1 //===----- ScheduleDAGRRList.cpp - Reg pressure reduction list scheduler --===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements bottom-up and top-down register pressure reduction list
11 // schedulers, using standard algorithms. The basic approach uses a priority
12 // queue of available nodes to schedule. One at a time, nodes are taken from
13 // the priority queue (thus in priority order), checked for legality to
14 // schedule, and emitted if legal.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #include "llvm/CodeGen/SchedulerRegistry.h"
19 #include "ScheduleDAGSDNodes.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
25 #include "llvm/CodeGen/SelectionDAGISel.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/InlineAsm.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/Target/TargetInstrInfo.h"
32 #include "llvm/Target/TargetLowering.h"
33 #include "llvm/Target/TargetRegisterInfo.h"
34 #include "llvm/Target/TargetSubtargetInfo.h"
35 #include <climits>
36 using namespace llvm;
37
38 #define DEBUG_TYPE "pre-RA-sched"
39
40 STATISTIC(NumBacktracks, "Number of times scheduler backtracked");
41 STATISTIC(NumUnfolds, "Number of nodes unfolded");
42 STATISTIC(NumDups, "Number of duplicated nodes");
43 STATISTIC(NumPRCopies, "Number of physical register copies");
44
45 static RegisterScheduler
46 burrListDAGScheduler("list-burr",
47 "Bottom-up register reduction list scheduling",
48 createBURRListDAGScheduler);
49 static RegisterScheduler
50 sourceListDAGScheduler("source",
51 "Similar to list-burr but schedules in source "
52 "order when possible",
53 createSourceListDAGScheduler);
54
55 static RegisterScheduler
56 hybridListDAGScheduler("list-hybrid",
57 "Bottom-up register pressure aware list scheduling "
58 "which tries to balance latency and register pressure",
59 createHybridListDAGScheduler);
60
61 static RegisterScheduler
62 ILPListDAGScheduler("list-ilp",
63 "Bottom-up register pressure aware list scheduling "
64 "which tries to balance ILP and register pressure",
65 createILPListDAGScheduler);
66
67 static cl::opt<bool> DisableSchedCycles(
68 "disable-sched-cycles", cl::Hidden, cl::init(false),
69 cl::desc("Disable cycle-level precision during preRA scheduling"));
70
71 // Temporary sched=list-ilp flags until the heuristics are robust.
72 // Some options are also available under sched=list-hybrid.
73 static cl::opt<bool> DisableSchedRegPressure(
74 "disable-sched-reg-pressure", cl::Hidden, cl::init(false),
75 cl::desc("Disable regpressure priority in sched=list-ilp"));
76 static cl::opt<bool> DisableSchedLiveUses(
77 "disable-sched-live-uses", cl::Hidden, cl::init(true),
78 cl::desc("Disable live use priority in sched=list-ilp"));
79 static cl::opt<bool> DisableSchedVRegCycle(
80 "disable-sched-vrcycle", cl::Hidden, cl::init(false),
81 cl::desc("Disable virtual register cycle interference checks"));
82 static cl::opt<bool> DisableSchedPhysRegJoin(
83 "disable-sched-physreg-join", cl::Hidden, cl::init(false),
84 cl::desc("Disable physreg def-use affinity"));
85 static cl::opt<bool> DisableSchedStalls(
86 "disable-sched-stalls", cl::Hidden, cl::init(true),
87 cl::desc("Disable no-stall priority in sched=list-ilp"));
88 static cl::opt<bool> DisableSchedCriticalPath(
89 "disable-sched-critical-path", cl::Hidden, cl::init(false),
90 cl::desc("Disable critical path priority in sched=list-ilp"));
91 static cl::opt<bool> DisableSchedHeight(
92 "disable-sched-height", cl::Hidden, cl::init(false),
93 cl::desc("Disable scheduled-height priority in sched=list-ilp"));
94 static cl::opt<bool> Disable2AddrHack(
95 "disable-2addr-hack", cl::Hidden, cl::init(true),
96 cl::desc("Disable scheduler's two-address hack"));
97
98 static cl::opt<int> MaxReorderWindow(
99 "max-sched-reorder", cl::Hidden, cl::init(6),
100 cl::desc("Number of instructions to allow ahead of the critical path "
101 "in sched=list-ilp"));
102
103 static cl::opt<unsigned> AvgIPC(
104 "sched-avg-ipc", cl::Hidden, cl::init(1),
105 cl::desc("Average inst/cycle whan no target itinerary exists."));
106
107 namespace {
108 //===----------------------------------------------------------------------===//
109 /// ScheduleDAGRRList - The actual register reduction list scheduler
110 /// implementation. This supports both top-down and bottom-up scheduling.
111 ///
112 class ScheduleDAGRRList : public ScheduleDAGSDNodes {
113 private:
114 /// NeedLatency - True if the scheduler will make use of latency information.
115 ///
116 bool NeedLatency;
117
118 /// AvailableQueue - The priority queue to use for the available SUnits.
119 SchedulingPriorityQueue *AvailableQueue;
120
121 /// PendingQueue - This contains all of the instructions whose operands have
122 /// been issued, but their results are not ready yet (due to the latency of
123 /// the operation). Once the operands becomes available, the instruction is
124 /// added to the AvailableQueue.
125 std::vector<SUnit*> PendingQueue;
126
127 /// HazardRec - The hazard recognizer to use.
128 ScheduleHazardRecognizer *HazardRec;
129
130 /// CurCycle - The current scheduler state corresponds to this cycle.
131 unsigned CurCycle;
132
133 /// MinAvailableCycle - Cycle of the soonest available instruction.
134 unsigned MinAvailableCycle;
135
136 /// IssueCount - Count instructions issued in this cycle
137 /// Currently valid only for bottom-up scheduling.
138 unsigned IssueCount;
139
140 /// LiveRegDefs - A set of physical registers and their definition
141 /// that are "live". These nodes must be scheduled before any other nodes that
142 /// modifies the registers can be scheduled.
143 unsigned NumLiveRegs;
144 std::unique_ptr<SUnit*[]> LiveRegDefs;
145 std::unique_ptr<SUnit*[]> LiveRegGens;
146
147 // Collect interferences between physical register use/defs.
148 // Each interference is an SUnit and set of physical registers.
149 SmallVector<SUnit*, 4> Interferences;
150 typedef DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMapT;
151 LRegsMapT LRegsMap;
152
153 /// Topo - A topological ordering for SUnits which permits fast IsReachable
154 /// and similar queries.
155 ScheduleDAGTopologicalSort Topo;
156
157 // Hack to keep track of the inverse of FindCallSeqStart without more crazy
158 // DAG crawling.
