1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Jump Threading pass.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Transforms/Scalar/JumpThreading.h"
15 #include "llvm/Transforms/Scalar.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/CFG.h"
22 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
23 #include "llvm/Analysis/ConstantFolding.h"
24 #include "llvm/Analysis/InstructionSimplify.h"
25 #include "llvm/Analysis/Loads.h"
26 #include "llvm/Analysis/LoopInfo.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/IntrinsicInst.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/MDBuilder.h"
32 #include "llvm/IR/Metadata.h"
33 #include "llvm/Pass.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
38 #include "llvm/Transforms/Utils/Local.h"
39 #include "llvm/Transforms/Utils/SSAUpdater.h"
40 #include <algorithm>
41 #include <memory>
42 using namespace llvm;
43 using namespace jumpthreading;
44
45 #define DEBUG_TYPE "jump-threading"
46
47 STATISTIC(NumThreads, "Number of jumps threaded");
48 STATISTIC(NumFolds, "Number of terminators folded");
49 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi");
50
51 static cl::opt<unsigned>
52 BBDuplicateThreshold("jump-threading-threshold",
53 cl::desc("Max block size to duplicate for jump threading"),
54 cl::init(6), cl::Hidden);
55
56 static cl::opt<unsigned>
57 ImplicationSearchThreshold(
58 "jump-threading-implication-search-threshold",
59 cl::desc("The number of predecessors to search for a stronger "
60 "condition to use to thread over a weaker condition"),
61 cl::init(3), cl::Hidden);
62
63 namespace {
64 /// This pass performs 'jump threading', which looks at blocks that have
65 /// multiple predecessors and multiple successors. If one or more of the
66 /// predecessors of the block can be proven to always jump to one of the
67 /// successors, we forward the edge from the predecessor to the successor by
68 /// duplicating the contents of this block.
69 ///
70 /// An example of when this can occur is code like this:
71 ///
72 /// if () { ...
73 /// X = 4;
74 /// }
75 /// if (X < 3) {
76 ///
77 /// In this case, the unconditional branch at the end of the first if can be
78 /// revectored to the false side of the second if.
79 ///
80 class JumpThreading : public FunctionPass {
81 JumpThreadingPass Impl;
82
83 public:
84 static char ID; // Pass identification
JumpThreading(int T=-1)85 JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) {
86 initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
87 }
88
89 bool runOnFunction(Function &F) override;
90
getAnalysisUsage(AnalysisUsage & AU) const91 void getAnalysisUsage(AnalysisUsage &AU) const override {
92 AU.addRequired<LazyValueInfoWrapperPass>();
93 AU.addPreserved<LazyValueInfoWrapperPass>();
94 AU.addPreserved<GlobalsAAWrapperPass>();
95 AU.addRequired<TargetLibraryInfoWrapperPass>();
96 }
97
releaseMemory()98 void releaseMemory() override { Impl.releaseMemory(); }
99 };
100 }
101
102 char JumpThreading::ID = 0;
103 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
104 "Jump Threading", false, false)
INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)105 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
106 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
107 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
108 "Jump Threading", false, false)
109
110 // Public interface to the Jump Threading pass
111 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { return new JumpThreading(Threshold); }
112
JumpThreadingPass(int T)113 JumpThreadingPass::JumpThreadingPass(int T) {
114 BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
115 }
116
117 /// runOnFunction - Top level algorithm.
118 ///
runOnFunction(Function & F)119 bool JumpThreading::runOnFunction(Function &F) {
120 if (skipFunction(F))
121 return false;
122 auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
123 auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
124 std::unique_ptr<BlockFrequencyInfo> BFI;
125 std::unique_ptr<BranchProbabilityInfo> BPI;
126 bool HasProfileData = F.getEntryCount().hasValue();
127 if (HasProfileData) {
128 LoopInfo LI{DominatorTree(F)};
129 BPI.reset(new BranchProbabilityInfo(F, LI));
130 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
131 }
132 return Impl.runImpl(F, TLI, LVI, HasProfileData, std::move(BFI),
133 std::move(BPI));
134 }
135
run(Function & F,AnalysisManager<Function> & AM)136 PreservedAnalyses JumpThreadingPass::run(Function &F,
137 AnalysisManager<Function> &AM) {
138
139 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
140 auto &LVI = AM.getResult<LazyValueAnalysis>(F);
141 std::unique_ptr<BlockFrequencyInfo> BFI;
142 std::unique_ptr<BranchProbabilityInfo> BPI;
143 bool HasProfileData = F.getEntryCount().hasValue();
144 if (HasProfileData) {
145 LoopInfo LI{DominatorTree(F)};
146 BPI.reset(new BranchProbabilityInfo(F, LI));
147 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
148 }
149 bool Changed =
150 runImpl(F, &TLI, &LVI, HasProfileData, std::move(BFI), std::move(BPI));
151
152 // FIXME: We need to invalidate LVI to avoid PR28400. Is there a better
153 // solution?
154 AM.invalidate<LazyValueAnalysis>(F);
155
156 if (!Changed)
157 return PreservedAnalyses::all();
158 PreservedAnalyses PA;
159 PA.preserve<GlobalsAA>();
160 return PA;
161 }
162
runImpl(Function & F,TargetLibraryInfo * TLI_,LazyValueInfo * LVI_,bool HasProfileData_,std::unique_ptr<BlockFrequencyInfo> BFI_,std::unique_ptr<BranchProbabilityInfo> BPI_)163 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
164 LazyValueInfo *LVI_, bool HasProfileData_,
165 std::unique_ptr<BlockFrequencyInfo> BFI_,
166 std::unique_ptr<BranchProbabilityInfo> BPI_) {
167
168 DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
169 TLI = TLI_;
170 LVI = LVI_;
171 BFI.reset();
172 BPI.reset();
173 // When profile data is available, we need to update edge weights after
174 // successful jump threading, which requires both BPI and BFI being available.
175 HasProfileData = HasProfileData_;
176 if (HasProfileData) {
177 BPI = std::move(BPI_);
178 BFI = std::move(BFI_);
179 }
180
181 // Remove unreachable blocks from function as they may result in infinite
182 // loop. We do threading if we found something profitable. Jump threading a
183 // branch can create other opportunities. If these opportunities form a cycle
184 // i.e. if any jump threading is undoing previous threading in the path, then
185 // we will loop forever. We take care of this issue by not jump threading for
186 // back edges. This works for normal cases but not for unreachable blocks as
187 // they may have cycle with no back edge.
188 bool EverChanged = false;
189 EverChanged |= removeUnreachableBlocks(F, LVI);
190
191 FindLoopHeaders(F);
192
193 bool Changed;
194 do {
195 Changed = false;
196 for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
197 BasicBlock *BB = &*I;
198 // Thread all of the branches we can over this block.
199 while (ProcessBlock(BB))
200 Changed = true;
201
202 ++I;
203
204 // If the block is trivially dead, zap it. This eliminates the successor
205 // edges which simplifies the CFG.
206 if (pred_empty(BB) &&
207 BB != &BB->getParent()->getEntryBlock()) {
208 DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName()
209 << "' with terminator: " << *BB->getTerminator() << '\n');
210 LoopHeaders.erase(BB);
211 LVI->eraseBlock(BB);
212 DeleteDeadBlock(BB);
213 Changed = true;
214 continue;
215 }
216
217 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
218
219 // Can't thread an unconditional jump, but if the block is "almost
220 // empty", we can replace uses of it with uses of the successor and make
221 // this dead.
222 // We should not eliminate the loop header either, because eliminating
223 // a loop header might later prevent LoopSimplify from transforming nested
224 // loops into simplified form.
225 if (BI && BI->isUnconditional() &&
226 BB != &BB->getParent()->getEntryBlock() &&
227 // If the terminator is the only non-phi instruction, try to nuke it.
228 BB->getFirstNonPHIOrDbg()->isTerminator() && !LoopHeaders.count(BB)) {
229 // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
230 // block, we have to make sure it isn't in the LoopHeaders set. We
231 // reinsert afterward if needed.
232 bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
233 BasicBlock *Succ = BI->getSuccessor(0);
234
235 // FIXME: It is always conservatively correct to drop the info
236 // for a block even if it doesn't get erased. This isn't totally
237 // awesome, but it allows us to use AssertingVH to prevent nasty
238 // dangling pointer issues within LazyValueInfo.
239 LVI->eraseBlock(BB);
240 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) {
241 Changed = true;
242 // If we deleted BB and BB was the header of a loop, then the
243 // successor is now the header of the loop.
244 BB = Succ;
245 }
246
247 if (ErasedFromLoopHeaders)
248 LoopHeaders.insert(BB);
249 }
250 }
251 EverChanged |= Changed;
252 } while (Changed);
253
254 LoopHeaders.clear();
255 return EverChanged;
256 }
257
258 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
259 /// thread across it. Stop scanning the block when passing the threshold.
getJumpThreadDuplicationCost(const BasicBlock * BB,unsigned Threshold)260 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB,
261 unsigned Threshold) {
262 /// Ignore PHI nodes, these will be flattened when duplication happens.
