SK_DEBUG
407 {
408 for (int i = 0; i < roots - 1; i++)
409 {
410 SkASSERT(is_unit_interval(tValues[i]));
411 SkASSERT(is_unit_interval(tValues[i+1]));
412 SkASSERT(tValues[i] < tValues[i+1]);
413 }
414 }
415 #endif
416
417 if (dst) {
418 if (roots == 0) { // nothing to chop
419 memcpy(dst, src, 4*sizeof(SkPoint));
420 } else {
421 SkScalar t = tValues[0];
422 SkPoint tmp[4];
423
424 for (int i = 0; i < roots; i++) {
425 SkChopCubicAt(src, dst, t);
426 if (i == roots - 1) {
427 break;
428 }
429
430 dst += 3;
431 // have src point to the remaining cubic (after the chop)
432 memcpy(tmp, dst, 4 * sizeof(SkPoint));
433 src = tmp;
434
435 // watch out in case the renormalized t isn't in range
436 if (!valid_unit_divide(tValues[i+1] - tValues[i],
437 SK_Scalar1 - tValues[i], &t)) {
438 // if we can't, just create a degenerate cubic
439 dst[4] = dst[5] = dst[6] = src[3];
440 break;
441 }
442 }
443 }
444 }
445 }
446
SkChopCubicAtHalf(const SkPoint src[4],SkPoint dst[7])447 void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]) {
448 SkChopCubicAt(src, dst, 0.5f);
449 }
450
flatten_double_cubic_extrema(SkScalar coords[14])451 static void flatten_double_cubic_extrema(SkScalar coords[14]) {
452 coords[4] = coords[8] = coords[6];
453 }
454
455 /** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that
456 the resulting beziers are monotonic in Y. This is called by the scan
457 converter. Depending on what is returned, dst[] is treated as follows:
458 0 dst[0..3] is the original cubic
459 1 dst[0..3] and dst[3..6] are the two new cubics
460 2 dst[0..3], dst[3..6], dst[6..9] are the three new cubics
461 If dst == null, it is ignored and only the count is returned.
462 */
SkChopCubicAtYExtrema(const SkPoint src[4],SkPoint dst[10])463 int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]) {
464 SkScalar tValues[2];
465 int roots = SkFindCubicExtrema(src[0].fY, src[1].fY, src[2].fY,
466 src[3].fY, tValues);
467
468 SkChopCubicAt(src, dst, tValues, roots);
469 if (dst && roots > 0) {
470 // we do some cleanup to ensure our Y extrema are flat
471 flatten_double_cubic_extrema(&dst[0].fY);
472 if (roots == 2) {
473 flatten_double_cubic_extrema(&dst[3].fY);
474 }
475 }
476 return roots;
477 }
478
SkChopCubicAtXExtrema(const SkPoint src[4],SkPoint dst[10])479 int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]) {
480 SkScalar tValues[2];
481 int roots = SkFindCubicExtrema(src[0].fX, src[1].fX, src[2].fX,
482 src[3].fX, tValues);
483
484 SkChopCubicAt(src, dst, tValues, roots);
485 if (dst && roots > 0) {
486 // we do some cleanup to ensure our Y extrema are flat
487 flatten_double_cubic_extrema(&dst[0].fX);
488 if (roots == 2) {
489 flatten_double_cubic_extrema(&dst[3].fX);
490 }
491 }
492 return roots;
493 }
494
495 /** http://www.faculty.idc.ac.il/arik/quality/appendixA.html
496
497 Inflection means that curvature is zero.
498 Curvature is [F' x F''] / [F'^3]
499 So we solve F'x X F''y - F'y X F''y == 0
500 After some canceling of the cubic term, we get
501 A = b - a
502 B = c - 2b + a
503 C = d - 3c + 3b - a
504 (BxCy - ByCx)t^2 + (AxCy - AyCx)t + AxBy - AyBx == 0
505 */
SkFindCubicInflections(const SkPoint src[4],SkScalar tValues[])506 int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[]) {
507 SkScalar Ax = src[1].fX - src[0].fX;
508 SkScalar Ay = src[1].fY - src[0].fY;
509 SkScalar Bx = src[2].fX - 2 * src[1].fX + src[0].fX;
510 SkScalar By = src[2].fY - 2 * src[1].fY + src[0].fY;
511 SkScalar Cx = src[3].fX + 3 * (src[1].fX - src[2].fX) - src[0].fX;
512 SkScalar Cy = src[3].fY + 3 * (src[1].fY - src[2].fY) - src[0].fY;
513
514 return SkFindUnitQuadRoots(Bx*Cy - By*Cx,
515 Ax*Cy - Ay*Cx,
516 Ax*By - Ay*Bx,
517 tValues);
518 }
519
SkChopCubicAtInflections(const SkPoint src[],SkPoint dst[10])520 int SkChopCubicAtInflections(const SkPoint src[], SkPoint dst[10]) {
521 SkScalar tValues[2];
522 int count = SkFindCubicInflections(src, tValues);
523
524 if (dst) {
525 if (count == 0) {
526 memcpy(dst, src, 4 * sizeof(SkPoint));
527 } else {
528 SkChopCubicAt(src, dst, tValues, count);
529 }
530 }
531 return count + 1;
532 }
533
534 // Assumes the third component of points is 1.
