• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Licensed to the Apache Software Foundation (ASF) under one or more
3  * contributor license agreements.  See the NOTICE file distributed with
4  * this work for additional information regarding copyright ownership.
5  * The ASF licenses this file to You under the Apache License, Version 2.0
6  * (the "License"); you may not use this file except in compliance with
7  * the License.  You may obtain a copy of the License at
8  *
9  *      http://www.apache.org/licenses/LICENSE-2.0
10  *
11  * Unless required by applicable law or agreed to in writing, software
12  * distributed under the License is distributed on an "AS IS" BASIS,
13  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14  * See the License for the specific language governing permissions and
15  * limitations under the License.
16  */
17 package org.apache.commons.math.analysis.interpolation;
18 
19 import org.apache.commons.math.exception.DimensionMismatchException;
20 import org.apache.commons.math.exception.util.LocalizedFormats;
21 import org.apache.commons.math.exception.NumberIsTooSmallException;
22 import org.apache.commons.math.analysis.polynomials.PolynomialFunction;
23 import org.apache.commons.math.analysis.polynomials.PolynomialSplineFunction;
24 import org.apache.commons.math.util.MathUtils;
25 
26 /**
27  * Computes a natural (also known as "free", "unclamped") cubic spline interpolation for the data set.
28  * <p>
29  * The {@link #interpolate(double[], double[])} method returns a {@link PolynomialSplineFunction}
30  * consisting of n cubic polynomials, defined over the subintervals determined by the x values,
31  * x[0] < x[i] ... < x[n].  The x values are referred to as "knot points."</p>
32  * <p>
33  * The value of the PolynomialSplineFunction at a point x that is greater than or equal to the smallest
34  * knot point and strictly less than the largest knot point is computed by finding the subinterval to which
35  * x belongs and computing the value of the corresponding polynomial at <code>x - x[i] </code> where
36  * <code>i</code> is the index of the subinterval.  See {@link PolynomialSplineFunction} for more details.
37  * </p>
38  * <p>
39  * The interpolating polynomials satisfy: <ol>
40  * <li>The value of the PolynomialSplineFunction at each of the input x values equals the
41  *  corresponding y value.</li>
42  * <li>Adjacent polynomials are equal through two derivatives at the knot points (i.e., adjacent polynomials
43  *  "match up" at the knot points, as do their first and second derivatives).</li>
44  * </ol></p>
45  * <p>
46  * The cubic spline interpolation algorithm implemented is as described in R.L. Burden, J.D. Faires,
47  * <u>Numerical Analysis</u>, 4th Ed., 1989, PWS-Kent, ISBN 0-53491-585-X, pp 126-131.
48  * </p>
49  *
50  * @version $Revision: 983921 $ $Date: 2010-08-10 12:46:06 +0200 (mar. 10 août 2010) $
51  *
52  */
53 public class SplineInterpolator implements UnivariateRealInterpolator {
54 
55     /**
56      * Computes an interpolating function for the data set.
57      * @param x the arguments for the interpolation points
58      * @param y the values for the interpolation points
59      * @return a function which interpolates the data set
60      * @throws DimensionMismatchException if {@code x} and {@code y}
61      * have different sizes.
62      * @throws org.apache.commons.math.exception.NonMonotonousSequenceException
63      * if {@code x} is not sorted in strict increasing order.
64      * @throws NumberIsTooSmallException if the size of {@code x} is smaller
65      * than 3.
66      */
interpolate(double x[], double y[])67     public PolynomialSplineFunction interpolate(double x[], double y[]) {
68         if (x.length != y.length) {
69             throw new DimensionMismatchException(x.length, y.length);
70         }
71 
72         if (x.length < 3) {
73             throw new NumberIsTooSmallException(LocalizedFormats.NUMBER_OF_POINTS,
74                                                 x.length, 3, true);
75         }
76 
77         // Number of intervals.  The number of data points is n + 1.
78         int n = x.length - 1;
79 
80         MathUtils.checkOrder(x);
81 
82         // Differences between knot points
83         double h[] = new double[n];
84         for (int i = 0; i < n; i++) {
85             h[i] = x[i + 1] - x[i];
86         }
87 
88         double mu[] = new double[n];
89         double z[] = new double[n + 1];
90         mu[0] = 0d;
91         z[0] = 0d;
92         double g = 0;
93         for (int i = 1; i < n; i++) {
94             g = 2d * (x[i+1]  - x[i - 1]) - h[i - 1] * mu[i -1];
95             mu[i] = h[i] / g;
96             z[i] = (3d * (y[i + 1] * h[i - 1] - y[i] * (x[i + 1] - x[i - 1])+ y[i - 1] * h[i]) /
97                     (h[i - 1] * h[i]) - h[i - 1] * z[i - 1]) / g;
98         }
99 
100         // cubic spline coefficients --  b is linear, c quadratic, d is cubic (original y's are constants)
101         double b[] = new double[n];
102         double c[] = new double[n + 1];
103         double d[] = new double[n];
104 
105         z[n] = 0d;
106         c[n] = 0d;
107 
108         for (int j = n -1; j >=0; j--) {
109             c[j] = z[j] - mu[j] * c[j + 1];
110             b[j] = (y[j + 1] - y[j]) / h[j] - h[j] * (c[j + 1] + 2d * c[j]) / 3d;
111             d[j] = (c[j + 1] - c[j]) / (3d * h[j]);
112         }
113 
114         PolynomialFunction polynomials[] = new PolynomialFunction[n];
115         double coefficients[] = new double[4];
116         for (int i = 0; i < n; i++) {
117             coefficients[0] = y[i];
118             coefficients[1] = b[i];
119             coefficients[2] = c[i];
120             coefficients[3] = d[i];
121             polynomials[i] = new PolynomialFunction(coefficients);
122         }
123 
124         return new PolynomialSplineFunction(x, polynomials);
125     }
126 
127 }
128