1 //===-- BasicBlockUtils.cpp - BasicBlock Utilities -------------------------==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions perform manipulations on basic blocks, and
11 // instructions contained within basic blocks.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
16 #include "llvm/Analysis/AliasAnalysis.h"
17 #include "llvm/Analysis/CFG.h"
18 #include "llvm/Analysis/LoopInfo.h"
19 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/Type.h"
27 #include "llvm/IR/ValueHandle.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Transforms/Scalar.h"
30 #include "llvm/Transforms/Utils/Local.h"
31 #include <algorithm>
32 using namespace llvm;
33
DeleteDeadBlock(BasicBlock * BB)34 void llvm::DeleteDeadBlock(BasicBlock *BB) {
35 assert((pred_begin(BB) == pred_end(BB) ||
36 // Can delete self loop.
37 BB->getSinglePredecessor() == BB) && "Block is not dead!");
38 TerminatorInst *BBTerm = BB->getTerminator();
39
40 // Loop through all of our successors and make sure they know that one
41 // of their predecessors is going away.
42 for (BasicBlock *Succ : BBTerm->successors())
43 Succ->removePredecessor(BB);
44
45 // Zap all the instructions in the block.
46 while (!BB->empty()) {
47 Instruction &I = BB->back();
48 // If this instruction is used, replace uses with an arbitrary value.
49 // Because control flow can't get here, we don't care what we replace the
50 // value with. Note that since this block is unreachable, and all values
51 // contained within it must dominate their uses, that all uses will
52 // eventually be removed (they are themselves dead).
53 if (!I.use_empty())
54 I.replaceAllUsesWith(UndefValue::get(I.getType()));
55 BB->getInstList().pop_back();
56 }
57
58 // Zap the block!
59 BB->eraseFromParent();
60 }
61
FoldSingleEntryPHINodes(BasicBlock * BB,MemoryDependenceResults * MemDep)62 void llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
63 MemoryDependenceResults *MemDep) {
64 if (!isa<PHINode>(BB->begin())) return;
65
66 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
67 if (PN->getIncomingValue(0) != PN)
68 PN->replaceAllUsesWith(PN->getIncomingValue(0));
69 else
70 PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
71
72 if (MemDep)
73 MemDep->removeInstruction(PN); // Memdep updates AA itself.
74
75 PN->eraseFromParent();
76 }
77 }
78
DeleteDeadPHIs(BasicBlock * BB,const TargetLibraryInfo * TLI)79 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) {
80 // Recursively deleting a PHI may cause multiple PHIs to be deleted
81 // or RAUW'd undef, so use an array of WeakVH for the PHIs to delete.
82 SmallVector<WeakVH, 8> PHIs;
83 for (BasicBlock::iterator I = BB->begin();
84 PHINode *PN = dyn_cast<PHINode>(I); ++I)
85 PHIs.push_back(PN);
86
87 bool Changed = false;
88 for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
89 if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
90 Changed |= RecursivelyDeleteDeadPHINode(PN, TLI);
91
92 return Changed;
93 }
94
MergeBlockIntoPredecessor(BasicBlock * BB,DominatorTree * DT,LoopInfo * LI,MemoryDependenceResults * MemDep)95 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DominatorTree *DT,
96 LoopInfo *LI,
97 MemoryDependenceResults *MemDep) {
98 // Don't merge away blocks who have their address taken.
99 if (BB->hasAddressTaken()) return false;
100
101 // Can't merge if there are multiple predecessors, or no predecessors.
102 BasicBlock *PredBB = BB->getUniquePredecessor();
103 if (!PredBB) return false;
104
105 // Don't break self-loops.
106 if (PredBB == BB) return false;
107 // Don't break unwinding instructions.
108 if (PredBB->getTerminator()->isExceptional())
109 return false;
110
111 succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB));
112 BasicBlock *OnlySucc = BB;
113 for (; SI != SE; ++SI)
114 if (*SI != OnlySucc) {
115 OnlySucc = nullptr; // There are multiple distinct successors!
116 break;
117 }
118
119 // Can't merge if there are multiple successors.
120 if (!OnlySucc) return false;
121
122 // Can't merge if there is PHI loop.