535 // Calcs p0 . (p1 x p2)
calc_dot_cross_cubic(const SkPoint & p0,const SkPoint & p1,const SkPoint & p2)536 static double calc_dot_cross_cubic(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2) {
537 const double xComp = (double) p0.fX * (double) (p1.fY - p2.fY);
538 const double yComp = (double) p0.fY * (double) (p2.fX - p1.fX);
539 const double wComp = (double) p1.fX * (double) p2.fY - (double) p1.fY * (double) p2.fX;
540 return (xComp + yComp + wComp);
541 }
542
543 // Calc coefficients of I(s,t) where roots of I are inflection points of curve
544 // I(s,t) = t*(3*d0*s^2 - 3*d1*s*t + d2*t^2)
545 // d0 = a1 - 2*a2+3*a3
546 // d1 = -a2 + 3*a3
547 // d2 = 3*a3
548 // a1 = p0 . (p3 x p2)
549 // a2 = p1 . (p0 x p3)
550 // a3 = p2 . (p1 x p0)
551 // Places the values of d1, d2, d3 in array d passed in
calc_cubic_inflection_func(const SkPoint p[4],double d[4])552 static void calc_cubic_inflection_func(const SkPoint p[4], double d[4]) {
553 const double a1 = calc_dot_cross_cubic(p[0], p[3], p[2]);
554 const double a2 = calc_dot_cross_cubic(p[1], p[0], p[3]);
555 const double a3 = calc_dot_cross_cubic(p[2], p[1], p[0]);
556
557 d[3] = 3 * a3;
558 d[2] = d[3] - a2;
559 d[1] = d[2] - a2 + a1;
560 d[0] = 0;
561 }
562
normalize_t_s(double t[],double s[],int count)563 static void normalize_t_s(double t[], double s[], int count) {
564 // Keep the exponents at or below zero to avoid overflow down the road.
565 for (int i = 0; i < count; ++i) {
566 SkASSERT(0 != s[i]);
567 union { double value; int64_t bits; } tt, ss, norm;
568 tt.value = t[i];
569 ss.value = s[i];
570 int64_t expT = ((tt.bits >> 52) & 0x7ff) - 1023,
571 expS = ((ss.bits >> 52) & 0x7ff) - 1023;
572 int64_t expNorm = -SkTMax(expT, expS) + 1023;
573 SkASSERT(expNorm > 0 && expNorm < 2047); // ensure we have a valid non-zero exponent.
574 norm.bits = expNorm << 52;
575 t[i] *= norm.value;
576 s[i] *= norm.value;
577 }
578 }
579
sort_and_orient_t_s(double t[2],double s[2])580 static void sort_and_orient_t_s(double t[2], double s[2]) {
581 // This copysign/abs business orients the implicit function so positive values are always on the
582 // "left" side of the curve.
583 t[1] = -copysign(t[1], t[1] * s[1]);
584 s[1] = -fabs(s[1]);
585
586 // Ensure t[0]/s[0] <= t[1]/s[1] (s[1] is negative from above).
587 if (copysign(s[1], s[0]) * t[0] > -fabs(s[0]) * t[1]) {
588 std::swap(t[0], t[1]);
589 std::swap(s[0], s[1]);
590 }
591 }
592
593 // See "Resolution Independent Curve Rendering using Programmable Graphics Hardware"
594 // https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf
595 // discr(I) = 3*d2^2 - 4*d1*d3
596 // Classification:
597 // d1 != 0, discr(I) > 0 Serpentine
598 // d1 != 0, discr(I) < 0 Loop
599 // d1 != 0, discr(I) = 0 Cusp (with inflection at infinity)
600 // d1 = 0, d2 != 0 Cusp (with cusp at infinity)
601 // d1 = d2 = 0, d3 != 0 Quadratic
602 // d1 = d2 = d3 = 0 Line or Point
classify_cubic(const double d[4],double t[2],double s[2])603 static SkCubicType classify_cubic(const double d[4], double t[2], double s[2]) {
604 // Check for degenerate cubics (quadratics, lines, and points).
605 // This also attempts to detect near-quadratics in a resolution independent fashion, however it
606 // is still up to the caller to check for almost-linear curves if needed.
607 if (fabs(d[1]) + fabs(d[2]) <= fabs(d[3]) * 1e-3) {
608 if (t && s) {
609 t[0] = t[1] = 1;
610 s[0] = s[1] = 0; // infinity
611 }
612 return 0 == d[3] ? SkCubicType::kLineOrPoint : SkCubicType::kQuadratic;
613 }
614
615 if (0 == d[1]) {
616 SkASSERT(0 != d[2]); // captured in check for degeneracy above.
617 if (t && s) {
618 t[0] = d[3];
619 s[0] = 3 * d[2];
620 normalize_t_s(t, s, 1);
621 t[1] = 1;
622 s[1] = 0; // infinity
623 }
624 return SkCubicType::kCuspAtInfinity;
625 }
626
627 const double discr = 3 * d[2] * d[2] - 4 * d[1] * d[3];
628 if (discr > 0) {
629 if (t && s) {
630 const double q = 3 * d[2] + copysign(sqrt(3 * discr), d[2]);
631 t[0] = q;
632 s[0] = 6 * d[1];
633 t[1] = 2 * d[3];
634 s[1] = q;
635 normalize_t_s(t, s, 2);
636 sort_and_orient_t_s(t, s);
637 }
638 return SkCubicType::kSerpentine;
639 } else if (discr < 0) {
640 if (t && s) {
641 const double q = d[2] + copysign(sqrt(-discr), d[2]);
642 t[0] = q;
643 s[0] = 2 * d[1];
644 t[1] = 2 * (d[2] * d[2] - d[3] * d[1]);
645 s[1] = d[1] * q;
646 normalize_t_s(t, s, 2);
647 sort_and_orient_t_s(t, s);
648 }
649 return SkCubicType::kLoop;