159 DenseMap<SUnit*, SUnit*> CallSeqEndForStart;
160
161 public:
ScheduleDAGRRList(MachineFunction & mf,bool needlatency,SchedulingPriorityQueue * availqueue,CodeGenOpt::Level OptLevel)162 ScheduleDAGRRList(MachineFunction &mf, bool needlatency,
163 SchedulingPriorityQueue *availqueue,
164 CodeGenOpt::Level OptLevel)
165 : ScheduleDAGSDNodes(mf),
166 NeedLatency(needlatency), AvailableQueue(availqueue), CurCycle(0),
167 Topo(SUnits, nullptr) {
168
169 const TargetSubtargetInfo &STI = mf.getSubtarget();
170 if (DisableSchedCycles || !NeedLatency)
171 HazardRec = new ScheduleHazardRecognizer();
172 else
173 HazardRec = STI.getInstrInfo()->CreateTargetHazardRecognizer(&STI, this);
174 }
175
~ScheduleDAGRRList()176 ~ScheduleDAGRRList() override {
177 delete HazardRec;
178 delete AvailableQueue;
179 }
180
181 void Schedule() override;
182
getHazardRec()183 ScheduleHazardRecognizer *getHazardRec() { return HazardRec; }
184
185 /// IsReachable - Checks if SU is reachable from TargetSU.
IsReachable(const SUnit * SU,const SUnit * TargetSU)186 bool IsReachable(const SUnit *SU, const SUnit *TargetSU) {
187 return Topo.IsReachable(SU, TargetSU);
188 }
189
190 /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
191 /// create a cycle.
WillCreateCycle(SUnit * SU,SUnit * TargetSU)192 bool WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
193 return Topo.WillCreateCycle(SU, TargetSU);
194 }
195
196 /// AddPred - adds a predecessor edge to SUnit SU.
197 /// This returns true if this is a new predecessor.
198 /// Updates the topological ordering if required.
AddPred(SUnit * SU,const SDep & D)199 void AddPred(SUnit *SU, const SDep &D) {
200 Topo.AddPred(SU, D.getSUnit());
201 SU->addPred(D);
202 }
203
204 /// RemovePred - removes a predecessor edge from SUnit SU.
205 /// This returns true if an edge was removed.
206 /// Updates the topological ordering if required.
RemovePred(SUnit * SU,const SDep & D)207 void RemovePred(SUnit *SU, const SDep &D) {
208 Topo.RemovePred(SU, D.getSUnit());
209 SU->removePred(D);
210 }
211
212 private:
isReady(SUnit * SU)213 bool isReady(SUnit *SU) {
214 return DisableSchedCycles || !AvailableQueue->hasReadyFilter() ||
215 AvailableQueue->isReady(SU);
216 }
217
218 void ReleasePred(SUnit *SU, const SDep *PredEdge);
219 void ReleasePredecessors(SUnit *SU);
220 void ReleasePending();
221 void AdvanceToCycle(unsigned NextCycle);
222 void AdvancePastStalls(SUnit *SU);
223 void EmitNode(SUnit *SU);
224 void ScheduleNodeBottomUp(SUnit*);
225 void CapturePred(SDep *PredEdge);
226 void UnscheduleNodeBottomUp(SUnit*);
227 void RestoreHazardCheckerBottomUp();
228 void BacktrackBottomUp(SUnit*, SUnit*);
229 SUnit *CopyAndMoveSuccessors(SUnit*);
230 void InsertCopiesAndMoveSuccs(SUnit*, unsigned,
231 const TargetRegisterClass*,
232 const TargetRegisterClass*,
233 SmallVectorImpl<SUnit*>&);
234 bool DelayForLiveRegsBottomUp(SUnit*, SmallVectorImpl<unsigned>&);
235
236 void releaseInterferences(unsigned Reg = 0);
237
238 SUnit *PickNodeToScheduleBottomUp();
239 void ListScheduleBottomUp();
240
241 /// CreateNewSUnit - Creates a new SUnit and returns a pointer to it.
242 /// Updates the topological ordering if required.
CreateNewSUnit(SDNode * N)243 SUnit *CreateNewSUnit(SDNode *N) {
244 unsigned NumSUnits = SUnits.size();
245 SUnit *NewNode = newSUnit(N);
246 // Update the topological ordering.
247 if (NewNode->NodeNum >= NumSUnits)
248 Topo.InitDAGTopologicalSorting();
249 return NewNode;
250 }
251
252 /// CreateClone - Creates a new SUnit from an existing one.
253 /// Updates the topological ordering if required.
CreateClone(SUnit * N)254 SUnit *CreateClone(SUnit *N) {
255 unsigned NumSUnits = SUnits.size();
256 SUnit *NewNode = Clone(N);
257 // Update the topological ordering.
258 if (NewNode->NodeNum >= NumSUnits)
259 Topo.InitDAGTopologicalSorting();
260 return NewNode;
261 }
262
263 /// forceUnitLatencies - Register-pressure-reducing scheduling doesn't
264 /// need actual latency information but the hybrid scheduler does.
forceUnitLatencies() const265 bool forceUnitLatencies() const override {
266 return !NeedLatency;
267 }
268 };
269 } // end anonymous namespace
270
271 /// GetCostForDef - Looks up the register class and cost for a given definition.
272 /// Typically this just means looking up the representative register class,
273 /// but for untyped values (MVT::Untyped) it means inspecting the node's
274 /// opcode to determine what register class is being generated.
GetCostForDef(const ScheduleDAGSDNodes::RegDefIter & RegDefPos,const TargetLowering * TLI,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI,unsigned & RegClass,unsigned & Cost,const MachineFunction & MF)275 static void GetCostForDef(const ScheduleDAGSDNodes::RegDefIter &RegDefPos,
276 const TargetLowering *TLI,
277 const TargetInstrInfo *TII,
278 const TargetRegisterInfo *TRI,
279 unsigned &RegClass, unsigned &Cost,
280 const MachineFunction &MF) {
281 MVT VT = RegDefPos.GetValue();
282
283 // Special handling for untyped values. These values can only come from
284 // the expansion of custom DAG-to-DAG patterns.
285 if (VT == MVT::Untyped) {
286 const SDNode *Node = RegDefPos.GetNode();
287
288 // Special handling for CopyFromReg of untyped values.
289 if (!Node->isMachineOpcode() && Node->getOpcode() == ISD::CopyFromReg) {
290 unsigned Reg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
291 const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(Reg);
292 RegClass = RC->getID();
293 Cost = 1;
294 return;
295 }
296
297 unsigned Opcode = Node->getMachineOpcode();
298 if (Opcode == TargetOpcode::REG_SEQUENCE) {
299 unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
300 const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx);
301 RegClass = RC->getID();
302 Cost = 1;
303 return;
304 }
305
306 unsigned Idx = RegDefPos.GetIdx();
307 const MCInstrDesc Desc = TII->get(Opcode);
308 const TargetRegisterClass *RC = TII->getRegClass(Desc, Idx, TRI, MF);
309 RegClass = RC->getID();
310 // FIXME: Cost arbitrarily set to 1 because there doesn't seem to be a
311 // better way to determine it.
312 Cost = 1;
313 } else {
314 RegClass = TLI->getRepRegClassFor(VT)->getID();
315 Cost = TLI->getRepRegClassCostFor(VT);
316 }
317 }
318
319 /// Schedule - Schedule the DAG using list scheduling.