123 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) {
124 if (PHINode *PN = dyn_cast<PHINode>(BI)) {
125 for (Value *IncValue : PN->incoming_values())
126 if (IncValue == PN)
127 return false;
128 } else
129 break;
130 }
131
132 // Begin by getting rid of unneeded PHIs.
133 if (isa<PHINode>(BB->front()))
134 FoldSingleEntryPHINodes(BB, MemDep);
135
136 // Delete the unconditional branch from the predecessor...
137 PredBB->getInstList().pop_back();
138
139 // Make all PHI nodes that referred to BB now refer to Pred as their
140 // source...
141 BB->replaceAllUsesWith(PredBB);
142
143 // Move all definitions in the successor to the predecessor...
144 PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
145
146 // Inherit predecessors name if it exists.
147 if (!PredBB->hasName())
148 PredBB->takeName(BB);
149
150 // Finally, erase the old block and update dominator info.
151 if (DT)
152 if (DomTreeNode *DTN = DT->getNode(BB)) {
153 DomTreeNode *PredDTN = DT->getNode(PredBB);
154 SmallVector<DomTreeNode *, 8> Children(DTN->begin(), DTN->end());
155 for (DomTreeNode *DI : Children)
156 DT->changeImmediateDominator(DI, PredDTN);
157
158 DT->eraseNode(BB);
159 }
160
161 if (LI)
162 LI->removeBlock(BB);
163
164 if (MemDep)
165 MemDep->invalidateCachedPredecessors();
166
167 BB->eraseFromParent();
168 return true;
169 }
170
ReplaceInstWithValue(BasicBlock::InstListType & BIL,BasicBlock::iterator & BI,Value * V)171 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
172 BasicBlock::iterator &BI, Value *V) {
173 Instruction &I = *BI;
174 // Replaces all of the uses of the instruction with uses of the value
175 I.replaceAllUsesWith(V);
176
177 // Make sure to propagate a name if there is one already.
178 if (I.hasName() && !V->hasName())
179 V->takeName(&I);
180
181 // Delete the unnecessary instruction now...
182 BI = BIL.erase(BI);
183 }
184
ReplaceInstWithInst(BasicBlock::InstListType & BIL,BasicBlock::iterator & BI,Instruction * I)185 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
186 BasicBlock::iterator &BI, Instruction *I) {
187 assert(I->getParent() == nullptr &&
188 "ReplaceInstWithInst: Instruction already inserted into basic block!");
189
190 // Copy debug location to newly added instruction, if it wasn't already set
191 // by the caller.
192 if (!I->getDebugLoc())
193 I->setDebugLoc(BI->getDebugLoc());
194
195 // Insert the new instruction into the basic block...
196 BasicBlock::iterator New = BIL.insert(BI, I);
197
198 // Replace all uses of the old instruction, and delete it.
199 ReplaceInstWithValue(BIL, BI, I);
200
201 // Move BI back to point to the newly inserted instruction
202 BI = New;
203 }
204
ReplaceInstWithInst(Instruction * From,Instruction * To)205 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
206 BasicBlock::iterator BI(From);
207 ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
208 }
209
SplitEdge(BasicBlock * BB,BasicBlock * Succ,DominatorTree * DT,LoopInfo * LI)210 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
211 LoopInfo *LI) {
212 unsigned SuccNum = GetSuccessorNumber(BB, Succ);
213
214 // If this is a critical edge, let SplitCriticalEdge do it.
215 TerminatorInst *LatchTerm = BB->getTerminator();
216 if (SplitCriticalEdge(LatchTerm, SuccNum, CriticalEdgeSplittingOptions(DT, LI)
217 .setPreserveLCSSA()))
218 return LatchTerm->getSuccessor(SuccNum);
219
220 // If the edge isn't critical, then BB has a single successor or Succ has a
221 // single pred. Split the block.
222 if (BasicBlock *SP = Succ->getSinglePredecessor()) {
223 // If the successor only has a single pred, split the top of the successor
224 // block.
225 assert(SP == BB && "CFG broken");
226 SP = nullptr;
227 return SplitBlock(Succ, &Succ->front(), DT, LI);
228 }
229
230 // Otherwise, if BB has a single successor, split it at the bottom of the
231 // block.