263 BasicBlock::const_iterator I(BB->getFirstNonPHI());
264
265 // FIXME: THREADING will delete values that are just used to compute the
266 // branch, so they shouldn't count against the duplication cost.
267
268 unsigned Bonus = 0;
269 const TerminatorInst *BBTerm = BB->getTerminator();
270 // Threading through a switch statement is particularly profitable. If this
271 // block ends in a switch, decrease its cost to make it more likely to happen.
272 if (isa<SwitchInst>(BBTerm))
273 Bonus = 6;
274
275 // The same holds for indirect branches, but slightly more so.
276 if (isa<IndirectBrInst>(BBTerm))
277 Bonus = 8;
278
279 // Bump the threshold up so the early exit from the loop doesn't skip the
280 // terminator-based Size adjustment at the end.
281 Threshold += Bonus;
282
283 // Sum up the cost of each instruction until we get to the terminator. Don't
284 // include the terminator because the copy won't include it.
285 unsigned Size = 0;
286 for (; !isa<TerminatorInst>(I); ++I) {
287
288 // Stop scanning the block if we've reached the threshold.
289 if (Size > Threshold)
290 return Size;
291
292 // Debugger intrinsics don't incur code size.
293 if (isa<DbgInfoIntrinsic>(I)) continue;
294
295 // If this is a pointer->pointer bitcast, it is free.
296 if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
297 continue;
298
299 // Bail out if this instruction gives back a token type, it is not possible
300 // to duplicate it if it is used outside this BB.
301 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
302 return ~0U;
303
304 // All other instructions count for at least one unit.
305 ++Size;
306
307 // Calls are more expensive. If they are non-intrinsic calls, we model them
308 // as having cost of 4. If they are a non-vector intrinsic, we model them
309 // as having cost of 2 total, and if they are a vector intrinsic, we model
310 // them as having cost 1.
311 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
312 if (CI->cannotDuplicate() || CI->isConvergent())
313 // Blocks with NoDuplicate are modelled as having infinite cost, so they
314 // are never duplicated.
315 return ~0U;
316 else if (!isa<IntrinsicInst>(CI))
317 Size += 3;
318 else if (!CI->getType()->isVectorTy())
319 Size += 1;
320 }
321 }
322
323 return Size > Bonus ? Size - Bonus : 0;
324 }
325
326 /// FindLoopHeaders - We do not want jump threading to turn proper loop
327 /// structures into irreducible loops. Doing this breaks up the loop nesting
328 /// hierarchy and pessimizes later transformations. To prevent this from
329 /// happening, we first have to find the loop headers. Here we approximate this
330 /// by finding targets of backedges in the CFG.
331 ///
332 /// Note that there definitely are cases when we want to allow threading of
333 /// edges across a loop header. For example, threading a jump from outside the
334 /// loop (the preheader) to an exit block of the loop is definitely profitable.
335 /// It is also almost always profitable to thread backedges from within the loop
336 /// to exit blocks, and is often profitable to thread backedges to other blocks
337 /// within the loop (forming a nested loop). This simple analysis is not rich
338 /// enough to track all of these properties and keep it up-to-date as the CFG
339 /// mutates, so we don't allow any of these transformations.
340 ///
FindLoopHeaders(Function & F)341 void JumpThreadingPass::FindLoopHeaders(Function &F) {
342 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
343 FindFunctionBackedges(F, Edges);
344
345 for (const auto &Edge : Edges)
346 LoopHeaders.insert(Edge.second);
347 }
348
349 /// getKnownConstant - Helper method to determine if we can thread over a
350 /// terminator with the given value as its condition, and if so what value to
351 /// use for that. What kind of value this is depends on whether we want an
352 /// integer or a block address, but an undef is always accepted.
353 /// Returns null if Val is null or not an appropriate constant.
getKnownConstant(Value * Val,ConstantPreference Preference)354 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
355 if (!Val)
356 return nullptr;
357
358 // Undef is "known" enough.
359 if (UndefValue *U = dyn_cast<UndefValue>(Val))
360 return U;
361
362 if (Preference == WantBlockAddress)
363 return dyn_cast<BlockAddress>(Val->stripPointerCasts());
364
365 return dyn_cast<ConstantInt>(Val);
366 }
367
368 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
369 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
370 /// in any of our predecessors. If so, return the known list of value and pred
371 /// BB in the result vector.
372 ///
373 /// This returns true if there were any known values.
374 ///
ComputeValueKnownInPredecessors(Value * V,BasicBlock * BB,PredValueInfo & Result,ConstantPreference Preference,Instruction * CxtI)375 bool JumpThreadingPass::ComputeValueKnownInPredecessors(
376 Value *V, BasicBlock *BB, PredValueInfo &Result,
377 ConstantPreference Preference, Instruction *CxtI) {
378 // This method walks up use-def chains recursively. Because of this, we could
379 // get into an infinite loop going around loops in the use-def chain. To
380 // prevent this, keep track of what (value, block) pairs we've already visited
381 // and terminate the search if we loop back to them
382 if (!RecursionSet.insert(std::make_pair(V, BB)).second)
383 return false;
384
385 // An RAII help to remove this pair from the recursion set once the recursion
386 // stack pops back out again.
387 RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB));
388
389 // If V is a constant, then it is known in all predecessors.
390 if (Constant *KC = getKnownConstant(V, Preference)) {
391 for (BasicBlock *Pred : predecessors(BB))
392 Result.push_back(std::make_pair(KC, Pred));
393
394 return !Result.empty();
395 }
396
397 // If V is a non-instruction value, or an instruction in a different block,
398 // then it can't be derived from a PHI.
399 Instruction *I = dyn_cast<Instruction>(V);
400 if (!I || I->getParent() != BB) {
401
402 // Okay, if this is a live-in value, see if it has a known value at the end
403 // of any of our predecessors.
404 //
405 // FIXME: This should be an edge property, not a block end property.
406 /// TODO: Per PR2563, we could infer value range information about a
407 /// predecessor based on its terminator.
408 //
409 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
410 // "I" is a non-local compare-with-a-constant instruction. This would be
411 // able to handle value inequalities better, for example if the compare is
412 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
413 // Perhaps getConstantOnEdge should be smart enough to do this?
414
415 for (BasicBlock *P : predecessors(BB)) {
416 // If the value is known by LazyValueInfo to be a constant in a
417 // predecessor, use that information to try to thread this block.
418 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
419 if (Constant *KC = getKnownConstant(PredCst, Preference))
420 Result.push_back(std::make_pair(KC, P));
421 }
422
423 return !Result.empty();
424 }
425
426 /// If I is a PHI node, then we know the incoming values for any constants.
427 if (PHINode *PN = dyn_cast<PHINode>(I)) {
428 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
429 Value *InVal = PN->getIncomingValue(i);
430 if (Constant *KC = getKnownConstant(InVal, Preference)) {
431 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
432 } else {
433 Constant *CI = LVI->getConstantOnEdge(InVal,
434 PN->getIncomingBlock(i),
435 BB, CxtI);
436 if (Constant *KC = getKnownConstant(CI, Preference))
437 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
438 }
439 }
440
441 return !Result.empty();
442 }
443
444 // Handle Cast instructions. Only see through Cast when the source operand is
445 // PHI or Cmp and the source type is i1 to save the compilation time.
446 if (CastInst *CI = dyn_cast<CastInst>(I)) {
447 Value *Source = CI->getOperand(0);
448 if (!Source->getType()->isIntegerTy(1))
449 return false;
450 if (!isa<PHINode>(Source) && !isa<CmpInst>(Source))
451 return false;
452 ComputeValueKnownInPredecessors(Source, BB, Result, Preference, CxtI);
453 if (Result.empty())
454 return false;
455
456 // Convert the known values.
457 for (auto &R : Result)
458 R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType());
459
460 return true;
461 }
462
463 PredValueInfoTy LHSVals, RHSVals;
464
465 // Handle some boolean conditions.
466 if (I->getType()->getPrimitiveSizeInBits() == 1) {
467 assert(Preference == WantInteger && "One-bit non-integer type?");
468 // X | true -> true
469 // X & false -> false
470 if (I->getOpcode() == Instruction::Or ||
471 I->getOpcode() == Instruction::And) {
472 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
473 WantInteger, CxtI);
474 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals,
475 WantInteger, CxtI);
476
477 if (LHSVals.empty() && RHSVals.empty())
478 return false;
479
480 ConstantInt *InterestingVal;
481 if (I->getOpcode() == Instruction::Or)
482 InterestingVal = ConstantInt::getTrue(I->getContext());
483 else
484 InterestingVal = ConstantInt::getFalse(I->getContext());
485
486 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
487
488 // Scan for the sentinel. If we find an undef, force it to the
489 // interesting value: x|undef -> true and x&undef -> false.