Schedule()320 void ScheduleDAGRRList::Schedule() {
321 DEBUG(dbgs()
322 << "********** List Scheduling BB#" << BB->getNumber()
323 << " '" << BB->getName() << "' **********\n");
324
325 CurCycle = 0;
326 IssueCount = 0;
327 MinAvailableCycle = DisableSchedCycles ? 0 : UINT_MAX;
328 NumLiveRegs = 0;
329 // Allocate slots for each physical register, plus one for a special register
330 // to track the virtual resource of a calling sequence.
331 LiveRegDefs.reset(new SUnit*[TRI->getNumRegs() + 1]());
332 LiveRegGens.reset(new SUnit*[TRI->getNumRegs() + 1]());
333 CallSeqEndForStart.clear();
334 assert(Interferences.empty() && LRegsMap.empty() && "stale Interferences");
335
336 // Build the scheduling graph.
337 BuildSchedGraph(nullptr);
338
339 DEBUG(for (SUnit &SU : SUnits)
340 SU.dumpAll(this));
341 Topo.InitDAGTopologicalSorting();
342
343 AvailableQueue->initNodes(SUnits);
344
345 HazardRec->Reset();
346
347 // Execute the actual scheduling loop.
348 ListScheduleBottomUp();
349
350 AvailableQueue->releaseState();
351
352 DEBUG({
353 dbgs() << "*** Final schedule ***\n";
354 dumpSchedule();
355 dbgs() << '\n';
356 });
357 }
358
359 //===----------------------------------------------------------------------===//
360 // Bottom-Up Scheduling
361 //===----------------------------------------------------------------------===//
362
363 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
364 /// the AvailableQueue if the count reaches zero. Also update its cycle bound.
ReleasePred(SUnit * SU,const SDep * PredEdge)365 void ScheduleDAGRRList::ReleasePred(SUnit *SU, const SDep *PredEdge) {
366 SUnit *PredSU = PredEdge->getSUnit();
367
368 #ifndef NDEBUG
369 if (PredSU->NumSuccsLeft == 0) {
370 dbgs() << "*** Scheduling failed! ***\n";
371 PredSU->dump(this);
372 dbgs() << " has been released too many times!\n";
373 llvm_unreachable(nullptr);
374 }
375 #endif
376 --PredSU->NumSuccsLeft;
377
378 if (!forceUnitLatencies()) {
379 // Updating predecessor's height. This is now the cycle when the
380 // predecessor can be scheduled without causing a pipeline stall.
381 PredSU->setHeightToAtLeast(SU->getHeight() + PredEdge->getLatency());
382 }
383
384 // If all the node's successors are scheduled, this node is ready
385 // to be scheduled. Ignore the special EntrySU node.
386 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
387 PredSU->isAvailable = true;
388
389 unsigned Height = PredSU->getHeight();
390 if (Height < MinAvailableCycle)
391 MinAvailableCycle = Height;
392
393 if (isReady(PredSU)) {
394 AvailableQueue->push(PredSU);
395 }
396 // CapturePred and others may have left the node in the pending queue, avoid
397 // adding it twice.
398 else if (!PredSU->isPending) {
399 PredSU->isPending = true;
400 PendingQueue.push_back(PredSU);
401 }
402 }
403 }
404
405 /// IsChainDependent - Test if Outer is reachable from Inner through
406 /// chain dependencies.
IsChainDependent(SDNode * Outer,SDNode * Inner,unsigned NestLevel,const TargetInstrInfo * TII)407 static bool IsChainDependent(SDNode *Outer, SDNode *Inner,
408 unsigned NestLevel,
409 const TargetInstrInfo *TII) {
410 SDNode *N = Outer;
411 for (;;) {
412 if (N == Inner)
413 return true;
414 // For a TokenFactor, examine each operand. There may be multiple ways
415 // to get to the CALLSEQ_BEGIN, but we need to find the path with the
416 // most nesting in order to ensure that we find the corresponding match.
417 if (N->getOpcode() == ISD::TokenFactor) {
418 for (const SDValue &Op : N->op_values())
419 if (IsChainDependent(Op.getNode(), Inner, NestLevel, TII))
420 return true;
421 return false;
422 }
423 // Check for a lowered CALLSEQ_BEGIN or CALLSEQ_END.
424 if (N->isMachineOpcode()) {
425 if (N->getMachineOpcode() ==
426 (unsigned)TII->getCallFrameDestroyOpcode()) {
427 ++NestLevel;
428 } else if (N->getMachineOpcode() ==
429 (unsigned)TII->getCallFrameSetupOpcode()) {
430 if (NestLevel == 0)
431 return false;
432 --NestLevel;
433 }
434 }
435 // Otherwise, find the chain and continue climbing.
436 for (const SDValue &Op : N->op_values())
437 if (Op.getValueType() == MVT::Other) {
438 N = Op.getNode();
439 goto found_chain_operand;
440 }
441 return false;
442 found_chain_operand:;
443 if (N->getOpcode() == ISD::EntryToken)
444 return false;
445 }
446 }
447
448 /// FindCallSeqStart - Starting from the (lowered) CALLSEQ_END node, locate
449 /// the corresponding (lowered) CALLSEQ_BEGIN node.
450 ///
451 /// NestLevel and MaxNested are used in recursion to indcate the current level
452 /// of nesting of CALLSEQ_BEGIN and CALLSEQ_END pairs, as well as the maximum
453 /// level seen so far.
454 ///
455 /// TODO: It would be better to give CALLSEQ_END an explicit operand to point
456 /// to the corresponding CALLSEQ_BEGIN to avoid needing to search for it.
457 static SDNode *
FindCallSeqStart(SDNode * N,unsigned & NestLevel,unsigned & MaxNest,const TargetInstrInfo * TII)458 FindCallSeqStart(SDNode *N, unsigned &NestLevel, unsigned &MaxNest,
459 const TargetInstrInfo *TII) {
460 for (;;) {
461 // For a TokenFactor, examine each operand. There may be multiple ways
462 // to get to the CALLSEQ_BEGIN, but we need to find the path with the
463 // most nesting in order to ensure that we find the corresponding match.
464 if (N->getOpcode() == ISD::TokenFactor) {
465 SDNode *Best = nullptr;
466 unsigned BestMaxNest = MaxNest;
467 for (const SDValue &Op : N->op_values()) {
468 unsigned MyNestLevel = NestLevel;
469 unsigned MyMaxNest = MaxNest;
470 if (SDNode *New = FindCallSeqStart(Op.getNode(),
471 MyNestLevel, MyMaxNest, TII))
472 if (!Best || (MyMaxNest > BestMaxNest)) {
473 Best = New;
474 BestMaxNest = MyMaxNest;
475 }
476 }
477 assert(Best);
478 MaxNest = BestMaxNest;
479 return Best;
480 }
481 // Check for a lowered CALLSEQ_BEGIN or CALLSEQ_END.
482 if (N->isMachineOpcode()) {
483 if (N->getMachineOpcode() ==
484 (unsigned)TII->getCallFrameDestroyOpcode()) {
485 ++NestLevel;
486 MaxNest = std::max(MaxNest, NestLevel);
487 } else if (N->getMachineOpcode() ==
488 (unsigned)TII->getCallFrameSetupOpcode()) {
489 assert(NestLevel != 0);
490 --NestLevel;
491 if (NestLevel == 0)
492 return N;
493 }
494 }
495 // Otherwise, find the chain and continue climbing.