232 assert(BB->getTerminator()->getNumSuccessors() == 1 &&
233 "Should have a single succ!");
234 return SplitBlock(BB, BB->getTerminator(), DT, LI);
235 }
236
237 unsigned
SplitAllCriticalEdges(Function & F,const CriticalEdgeSplittingOptions & Options)238 llvm::SplitAllCriticalEdges(Function &F,
239 const CriticalEdgeSplittingOptions &Options) {
240 unsigned NumBroken = 0;
241 for (BasicBlock &BB : F) {
242 TerminatorInst *TI = BB.getTerminator();
243 if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI))
244 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
245 if (SplitCriticalEdge(TI, i, Options))
246 ++NumBroken;
247 }
248 return NumBroken;
249 }
250
SplitBlock(BasicBlock * Old,Instruction * SplitPt,DominatorTree * DT,LoopInfo * LI)251 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
252 DominatorTree *DT, LoopInfo *LI) {
253 BasicBlock::iterator SplitIt = SplitPt->getIterator();
254 while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
255 ++SplitIt;
256 BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
257
258 // The new block lives in whichever loop the old one did. This preserves
259 // LCSSA as well, because we force the split point to be after any PHI nodes.
260 if (LI)
261 if (Loop *L = LI->getLoopFor(Old))
262 L->addBasicBlockToLoop(New, *LI);
263
264 if (DT)
265 // Old dominates New. New node dominates all other nodes dominated by Old.
266 if (DomTreeNode *OldNode = DT->getNode(Old)) {
267 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
268
269 DomTreeNode *NewNode = DT->addNewBlock(New, Old);
270 for (DomTreeNode *I : Children)
271 DT->changeImmediateDominator(I, NewNode);
272 }
273
274 return New;
275 }
276
277 /// Update DominatorTree, LoopInfo, and LCCSA analysis information.
UpdateAnalysisInformation(BasicBlock * OldBB,BasicBlock * NewBB,ArrayRef<BasicBlock * > Preds,DominatorTree * DT,LoopInfo * LI,bool PreserveLCSSA,bool & HasLoopExit)278 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
279 ArrayRef<BasicBlock *> Preds,
280 DominatorTree *DT, LoopInfo *LI,
281 bool PreserveLCSSA, bool &HasLoopExit) {
282 // Update dominator tree if available.
283 if (DT)
284 DT->splitBlock(NewBB);
285
286 // The rest of the logic is only relevant for updating the loop structures.
287 if (!LI)
288 return;
289
290 Loop *L = LI->getLoopFor(OldBB);
291
292 // If we need to preserve loop analyses, collect some information about how
293 // this split will affect loops.
294 bool IsLoopEntry = !!L;
295 bool SplitMakesNewLoopHeader = false;
296 for (BasicBlock *Pred : Preds) {
297 // If we need to preserve LCSSA, determine if any of the preds is a loop
298 // exit.
299 if (PreserveLCSSA)
300 if (Loop *PL = LI->getLoopFor(Pred))
301 if (!PL->contains(OldBB))
302 HasLoopExit = true;
303
304 // If we need to preserve LoopInfo, note whether any of the preds crosses
305 // an interesting loop boundary.
306 if (!L)
307 continue;
308 if (L->contains(Pred))
309 IsLoopEntry = false;
310 else
311 SplitMakesNewLoopHeader = true;
312 }
313
314 // Unless we have a loop for OldBB, nothing else to do here.
315 if (!L)
316 return;
317
318 if (IsLoopEntry) {
319 // Add the new block to the nearest enclosing loop (and not an adjacent
320 // loop). To find this, examine each of the predecessors and determine which
321 // loops enclose them, and select the most-nested loop which contains the
322 // loop containing the block being split.
323 Loop *InnermostPredLoop = nullptr;
324 for (BasicBlock *Pred : Preds) {
325 if (Loop *PredLoop = LI->getLoopFor(Pred)) {
326 // Seek a loop which actually contains the block being split (to avoid
327 // adjacent loops).
328 while (PredLoop && !PredLoop->contains(OldBB))
329 PredLoop = PredLoop->getParentLoop();
330
331 // Select the most-nested of these loops which contains the block.