650 } else {
651 SkASSERT(0 == discr); // Detect NaN.
652 if (t && s) {
653 t[0] = d[2];
654 s[0] = 2 * d[1];
655 normalize_t_s(t, s, 1);
656 t[1] = t[0];
657 s[1] = s[0];
658 sort_and_orient_t_s(t, s);
659 }
660 return SkCubicType::kLocalCusp;
661 }
662 }
663
SkClassifyCubic(const SkPoint src[4],double t[2],double s[2],double d[4])664 SkCubicType SkClassifyCubic(const SkPoint src[4], double t[2], double s[2], double d[4]) {
665 double localD[4];
666 double* dd = d ? d : localD;
667 calc_cubic_inflection_func(src, dd);
668 return classify_cubic(dd, t, s);
669 }
670
bubble_sort(T array[],int count)671 template <typename T> void bubble_sort(T array[], int count) {
672 for (int i = count - 1; i > 0; --i)
673 for (int j = i; j > 0; --j)
674 if (array[j] < array[j-1])
675 {
676 T tmp(array[j]);
677 array[j] = array[j-1];
678 array[j-1] = tmp;
679 }
680 }
681
682 /**
683 * Given an array and count, remove all pair-wise duplicates from the array,
684 * keeping the existing sorting, and return the new count
685 */
collaps_duplicates(SkScalar array[],int count)686 static int collaps_duplicates(SkScalar array[], int count) {
687 for (int n = count; n > 1; --n) {
688 if (array[0] == array[1]) {
689 for (int i = 1; i < n; ++i) {
690 array[i - 1] = array[i];
691 }
692 count -= 1;
693 } else {
694 array += 1;
695 }
696 }
697 return count;
698 }
699
700 #ifdef SK_DEBUG
701
702 #define TEST_COLLAPS_ENTRY(array) array, SK_ARRAY_COUNT(array)
703
test_collaps_duplicates()704 static void test_collaps_duplicates() {
705 static bool gOnce;
706 if (gOnce) { return; }
707 gOnce = true;
708 const SkScalar src0[] = { 0 };
709 const SkScalar src1[] = { 0, 0 };
710 const SkScalar src2[] = { 0, 1 };
711 const SkScalar src3[] = { 0, 0, 0 };
712 const SkScalar src4[] = { 0, 0, 1 };
713 const SkScalar src5[] = { 0, 1, 1 };
714 const SkScalar src6[] = { 0, 1, 2 };
715 const struct {
716 const SkScalar* fData;
717 int fCount;
718 int fCollapsedCount;
719 } data[] = {
720 { TEST_COLLAPS_ENTRY(src0), 1 },
721 { TEST_COLLAPS_ENTRY(src1), 1 },
722 { TEST_COLLAPS_ENTRY(src2), 2 },
723 { TEST_COLLAPS_ENTRY(src3), 1 },
724 { TEST_COLLAPS_ENTRY(src4), 2 },
725 { TEST_COLLAPS_ENTRY(src5), 2 },
726 { TEST_COLLAPS_ENTRY(src6), 3 },
727 };
728 for (size_t i = 0; i < SK_ARRAY_COUNT(data); ++i) {
729 SkScalar dst[3];
730 memcpy(dst, data[i].fData, data[i].fCount * sizeof(dst[0]));
731 int count = collaps_duplicates(dst, data[i].fCount);
732 SkASSERT(data[i].fCollapsedCount == count);
733 for (int j = 1; j < count; ++j) {
734 SkASSERT(dst[j-1] < dst[j]);
735 }
736 }
737 }
738 #endif
739
SkScalarCubeRoot(SkScalar x)740 static SkScalar SkScalarCubeRoot(SkScalar x) {
741 return SkScalarPow(x, 0.3333333f);
742 }
743
744 /* Solve coeff(t) == 0, returning the number of roots that
745 lie withing 0 < t < 1.
746 coeff[0]t^3 + coeff[1]t^2 + coeff[2]t + coeff[3]
747
748 Eliminates repeated roots (so that all tValues are distinct, and are always
749 in increasing order.
750 */
solve_cubic_poly(const SkScalar coeff[4],SkScalar tValues[3])751 static int solve_cubic_poly(const SkScalar coeff[4], SkScalar tValues[3]) {
752 if (SkScalarNearlyZero(coeff[0])) { // we're just a quadratic
753 return SkFindUnitQuadRoots(coeff[1], coeff[2], coeff[3], tValues);
754 }
755
756 SkScalar a, b, c, Q, R;
757
758 {
759 SkASSERT(coeff[0] != 0);
760
761 SkScalar inva = SkScalarInvert(coeff[0]);
762 a = coeff[1] * inva;
763 b = coeff[2] * inva;
764 c = coeff[3] * inva;
765 }
766 Q = (a*a - b*3) / 9;
767 R = (2*a*a*a - 9*a*b + 27*c) / 54;
768
769 SkScalar Q3 = Q * Q * Q;
770 SkScalar R2MinusQ3 = R * R - Q3;
771 SkScalar adiv3 = a / 3;
772
773 SkScalar* roots = tValues;
774 SkScalar r;
775
776 if (R2MinusQ3 < 0) { // we have 3 real roots
777 // the divide/root can, due to finite precisions, be slightly outside of -1...1
778 SkScalar theta = SkScalarACos(SkScalarPin(R / SkScalarSqrt(Q3), -1, 1));
779 SkScalar neg2RootQ = -2 * SkScalarSqrt(Q);
780
781 r = neg2RootQ * SkScalarCos(theta/3) - adiv3;
782 if (is_unit_interval(r)) {
783 *roots++ = r;
784 }
785 r = neg2RootQ * SkScalarCos((theta + 2*SK_ScalarPI)/3) - adiv3;
786 if (is_unit_interval(r)) {
787 *roots++ = r;
788 }
789 r = neg2RootQ * SkScalarCos((theta - 2*SK_ScalarPI)/3) - adiv3;
790 if (is_unit_interval(r)) {
791 *roots++ = r;
792 }
793 SkDEBUGCODE(test_collaps_duplicates();)
794
795 // now sort the roots
796 int count = (int)(roots - tValues);
797 SkASSERT((unsigned)count <= 3);
798 bubble_sort(tValues, count);
799 count = collaps_duplicates(tValues, count);
800 roots = tValues + count; // so we compute the proper count below
801 } else { // we have 1 real root
802 SkScalar A = SkScalarAbs(R) + SkScalarSqrt(R2MinusQ3);
803 A = SkScalarCubeRoot(A);
804 if (R > 0) {
805 A = -A;
806 }
807 if (A != 0) {
808 A += Q / A;
809 }
810 r = A - adiv3;
811 if (is_unit_interval(r)) {
812 *roots++ = r;
813 }
814 }
815
816 return (int)(roots - tValues);
817 }
818
819 /* Looking for F' dot F'' == 0
820
821 A = b - a
822 B = c - 2b + a
823 C = d - 3c + 3b - a
824
825 F' = 3Ct^2 + 6Bt + 3A
826 F'' = 6Ct + 6B
827
828 F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
829 */
formulate_F1DotF2(const SkScalar src[],SkScalar coeff[4])830 static void formulate_F1DotF2(const SkScalar src[], SkScalar coeff[4]) {
831 SkScalar a = src[2] - src[0];
832 SkScalar b = src[4] - 2 * src[2] + src[0];
833 SkScalar c = src[6] + 3 * (src[2] - src[4]) - src[0];
834
835 coeff[0] = c * c;
836 coeff[1] = 3 * b * c;
837 coeff[2] = 2 * b * b + c * a;
838 coeff[3] = a * b;
839 }
840
841 /* Looking for F' dot F'' == 0
842
843 A = b - a
844 B = c - 2b + a
845 C = d - 3c + 3b - a
846
847 F' = 3Ct^2 + 6Bt + 3A
848 F'' = 6Ct + 6B
849
850 F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
851 */
SkFindCubicMaxCurvature(const SkPoint src[4],SkScalar tValues[3])852 int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]) {
853 SkScalar coeffX[4], coeffY[4];
854 int i;
855
856 formulate_F1DotF2(&src[0].fX, coeffX);
857 formulate_F1DotF2(&src[0].fY, coeffY);
858
859 for (i = 0; i < 4; i++) {
860 coeffX[i] += coeffY[i];
861 }
862
863 SkScalar t[3];
864 int count = solve_cubic_poly(coeffX, t);
865 int maxCount = 0;
866
867 // now remove extrema where the curvature is zero (mins)
868 // !!!! need a test for this !!!!