496 for (const SDValue &Op : N->op_values())
497 if (Op.getValueType() == MVT::Other) {
498 N = Op.getNode();
499 goto found_chain_operand;
500 }
501 return nullptr;
502 found_chain_operand:;
503 if (N->getOpcode() == ISD::EntryToken)
504 return nullptr;
505 }
506 }
507
508 /// Call ReleasePred for each predecessor, then update register live def/gen.
509 /// Always update LiveRegDefs for a register dependence even if the current SU
510 /// also defines the register. This effectively create one large live range
511 /// across a sequence of two-address node. This is important because the
512 /// entire chain must be scheduled together. Example:
513 ///
514 /// flags = (3) add
515 /// flags = (2) addc flags
516 /// flags = (1) addc flags
517 ///
518 /// results in
519 ///
520 /// LiveRegDefs[flags] = 3
521 /// LiveRegGens[flags] = 1
522 ///
523 /// If (2) addc is unscheduled, then (1) addc must also be unscheduled to avoid
524 /// interference on flags.
ReleasePredecessors(SUnit * SU)525 void ScheduleDAGRRList::ReleasePredecessors(SUnit *SU) {
526 // Bottom up: release predecessors
527 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
528 I != E; ++I) {
529 ReleasePred(SU, &*I);
530 if (I->isAssignedRegDep()) {
531 // This is a physical register dependency and it's impossible or
532 // expensive to copy the register. Make sure nothing that can
533 // clobber the register is scheduled between the predecessor and
534 // this node.
535 SUnit *RegDef = LiveRegDefs[I->getReg()]; (void)RegDef;
536 assert((!RegDef || RegDef == SU || RegDef == I->getSUnit()) &&
537 "interference on register dependence");
538 LiveRegDefs[I->getReg()] = I->getSUnit();
539 if (!LiveRegGens[I->getReg()]) {
540 ++NumLiveRegs;
541 LiveRegGens[I->getReg()] = SU;
542 }
543 }
544 }
545
546 // If we're scheduling a lowered CALLSEQ_END, find the corresponding
547 // CALLSEQ_BEGIN. Inject an artificial physical register dependence between
548 // these nodes, to prevent other calls from being interscheduled with them.
549 unsigned CallResource = TRI->getNumRegs();
550 if (!LiveRegDefs[CallResource])
551 for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode())
552 if (Node->isMachineOpcode() &&
553 Node->getMachineOpcode() == (unsigned)TII->getCallFrameDestroyOpcode()) {
554 unsigned NestLevel = 0;
555 unsigned MaxNest = 0;
556 SDNode *N = FindCallSeqStart(Node, NestLevel, MaxNest, TII);
557
558 SUnit *Def = &SUnits[N->getNodeId()];
559 CallSeqEndForStart[Def] = SU;
560
561 ++NumLiveRegs;
562 LiveRegDefs[CallResource] = Def;
563 LiveRegGens[CallResource] = SU;
564 break;
565 }
566 }
567
568 /// Check to see if any of the pending instructions are ready to issue. If
569 /// so, add them to the available queue.
ReleasePending()570 void ScheduleDAGRRList::ReleasePending() {
571 if (DisableSchedCycles) {
572 assert(PendingQueue.empty() && "pending instrs not allowed in this mode");
573 return;
574 }
575
576 // If the available queue is empty, it is safe to reset MinAvailableCycle.
577 if (AvailableQueue->empty())
578 MinAvailableCycle = UINT_MAX;
579
580 // Check to see if any of the pending instructions are ready to issue. If
581 // so, add them to the available queue.
582 for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
583 unsigned ReadyCycle = PendingQueue[i]->getHeight();
584 if (ReadyCycle < MinAvailableCycle)
585 MinAvailableCycle = ReadyCycle;
586
587 if (PendingQueue[i]->isAvailable) {
588 if (!isReady(PendingQueue[i]))
589 continue;
590 AvailableQueue->push(PendingQueue[i]);
591 }
592 PendingQueue[i]->isPending = false;
593 PendingQueue[i] = PendingQueue.back();
594 PendingQueue.pop_back();
595 --i; --e;
596 }
597 }
598
599 /// Move the scheduler state forward by the specified number of Cycles.
AdvanceToCycle(unsigned NextCycle)600 void ScheduleDAGRRList::AdvanceToCycle(unsigned NextCycle) {
601 if (NextCycle <= CurCycle)
602 return;
603
604 IssueCount = 0;
605 AvailableQueue->setCurCycle(NextCycle);
606 if (!HazardRec->isEnabled()) {
607 // Bypass lots of virtual calls in case of long latency.
608 CurCycle = NextCycle;
609 }
610 else {
611 for (; CurCycle != NextCycle; ++CurCycle) {
612 HazardRec->RecedeCycle();
613 }
614 }
615 // FIXME: Instead of visiting the pending Q each time, set a dirty flag on the
616 // available Q to release pending nodes at least once before popping.
617 ReleasePending();
618 }
619
620 /// Move the scheduler state forward until the specified node's dependents are
621 /// ready and can be scheduled with no resource conflicts.
AdvancePastStalls(SUnit * SU)622 void ScheduleDAGRRList::AdvancePastStalls(SUnit *SU) {
623 if (DisableSchedCycles)
624 return;
625
626 // FIXME: Nodes such as CopyFromReg probably should not advance the current
627 // cycle. Otherwise, we can wrongly mask real stalls. If the non-machine node
628 // has predecessors the cycle will be advanced when they are scheduled.
629 // But given the crude nature of modeling latency though such nodes, we
630 // currently need to treat these nodes like real instructions.
631 // if (!SU->getNode() || !SU->getNode()->isMachineOpcode()) return;
632
633 unsigned ReadyCycle = SU->getHeight();
634
635 // Bump CurCycle to account for latency. We assume the latency of other
636 // available instructions may be hidden by the stall (not a full pipe stall).
637 // This updates the hazard recognizer's cycle before reserving resources for
638 // this instruction.
639 AdvanceToCycle(ReadyCycle);
640
641 // Calls are scheduled in their preceding cycle, so don't conflict with
642 // hazards from instructions after the call. EmitNode will reset the
643 // scoreboard state before emitting the call.
644 if (SU->isCall)
645 return;
646
647 // FIXME: For resource conflicts in very long non-pipelined stages, we
648 // should probably skip ahead here to avoid useless scoreboard checks.
649 int Stalls = 0;
650 while (true) {
651 ScheduleHazardRecognizer::HazardType HT =
652 HazardRec->getHazardType(SU, -Stalls);
653
654 if (HT == ScheduleHazardRecognizer::NoHazard)
655 break;
656
657 ++Stalls;
658 }
659 AdvanceToCycle(CurCycle + Stalls);
660 }
661
662 /// Record this SUnit in the HazardRecognizer.
663 /// Does not update CurCycle.
EmitNode(SUnit * SU)664 void ScheduleDAGRRList::EmitNode(SUnit *SU) {
665 if (!HazardRec->isEnabled())
666 return;
667
668 // Check for phys reg copy.