490 for (const auto &LHSVal : LHSVals)
491 if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
492 Result.emplace_back(InterestingVal, LHSVal.second);
493 LHSKnownBBs.insert(LHSVal.second);
494 }
495 for (const auto &RHSVal : RHSVals)
496 if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
497 // If we already inferred a value for this block on the LHS, don't
498 // re-add it.
499 if (!LHSKnownBBs.count(RHSVal.second))
500 Result.emplace_back(InterestingVal, RHSVal.second);
501 }
502
503 return !Result.empty();
504 }
505
506 // Handle the NOT form of XOR.
507 if (I->getOpcode() == Instruction::Xor &&
508 isa<ConstantInt>(I->getOperand(1)) &&
509 cast<ConstantInt>(I->getOperand(1))->isOne()) {
510 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result,
511 WantInteger, CxtI);
512 if (Result.empty())
513 return false;
514
515 // Invert the known values.
516 for (auto &R : Result)
517 R.first = ConstantExpr::getNot(R.first);
518
519 return true;
520 }
521
522 // Try to simplify some other binary operator values.
523 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
524 assert(Preference != WantBlockAddress
525 && "A binary operator creating a block address?");
526 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
527 PredValueInfoTy LHSVals;
528 ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals,
529 WantInteger, CxtI);
530
531 // Try to use constant folding to simplify the binary operator.
532 for (const auto &LHSVal : LHSVals) {
533 Constant *V = LHSVal.first;
534 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
535
536 if (Constant *KC = getKnownConstant(Folded, WantInteger))
537 Result.push_back(std::make_pair(KC, LHSVal.second));
538 }
539 }
540
541 return !Result.empty();
542 }
543
544 // Handle compare with phi operand, where the PHI is defined in this block.
545 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
546 assert(Preference == WantInteger && "Compares only produce integers");
547 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
548 if (PN && PN->getParent() == BB) {
549 const DataLayout &DL = PN->getModule()->getDataLayout();
550 // We can do this simplification if any comparisons fold to true or false.
551 // See if any do.
552 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
553 BasicBlock *PredBB = PN->getIncomingBlock(i);
554 Value *LHS = PN->getIncomingValue(i);
555 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
556
557 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, DL);
558 if (!Res) {
559 if (!isa<Constant>(RHS))
560 continue;
561
562 LazyValueInfo::Tristate
563 ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
564 cast<Constant>(RHS), PredBB, BB,
565 CxtI ? CxtI : Cmp);
566 if (ResT == LazyValueInfo::Unknown)
567 continue;
568 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
569 }
570
571 if (Constant *KC = getKnownConstant(Res, WantInteger))
572 Result.push_back(std::make_pair(KC, PredBB));
573 }
574
575 return !Result.empty();
576 }
577
578 // If comparing a live-in value against a constant, see if we know the
579 // live-in value on any predecessors.
580 if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) {
581 if (!isa<Instruction>(Cmp->getOperand(0)) ||
582 cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) {
583 Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
584
585 for (BasicBlock *P : predecessors(BB)) {
586 // If the value is known by LazyValueInfo to be a constant in a
587 // predecessor, use that information to try to thread this block.
588 LazyValueInfo::Tristate Res =
589 LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
590 RHSCst, P, BB, CxtI ? CxtI : Cmp);
591 if (Res == LazyValueInfo::Unknown)
592 continue;
593
594 Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
595 Result.push_back(std::make_pair(ResC, P));
596 }
597
598 return !Result.empty();
599 }
600
601 // Try to find a constant value for the LHS of a comparison,
602 // and evaluate it statically if we can.
603 if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) {
604 PredValueInfoTy LHSVals;
605 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
606 WantInteger, CxtI);
607
608 for (const auto &LHSVal : LHSVals) {
609 Constant *V = LHSVal.first;
610 Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(),
611 V, CmpConst);
612 if (Constant *KC = getKnownConstant(Folded, WantInteger))
613 Result.push_back(std::make_pair(KC, LHSVal.second));
614 }
615
616 return !Result.empty();
617 }
618 }
619 }
620
621 if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
622 // Handle select instructions where at least one operand is a known constant
623 // and we can figure out the condition value for any predecessor block.
624 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
625 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
626 PredValueInfoTy Conds;
627 if ((TrueVal || FalseVal) &&
628 ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds,
629 WantInteger, CxtI)) {
630 for (auto &C : Conds) {
631 Constant *Cond = C.first;
632
633 // Figure out what value to use for the condition.
634 bool KnownCond;
635 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
636 // A known boolean.
637 KnownCond = CI->isOne();
638 } else {
639 assert(isa<UndefValue>(Cond) && "Unexpected condition value");
640 // Either operand will do, so be sure to pick the one that's a known
641 // constant.
642 // FIXME: Do this more cleverly if both values are known constants?
643 KnownCond = (TrueVal != nullptr);
644 }
645
646 // See if the select has a known constant value for this predecessor.
647 if (Constant *Val = KnownCond ? TrueVal : FalseVal)
648 Result.push_back(std::make_pair(Val, C.second));
649 }
650
651 return !Result.empty();
652 }
653 }
654
655 // If all else fails, see if LVI can figure out a constant value for us.
656 Constant *CI = LVI->getConstant(V, BB, CxtI);
657 if (Constant *KC = getKnownConstant(CI, Preference)) {
658 for (BasicBlock *Pred : predecessors(BB))
659 Result.push_back(std::make_pair(KC, Pred));
660 }
661
662 return !Result.empty();
663 }
664
665
666
667 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
668 /// in an undefined jump, decide which block is best to revector to.
669 ///
670 /// Since we can pick an arbitrary destination, we pick the successor with the
671 /// fewest predecessors. This should reduce the in-degree of the others.
672 ///
GetBestDestForJumpOnUndef(BasicBlock * BB)673 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
674 TerminatorInst *BBTerm = BB->getTerminator();
675 unsigned MinSucc = 0;
676 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
677 // Compute the successor with the minimum number of predecessors.
678 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
679 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
680 TestBB = BBTerm->getSuccessor(i);
681 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
682 if (NumPreds < MinNumPreds) {
683 MinSucc = i;
684 MinNumPreds = NumPreds;
685 }
686 }
687
688 return MinSucc;
689 }
690
hasAddressTakenAndUsed(BasicBlock * BB)691 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
692 if (!BB->hasAddressTaken()) return false;
693
694 // If the block has its address taken, it may be a tree of dead constants
695 // hanging off of it. These shouldn't keep the block alive.
696 BlockAddress *BA = BlockAddress::get(BB);
697 BA->removeDeadConstantUsers();
698 return !BA->use_empty();
699 }
700
701 /// ProcessBlock - If there are any predecessors whose control can be threaded
702 /// through to a successor, transform them now.
ProcessBlock(BasicBlock * BB)703 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) {
704 // If the block is trivially dead, just return and let the caller nuke it.
705 // This simplifies other transformations.
706 if (pred_empty(BB) &&
707 BB != &BB->getParent()->getEntryBlock())
708 return false;
709
710 // If this block has a single predecessor, and if that pred has a single
711 // successor, merge the blocks. This encourages recursive jump threading
712 // because now the condition in this block can be threaded through
713 // predecessors of our predecessor block.
714 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
715 const TerminatorInst *TI = SinglePred->getTerminator();
716 if (!TI->isExceptional() && TI->getNumSuccessors() == 1 &&
717 SinglePred != BB && !hasAddressTakenAndUsed(BB)) {
718 // If SinglePred was a loop header, BB becomes one.
719 if (LoopHeaders.erase(SinglePred))
720 LoopHeaders.insert(BB);
721
722 LVI->eraseBlock(SinglePred);
723 MergeBasicBlockIntoOnlyPred(BB);
724
725 return true;
726 }
727 }
728
729 if (TryToUnfoldSelectInCurrBB(BB))
730 return true;
731
732 // What kind of constant we're looking for.
733 ConstantPreference Preference = WantInteger;
734
735 // Look to see if the terminator is a conditional branch, switch or indirect
736 // branch, if not we can't thread it.
737 Value *Condition;
738 Instruction *Terminator = BB->getTerminator();
739 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
740 // Can't thread an unconditional jump.
741 if (BI->isUnconditional()) return false;
742 Condition = BI->getCondition();
743 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
744 Condition = SI->getCondition();
745 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
746 // Can't thread indirect branch with no successors.
747 if (IB->getNumSuccessors() == 0) return false;
748 Condition = IB->getAddress()->stripPointerCasts();
749 Preference = WantBlockAddress;
750 } else {
751 return false; // Must be an invoke.
752 }
753
754 // Run constant folding to see if we can reduce the condition to a simple
755 // constant.
756 if (Instruction *I = dyn_cast<Instruction>(Condition)) {
757 Value *SimpleVal =
758 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
759 if (SimpleVal) {
760 I->replaceAllUsesWith(SimpleVal);
761 I->eraseFromParent();
762 Condition = SimpleVal;
763 }
764 }
765
766 // If the terminator is branching on an undef, we can pick any of the
767 // successors to branch to. Let GetBestDestForJumpOnUndef decide.