869 for (i = 0; i < count; i++) {
870 // if (not_min_curvature())
871 if (t[i] > 0 && t[i] < SK_Scalar1) {
872 tValues[maxCount++] = t[i];
873 }
874 }
875 return maxCount;
876 }
877
SkChopCubicAtMaxCurvature(const SkPoint src[4],SkPoint dst[13],SkScalar tValues[3])878 int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13],
879 SkScalar tValues[3]) {
880 SkScalar t_storage[3];
881
882 if (tValues == nullptr) {
883 tValues = t_storage;
884 }
885
886 int count = SkFindCubicMaxCurvature(src, tValues);
887
888 if (dst) {
889 if (count == 0) {
890 memcpy(dst, src, 4 * sizeof(SkPoint));
891 } else {
892 SkChopCubicAt(src, dst, tValues, count);
893 }
894 }
895 return count + 1;
896 }
897
898 #include "../pathops/SkPathOpsCubic.h"
899
900 typedef int (SkDCubic::*InterceptProc)(double intercept, double roots[3]) const;
901
cubic_dchop_at_intercept(const SkPoint src[4],SkScalar intercept,SkPoint dst[7],InterceptProc method)902 static bool cubic_dchop_at_intercept(const SkPoint src[4], SkScalar intercept, SkPoint dst[7],
903 InterceptProc method) {
904 SkDCubic cubic;
905 double roots[3];
906 int count = (cubic.set(src).*method)(intercept, roots);
907 if (count > 0) {
908 SkDCubicPair pair = cubic.chopAt(roots[0]);
909 for (int i = 0; i < 7; ++i) {
910 dst[i] = pair.pts[i].asSkPoint();
911 }
912 return true;
913 }
914 return false;
915 }
916
SkChopMonoCubicAtY(SkPoint src[4],SkScalar y,SkPoint dst[7])917 bool SkChopMonoCubicAtY(SkPoint src[4], SkScalar y, SkPoint dst[7]) {
918 return cubic_dchop_at_intercept(src, y, dst, &SkDCubic::horizontalIntersect);
919 }
920
SkChopMonoCubicAtX(SkPoint src[4],SkScalar x,SkPoint dst[7])921 bool SkChopMonoCubicAtX(SkPoint src[4], SkScalar x, SkPoint dst[7]) {
922 return cubic_dchop_at_intercept(src, x, dst, &SkDCubic::verticalIntersect);
923 }
924
925 ///////////////////////////////////////////////////////////////////////////////
926 //
927 // NURB representation for conics. Helpful explanations at:
928 //
929 // http://citeseerx.ist.psu.edu/viewdoc/
930 // download?doi=10.1.1.44.5740&rep=rep1&type=ps
931 // and
932 // http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/NURBS/RB-conics.html
933 //
934 // F = (A (1 - t)^2 + C t^2 + 2 B (1 - t) t w)
935 // ------------------------------------------
936 // ((1 - t)^2 + t^2 + 2 (1 - t) t w)
937 //
938 // = {t^2 (P0 + P2 - 2 P1 w), t (-2 P0 + 2 P1 w), P0}
939 // ------------------------------------------------
940 // {t^2 (2 - 2 w), t (-2 + 2 w), 1}
941 //
942
943 // F' = 2 (C t (1 + t (-1 + w)) - A (-1 + t) (t (-1 + w) - w) + B (1 - 2 t) w)
944 //
945 // t^2 : (2 P0 - 2 P2 - 2 P0 w + 2 P2 w)
946 // t^1 : (-2 P0 + 2 P2 + 4 P0 w - 4 P1 w)
947 // t^0 : -2 P0 w + 2 P1 w
948 //
949 // We disregard magnitude, so we can freely ignore the denominator of F', and
950 // divide the numerator by 2
951 //
952 // coeff[0] for t^2
953 // coeff[1] for t^1
954 // coeff[2] for t^0
955 //
conic_deriv_coeff(const SkScalar src[],SkScalar w,SkScalar coeff[3])956 static void conic_deriv_coeff(const SkScalar src[],
957 SkScalar w,
958 SkScalar coeff[3]) {
959 const SkScalar P20 = src[4] - src[0];
960 const SkScalar P10 = src[2] - src[0];
961 const SkScalar wP10 = w * P10;
962 coeff[0] = w * P20 - P20;
963 coeff[1] = P20 - 2 * wP10;
964 coeff[2] = wP10;
965 }
966
conic_find_extrema(const SkScalar src[],SkScalar w,SkScalar * t)967 static bool conic_find_extrema(const SkScalar src[], SkScalar w, SkScalar* t) {
968 SkScalar coeff[3];
969 conic_deriv_coeff(src, w, coeff);
970
971 SkScalar tValues[2];
972 int roots = SkFindUnitQuadRoots(coeff[0], coeff[1], coeff[2], tValues);
973 SkASSERT(0 == roots || 1 == roots);
974
975 if (1 == roots) {
976 *t = tValues[0];
977 return true;
978 }
979 return false;
980 }
981
982 struct SkP3D {
983 SkScalar fX, fY, fZ;
984
setSkP3D985 void set(SkScalar x, SkScalar y, SkScalar z) {
986 fX = x; fY = y; fZ = z;
987 }
988
projectDownSkP3D989 void projectDown(SkPoint* dst) const {
990 dst->set(fX / fZ, fY / fZ);
991 }
992 };
993
994 // We only interpolate one dimension at a time (the first, at +0, +3, +6).