332 if (PredLoop && PredLoop->contains(OldBB) &&
333 (!InnermostPredLoop ||
334 InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
335 InnermostPredLoop = PredLoop;
336 }
337 }
338
339 if (InnermostPredLoop)
340 InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
341 } else {
342 L->addBasicBlockToLoop(NewBB, *LI);
343 if (SplitMakesNewLoopHeader)
344 L->moveToHeader(NewBB);
345 }
346 }
347
348 /// Update the PHI nodes in OrigBB to include the values coming from NewBB.
349 /// This also updates AliasAnalysis, if available.
UpdatePHINodes(BasicBlock * OrigBB,BasicBlock * NewBB,ArrayRef<BasicBlock * > Preds,BranchInst * BI,bool HasLoopExit)350 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
351 ArrayRef<BasicBlock *> Preds, BranchInst *BI,
352 bool HasLoopExit) {
353 // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
354 SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
355 for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
356 PHINode *PN = cast<PHINode>(I++);
357
358 // Check to see if all of the values coming in are the same. If so, we
359 // don't need to create a new PHI node, unless it's needed for LCSSA.
360 Value *InVal = nullptr;
361 if (!HasLoopExit) {
362 InVal = PN->getIncomingValueForBlock(Preds[0]);
363 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
364 if (!PredSet.count(PN->getIncomingBlock(i)))
365 continue;
366 if (!InVal)
367 InVal = PN->getIncomingValue(i);
368 else if (InVal != PN->getIncomingValue(i)) {
369 InVal = nullptr;
370 break;
371 }
372 }
373 }
374
375 if (InVal) {
376 // If all incoming values for the new PHI would be the same, just don't
377 // make a new PHI. Instead, just remove the incoming values from the old
378 // PHI.
379
380 // NOTE! This loop walks backwards for a reason! First off, this minimizes
381 // the cost of removal if we end up removing a large number of values, and
382 // second off, this ensures that the indices for the incoming values
383 // aren't invalidated when we remove one.
384 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i)
385 if (PredSet.count(PN->getIncomingBlock(i)))
386 PN->removeIncomingValue(i, false);
387
388 // Add an incoming value to the PHI node in the loop for the preheader
389 // edge.
390 PN->addIncoming(InVal, NewBB);
391 continue;
392 }
393
394 // If the values coming into the block are not the same, we need a new
395 // PHI.
396 // Create the new PHI node, insert it into NewBB at the end of the block
397 PHINode *NewPHI =
398 PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
399
400 // NOTE! This loop walks backwards for a reason! First off, this minimizes
401 // the cost of removal if we end up removing a large number of values, and
402 // second off, this ensures that the indices for the incoming values aren't
403 // invalidated when we remove one.
404 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
405 BasicBlock *IncomingBB = PN->getIncomingBlock(i);
406 if (PredSet.count(IncomingBB)) {
407 Value *V = PN->removeIncomingValue(i, false);
408 NewPHI->addIncoming(V, IncomingBB);
409 }
410 }
411
412 PN->addIncoming(NewPHI, NewBB);
413 }
414 }
415
SplitBlockPredecessors(BasicBlock * BB,ArrayRef<BasicBlock * > Preds,const char * Suffix,DominatorTree * DT,LoopInfo * LI,bool PreserveLCSSA)416 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
417 ArrayRef<BasicBlock *> Preds,
418 const char *Suffix, DominatorTree *DT,
419 LoopInfo *LI, bool PreserveLCSSA) {
420 // Do not attempt to split that which cannot be split.
421 if (!BB->canSplitPredecessors())
422 return nullptr;
423
424 // For the landingpads we need to act a bit differently.
425 // Delegate this work to the SplitLandingPadPredecessors.
426 if (BB->isLandingPad()) {
427 SmallVector<BasicBlock*, 2> NewBBs;
428 std::string NewName = std::string(Suffix) + ".split-lp";
429
430 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs, DT,
431 LI, PreserveLCSSA);
432 return NewBBs[0];
433 }
434
435 // Create new basic block, insert right before the original block.
436 BasicBlock *NewBB = BasicBlock::Create(
437 BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
438
439 // The new block unconditionally branches to the old block.