768 if (isa<UndefValue>(Condition)) {
769 unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
770
771 // Fold the branch/switch.
772 TerminatorInst *BBTerm = BB->getTerminator();
773 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
774 if (i == BestSucc) continue;
775 BBTerm->getSuccessor(i)->removePredecessor(BB, true);
776 }
777
778 DEBUG(dbgs() << " In block '" << BB->getName()
779 << "' folding undef terminator: " << *BBTerm << '\n');
780 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
781 BBTerm->eraseFromParent();
782 return true;
783 }
784
785 // If the terminator of this block is branching on a constant, simplify the
786 // terminator to an unconditional branch. This can occur due to threading in
787 // other blocks.
788 if (getKnownConstant(Condition, Preference)) {
789 DEBUG(dbgs() << " In block '" << BB->getName()
790 << "' folding terminator: " << *BB->getTerminator() << '\n');
791 ++NumFolds;
792 ConstantFoldTerminator(BB, true);
793 return true;
794 }
795
796 Instruction *CondInst = dyn_cast<Instruction>(Condition);
797
798 // All the rest of our checks depend on the condition being an instruction.
799 if (!CondInst) {
800 // FIXME: Unify this with code below.
801 if (ProcessThreadableEdges(Condition, BB, Preference, Terminator))
802 return true;
803 return false;
804 }
805
806
807 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
808 // If we're branching on a conditional, LVI might be able to determine
809 // it's value at the branch instruction. We only handle comparisons
810 // against a constant at this time.
811 // TODO: This should be extended to handle switches as well.
812 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
813 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
814 if (CondBr && CondConst && CondBr->isConditional()) {
815 LazyValueInfo::Tristate Ret =
816 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
817 CondConst, CondBr);
818 if (Ret != LazyValueInfo::Unknown) {
819 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0;
820 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1;
821 CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true);
822 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
823 CondBr->eraseFromParent();
824 if (CondCmp->use_empty())
825 CondCmp->eraseFromParent();
826 else if (CondCmp->getParent() == BB) {
827 // If the fact we just learned is true for all uses of the
828 // condition, replace it with a constant value
829 auto *CI = Ret == LazyValueInfo::True ?
830 ConstantInt::getTrue(CondCmp->getType()) :
831 ConstantInt::getFalse(CondCmp->getType());
832 CondCmp->replaceAllUsesWith(CI);
833 CondCmp->eraseFromParent();
834 }
835 return true;
836 }
837 }
838
839 if (CondBr && CondConst && TryToUnfoldSelect(CondCmp, BB))
840 return true;
841 }
842
843 // Check for some cases that are worth simplifying. Right now we want to look
844 // for loads that are used by a switch or by the condition for the branch. If
845 // we see one, check to see if it's partially redundant. If so, insert a PHI
846 // which can then be used to thread the values.
847 //
848 Value *SimplifyValue = CondInst;
849 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
850 if (isa<Constant>(CondCmp->getOperand(1)))
851 SimplifyValue = CondCmp->getOperand(0);
852
853 // TODO: There are other places where load PRE would be profitable, such as
854 // more complex comparisons.
855 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
856 if (SimplifyPartiallyRedundantLoad(LI))
857 return true;
858
859
860 // Handle a variety of cases where we are branching on something derived from
861 // a PHI node in the current block. If we can prove that any predecessors
862 // compute a predictable value based on a PHI node, thread those predecessors.
863 //
864 if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator))
865 return true;
866
867 // If this is an otherwise-unfoldable branch on a phi node in the current
868 // block, see if we can simplify.
869 if (PHINode *PN = dyn_cast<PHINode>(CondInst))
870 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
871 return ProcessBranchOnPHI(PN);
872
873
874 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
875 if (CondInst->getOpcode() == Instruction::Xor &&
876 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
877 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
878
879 // Search for a stronger dominating condition that can be used to simplify a
880 // conditional branch leaving BB.
881 if (ProcessImpliedCondition(BB))
882 return true;
883
884 return false;
885 }
886
ProcessImpliedCondition(BasicBlock * BB)887 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) {
888 auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
889 if (!BI || !BI->isConditional())
890 return false;
891
892 Value *Cond = BI->getCondition();
893 BasicBlock *CurrentBB = BB;
894 BasicBlock *CurrentPred = BB->getSinglePredecessor();
895 unsigned Iter = 0;
896
897 auto &DL = BB->getModule()->getDataLayout();
898
899 while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
900 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
901 if (!PBI || !PBI->isConditional())
902 return false;
903 if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
904 return false;
905
906 bool FalseDest = PBI->getSuccessor(1) == CurrentBB;
907 Optional<bool> Implication =
908 isImpliedCondition(PBI->getCondition(), Cond, DL, FalseDest);
909 if (Implication) {
910 BI->getSuccessor(*Implication ? 1 : 0)->removePredecessor(BB);
911 BranchInst::Create(BI->getSuccessor(*Implication ? 0 : 1), BI);
912 BI->eraseFromParent();
913 return true;
914 }
915 CurrentBB = CurrentPred;
916 CurrentPred = CurrentBB->getSinglePredecessor();
917 }
918
919 return false;
920 }
921
922 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
923 /// load instruction, eliminate it by replacing it with a PHI node. This is an
924 /// important optimization that encourages jump threading, and needs to be run
925 /// interlaced with other jump threading tasks.
SimplifyPartiallyRedundantLoad(LoadInst * LI)926 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
927 // Don't hack volatile and ordered loads.
928 if (!LI->isUnordered()) return false;
929
930 // If the load is defined in a block with exactly one predecessor, it can't be
931 // partially redundant.
932 BasicBlock *LoadBB = LI->getParent();
933 if (LoadBB->getSinglePredecessor())
934 return false;
935
936 // If the load is defined in an EH pad, it can't be partially redundant,
937 // because the edges between the invoke and the EH pad cannot have other
938 // instructions between them.
939 if (LoadBB->isEHPad())
940 return false;
941
942 Value *LoadedPtr = LI->getOperand(0);
943
944 // If the loaded operand is defined in the LoadBB, it can't be available.
945 // TODO: Could do simple PHI translation, that would be fun :)
946 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
947 if (PtrOp->getParent() == LoadBB)
948 return false;
949
950 // Scan a few instructions up from the load, to see if it is obviously live at
951 // the entry to its block.
952 BasicBlock::iterator BBIt(LI);
953
954 if (Value *AvailableVal =
955 FindAvailableLoadedValue(LI, LoadBB, BBIt, DefMaxInstsToScan)) {
956 // If the value of the load is locally available within the block, just use
957 // it. This frequently occurs for reg2mem'd allocas.
958
959 // If the returned value is the load itself, replace with an undef. This can
960 // only happen in dead loops.
961 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
962 if (AvailableVal->getType() != LI->getType())
963 AvailableVal =
964 CastInst::CreateBitOrPointerCast(AvailableVal, LI->getType(), "", LI);
965 LI->replaceAllUsesWith(AvailableVal);
966 LI->eraseFromParent();
967 return true;
968 }
969
970 // Otherwise, if we scanned the whole block and got to the top of the block,
971 // we know the block is locally transparent to the load. If not, something
972 // might clobber its value.
973 if (BBIt != LoadBB->begin())
974 return false;
975
976 // If all of the loads and stores that feed the value have the same AA tags,
977 // then we can propagate them onto any newly inserted loads.
978 AAMDNodes AATags;
979 LI->getAAMetadata(AATags);
980
981 SmallPtrSet<BasicBlock*, 8> PredsScanned;
982 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
983 AvailablePredsTy AvailablePreds;
984 BasicBlock *OneUnavailablePred = nullptr;
985
986 // If we got here, the loaded value is transparent through to the start of the
987 // block. Check to see if it is available in any of the predecessor blocks.
988 for (BasicBlock *PredBB : predecessors(LoadBB)) {
989 // If we already scanned this predecessor, skip it.
990 if (!PredsScanned.insert(PredBB).second)
991 continue;
992
993 // Scan the predecessor to see if the value is available in the pred.
994 BBIt = PredBB->end();
995 AAMDNodes ThisAATags;
996 Value *PredAvailable = FindAvailableLoadedValue(LI, PredBB, BBIt,
997 DefMaxInstsToScan,
998 nullptr, &ThisAATags);
999 if (!PredAvailable) {
1000 OneUnavailablePred = PredBB;
1001 continue;
1002 }
1003
1004 // If AA tags disagree or are not present, forget about them.
1005 if (AATags != ThisAATags) AATags = AAMDNodes();
1006
1007 // If so, this load is partially redundant. Remember this info so that we
1008 // can create a PHI node.
1009 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
1010 }
1011
1012 // If the loaded value isn't available in any predecessor, it isn't partially
1013 // redundant.
1014 if (AvailablePreds.empty()) return false;
1015
1016 // Okay, the loaded value is available in at least one (and maybe all!)