p3d_interp(const SkScalar src[7],SkScalar dst[7],SkScalar t)995 static void p3d_interp(const SkScalar src[7], SkScalar dst[7], SkScalar t) {
996 SkScalar ab = SkScalarInterp(src[0], src[3], t);
997 SkScalar bc = SkScalarInterp(src[3], src[6], t);
998 dst[0] = ab;
999 dst[3] = SkScalarInterp(ab, bc, t);
1000 dst[6] = bc;
1001 }
1002
ratquad_mapTo3D(const SkPoint src[3],SkScalar w,SkP3D dst[])1003 static void ratquad_mapTo3D(const SkPoint src[3], SkScalar w, SkP3D dst[]) {
1004 dst[0].set(src[0].fX * 1, src[0].fY * 1, 1);
1005 dst[1].set(src[1].fX * w, src[1].fY * w, w);
1006 dst[2].set(src[2].fX * 1, src[2].fY * 1, 1);
1007 }
1008
1009 // return false if infinity or NaN is generated; caller must check
chopAt(SkScalar t,SkConic dst[2]) const1010 bool SkConic::chopAt(SkScalar t, SkConic dst[2]) const {
1011 SkP3D tmp[3], tmp2[3];
1012
1013 ratquad_mapTo3D(fPts, fW, tmp);
1014
1015 p3d_interp(&tmp[0].fX, &tmp2[0].fX, t);
1016 p3d_interp(&tmp[0].fY, &tmp2[0].fY, t);
1017 p3d_interp(&tmp[0].fZ, &tmp2[0].fZ, t);
1018
1019 dst[0].fPts[0] = fPts[0];
1020 tmp2[0].projectDown(&dst[0].fPts[1]);
1021 tmp2[1].projectDown(&dst[0].fPts[2]); dst[1].fPts[0] = dst[0].fPts[2];
1022 tmp2[2].projectDown(&dst[1].fPts[1]);
1023 dst[1].fPts[2] = fPts[2];
1024
1025 // to put in "standard form", where w0 and w2 are both 1, we compute the
1026 // new w1 as sqrt(w1*w1/w0*w2)
1027 // or
1028 // w1 /= sqrt(w0*w2)
1029 //
1030 // However, in our case, we know that for dst[0]:
1031 // w0 == 1, and for dst[1], w2 == 1
1032 //
1033 SkScalar root = SkScalarSqrt(tmp2[1].fZ);
1034 dst[0].fW = tmp2[0].fZ / root;
1035 dst[1].fW = tmp2[2].fZ / root;
1036 SkASSERT(sizeof(dst[0]) == sizeof(SkScalar) * 7);
1037 SkASSERT(0 == offsetof(SkConic, fPts[0].fX));
1038 return SkScalarsAreFinite(&dst[0].fPts[0].fX, 7 * 2);
1039 }
1040
chopAt(SkScalar t1,SkScalar t2,SkConic * dst) const1041 void SkConic::chopAt(SkScalar t1, SkScalar t2, SkConic* dst) const {
1042 if (0 == t1 || 1 == t2) {
1043 if (0 == t1 && 1 == t2) {
1044 *dst = *this;
1045 return;
1046 } else {
1047 SkConic pair[2];
1048 if (this->chopAt(t1 ? t1 : t2, pair)) {
1049 *dst = pair[SkToBool(t1)];
1050 return;
1051 }
1052 }
1053 }
1054 SkConicCoeff coeff(*this);
1055 Sk2s tt1(t1);
1056 Sk2s aXY = coeff.fNumer.eval(tt1);
1057 Sk2s aZZ = coeff.fDenom.eval(tt1);
1058 Sk2s midTT((t1 + t2) / 2);
1059 Sk2s dXY = coeff.fNumer.eval(midTT);
1060 Sk2s dZZ = coeff.fDenom.eval(midTT);
1061 Sk2s tt2(t2);
1062 Sk2s cXY = coeff.fNumer.eval(tt2);
1063 Sk2s cZZ = coeff.fDenom.eval(tt2);
1064 Sk2s bXY = times_2(dXY) - (aXY + cXY) * Sk2s(0.5f);
1065 Sk2s bZZ = times_2(dZZ) - (aZZ + cZZ) * Sk2s(0.5f);
1066 dst->fPts[0] = to_point(aXY / aZZ);
1067 dst->fPts[1] = to_point(bXY / bZZ);
1068 dst->fPts[2] = to_point(cXY / cZZ);
1069 Sk2s ww = bZZ / (aZZ * cZZ).sqrt();
1070 dst->fW = ww[0];
1071 }
1072
evalAt(SkScalar t) const1073 SkPoint SkConic::evalAt(SkScalar t) const {
1074 return to_point(SkConicCoeff(*this).eval(t));
1075 }
1076
evalTangentAt(SkScalar t) const1077 SkVector SkConic::evalTangentAt(SkScalar t) const {
1078 // The derivative equation returns a zero tangent vector when t is 0 or 1,
1079 // and the control point is equal to the end point.