669 if (!SU->getNode())
670 return;
671
672 switch (SU->getNode()->getOpcode()) {
673 default:
674 assert(SU->getNode()->isMachineOpcode() &&
675 "This target-independent node should not be scheduled.");
676 break;
677 case ISD::MERGE_VALUES:
678 case ISD::TokenFactor:
679 case ISD::LIFETIME_START:
680 case ISD::LIFETIME_END:
681 case ISD::CopyToReg:
682 case ISD::CopyFromReg:
683 case ISD::EH_LABEL:
684 // Noops don't affect the scoreboard state. Copies are likely to be
685 // removed.
686 return;
687 case ISD::INLINEASM:
688 // For inline asm, clear the pipeline state.
689 HazardRec->Reset();
690 return;
691 }
692 if (SU->isCall) {
693 // Calls are scheduled with their preceding instructions. For bottom-up
694 // scheduling, clear the pipeline state before emitting.
695 HazardRec->Reset();
696 }
697
698 HazardRec->EmitInstruction(SU);
699 }
700
701 static void resetVRegCycle(SUnit *SU);
702
703 /// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
704 /// count of its predecessors. If a predecessor pending count is zero, add it to
705 /// the Available queue.
ScheduleNodeBottomUp(SUnit * SU)706 void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU) {
707 DEBUG(dbgs() << "\n*** Scheduling [" << CurCycle << "]: ");
708 DEBUG(SU->dump(this));
709
710 #ifndef NDEBUG
711 if (CurCycle < SU->getHeight())
712 DEBUG(dbgs() << " Height [" << SU->getHeight()
713 << "] pipeline stall!\n");
714 #endif
715
716 // FIXME: Do not modify node height. It may interfere with
717 // backtracking. Instead add a "ready cycle" to SUnit. Before scheduling the
718 // node its ready cycle can aid heuristics, and after scheduling it can
719 // indicate the scheduled cycle.
720 SU->setHeightToAtLeast(CurCycle);
721
722 // Reserve resources for the scheduled instruction.
723 EmitNode(SU);
724
725 Sequence.push_back(SU);
726
727 AvailableQueue->scheduledNode(SU);
728
729 // If HazardRec is disabled, and each inst counts as one cycle, then
730 // advance CurCycle before ReleasePredecessors to avoid useless pushes to
731 // PendingQueue for schedulers that implement HasReadyFilter.
732 if (!HazardRec->isEnabled() && AvgIPC < 2)
733 AdvanceToCycle(CurCycle + 1);
734
735 // Update liveness of predecessors before successors to avoid treating a
736 // two-address node as a live range def.
737 ReleasePredecessors(SU);
738
739 // Release all the implicit physical register defs that are live.
740 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
741 I != E; ++I) {
742 // LiveRegDegs[I->getReg()] != SU when SU is a two-address node.
743 if (I->isAssignedRegDep() && LiveRegDefs[I->getReg()] == SU) {
744 assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
745 --NumLiveRegs;
746 LiveRegDefs[I->getReg()] = nullptr;
747 LiveRegGens[I->getReg()] = nullptr;
748 releaseInterferences(I->getReg());
749 }
750 }
751 // Release the special call resource dependence, if this is the beginning
752 // of a call.
753 unsigned CallResource = TRI->getNumRegs();
754 if (LiveRegDefs[CallResource] == SU)
755 for (const SDNode *SUNode = SU->getNode(); SUNode;
756 SUNode = SUNode->getGluedNode()) {
757 if (SUNode->isMachineOpcode() &&
758 SUNode->getMachineOpcode() == (unsigned)TII->getCallFrameSetupOpcode()) {
759 assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
760 --NumLiveRegs;
761 LiveRegDefs[CallResource] = nullptr;
762 LiveRegGens[CallResource] = nullptr;
763 releaseInterferences(CallResource);
764 }
765 }
766
767 resetVRegCycle(SU);
768
769 SU->isScheduled = true;
770
771 // Conditions under which the scheduler should eagerly advance the cycle:
772 // (1) No available instructions
773 // (2) All pipelines full, so available instructions must have hazards.
774 //
775 // If HazardRec is disabled, the cycle was pre-advanced before calling
776 // ReleasePredecessors. In that case, IssueCount should remain 0.
777 //
778 // Check AvailableQueue after ReleasePredecessors in case of zero latency.
779 if (HazardRec->isEnabled() || AvgIPC > 1) {
780 if (SU->getNode() && SU->getNode()->isMachineOpcode())
781 ++IssueCount;
782 if ((HazardRec->isEnabled() && HazardRec->atIssueLimit())
783 || (!HazardRec->isEnabled() && IssueCount == AvgIPC))
784 AdvanceToCycle(CurCycle + 1);
785 }
786 }
787
788 /// CapturePred - This does the opposite of ReleasePred. Since SU is being
789 /// unscheduled, incrcease the succ left count of its predecessors. Remove
790 /// them from AvailableQueue if necessary.
CapturePred(SDep * PredEdge)791 void ScheduleDAGRRList::CapturePred(SDep *PredEdge) {
792 SUnit *PredSU = PredEdge->getSUnit();
793 if (PredSU->isAvailable) {
794 PredSU->isAvailable = false;
795 if (!PredSU->isPending)
796 AvailableQueue->remove(PredSU);
797 }
798
799 assert(PredSU->NumSuccsLeft < UINT_MAX && "NumSuccsLeft will overflow!");
800 ++PredSU->NumSuccsLeft;
801 }
802
803 /// UnscheduleNodeBottomUp - Remove the node from the schedule, update its and
804 /// its predecessor states to reflect the change.
UnscheduleNodeBottomUp(SUnit * SU)805 void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit *SU) {
806 DEBUG(dbgs() << "*** Unscheduling [" << SU->getHeight() << "]: ");
807 DEBUG(SU->dump(this));
808
809 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
810 I != E; ++I) {
811 CapturePred(&*I);
812 if (I->isAssignedRegDep() && SU == LiveRegGens[I->getReg()]){
813 assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
814 assert(LiveRegDefs[I->getReg()] == I->getSUnit() &&
815 "Physical register dependency violated?");
816 --NumLiveRegs;
817 LiveRegDefs[I->getReg()] = nullptr;
818 LiveRegGens[I->getReg()] = nullptr;
819 releaseInterferences(I->getReg());
820 }
821 }
822
823 // Reclaim the special call resource dependence, if this is the beginning
824 // of a call.
825 unsigned CallResource = TRI->getNumRegs();
826 for (const SDNode *SUNode = SU->getNode(); SUNode;
827 SUNode = SUNode->getGluedNode()) {
828 if (SUNode->isMachineOpcode() &&
829 SUNode->getMachineOpcode() == (unsigned)TII->getCallFrameSetupOpcode()) {
830 ++NumLiveRegs;
831 LiveRegDefs[CallResource] = SU;
832 LiveRegGens[CallResource] = CallSeqEndForStart[SU];
833 }
834 }
835
836 // Release the special call resource dependence, if this is the end
837 // of a call.