1017 // predecessors. If the value is unavailable in more than one unique
1018 // predecessor, we want to insert a merge block for those common predecessors.
1019 // This ensures that we only have to insert one reload, thus not increasing
1020 // code size.
1021 BasicBlock *UnavailablePred = nullptr;
1022
1023 // If there is exactly one predecessor where the value is unavailable, the
1024 // already computed 'OneUnavailablePred' block is it. If it ends in an
1025 // unconditional branch, we know that it isn't a critical edge.
1026 if (PredsScanned.size() == AvailablePreds.size()+1 &&
1027 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1028 UnavailablePred = OneUnavailablePred;
1029 } else if (PredsScanned.size() != AvailablePreds.size()) {
1030 // Otherwise, we had multiple unavailable predecessors or we had a critical
1031 // edge from the one.
1032 SmallVector<BasicBlock*, 8> PredsToSplit;
1033 SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1034
1035 for (const auto &AvailablePred : AvailablePreds)
1036 AvailablePredSet.insert(AvailablePred.first);
1037
1038 // Add all the unavailable predecessors to the PredsToSplit list.
1039 for (BasicBlock *P : predecessors(LoadBB)) {
1040 // If the predecessor is an indirect goto, we can't split the edge.
1041 if (isa<IndirectBrInst>(P->getTerminator()))
1042 return false;
1043
1044 if (!AvailablePredSet.count(P))
1045 PredsToSplit.push_back(P);
1046 }
1047
1048 // Split them out to their own block.
1049 UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1050 }
1051
1052 // If the value isn't available in all predecessors, then there will be
1053 // exactly one where it isn't available. Insert a load on that edge and add
1054 // it to the AvailablePreds list.
1055 if (UnavailablePred) {
1056 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1057 "Can't handle critical edge here!");
1058 LoadInst *NewVal =
1059 new LoadInst(LoadedPtr, LI->getName() + ".pr", false,
1060 LI->getAlignment(), LI->getOrdering(), LI->getSynchScope(),
1061 UnavailablePred->getTerminator());
1062 NewVal->setDebugLoc(LI->getDebugLoc());
1063 if (AATags)
1064 NewVal->setAAMetadata(AATags);
1065
1066 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
1067 }
1068
1069 // Now we know that each predecessor of this block has a value in
1070 // AvailablePreds, sort them for efficient access as we're walking the preds.
1071 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1072
1073 // Create a PHI node at the start of the block for the PRE'd load value.
1074 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
1075 PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "",
1076 &LoadBB->front());
1077 PN->takeName(LI);
1078 PN->setDebugLoc(LI->getDebugLoc());
1079
1080 // Insert new entries into the PHI for each predecessor. A single block may
1081 // have multiple entries here.
1082 for (pred_iterator PI = PB; PI != PE; ++PI) {
1083 BasicBlock *P = *PI;
1084 AvailablePredsTy::iterator I =
1085 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
1086 std::make_pair(P, (Value*)nullptr));
1087
1088 assert(I != AvailablePreds.end() && I->first == P &&
1089 "Didn't find entry for predecessor!");
1090
1091 // If we have an available predecessor but it requires casting, insert the
1092 // cast in the predecessor and use the cast. Note that we have to update the
1093 // AvailablePreds vector as we go so that all of the PHI entries for this
1094 // predecessor use the same bitcast.
1095 Value *&PredV = I->second;
1096 if (PredV->getType() != LI->getType())
1097 PredV = CastInst::CreateBitOrPointerCast(PredV, LI->getType(), "",
1098 P->getTerminator());
1099
1100 PN->addIncoming(PredV, I->first);
1101 }
1102
1103 LI->replaceAllUsesWith(PN);
1104 LI->eraseFromParent();
1105
1106 return true;
1107 }
1108
1109 /// FindMostPopularDest - The specified list contains multiple possible
1110 /// threadable destinations. Pick the one that occurs the most frequently in
1111 /// the list.
1112 static BasicBlock *
FindMostPopularDest(BasicBlock * BB,const SmallVectorImpl<std::pair<BasicBlock *,BasicBlock * >> & PredToDestList)1113 FindMostPopularDest(BasicBlock *BB,
1114 const SmallVectorImpl<std::pair<BasicBlock*,
1115 BasicBlock*> > &PredToDestList) {
1116 assert(!PredToDestList.empty());
1117
1118 // Determine popularity. If there are multiple possible destinations, we
1119 // explicitly choose to ignore 'undef' destinations. We prefer to thread
1120 // blocks with known and real destinations to threading undef. We'll handle
1121 // them later if interesting.
1122 DenseMap<BasicBlock*, unsigned> DestPopularity;
1123 for (const auto &PredToDest : PredToDestList)
1124 if (PredToDest.second)
1125 DestPopularity[PredToDest.second]++;
1126
1127 // Find the most popular dest.
1128 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
1129 BasicBlock *MostPopularDest = DPI->first;
1130 unsigned Popularity = DPI->second;
1131 SmallVector<BasicBlock*, 4> SamePopularity;
1132
1133 for (++DPI; DPI != DestPopularity.end(); ++DPI) {
1134 // If the popularity of this entry isn't higher than the popularity we've
1135 // seen so far, ignore it.
1136 if (DPI->second < Popularity)
1137 ; // ignore.
1138 else if (DPI->second == Popularity) {
1139 // If it is the same as what we've seen so far, keep track of it.
1140 SamePopularity.push_back(DPI->first);
1141 } else {
1142 // If it is more popular, remember it.
1143 SamePopularity.clear();
1144 MostPopularDest = DPI->first;
1145 Popularity = DPI->second;
1146 }
1147 }
1148
1149 // Okay, now we know the most popular destination. If there is more than one
1150 // destination, we need to determine one. This is arbitrary, but we need
1151 // to make a deterministic decision. Pick the first one that appears in the
1152 // successor list.
1153 if (!SamePopularity.empty()) {
1154 SamePopularity.push_back(MostPopularDest);
1155 TerminatorInst *TI = BB->getTerminator();
1156 for (unsigned i = 0; ; ++i) {
1157 assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
1158
1159 if (std::find(SamePopularity.begin(), SamePopularity.end(),
1160 TI->getSuccessor(i)) == SamePopularity.end())
1161 continue;
1162
1163 MostPopularDest = TI->getSuccessor(i);
1164 break;
1165 }
1166 }
1167
1168 // Okay, we have finally picked the most popular destination.
1169 return MostPopularDest;
1170 }
1171
ProcessThreadableEdges(Value * Cond,BasicBlock * BB,ConstantPreference Preference,Instruction * CxtI)1172 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
1173 ConstantPreference Preference,
1174 Instruction *CxtI) {
1175 // If threading this would thread across a loop header, don't even try to
1176 // thread the edge.
1177 if (LoopHeaders.count(BB))
1178 return false;
1179
1180 PredValueInfoTy PredValues;
1181 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI))
1182 return false;
1183
1184 assert(!PredValues.empty() &&
1185 "ComputeValueKnownInPredecessors returned true with no values");
1186
1187 DEBUG(dbgs() << "IN BB: " << *BB;
1188 for (const auto &PredValue : PredValues) {
1189 dbgs() << " BB '" << BB->getName() << "': FOUND condition = "
1190 << *PredValue.first
1191 << " for pred '" << PredValue.second->getName() << "'.\n";
1192 });
1193
1194 // Decide what we want to thread through. Convert our list of known values to
1195 // a list of known destinations for each pred. This also discards duplicate
1196 // predecessors and keeps track of the undefined inputs (which are represented
1197 // as a null dest in the PredToDestList).
1198 SmallPtrSet<BasicBlock*, 16> SeenPreds;
1199 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1200
1201 BasicBlock *OnlyDest = nullptr;
1202 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1203
1204 for (const auto &PredValue : PredValues) {
1205 BasicBlock *Pred = PredValue.second;
1206 if (!SeenPreds.insert(Pred).second)
1207 continue; // Duplicate predecessor entry.
1208
1209 // If the predecessor ends with an indirect goto, we can't change its
1210 // destination.
1211 if (isa<IndirectBrInst>(Pred->getTerminator()))
1212 continue;
1213
1214 Constant *Val = PredValue.first;
1215
1216 BasicBlock *DestBB;
1217 if (isa<UndefValue>(Val))
1218 DestBB = nullptr;
1219 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
1220 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1221 else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1222 DestBB = SI->findCaseValue(cast<ConstantInt>(Val)).getCaseSuccessor();
1223 } else {
1224 assert(isa<IndirectBrInst>(BB->getTerminator())
1225 && "Unexpected terminator");
1226 DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1227 }
1228
1229 // If we have exactly one destination, remember it for efficiency below.
1230 if (PredToDestList.empty())
1231 OnlyDest = DestBB;
1232 else if (OnlyDest != DestBB)
1233 OnlyDest = MultipleDestSentinel;
1234
1235 PredToDestList.push_back(std::make_pair(Pred, DestBB));
1236 }
1237
1238 // If all edges were unthreadable, we fail.