440 BranchInst *BI = BranchInst::Create(BB, NewBB);
441 BI->setDebugLoc(BB->getFirstNonPHI()->getDebugLoc());
442
443 // Move the edges from Preds to point to NewBB instead of BB.
444 for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
445 // This is slightly more strict than necessary; the minimum requirement
446 // is that there be no more than one indirectbr branching to BB. And
447 // all BlockAddress uses would need to be updated.
448 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
449 "Cannot split an edge from an IndirectBrInst");
450 Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
451 }
452
453 // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
454 // node becomes an incoming value for BB's phi node. However, if the Preds
455 // list is empty, we need to insert dummy entries into the PHI nodes in BB to
456 // account for the newly created predecessor.
457 if (Preds.size() == 0) {
458 // Insert dummy values as the incoming value.
459 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
460 cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
461 return NewBB;
462 }
463
464 // Update DominatorTree, LoopInfo, and LCCSA analysis information.
465 bool HasLoopExit = false;
466 UpdateAnalysisInformation(BB, NewBB, Preds, DT, LI, PreserveLCSSA,
467 HasLoopExit);
468
469 // Update the PHI nodes in BB with the values coming from NewBB.
470 UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
471 return NewBB;
472 }
473
SplitLandingPadPredecessors(BasicBlock * OrigBB,ArrayRef<BasicBlock * > Preds,const char * Suffix1,const char * Suffix2,SmallVectorImpl<BasicBlock * > & NewBBs,DominatorTree * DT,LoopInfo * LI,bool PreserveLCSSA)474 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
475 ArrayRef<BasicBlock *> Preds,
476 const char *Suffix1, const char *Suffix2,
477 SmallVectorImpl<BasicBlock *> &NewBBs,
478 DominatorTree *DT, LoopInfo *LI,
479 bool PreserveLCSSA) {
480 assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
481
482 // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
483 // it right before the original block.
484 BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
485 OrigBB->getName() + Suffix1,
486 OrigBB->getParent(), OrigBB);
487 NewBBs.push_back(NewBB1);
488
489 // The new block unconditionally branches to the old block.
490 BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
491 BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
492
493 // Move the edges from Preds to point to NewBB1 instead of OrigBB.
494 for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
495 // This is slightly more strict than necessary; the minimum requirement
496 // is that there be no more than one indirectbr branching to BB. And
497 // all BlockAddress uses would need to be updated.
498 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
499 "Cannot split an edge from an IndirectBrInst");
500 Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
501 }
502
503 bool HasLoopExit = false;
504 UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DT, LI, PreserveLCSSA,
505 HasLoopExit);
506
507 // Update the PHI nodes in OrigBB with the values coming from NewBB1.
508 UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
509
510 // Move the remaining edges from OrigBB to point to NewBB2.
511 SmallVector<BasicBlock*, 8> NewBB2Preds;
512 for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
513 i != e; ) {
514 BasicBlock *Pred = *i++;
515 if (Pred == NewBB1) continue;
516 assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
517 "Cannot split an edge from an IndirectBrInst");
518 NewBB2Preds.push_back(Pred);
519 e = pred_end(OrigBB);
520 }
521
522 BasicBlock *NewBB2 = nullptr;
523 if (!NewBB2Preds.empty()) {
524 // Create another basic block for the rest of OrigBB's predecessors.
525 NewBB2 = BasicBlock::Create(OrigBB->getContext(),
526 OrigBB->getName() + Suffix2,
527 OrigBB->getParent(), OrigBB);
528 NewBBs.push_back(NewBB2);
529
530 // The new block unconditionally branches to the old block.
531 BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
532 BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
533
534 // Move the remaining edges from OrigBB to point to NewBB2.
535 for (BasicBlock *NewBB2Pred : NewBB2Preds)
536 NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
537
538 // Update DominatorTree, LoopInfo, and LCCSA analysis information.
539 HasLoopExit = false;
540 UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DT, LI,
541 PreserveLCSSA, HasLoopExit);
542
543 // Update the PHI nodes in OrigBB with the values coming from NewBB2.