838 if (LiveRegGens[CallResource] == SU)
839 for (const SDNode *SUNode = SU->getNode(); SUNode;
840 SUNode = SUNode->getGluedNode()) {
841 if (SUNode->isMachineOpcode() &&
842 SUNode->getMachineOpcode() == (unsigned)TII->getCallFrameDestroyOpcode()) {
843 assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
844 --NumLiveRegs;
845 LiveRegDefs[CallResource] = nullptr;
846 LiveRegGens[CallResource] = nullptr;
847 releaseInterferences(CallResource);
848 }
849 }
850
851 for (auto &Succ : SU->Succs) {
852 if (Succ.isAssignedRegDep()) {
853 auto Reg = Succ.getReg();
854 if (!LiveRegDefs[Reg])
855 ++NumLiveRegs;
856 // This becomes the nearest def. Note that an earlier def may still be
857 // pending if this is a two-address node.
858 LiveRegDefs[Reg] = SU;
859
860 // Update LiveRegGen only if was empty before this unscheduling.
861 // This is to avoid incorrect updating LiveRegGen set in previous run.
862 if (!LiveRegGens[Reg]) {
863 // Find the successor with the lowest height.
864 LiveRegGens[Reg] = Succ.getSUnit();
865 for (auto &Succ2 : SU->Succs) {
866 if (Succ2.isAssignedRegDep() && Succ2.getReg() == Reg &&
867 Succ2.getSUnit()->getHeight() < LiveRegGens[Reg]->getHeight())
868 LiveRegGens[Reg] = Succ2.getSUnit();
869 }
870 }
871 }
872 }
873 if (SU->getHeight() < MinAvailableCycle)
874 MinAvailableCycle = SU->getHeight();
875
876 SU->setHeightDirty();
877 SU->isScheduled = false;
878 SU->isAvailable = true;
879 if (!DisableSchedCycles && AvailableQueue->hasReadyFilter()) {
880 // Don't make available until backtracking is complete.
881 SU->isPending = true;
882 PendingQueue.push_back(SU);
883 }
884 else {
885 AvailableQueue->push(SU);
886 }
887 AvailableQueue->unscheduledNode(SU);
888 }
889
890 /// After backtracking, the hazard checker needs to be restored to a state
891 /// corresponding the current cycle.
RestoreHazardCheckerBottomUp()892 void ScheduleDAGRRList::RestoreHazardCheckerBottomUp() {
893 HazardRec->Reset();
894
895 unsigned LookAhead = std::min((unsigned)Sequence.size(),
896 HazardRec->getMaxLookAhead());
897 if (LookAhead == 0)
898 return;
899
900 std::vector<SUnit*>::const_iterator I = (Sequence.end() - LookAhead);
901 unsigned HazardCycle = (*I)->getHeight();
902 for (std::vector<SUnit*>::const_iterator E = Sequence.end(); I != E; ++I) {
903 SUnit *SU = *I;
904 for (; SU->getHeight() > HazardCycle; ++HazardCycle) {
905 HazardRec->RecedeCycle();
906 }
907 EmitNode(SU);
908 }
909 }
910
911 /// BacktrackBottomUp - Backtrack scheduling to a previous cycle specified in
912 /// BTCycle in order to schedule a specific node.
BacktrackBottomUp(SUnit * SU,SUnit * BtSU)913 void ScheduleDAGRRList::BacktrackBottomUp(SUnit *SU, SUnit *BtSU) {
914 SUnit *OldSU = Sequence.back();
915 while (true) {
916 Sequence.pop_back();
917 // FIXME: use ready cycle instead of height
918 CurCycle = OldSU->getHeight();
919 UnscheduleNodeBottomUp(OldSU);
920 AvailableQueue->setCurCycle(CurCycle);
921 if (OldSU == BtSU)
922 break;
923 OldSU = Sequence.back();
924 }
925
926 assert(!SU->isSucc(OldSU) && "Something is wrong!");
927
928 RestoreHazardCheckerBottomUp();
929
930 ReleasePending();
931
932 ++NumBacktracks;
933 }
934
isOperandOf(const SUnit * SU,SDNode * N)935 static bool isOperandOf(const SUnit *SU, SDNode *N) {
936 for (const SDNode *SUNode = SU->getNode(); SUNode;
937 SUNode = SUNode->getGluedNode()) {
938 if (SUNode->isOperandOf(N))
939 return true;
940 }
941 return false;
942 }
943
944 /// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
945 /// successors to the newly created node.
CopyAndMoveSuccessors(SUnit * SU)946 SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
947 SDNode *N = SU->getNode();
948 if (!N)
949 return nullptr;
950
951 if (SU->getNode()->getGluedNode())
952 return nullptr;
953
954 SUnit *NewSU;
955 bool TryUnfold = false;
956 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
957 MVT VT = N->getSimpleValueType(i);
958 if (VT == MVT::Glue)
959 return nullptr;
960 else if (VT == MVT::Other)
961 TryUnfold = true;
962 }
963 for (const SDValue &Op : N->op_values()) {
964 MVT VT = Op.getNode()->getSimpleValueType(Op.getResNo());
965 if (VT == MVT::Glue)
966 return nullptr;
967 }
968
969 if (TryUnfold) {
970 SmallVector<SDNode*, 2> NewNodes;
971 if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
972 return nullptr;
973
974 // unfolding an x86 DEC64m operation results in store, dec, load which
975 // can't be handled here so quit
976 if (NewNodes.size() == 3)
977 return nullptr;
978
979 DEBUG(dbgs() << "Unfolding SU #" << SU->NodeNum << "\n");
980 assert(NewNodes.size() == 2 && "Expected a load folding node!");
981
982 N = NewNodes[1];
983 SDNode *LoadNode = NewNodes[0];
984 unsigned NumVals = N->getNumValues();
985 unsigned OldNumVals = SU->getNode()->getNumValues();
986 for (unsigned i = 0; i != NumVals; ++i)
987 DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
988 DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1),
989 SDValue(LoadNode, 1));
990
991 // LoadNode may already exist. This can happen when there is another
992 // load from the same location and producing the same type of value
993 // but it has different alignment or volatileness.
994 bool isNewLoad = true;
995 SUnit *LoadSU;
996 if (LoadNode->getNodeId() != -1) {
997 LoadSU = &SUnits[LoadNode->getNodeId()];
998 isNewLoad = false;
999 } else {
1000 LoadSU = CreateNewSUnit(LoadNode);
1001 LoadNode->setNodeId(LoadSU->NodeNum);
1002
1003 InitNumRegDefsLeft(LoadSU);
1004 computeLatency(LoadSU);
1005 }
1006
1007 SUnit *NewSU = CreateNewSUnit(N);
1008 assert(N->getNodeId() == -1 && "Node already inserted!");
1009 N->setNodeId(NewSU->NodeNum);
1010
1011 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1012 for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
1013 if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
1014 NewSU->isTwoAddress = true;
1015 break;
1016 }
1017 }
1018 if (MCID.isCommutable())
1019 NewSU->isCommutable = true;
1020
1021 InitNumRegDefsLeft(NewSU);
1022 computeLatency(NewSU);
1023
1024 // Record all the edges to and from the old SU, by category.