1239 if (PredToDestList.empty())
1240 return false;
1241
1242 // Determine which is the most common successor. If we have many inputs and
1243 // this block is a switch, we want to start by threading the batch that goes
1244 // to the most popular destination first. If we only know about one
1245 // threadable destination (the common case) we can avoid this.
1246 BasicBlock *MostPopularDest = OnlyDest;
1247
1248 if (MostPopularDest == MultipleDestSentinel)
1249 MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1250
1251 // Now that we know what the most popular destination is, factor all
1252 // predecessors that will jump to it into a single predecessor.
1253 SmallVector<BasicBlock*, 16> PredsToFactor;
1254 for (const auto &PredToDest : PredToDestList)
1255 if (PredToDest.second == MostPopularDest) {
1256 BasicBlock *Pred = PredToDest.first;
1257
1258 // This predecessor may be a switch or something else that has multiple
1259 // edges to the block. Factor each of these edges by listing them
1260 // according to # occurrences in PredsToFactor.
1261 for (BasicBlock *Succ : successors(Pred))
1262 if (Succ == BB)
1263 PredsToFactor.push_back(Pred);
1264 }
1265
1266 // If the threadable edges are branching on an undefined value, we get to pick
1267 // the destination that these predecessors should get to.
1268 if (!MostPopularDest)
1269 MostPopularDest = BB->getTerminator()->
1270 getSuccessor(GetBestDestForJumpOnUndef(BB));
1271
1272 // Ok, try to thread it!
1273 return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1274 }
1275
1276 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1277 /// a PHI node in the current block. See if there are any simplifications we
1278 /// can do based on inputs to the phi node.
1279 ///
ProcessBranchOnPHI(PHINode * PN)1280 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) {
1281 BasicBlock *BB = PN->getParent();
1282
1283 // TODO: We could make use of this to do it once for blocks with common PHI
1284 // values.
1285 SmallVector<BasicBlock*, 1> PredBBs;
1286 PredBBs.resize(1);
1287
1288 // If any of the predecessor blocks end in an unconditional branch, we can
1289 // *duplicate* the conditional branch into that block in order to further
1290 // encourage jump threading and to eliminate cases where we have branch on a
1291 // phi of an icmp (branch on icmp is much better).
1292 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1293 BasicBlock *PredBB = PN->getIncomingBlock(i);
1294 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1295 if (PredBr->isUnconditional()) {
1296 PredBBs[0] = PredBB;
1297 // Try to duplicate BB into PredBB.
1298 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1299 return true;
1300 }
1301 }
1302
1303 return false;
1304 }
1305
1306 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1307 /// a xor instruction in the current block. See if there are any
1308 /// simplifications we can do based on inputs to the xor.
1309 ///
ProcessBranchOnXOR(BinaryOperator * BO)1310 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) {
1311 BasicBlock *BB = BO->getParent();
1312
1313 // If either the LHS or RHS of the xor is a constant, don't do this
1314 // optimization.
1315 if (isa<ConstantInt>(BO->getOperand(0)) ||
1316 isa<ConstantInt>(BO->getOperand(1)))
1317 return false;
1318
1319 // If the first instruction in BB isn't a phi, we won't be able to infer
1320 // anything special about any particular predecessor.
1321 if (!isa<PHINode>(BB->front()))
1322 return false;
1323
1324 // If we have a xor as the branch input to this block, and we know that the
1325 // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1326 // the condition into the predecessor and fix that value to true, saving some
1327 // logical ops on that path and encouraging other paths to simplify.
1328 //
1329 // This copies something like this:
1330 //
1331 // BB:
1332 // %X = phi i1 [1], [%X']
1333 // %Y = icmp eq i32 %A, %B
1334 // %Z = xor i1 %X, %Y
1335 // br i1 %Z, ...
1336 //
1337 // Into:
1338 // BB':
1339 // %Y = icmp ne i32 %A, %B
1340 // br i1 %Y, ...
1341
1342 PredValueInfoTy XorOpValues;
1343 bool isLHS = true;
1344 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1345 WantInteger, BO)) {
1346 assert(XorOpValues.empty());
1347 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1348 WantInteger, BO))
1349 return false;
1350 isLHS = false;
1351 }
1352
1353 assert(!XorOpValues.empty() &&
1354 "ComputeValueKnownInPredecessors returned true with no values");
1355
1356 // Scan the information to see which is most popular: true or false. The
1357 // predecessors can be of the set true, false, or undef.
1358 unsigned NumTrue = 0, NumFalse = 0;
1359 for (const auto &XorOpValue : XorOpValues) {
1360 if (isa<UndefValue>(XorOpValue.first))
1361 // Ignore undefs for the count.
1362 continue;
1363 if (cast<ConstantInt>(XorOpValue.first)->isZero())
1364 ++NumFalse;
1365 else
1366 ++NumTrue;
1367 }
1368
1369 // Determine which value to split on, true, false, or undef if neither.
1370 ConstantInt *SplitVal = nullptr;
1371 if (NumTrue > NumFalse)
1372 SplitVal = ConstantInt::getTrue(BB->getContext());
1373 else if (NumTrue != 0 || NumFalse != 0)
1374 SplitVal = ConstantInt::getFalse(BB->getContext());
1375
1376 // Collect all of the blocks that this can be folded into so that we can
1377 // factor this once and clone it once.
1378 SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1379 for (const auto &XorOpValue : XorOpValues) {
1380 if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1381 continue;
1382
1383 BlocksToFoldInto.push_back(XorOpValue.second);
1384 }
1385
1386 // If we inferred a value for all of the predecessors, then duplication won't
1387 // help us. However, we can just replace the LHS or RHS with the constant.
1388 if (BlocksToFoldInto.size() ==
1389 cast<PHINode>(BB->front()).getNumIncomingValues()) {
1390 if (!SplitVal) {
1391 // If all preds provide undef, just nuke the xor, because it is undef too.
1392 BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1393 BO->eraseFromParent();
1394 } else if (SplitVal->isZero()) {
1395 // If all preds provide 0, replace the xor with the other input.
1396 BO->replaceAllUsesWith(BO->getOperand(isLHS));
1397 BO->eraseFromParent();
1398 } else {
1399 // If all preds provide 1, set the computed value to 1.
1400 BO->setOperand(!isLHS, SplitVal);
1401 }
1402
1403 return true;
1404 }
1405
1406 // Try to duplicate BB into PredBB.
1407 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1408 }
1409
1410
1411 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1412 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for
1413 /// NewPred using the entries from OldPred (suitably mapped).
AddPHINodeEntriesForMappedBlock(BasicBlock * PHIBB,BasicBlock * OldPred,BasicBlock * NewPred,DenseMap<Instruction *,Value * > & ValueMap)1414 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1415 BasicBlock *OldPred,
1416 BasicBlock *NewPred,
1417 DenseMap<Instruction*, Value*> &ValueMap) {
1418 for (BasicBlock::iterator PNI = PHIBB->begin();
1419 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1420 // Ok, we have a PHI node. Figure out what the incoming value was for the
1421 // DestBlock.
1422 Value *IV = PN->getIncomingValueForBlock(OldPred);
1423
1424 // Remap the value if necessary.
1425 if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1426 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1427 if (I != ValueMap.end())
1428 IV = I->second;
1429 }
1430
1431 PN->addIncoming(IV, NewPred);
1432 }
1433 }
1434
1435 /// ThreadEdge - We have decided that it is safe and profitable to factor the
1436 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1437 /// across BB. Transform the IR to reflect this change.
ThreadEdge(BasicBlock * BB,const SmallVectorImpl<BasicBlock * > & PredBBs,BasicBlock * SuccBB)1438 bool JumpThreadingPass::ThreadEdge(BasicBlock *BB,
1439 const SmallVectorImpl<BasicBlock *> &PredBBs,
1440 BasicBlock *SuccBB) {
1441 // If threading to the same block as we come from, we would infinite loop.
1442 if (SuccBB == BB) {
1443 DEBUG(dbgs() << " Not threading across BB '" << BB->getName()
1444 << "' - would thread to self!\n");
1445 return false;
1446 }
1447
1448 // If threading this would thread across a loop header, don't thread the edge.
1449 // See the comments above FindLoopHeaders for justifications and caveats.
1450 if (LoopHeaders.count(BB)) {
1451 DEBUG(dbgs() << " Not threading across loop header BB '" << BB->getName()
1452 << "' to dest BB '" << SuccBB->getName()
1453 << "' - it might create an irreducible loop!\n");
1454 return false;
1455 }
1456
1457 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB, BBDupThreshold);
1458 if (JumpThreadCost > BBDupThreshold) {
1459 DEBUG(dbgs() << " Not threading BB '" << BB->getName()
1460 << "' - Cost is too high: " << JumpThreadCost << "\n");
1461 return false;
1462 }
1463
1464 // And finally, do it! Start by factoring the predecessors if needed.