544 UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
545 }
546
547 LandingPadInst *LPad = OrigBB->getLandingPadInst();
548 Instruction *Clone1 = LPad->clone();
549 Clone1->setName(Twine("lpad") + Suffix1);
550 NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);
551
552 if (NewBB2) {
553 Instruction *Clone2 = LPad->clone();
554 Clone2->setName(Twine("lpad") + Suffix2);
555 NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);
556
557 // Create a PHI node for the two cloned landingpad instructions only
558 // if the original landingpad instruction has some uses.
559 if (!LPad->use_empty()) {
560 assert(!LPad->getType()->isTokenTy() &&
561 "Split cannot be applied if LPad is token type. Otherwise an "
562 "invalid PHINode of token type would be created.");
563 PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
564 PN->addIncoming(Clone1, NewBB1);
565 PN->addIncoming(Clone2, NewBB2);
566 LPad->replaceAllUsesWith(PN);
567 }
568 LPad->eraseFromParent();
569 } else {
570 // There is no second clone. Just replace the landing pad with the first
571 // clone.
572 LPad->replaceAllUsesWith(Clone1);
573 LPad->eraseFromParent();
574 }
575 }
576
FoldReturnIntoUncondBranch(ReturnInst * RI,BasicBlock * BB,BasicBlock * Pred)577 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
578 BasicBlock *Pred) {
579 Instruction *UncondBranch = Pred->getTerminator();
580 // Clone the return and add it to the end of the predecessor.
581 Instruction *NewRet = RI->clone();
582 Pred->getInstList().push_back(NewRet);
583
584 // If the return instruction returns a value, and if the value was a
585 // PHI node in "BB", propagate the right value into the return.
586 for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
587 i != e; ++i) {
588 Value *V = *i;
589 Instruction *NewBC = nullptr;
590 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
591 // Return value might be bitcasted. Clone and insert it before the
592 // return instruction.
593 V = BCI->getOperand(0);
594 NewBC = BCI->clone();
595 Pred->getInstList().insert(NewRet->getIterator(), NewBC);
596 *i = NewBC;
597 }
598 if (PHINode *PN = dyn_cast<PHINode>(V)) {
599 if (PN->getParent() == BB) {
600 if (NewBC)
601 NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
602 else
603 *i = PN->getIncomingValueForBlock(Pred);
604 }
605 }
606 }
607
608 // Update any PHI nodes in the returning block to realize that we no
609 // longer branch to them.
610 BB->removePredecessor(Pred);
611 UncondBranch->eraseFromParent();
612 return cast<ReturnInst>(NewRet);
613 }
614
615 TerminatorInst *
SplitBlockAndInsertIfThen(Value * Cond,Instruction * SplitBefore,bool Unreachable,MDNode * BranchWeights,DominatorTree * DT,LoopInfo * LI)616 llvm::SplitBlockAndInsertIfThen(Value *Cond, Instruction *SplitBefore,
617 bool Unreachable, MDNode *BranchWeights,
618 DominatorTree *DT, LoopInfo *LI) {
619 BasicBlock *Head = SplitBefore->getParent();
620 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
621 TerminatorInst *HeadOldTerm = Head->getTerminator();
622 LLVMContext &C = Head->getContext();
623 BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
624 TerminatorInst *CheckTerm;
625 if (Unreachable)
626 CheckTerm = new UnreachableInst(C, ThenBlock);
627 else
628 CheckTerm = BranchInst::Create(Tail, ThenBlock);
629 CheckTerm->setDebugLoc(SplitBefore->getDebugLoc());
630 BranchInst *HeadNewTerm =
631 BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond);
632 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
633 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
634
635 if (DT) {
636 if (DomTreeNode *OldNode = DT->getNode(Head)) {
637 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
638
639 DomTreeNode *NewNode = DT->addNewBlock(Tail, Head);
640 for (DomTreeNode *Child : Children)
641 DT->changeImmediateDominator(Child, NewNode);
642
643 // Head dominates ThenBlock.