1080 // In this case, use the conic endpoints to compute the tangent.
1081 if ((t == 0 && fPts[0] == fPts[1]) || (t == 1 && fPts[1] == fPts[2])) {
1082 return fPts[2] - fPts[0];
1083 }
1084 Sk2s p0 = from_point(fPts[0]);
1085 Sk2s p1 = from_point(fPts[1]);
1086 Sk2s p2 = from_point(fPts[2]);
1087 Sk2s ww(fW);
1088
1089 Sk2s p20 = p2 - p0;
1090 Sk2s p10 = p1 - p0;
1091
1092 Sk2s C = ww * p10;
1093 Sk2s A = ww * p20 - p20;
1094 Sk2s B = p20 - C - C;
1095
1096 return to_vector(SkQuadCoeff(A, B, C).eval(t));
1097 }
1098
evalAt(SkScalar t,SkPoint * pt,SkVector * tangent) const1099 void SkConic::evalAt(SkScalar t, SkPoint* pt, SkVector* tangent) const {
1100 SkASSERT(t >= 0 && t <= SK_Scalar1);
1101
1102 if (pt) {
1103 *pt = this->evalAt(t);
1104 }
1105 if (tangent) {
1106 *tangent = this->evalTangentAt(t);
1107 }
1108 }
1109
subdivide_w_value(SkScalar w)1110 static SkScalar subdivide_w_value(SkScalar w) {
1111 return SkScalarSqrt(SK_ScalarHalf + w * SK_ScalarHalf);
1112 }
1113
chop(SkConic * SK_RESTRICT dst) const1114 void SkConic::chop(SkConic * SK_RESTRICT dst) const {
1115 Sk2s scale = Sk2s(SkScalarInvert(SK_Scalar1 + fW));
1116 SkScalar newW = subdivide_w_value(fW);
1117
1118 Sk2s p0 = from_point(fPts[0]);
1119 Sk2s p1 = from_point(fPts[1]);
1120 Sk2s p2 = from_point(fPts[2]);
1121 Sk2s ww(fW);
1122
1123 Sk2s wp1 = ww * p1;
1124 Sk2s m = (p0 + times_2(wp1) + p2) * scale * Sk2s(0.5f);
1125
1126 dst[0].fPts[0] = fPts[0];
1127 dst[0].fPts[1] = to_point((p0 + wp1) * scale);
1128 dst[0].fPts[2] = dst[1].fPts[0] = to_point(m);
1129 dst[1].fPts[1] = to_point((wp1 + p2) * scale);
1130 dst[1].fPts[2] = fPts[2];
1131
1132 dst[0].fW = dst[1].fW = newW;
1133 }
1134
1135 /*
1136 * "High order approximation of conic sections by quadratic splines"
1137 * by Michael Floater, 1993
1138 */
1139 #define AS_QUAD_ERROR_SETUP \
1140 SkScalar a = fW - 1; \
1141 SkScalar k = a / (4 * (2 + a)); \
1142 SkScalar x = k * (fPts[0].fX - 2 * fPts[1].fX + fPts[2].fX); \
1143 SkScalar y = k * (fPts[0].fY - 2 * fPts[1].fY + fPts[2].fY);
1144
computeAsQuadError(SkVector * err) const1145 void SkConic::computeAsQuadError(SkVector* err) const {
1146 AS_QUAD_ERROR_SETUP
1147 err->set(x, y);
1148 }
1149
asQuadTol(SkScalar tol) const1150 bool SkConic::asQuadTol(SkScalar tol) const {
1151 AS_QUAD_ERROR_SETUP
1152 return (x * x + y * y) <= tol * tol;
1153 }
1154
1155 // Limit the number of suggested quads to approximate a conic
1156 #define kMaxConicToQuadPOW2 5
1157
computeQuadPOW2(SkScalar tol) const1158 int SkConic::computeQuadPOW2(SkScalar tol) const {
1159 if (tol < 0 || !SkScalarIsFinite(tol)) {
1160 return 0;
1161 }
1162
1163 AS_QUAD_ERROR_SETUP
1164
1165 SkScalar error = SkScalarSqrt(x * x + y * y);
1166 int pow2;
1167 for (pow2 = 0; pow2 < kMaxConicToQuadPOW2; ++pow2) {
1168 if (error <= tol) {
1169 break;
1170 }
1171 error *= 0.25f;
1172 }
1173 // float version -- using ceil gives the same results as the above.
1174 if (false) {
1175 SkScalar err = SkScalarSqrt(x * x + y * y);
1176 if (err <= tol) {
1177 return 0;
1178 }
1179 SkScalar tol2 = tol * tol;
1180 if (tol2 == 0) {
1181 return kMaxConicToQuadPOW2;
1182 }
1183 SkScalar fpow2 = SkScalarLog2((x * x + y * y) / tol2) * 0.25f;
1184 int altPow2 = SkScalarCeilToInt(fpow2);
1185 if (altPow2 != pow2) {
1186 SkDebugf("pow2 %d altPow2 %d fbits %g err %g tol %g\n", pow2, altPow2, fpow2, err, tol);
1187 }
1188 pow2 = altPow2;
1189 }
1190 return pow2;
1191 }
1192
1193 // This was originally developed and tested for pathops: see SkOpTypes.h
1194 // returns true if (a <= b <= c) || (a >= b >= c)
between(SkScalar a,SkScalar b,SkScalar c)1195 static bool between(SkScalar a, SkScalar b, SkScalar c) {
1196 return (a - b) * (c - b) <= 0;
1197 }
1198
subdivide(const SkConic & src,SkPoint pts[],int level)1199 static SkPoint* subdivide(const SkConic& src, SkPoint pts[], int level) {
1200 SkASSERT(level >= 0);
1201
1202 if (0 == level) {
1203 memcpy(pts, &src.fPts[1], 2 * sizeof(SkPoint));
1204 return pts + 2;
1205 } else {
1206 SkConic dst[2];
1207 src.chop(dst);
1208 const SkScalar startY = src.fPts[0].fY;
1209 const SkScalar endY = src.fPts[2].fY;
1210 if (between(startY, src.fPts[1].fY, endY)) {
1211 // If the input is monotonic and the output is not, the scan converter hangs.