1465 BasicBlock *PredBB;
1466 if (PredBBs.size() == 1)
1467 PredBB = PredBBs[0];
1468 else {
1469 DEBUG(dbgs() << " Factoring out " << PredBBs.size()
1470 << " common predecessors.\n");
1471 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
1472 }
1473
1474 // And finally, do it!
1475 DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '"
1476 << SuccBB->getName() << "' with cost: " << JumpThreadCost
1477 << ", across block:\n "
1478 << *BB << "\n");
1479
1480 LVI->threadEdge(PredBB, BB, SuccBB);
1481
1482 // We are going to have to map operands from the original BB block to the new
1483 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to
1484 // account for entry from PredBB.
1485 DenseMap<Instruction*, Value*> ValueMapping;
1486
1487 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1488 BB->getName()+".thread",
1489 BB->getParent(), BB);
1490 NewBB->moveAfter(PredBB);
1491
1492 // Set the block frequency of NewBB.
1493 if (HasProfileData) {
1494 auto NewBBFreq =
1495 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
1496 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
1497 }
1498
1499 BasicBlock::iterator BI = BB->begin();
1500 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1501 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1502
1503 // Clone the non-phi instructions of BB into NewBB, keeping track of the
1504 // mapping and using it to remap operands in the cloned instructions.
1505 for (; !isa<TerminatorInst>(BI); ++BI) {
1506 Instruction *New = BI->clone();
1507 New->setName(BI->getName());
1508 NewBB->getInstList().push_back(New);
1509 ValueMapping[&*BI] = New;
1510
1511 // Remap operands to patch up intra-block references.
1512 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1513 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1514 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1515 if (I != ValueMapping.end())
1516 New->setOperand(i, I->second);
1517 }
1518 }
1519
1520 // We didn't copy the terminator from BB over to NewBB, because there is now
1521 // an unconditional jump to SuccBB. Insert the unconditional jump.
1522 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
1523 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
1524
1525 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1526 // PHI nodes for NewBB now.
1527 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1528
1529 // If there were values defined in BB that are used outside the block, then we
1530 // now have to update all uses of the value to use either the original value,
1531 // the cloned value, or some PHI derived value. This can require arbitrary
1532 // PHI insertion, of which we are prepared to do, clean these up now.
1533 SSAUpdater SSAUpdate;
1534 SmallVector<Use*, 16> UsesToRename;
1535 for (Instruction &I : *BB) {
1536 // Scan all uses of this instruction to see if it is used outside of its
1537 // block, and if so, record them in UsesToRename.
1538 for (Use &U : I.uses()) {
1539 Instruction *User = cast<Instruction>(U.getUser());
1540 if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1541 if (UserPN->getIncomingBlock(U) == BB)
1542 continue;
1543 } else if (User->getParent() == BB)
1544 continue;
1545
1546 UsesToRename.push_back(&U);
1547 }
1548
1549 // If there are no uses outside the block, we're done with this instruction.
1550 if (UsesToRename.empty())
1551 continue;
1552
1553 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
1554
1555 // We found a use of I outside of BB. Rename all uses of I that are outside
1556 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
1557 // with the two values we know.
1558 SSAUpdate.Initialize(I.getType(), I.getName());
1559 SSAUpdate.AddAvailableValue(BB, &I);
1560 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
1561
1562 while (!UsesToRename.empty())
1563 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1564 DEBUG(dbgs() << "\n");
1565 }
1566
1567
1568 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to
1569 // NewBB instead of BB. This eliminates predecessors from BB, which requires
1570 // us to simplify any PHI nodes in BB.
1571 TerminatorInst *PredTerm = PredBB->getTerminator();
1572 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1573 if (PredTerm->getSuccessor(i) == BB) {
1574 BB->removePredecessor(PredBB, true);
1575 PredTerm->setSuccessor(i, NewBB);
1576 }
1577
1578 // At this point, the IR is fully up to date and consistent. Do a quick scan
1579 // over the new instructions and zap any that are constants or dead. This
1580 // frequently happens because of phi translation.
1581 SimplifyInstructionsInBlock(NewBB, TLI);
1582
1583 // Update the edge weight from BB to SuccBB, which should be less than before.
1584 UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);
1585
1586 // Threaded an edge!
1587 ++NumThreads;
1588 return true;
1589 }
1590
1591 /// Create a new basic block that will be the predecessor of BB and successor of
1592 /// all blocks in Preds. When profile data is availble, update the frequency of
1593 /// this new block.
SplitBlockPreds(BasicBlock * BB,ArrayRef<BasicBlock * > Preds,const char * Suffix)1594 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB,
1595 ArrayRef<BasicBlock *> Preds,
1596 const char *Suffix) {
1597 // Collect the frequencies of all predecessors of BB, which will be used to
1598 // update the edge weight on BB->SuccBB.
1599 BlockFrequency PredBBFreq(0);
1600 if (HasProfileData)
1601 for (auto Pred : Preds)
1602 PredBBFreq += BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB);
1603
1604 BasicBlock *PredBB = SplitBlockPredecessors(BB, Preds, Suffix);
1605
1606 // Set the block frequency of the newly created PredBB, which is the sum of
1607 // frequencies of Preds.
1608 if (HasProfileData)
1609 BFI->setBlockFreq(PredBB, PredBBFreq.getFrequency());
1610 return PredBB;
1611 }
1612
1613 /// Update the block frequency of BB and branch weight and the metadata on the
1614 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
1615 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
UpdateBlockFreqAndEdgeWeight(BasicBlock * PredBB,BasicBlock * BB,BasicBlock * NewBB,BasicBlock * SuccBB)1616 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
1617 BasicBlock *BB,
1618 BasicBlock *NewBB,
1619 BasicBlock *SuccBB) {
1620 if (!HasProfileData)
1621 return;
1622
1623 assert(BFI && BPI && "BFI & BPI should have been created here");
1624
1625 // As the edge from PredBB to BB is deleted, we have to update the block
1626 // frequency of BB.
1627 auto BBOrigFreq = BFI->getBlockFreq(BB);
1628 auto NewBBFreq = BFI->getBlockFreq(NewBB);
1629 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
1630 auto BBNewFreq = BBOrigFreq - NewBBFreq;
1631 BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
1632
1633 // Collect updated outgoing edges' frequencies from BB and use them to update
1634 // edge probabilities.
1635 SmallVector<uint64_t, 4> BBSuccFreq;
1636 for (BasicBlock *Succ : successors(BB)) {
1637 auto SuccFreq = (Succ == SuccBB)
1638 ? BB2SuccBBFreq - NewBBFreq
1639 : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
1640 BBSuccFreq.push_back(SuccFreq.getFrequency());
1641 }
1642
1643 uint64_t MaxBBSuccFreq =
1644 *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
1645
1646 SmallVector<BranchProbability, 4> BBSuccProbs;
1647 if (MaxBBSuccFreq == 0)
1648 BBSuccProbs.assign(BBSuccFreq.size(),
1649 {1, static_cast<unsigned>(BBSuccFreq.size())});
1650 else {
1651 for (uint64_t Freq : BBSuccFreq)
1652 BBSuccProbs.push_back(
1653 BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
1654 // Normalize edge probabilities so that they sum up to one.
1655 BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
1656 BBSuccProbs.end());
1657 }
1658
1659 // Update edge probabilities in BPI.
1660 for (int I = 0, E = BBSuccProbs.size(); I < E; I++)
1661 BPI->setEdgeProbability(BB, I, BBSuccProbs[I]);
1662
1663 if (BBSuccProbs.size() >= 2) {
1664 SmallVector<uint32_t, 4> Weights;
1665 for (auto Prob : BBSuccProbs)
1666 Weights.push_back(Prob.getNumerator());
1667
1668 auto TI = BB->getTerminator();
1669 TI->setMetadata(
1670 LLVMContext::MD_prof,
1671 MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
1672 }
1673 }
1674
1675 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1676 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1677 /// If we can duplicate the contents of BB up into PredBB do so now, this
1678 /// improves the odds that the branch will be on an analyzable instruction like
1679 /// a compare.
DuplicateCondBranchOnPHIIntoPred(BasicBlock * BB,const SmallVectorImpl<BasicBlock * > & PredBBs)1680 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred(
1681 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
1682 assert(!PredBBs.empty() && "Can't handle an empty set");
1683
1684 // If BB is a loop header, then duplicating this block outside the loop would
1685 // cause us to transform this into an irreducible loop, don't do this.
1686 // See the comments above FindLoopHeaders for justifications and caveats.
1687 if (LoopHeaders.count(BB)) {
1688 DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName()
1689 << "' into predecessor block '" << PredBBs[0]->getName()
1690 << "' - it might create an irreducible loop!\n");
1691 return false;
1692 }
1693
1694 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB, BBDupThreshold);
1695 if (DuplicationCost > BBDupThreshold) {
1696 DEBUG(dbgs() << " Not duplicating BB '" << BB->getName()
1697 << "' - Cost is too high: " << DuplicationCost << "\n");
1698 return false;
1699 }
1700
1701 // And finally, do it! Start by factoring the predecessors if needed.