1025 SmallVector<SDep, 4> ChainPreds;
1026 SmallVector<SDep, 4> ChainSuccs;
1027 SmallVector<SDep, 4> LoadPreds;
1028 SmallVector<SDep, 4> NodePreds;
1029 SmallVector<SDep, 4> NodeSuccs;
1030 for (SDep &Pred : SU->Preds) {
1031 if (Pred.isCtrl())
1032 ChainPreds.push_back(Pred);
1033 else if (isOperandOf(Pred.getSUnit(), LoadNode))
1034 LoadPreds.push_back(Pred);
1035 else
1036 NodePreds.push_back(Pred);
1037 }
1038 for (SDep &Succ : SU->Succs) {
1039 if (Succ.isCtrl())
1040 ChainSuccs.push_back(Succ);
1041 else
1042 NodeSuccs.push_back(Succ);
1043 }
1044
1045 // Now assign edges to the newly-created nodes.
1046 for (const SDep &Pred : ChainPreds) {
1047 RemovePred(SU, Pred);
1048 if (isNewLoad)
1049 AddPred(LoadSU, Pred);
1050 }
1051 for (const SDep &Pred : LoadPreds) {
1052 RemovePred(SU, Pred);
1053 if (isNewLoad)
1054 AddPred(LoadSU, Pred);
1055 }
1056 for (const SDep &Pred : NodePreds) {
1057 RemovePred(SU, Pred);
1058 AddPred(NewSU, Pred);
1059 }
1060 for (SDep D : NodeSuccs) {
1061 SUnit *SuccDep = D.getSUnit();
1062 D.setSUnit(SU);
1063 RemovePred(SuccDep, D);
1064 D.setSUnit(NewSU);
1065 AddPred(SuccDep, D);
1066 // Balance register pressure.
1067 if (AvailableQueue->tracksRegPressure() && SuccDep->isScheduled
1068 && !D.isCtrl() && NewSU->NumRegDefsLeft > 0)
1069 --NewSU->NumRegDefsLeft;
1070 }
1071 for (SDep D : ChainSuccs) {
1072 SUnit *SuccDep = D.getSUnit();
1073 D.setSUnit(SU);
1074 RemovePred(SuccDep, D);
1075 if (isNewLoad) {
1076 D.setSUnit(LoadSU);
1077 AddPred(SuccDep, D);
1078 }
1079 }
1080
1081 // Add a data dependency to reflect that NewSU reads the value defined
1082 // by LoadSU.
1083 SDep D(LoadSU, SDep::Data, 0);
1084 D.setLatency(LoadSU->Latency);
1085 AddPred(NewSU, D);
1086
1087 if (isNewLoad)
1088 AvailableQueue->addNode(LoadSU);
1089 AvailableQueue->addNode(NewSU);
1090
1091 ++NumUnfolds;
1092
1093 if (NewSU->NumSuccsLeft == 0) {
1094 NewSU->isAvailable = true;
1095 return NewSU;
1096 }
1097 SU = NewSU;
1098 }
1099
1100 DEBUG(dbgs() << " Duplicating SU #" << SU->NodeNum << "\n");
1101 NewSU = CreateClone(SU);
1102
1103 // New SUnit has the exact same predecessors.
1104 for (SDep &Pred : SU->Preds)
1105 if (!Pred.isArtificial())
1106 AddPred(NewSU, Pred);
1107
1108 // Only copy scheduled successors. Cut them from old node's successor
1109 // list and move them over.
1110 SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
1111 for (SDep &Succ : SU->Succs) {
1112 if (Succ.isArtificial())
1113 continue;
1114 SUnit *SuccSU = Succ.getSUnit();
1115 if (SuccSU->isScheduled) {
1116 SDep D = Succ;
1117 D.setSUnit(NewSU);
1118 AddPred(SuccSU, D);
1119 D.setSUnit(SU);
1120 DelDeps.push_back(std::make_pair(SuccSU, D));
1121 }
1122 }
1123 for (auto &DelDep : DelDeps)
1124 RemovePred(DelDep.first, DelDep.second);
1125
1126 AvailableQueue->updateNode(SU);
1127 AvailableQueue->addNode(NewSU);
1128
1129 ++NumDups;
1130 return NewSU;
1131 }
1132
1133 /// InsertCopiesAndMoveSuccs - Insert register copies and move all
1134 /// scheduled successors of the given SUnit to the last copy.
InsertCopiesAndMoveSuccs(SUnit * SU,unsigned Reg,const TargetRegisterClass * DestRC,const TargetRegisterClass * SrcRC,SmallVectorImpl<SUnit * > & Copies)1135 void ScheduleDAGRRList::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
1136 const TargetRegisterClass *DestRC,
1137 const TargetRegisterClass *SrcRC,
1138 SmallVectorImpl<SUnit*> &Copies) {
1139 SUnit *CopyFromSU = CreateNewSUnit(nullptr);
1140 CopyFromSU->CopySrcRC = SrcRC;
1141 CopyFromSU->CopyDstRC = DestRC;
1142
1143 SUnit *CopyToSU = CreateNewSUnit(nullptr);
1144 CopyToSU->CopySrcRC = DestRC;
1145 CopyToSU->CopyDstRC = SrcRC;
1146
1147 // Only copy scheduled successors. Cut them from old node's successor
1148 // list and move them over.
1149 SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
1150 for (SDep &Succ : SU->Succs) {
1151 if (Succ.isArtificial())
1152 continue;
1153 SUnit *SuccSU = Succ.getSUnit();
1154 if (SuccSU->isScheduled) {
1155 SDep D = Succ;
1156 D.setSUnit(CopyToSU);
1157 AddPred(SuccSU, D);
1158 DelDeps.push_back(std::make_pair(SuccSU, Succ));
1159 }
1160 else {
1161 // Avoid scheduling the def-side copy before other successors. Otherwise
1162 // we could introduce another physreg interference on the copy and
1163 // continue inserting copies indefinitely.
1164 AddPred(SuccSU, SDep(CopyFromSU, SDep::Artificial));
1165 }
1166 }
1167 for (auto &DelDep : DelDeps)
1168 RemovePred(DelDep.first, DelDep.second);
1169
1170 SDep FromDep(SU, SDep::Data, Reg);
1171 FromDep.setLatency(SU->Latency);
1172 AddPred(CopyFromSU, FromDep);
1173 SDep ToDep(CopyFromSU, SDep::Data, 0);
1174 ToDep.setLatency(CopyFromSU->Latency);
1175 AddPred(CopyToSU, ToDep);
1176
1177 AvailableQueue->updateNode(SU);
1178 AvailableQueue->addNode(CopyFromSU);
1179 AvailableQueue->addNode(CopyToSU);
1180 Copies.push_back(CopyFromSU);
1181 Copies.push_back(CopyToSU);
1182
1183 ++NumPRCopies;
1184 }
1185
1186 /// getPhysicalRegisterVT - Returns the ValueType of the physical register
1187 /// definition of the specified node.
1188 /// FIXME: Move to SelectionDAG?
getPhysicalRegisterVT(SDNode * N,unsigned Reg,const TargetInstrInfo * TII)1189 static MVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
1190 const TargetInstrInfo *TII) {
1191 unsigned NumRes;
1192 if (N->getOpcode() == ISD::CopyFromReg) {
1193 // CopyFromReg has: "chain, Val, glue" so operand 1 gives the type.