1212 // Ensure that the chopped conics maintain their y-order.
1213 SkScalar midY = dst[0].fPts[2].fY;
1214 if (!between(startY, midY, endY)) {
1215 // If the computed midpoint is outside the ends, move it to the closer one.
1216 SkScalar closerY = SkTAbs(midY - startY) < SkTAbs(midY - endY) ? startY : endY;
1217 dst[0].fPts[2].fY = dst[1].fPts[0].fY = closerY;
1218 }
1219 if (!between(startY, dst[0].fPts[1].fY, dst[0].fPts[2].fY)) {
1220 // If the 1st control is not between the start and end, put it at the start.
1221 // This also reduces the quad to a line.
1222 dst[0].fPts[1].fY = startY;
1223 }
1224 if (!between(dst[1].fPts[0].fY, dst[1].fPts[1].fY, endY)) {
1225 // If the 2nd control is not between the start and end, put it at the end.
1226 // This also reduces the quad to a line.
1227 dst[1].fPts[1].fY = endY;
1228 }
1229 // Verify that all five points are in order.
1230 SkASSERT(between(startY, dst[0].fPts[1].fY, dst[0].fPts[2].fY));
1231 SkASSERT(between(dst[0].fPts[1].fY, dst[0].fPts[2].fY, dst[1].fPts[1].fY));
1232 SkASSERT(between(dst[0].fPts[2].fY, dst[1].fPts[1].fY, endY));
1233 }
1234 --level;
1235 pts = subdivide(dst[0], pts, level);
1236 return subdivide(dst[1], pts, level);
1237 }
1238 }
1239
chopIntoQuadsPOW2(SkPoint pts[],int pow2) const1240 int SkConic::chopIntoQuadsPOW2(SkPoint pts[], int pow2) const {
1241 SkASSERT(pow2 >= 0);
1242 *pts = fPts[0];
1243 SkDEBUGCODE(SkPoint* endPts);
1244 if (pow2 == kMaxConicToQuadPOW2) { // If an extreme weight generates many quads ...
1245 SkConic dst[2];
1246 this->chop(dst);
1247 // check to see if the first chop generates a pair of lines
1248 if (dst[0].fPts[1].equalsWithinTolerance(dst[0].fPts[2])
1249 && dst[1].fPts[0].equalsWithinTolerance(dst[1].fPts[1])) {
1250 pts[1] = pts[2] = pts[3] = dst[0].fPts[1]; // set ctrl == end to make lines
1251 pts[4] = dst[1].fPts[2];
1252 pow2 = 1;
1253 SkDEBUGCODE(endPts = &pts[5]);
1254 goto commonFinitePtCheck;
1255 }
1256 }
1257 SkDEBUGCODE(endPts = ) subdivide(*this, pts + 1, pow2);
1258 commonFinitePtCheck:
1259 const int quadCount = 1 << pow2;
1260 const int ptCount = 2 * quadCount + 1;
1261 SkASSERT(endPts - pts == ptCount);
1262 if (!SkPointsAreFinite(pts, ptCount)) {
1263 // if we generated a non-finite, pin ourselves to the middle of the hull,
1264 // as our first and last are already on the first/last pts of the hull.
1265 for (int i = 1; i < ptCount - 1; ++i) {
1266 pts[i] = fPts[1];
1267 }
1268 }
1269 return 1 << pow2;
1270 }
1271
findXExtrema(SkScalar * t) const1272 bool SkConic::findXExtrema(SkScalar* t) const {
1273 return conic_find_extrema(&fPts[0].fX, fW, t);
1274 }
1275
findYExtrema(SkScalar * t) const1276 bool SkConic::findYExtrema(SkScalar* t) const {
1277 return conic_find_extrema(&fPts[0].fY, fW, t);
1278 }
1279
chopAtXExtrema(SkConic dst[2]) const1280 bool SkConic::chopAtXExtrema(SkConic dst[2]) const {
1281 SkScalar t;
1282 if (this->findXExtrema(&t)) {
1283 if (!this->chopAt(t, dst)) {
1284 // if chop can't return finite values, don't chop
1285 return false;
1286 }
1287 // now clean-up the middle, since we know t was meant to be at
1288 // an X-extrema
1289 SkScalar value = dst[0].fPts[2].fX;
1290 dst[0].fPts[1].fX = value;
1291 dst[1].fPts[0].fX = value;
1292 dst[1].fPts[1].fX = value;
1293 return true;
1294 }
1295 return false;
1296 }
1297
chopAtYExtrema(SkConic dst[2]) const1298 bool SkConic::chopAtYExtrema(SkConic dst[2]) const {
1299 SkScalar t;
1300 if (this->findYExtrema(&t)) {
1301 if (!this->chopAt(t, dst)) {
1302 // if chop can't return finite values, don't chop
1303 return false;
1304 }
1305 // now clean-up the middle, since we know t was meant to be at
1306 // an Y-extrema
1307 SkScalar value = dst[0].fPts[2].fY;
1308 dst[0].fPts[1].fY = value;
1309 dst[1].fPts[0].fY = value;
1310 dst[1].fPts[1].fY = value;
1311 return true;
1312 }
1313 return false;
1314 }
1315
computeTightBounds(SkRect * bounds) const1316 void SkConic::computeTightBounds(SkRect* bounds) const {
1317 SkPoint pts[4];
1318 pts[0] = fPts[0];
1319 pts[1] = fPts[2];
1320 int count = 2;
1321
1322 SkScalar t;
1323 if (this->findXExtrema(&t)) {
1324 this->evalAt(t, &pts[count++]);
1325 }
1326 if (this->findYExtrema(&t)) {
1327 this->evalAt(t, &pts[count++]);
1328 }