1702 BasicBlock *PredBB;
1703 if (PredBBs.size() == 1)
1704 PredBB = PredBBs[0];
1705 else {
1706 DEBUG(dbgs() << " Factoring out " << PredBBs.size()
1707 << " common predecessors.\n");
1708 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
1709 }
1710
1711 // Okay, we decided to do this! Clone all the instructions in BB onto the end
1712 // of PredBB.
1713 DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '"
1714 << PredBB->getName() << "' to eliminate branch on phi. Cost: "
1715 << DuplicationCost << " block is:" << *BB << "\n");
1716
1717 // Unless PredBB ends with an unconditional branch, split the edge so that we
1718 // can just clone the bits from BB into the end of the new PredBB.
1719 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
1720
1721 if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
1722 PredBB = SplitEdge(PredBB, BB);
1723 OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1724 }
1725
1726 // We are going to have to map operands from the original BB block into the
1727 // PredBB block. Evaluate PHI nodes in BB.
1728 DenseMap<Instruction*, Value*> ValueMapping;
1729
1730 BasicBlock::iterator BI = BB->begin();
1731 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1732 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1733 // Clone the non-phi instructions of BB into PredBB, keeping track of the
1734 // mapping and using it to remap operands in the cloned instructions.
1735 for (; BI != BB->end(); ++BI) {
1736 Instruction *New = BI->clone();
1737
1738 // Remap operands to patch up intra-block references.
1739 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1740 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1741 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1742 if (I != ValueMapping.end())
1743 New->setOperand(i, I->second);
1744 }
1745
1746 // If this instruction can be simplified after the operands are updated,
1747 // just use the simplified value instead. This frequently happens due to
1748 // phi translation.
1749 if (Value *IV =
1750 SimplifyInstruction(New, BB->getModule()->getDataLayout())) {
1751 ValueMapping[&*BI] = IV;
1752 if (!New->mayHaveSideEffects()) {
1753 delete New;
1754 New = nullptr;
1755 }
1756 } else {
1757 ValueMapping[&*BI] = New;
1758 }
1759 if (New) {
1760 // Otherwise, insert the new instruction into the block.
1761 New->setName(BI->getName());
1762 PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
1763 }
1764 }
1765
1766 // Check to see if the targets of the branch had PHI nodes. If so, we need to
1767 // add entries to the PHI nodes for branch from PredBB now.
1768 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1769 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1770 ValueMapping);
1771 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1772 ValueMapping);
1773
1774 // If there were values defined in BB that are used outside the block, then we
1775 // now have to update all uses of the value to use either the original value,
1776 // the cloned value, or some PHI derived value. This can require arbitrary
1777 // PHI insertion, of which we are prepared to do, clean these up now.
1778 SSAUpdater SSAUpdate;
1779 SmallVector<Use*, 16> UsesToRename;
1780 for (Instruction &I : *BB) {
1781 // Scan all uses of this instruction to see if it is used outside of its
1782 // block, and if so, record them in UsesToRename.
1783 for (Use &U : I.uses()) {
1784 Instruction *User = cast<Instruction>(U.getUser());
1785 if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1786 if (UserPN->getIncomingBlock(U) == BB)
1787 continue;
1788 } else if (User->getParent() == BB)
1789 continue;
1790
1791 UsesToRename.push_back(&U);
1792 }
1793
1794 // If there are no uses outside the block, we're done with this instruction.
1795 if (UsesToRename.empty())
1796 continue;
1797
1798 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
1799
1800 // We found a use of I outside of BB. Rename all uses of I that are outside
1801 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
1802 // with the two values we know.
1803 SSAUpdate.Initialize(I.getType(), I.getName());
1804 SSAUpdate.AddAvailableValue(BB, &I);
1805 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]);
1806
1807 while (!UsesToRename.empty())
1808 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1809 DEBUG(dbgs() << "\n");
1810 }
1811
1812 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1813 // that we nuked.
1814 BB->removePredecessor(PredBB, true);
1815
1816 // Remove the unconditional branch at the end of the PredBB block.
1817 OldPredBranch->eraseFromParent();
1818
1819 ++NumDupes;
1820 return true;
1821 }
1822
1823 /// TryToUnfoldSelect - Look for blocks of the form
1824 /// bb1:
1825 /// %a = select
1826 /// br bb
1827 ///
1828 /// bb2:
1829 /// %p = phi [%a, %bb] ...
1830 /// %c = icmp %p
1831 /// br i1 %c
1832 ///
1833 /// And expand the select into a branch structure if one of its arms allows %c
1834 /// to be folded. This later enables threading from bb1 over bb2.
TryToUnfoldSelect(CmpInst * CondCmp,BasicBlock * BB)1835 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
1836 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
1837 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
1838 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
1839
1840 if (!CondBr || !CondBr->isConditional() || !CondLHS ||
1841 CondLHS->getParent() != BB)
1842 return false;
1843
1844 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
1845 BasicBlock *Pred = CondLHS->getIncomingBlock(I);
1846 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
1847
1848 // Look if one of the incoming values is a select in the corresponding
1849 // predecessor.
1850 if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
1851 continue;
1852
1853 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
1854 if (!PredTerm || !PredTerm->isUnconditional())
1855 continue;
1856
1857 // Now check if one of the select values would allow us to constant fold the
1858 // terminator in BB. We don't do the transform if both sides fold, those
1859 // cases will be threaded in any case.
1860 LazyValueInfo::Tristate LHSFolds =
1861 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
1862 CondRHS, Pred, BB, CondCmp);
1863 LazyValueInfo::Tristate RHSFolds =
1864 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
1865 CondRHS, Pred, BB, CondCmp);
1866 if ((LHSFolds != LazyValueInfo::Unknown ||
1867 RHSFolds != LazyValueInfo::Unknown) &&
1868 LHSFolds != RHSFolds) {
1869 // Expand the select.
1870 //
1871 // Pred --
1872 // | v
1873 // | NewBB
1874 // | |
1875 // |-----
1876 // v
1877 // BB
1878 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
1879 BB->getParent(), BB);
1880 // Move the unconditional branch to NewBB.
1881 PredTerm->removeFromParent();
1882 NewBB->getInstList().insert(NewBB->end(), PredTerm);
1883 // Create a conditional branch and update PHI nodes.
1884 BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
1885 CondLHS->setIncomingValue(I, SI->getFalseValue());
1886 CondLHS->addIncoming(SI->getTrueValue(), NewBB);
1887 // The select is now dead.
1888 SI->eraseFromParent();
1889
1890 // Update any other PHI nodes in BB.
1891 for (BasicBlock::iterator BI = BB->begin();
1892 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
1893 if (Phi != CondLHS)
1894 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
1895 return true;
1896 }
1897 }
1898 return false;
1899 }
1900
1901 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select in the same BB of the form
1902 /// bb:
1903 /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
1904 /// %s = select p, trueval, falseval
1905 ///
1906 /// And expand the select into a branch structure. This later enables
1907 /// jump-threading over bb in this pass.
1908 ///
1909 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
1910 /// select if the associated PHI has at least one constant. If the unfolded
1911 /// select is not jump-threaded, it will be folded again in the later
1912 /// optimizations.
TryToUnfoldSelectInCurrBB(BasicBlock * BB)1913 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) {
1914 // If threading this would thread across a loop header, don't thread the edge.
1915 // See the comments above FindLoopHeaders for justifications and caveats.
1916 if (LoopHeaders.count(BB))
1917 return false;
1918
1919 // Look for a Phi/Select pair in the same basic block. The Phi feeds the
1920 // condition of the Select and at least one of the incoming values is a
1921 // constant.
1922 for (BasicBlock::iterator BI = BB->begin();
1923 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
1924 unsigned NumPHIValues = PN->getNumIncomingValues();
1925 if (NumPHIValues == 0 || !PN->hasOneUse())
1926 continue;
1927
1928 SelectInst *SI = dyn_cast<SelectInst>(PN->user_back());
1929 if (!SI || SI->getParent() != BB)
1930 continue;
1931
1932 Value *Cond = SI->getCondition();
1933 if (!Cond || Cond != PN || !Cond->getType()->isIntegerTy(1))
1934 continue;
1935
1936 bool HasConst = false;
1937 for (unsigned i = 0; i != NumPHIValues; ++i) {
1938 if (PN->getIncomingBlock(i) == BB)
1939 return false;
1940 if (isa<ConstantInt>(PN->getIncomingValue(i)))
1941 HasConst = true;
1942 }
1943
1944 if (HasConst) {
1945 // Expand the select.
1946 TerminatorInst *Term =
1947 SplitBlockAndInsertIfThen(SI->getCondition(), SI, false);
1948 PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
1949 NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
1950 NewPN->addIncoming(SI->getFalseValue(), BB);
1951 SI->replaceAllUsesWith(NewPN);
1952 SI->eraseFromParent();
1953 return true;
1954 }
1955 }
1956
1957 return false;
1958 }
1959