644 DT->addNewBlock(ThenBlock, Head);
645 }
646 }
647
648 if (LI) {
649 Loop *L = LI->getLoopFor(Head);
650 L->addBasicBlockToLoop(ThenBlock, *LI);
651 L->addBasicBlockToLoop(Tail, *LI);
652 }
653
654 return CheckTerm;
655 }
656
SplitBlockAndInsertIfThenElse(Value * Cond,Instruction * SplitBefore,TerminatorInst ** ThenTerm,TerminatorInst ** ElseTerm,MDNode * BranchWeights)657 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
658 TerminatorInst **ThenTerm,
659 TerminatorInst **ElseTerm,
660 MDNode *BranchWeights) {
661 BasicBlock *Head = SplitBefore->getParent();
662 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
663 TerminatorInst *HeadOldTerm = Head->getTerminator();
664 LLVMContext &C = Head->getContext();
665 BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
666 BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
667 *ThenTerm = BranchInst::Create(Tail, ThenBlock);
668 (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc());
669 *ElseTerm = BranchInst::Create(Tail, ElseBlock);
670 (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc());
671 BranchInst *HeadNewTerm =
672 BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond);
673 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
674 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
675 }
676
677
GetIfCondition(BasicBlock * BB,BasicBlock * & IfTrue,BasicBlock * & IfFalse)678 Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
679 BasicBlock *&IfFalse) {
680 PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
681 BasicBlock *Pred1 = nullptr;
682 BasicBlock *Pred2 = nullptr;
683
684 if (SomePHI) {
685 if (SomePHI->getNumIncomingValues() != 2)
686 return nullptr;
687 Pred1 = SomePHI->getIncomingBlock(0);
688 Pred2 = SomePHI->getIncomingBlock(1);
689 } else {
690 pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
691 if (PI == PE) // No predecessor
692 return nullptr;
693 Pred1 = *PI++;
694 if (PI == PE) // Only one predecessor
695 return nullptr;
696 Pred2 = *PI++;
697 if (PI != PE) // More than two predecessors
698 return nullptr;
699 }
700
701 // We can only handle branches. Other control flow will be lowered to
702 // branches if possible anyway.
703 BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
704 BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
705 if (!Pred1Br || !Pred2Br)
706 return nullptr;
707
708 // Eliminate code duplication by ensuring that Pred1Br is conditional if
709 // either are.
710 if (Pred2Br->isConditional()) {
711 // If both branches are conditional, we don't have an "if statement". In
712 // reality, we could transform this case, but since the condition will be
713 // required anyway, we stand no chance of eliminating it, so the xform is
714 // probably not profitable.
715 if (Pred1Br->isConditional())
716 return nullptr;
717
718 std::swap(Pred1, Pred2);
719 std::swap(Pred1Br, Pred2Br);
720 }
721
722 if (Pred1Br->isConditional()) {
723 // The only thing we have to watch out for here is to make sure that Pred2
724 // doesn't have incoming edges from other blocks. If it does, the condition
725 // doesn't dominate BB.
726 if (!Pred2->getSinglePredecessor())
727 return nullptr;
728
729 // If we found a conditional branch predecessor, make sure that it branches
730 // to BB and Pred2Br. If it doesn't, this isn't an "if statement".
731 if (Pred1Br->getSuccessor(0) == BB &&
732 Pred1Br->getSuccessor(1) == Pred2) {
733 IfTrue = Pred1;
734 IfFalse = Pred2;
735 } else if (Pred1Br->getSuccessor(0) == Pred2 &&
736 Pred1Br->getSuccessor(1) == BB) {
737 IfTrue = Pred2;
738 IfFalse = Pred1;
739 } else {
740 // We know that one arm of the conditional goes to BB, so the other must
741 // go somewhere unrelated, and this must not be an "if statement".
742 return nullptr;
743 }
744
745 return Pred1Br->getCondition();
746 }
747
748 // Ok, if we got here, both predecessors end with an unconditional branch to
749 // BB. Don't panic! If both blocks only have a single (identical)
750 // predecessor, and THAT is a conditional branch, then we're all ok!
751 BasicBlock *CommonPred = Pred1->getSinglePredecessor();
752 if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
753 return nullptr;
754
755 // Otherwise, if this is a conditional branch, then we can use it!
756 BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
757 if (!BI) return nullptr;
758
759 assert(BI->isConditional() && "Two successors but not conditional?");
760 if (BI->getSuccessor(0) == Pred1) {
761 IfTrue = Pred1;
762 IfFalse = Pred2;
763 } else {
764 IfTrue = Pred2;
765 IfFalse = Pred1;
766 }
767 return BI->getCondition();
768 }
769