1329 bounds->set(pts, count);
1330 }
1331
computeFastBounds(SkRect * bounds) const1332 void SkConic::computeFastBounds(SkRect* bounds) const {
1333 bounds->set(fPts, 3);
1334 }
1335
1336 #if 0 // unimplemented
1337 bool SkConic::findMaxCurvature(SkScalar* t) const {
1338 // TODO: Implement me
1339 return false;
1340 }
1341 #endif
1342
TransformW(const SkPoint pts[],SkScalar w,const SkMatrix & matrix)1343 SkScalar SkConic::TransformW(const SkPoint pts[], SkScalar w,
1344 const SkMatrix& matrix) {
1345 if (!matrix.hasPerspective()) {
1346 return w;
1347 }
1348
1349 SkP3D src[3], dst[3];
1350
1351 ratquad_mapTo3D(pts, w, src);
1352
1353 matrix.mapHomogeneousPoints(&dst[0].fX, &src[0].fX, 3);
1354
1355 // w' = sqrt(w1*w1/w0*w2)
1356 SkScalar w0 = dst[0].fZ;
1357 SkScalar w1 = dst[1].fZ;
1358 SkScalar w2 = dst[2].fZ;
1359 w = SkScalarSqrt((w1 * w1) / (w0 * w2));
1360 return w;
1361 }
1362
BuildUnitArc(const SkVector & uStart,const SkVector & uStop,SkRotationDirection dir,const SkMatrix * userMatrix,SkConic dst[kMaxConicsForArc])1363 int SkConic::BuildUnitArc(const SkVector& uStart, const SkVector& uStop, SkRotationDirection dir,
1364 const SkMatrix* userMatrix, SkConic dst[kMaxConicsForArc]) {
1365 // rotate by x,y so that uStart is (1.0)
1366 SkScalar x = SkPoint::DotProduct(uStart, uStop);
1367 SkScalar y = SkPoint::CrossProduct(uStart, uStop);
1368
1369 SkScalar absY = SkScalarAbs(y);
1370
1371 // check for (effectively) coincident vectors
1372 // this can happen if our angle is nearly 0 or nearly 180 (y == 0)
1373 // ... we use the dot-prod to distinguish between 0 and 180 (x > 0)
1374 if (absY <= SK_ScalarNearlyZero && x > 0 && ((y >= 0 && kCW_SkRotationDirection == dir) ||
1375 (y <= 0 && kCCW_SkRotationDirection == dir))) {
1376 return 0;
1377 }
1378
1379 if (dir == kCCW_SkRotationDirection) {
1380 y = -y;
1381 }
1382
1383 // We decide to use 1-conic per quadrant of a circle. What quadrant does [xy] lie in?
1384 // 0 == [0 .. 90)
1385 // 1 == [90 ..180)
1386 // 2 == [180..270)
1387 // 3 == [270..360)
1388 //
1389 int quadrant = 0;
1390 if (0 == y) {
1391 quadrant = 2; // 180
1392 SkASSERT(SkScalarAbs(x + SK_Scalar1) <= SK_ScalarNearlyZero);
1393 } else if (0 == x) {
1394 SkASSERT(absY - SK_Scalar1 <= SK_ScalarNearlyZero);
1395 quadrant = y > 0 ? 1 : 3; // 90 : 270
1396 } else {
1397 if (y < 0) {
1398 quadrant += 2;
1399 }
1400 if ((x < 0) != (y < 0)) {
1401 quadrant += 1;
1402 }
1403 }
1404
1405 const SkPoint quadrantPts[] = {
1406 { 1, 0 }, { 1, 1 }, { 0, 1 }, { -1, 1 }, { -1, 0 }, { -1, -1 }, { 0, -1 }, { 1, -1 }
1407 };
1408 const SkScalar quadrantWeight = SK_ScalarRoot2Over2;
1409
1410 int conicCount = quadrant;
1411 for (int i = 0; i < conicCount; ++i) {
1412 dst[i].set(&quadrantPts[i * 2], quadrantWeight);
1413 }
1414
1415 // Now compute any remaing (sub-90-degree) arc for the last conic
1416 const SkPoint finalP = { x, y };
1417 const SkPoint& lastQ = quadrantPts[quadrant * 2]; // will already be a unit-vector
1418 const SkScalar dot = SkVector::DotProduct(lastQ, finalP);
1419 SkASSERT(0 <= dot && dot <= SK_Scalar1 + SK_ScalarNearlyZero);
1420
1421 if (dot < 1) {
1422 SkVector offCurve = { lastQ.x() + x, lastQ.y() + y };
1423 // compute the bisector vector, and then rescale to be the off-curve point.
1424 // we compute its length from cos(theta/2) = length / 1, using half-angle identity we get
1425 // length = sqrt(2 / (1 + cos(theta)). We already have cos() when to computed the dot.
1426 // This is nice, since our computed weight is cos(theta/2) as well!
1427 //
1428 const SkScalar cosThetaOver2 = SkScalarSqrt((1 + dot) / 2);
1429 offCurve.setLength(SkScalarInvert(cosThetaOver2));
1430 if (!lastQ.equalsWithinTolerance(offCurve)) {
1431 dst[conicCount].set(lastQ, offCurve, finalP, cosThetaOver2);
1432 conicCount += 1;
1433 }
1434 }
1435
1436 // now handle counter-clockwise and the initial unitStart rotation
1437 SkMatrix matrix;
1438 matrix.setSinCos(uStart.fY, uStart.fX);
1439 if (dir == kCCW_SkRotationDirection) {
1440 matrix.preScale(SK_Scalar1, -SK_Scalar1);
1441 }
1442 if (userMatrix) {
1443 matrix.postConcat(*userMatrix);
1444 }
1445 for (int i = 0; i < conicCount; ++i) {
1446 matrix.mapPoints(dst[i].fPts, 3);
1447 }
1448 return conicCount;
1449 }
1450