1194 NumRes = 1;
1195 } else {
1196 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1197 assert(MCID.ImplicitDefs && "Physical reg def must be in implicit def list!");
1198 NumRes = MCID.getNumDefs();
1199 for (const MCPhysReg *ImpDef = MCID.getImplicitDefs(); *ImpDef; ++ImpDef) {
1200 if (Reg == *ImpDef)
1201 break;
1202 ++NumRes;
1203 }
1204 }
1205 return N->getSimpleValueType(NumRes);
1206 }
1207
1208 /// CheckForLiveRegDef - Return true and update live register vector if the
1209 /// specified register def of the specified SUnit clobbers any "live" registers.
CheckForLiveRegDef(SUnit * SU,unsigned Reg,SUnit ** LiveRegDefs,SmallSet<unsigned,4> & RegAdded,SmallVectorImpl<unsigned> & LRegs,const TargetRegisterInfo * TRI)1210 static void CheckForLiveRegDef(SUnit *SU, unsigned Reg,
1211 SUnit **LiveRegDefs,
1212 SmallSet<unsigned, 4> &RegAdded,
1213 SmallVectorImpl<unsigned> &LRegs,
1214 const TargetRegisterInfo *TRI) {
1215 for (MCRegAliasIterator AliasI(Reg, TRI, true); AliasI.isValid(); ++AliasI) {
1216
1217 // Check if Ref is live.
1218 if (!LiveRegDefs[*AliasI]) continue;
1219
1220 // Allow multiple uses of the same def.
1221 if (LiveRegDefs[*AliasI] == SU) continue;
1222
1223 // Add Reg to the set of interfering live regs.
1224 if (RegAdded.insert(*AliasI).second) {
1225 LRegs.push_back(*AliasI);
1226 }
1227 }
1228 }
1229
1230 /// CheckForLiveRegDefMasked - Check for any live physregs that are clobbered
1231 /// by RegMask, and add them to LRegs.
CheckForLiveRegDefMasked(SUnit * SU,const uint32_t * RegMask,ArrayRef<SUnit * > LiveRegDefs,SmallSet<unsigned,4> & RegAdded,SmallVectorImpl<unsigned> & LRegs)1232 static void CheckForLiveRegDefMasked(SUnit *SU, const uint32_t *RegMask,
1233 ArrayRef<SUnit*> LiveRegDefs,
1234 SmallSet<unsigned, 4> &RegAdded,
1235 SmallVectorImpl<unsigned> &LRegs) {
1236 // Look at all live registers. Skip Reg0 and the special CallResource.
1237 for (unsigned i = 1, e = LiveRegDefs.size()-1; i != e; ++i) {
1238 if (!LiveRegDefs[i]) continue;
1239 if (LiveRegDefs[i] == SU) continue;
1240 if (!MachineOperand::clobbersPhysReg(RegMask, i)) continue;
1241 if (RegAdded.insert(i).second)
1242 LRegs.push_back(i);
1243 }
1244 }
1245
1246 /// getNodeRegMask - Returns the register mask attached to an SDNode, if any.
getNodeRegMask(const SDNode * N)1247 static const uint32_t *getNodeRegMask(const SDNode *N) {
1248 for (const SDValue &Op : N->op_values())
1249 if (const auto *RegOp = dyn_cast<RegisterMaskSDNode>(Op.getNode()))
1250 return RegOp->getRegMask();
1251 return nullptr;
1252 }
1253
1254 /// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
1255 /// scheduling of the given node to satisfy live physical register dependencies.
1256 /// If the specific node is the last one that's available to schedule, do
1257 /// whatever is necessary (i.e. backtracking or cloning) to make it possible.
1258 bool ScheduleDAGRRList::
DelayForLiveRegsBottomUp(SUnit * SU,SmallVectorImpl<unsigned> & LRegs)1259 DelayForLiveRegsBottomUp(SUnit *SU, SmallVectorImpl<unsigned> &LRegs) {
1260 if (NumLiveRegs == 0)
1261 return false;
1262
1263 SmallSet<unsigned, 4> RegAdded;
1264 // If this node would clobber any "live" register, then it's not ready.
1265 //
1266 // If SU is the currently live definition of the same register that it uses,
1267 // then we are free to schedule it.
1268 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1269 I != E; ++I) {
1270 if (I->isAssignedRegDep() && LiveRegDefs[I->getReg()] != SU)
1271 CheckForLiveRegDef(I->getSUnit(), I->getReg(), LiveRegDefs.get(),
1272 RegAdded, LRegs, TRI);
1273 }
1274
1275 for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode()) {
1276 if (Node->getOpcode() == ISD::INLINEASM) {
1277 // Inline asm can clobber physical defs.
1278 unsigned NumOps = Node->getNumOperands();
1279 if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
1280 --NumOps; // Ignore the glue operand.
1281
1282 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
1283 unsigned Flags =
1284 cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
1285 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
1286
1287 ++i; // Skip the ID value.
1288 if (InlineAsm::isRegDefKind(Flags) ||
1289 InlineAsm::isRegDefEarlyClobberKind(Flags) ||
1290 InlineAsm::isClobberKind(Flags)) {
1291 // Check for def of register or earlyclobber register.
1292 for (; NumVals; --NumVals, ++i) {
1293 unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
1294 if (TargetRegisterInfo::isPhysicalRegister(Reg))
1295 CheckForLiveRegDef(SU, Reg, LiveRegDefs.get(), RegAdded, LRegs, TRI);
1296 }
1297 } else
1298 i += NumVals;
1299 }
1300 continue;
1301 }
1302
1303 if (!Node->isMachineOpcode())
1304 continue;
1305 // If we're in the middle of scheduling a call, don't begin scheduling
1306 // another call. Also, don't allow any physical registers to be live across
1307 // the call.
1308 if (Node->getMachineOpcode() == (unsigned)TII->getCallFrameDestroyOpcode()) {
1309 // Check the special calling-sequence resource.
1310 unsigned CallResource = TRI->getNumRegs();
1311 if (LiveRegDefs[CallResource]) {
1312 SDNode *Gen = LiveRegGens[CallResource]->getNode();
1313 while (SDNode *Glued = Gen->getGluedNode())
1314 Gen = Glued;
1315 if (!IsChainDependent(Gen, Node, 0, TII) &&
1316 RegAdded.insert(CallResource).second)
1317 LRegs.push_back(CallResource);
1318 }
1319 }
1320 if (const uint32_t *RegMask = getNodeRegMask(Node))
1321 CheckForLiveRegDefMasked(SU, RegMask,
1322 makeArrayRef(LiveRegDefs.get(), TRI->getNumRegs()),
1323 RegAdded, LRegs);
1324
1325 const MCInstrDesc &MCID = TII->get(Node->getMachineOpcode());
1326 if (!MCID.ImplicitDefs)
1327 continue;
1328 for (const MCPhysReg *Reg = MCID.getImplicitDefs(); *Reg; ++Reg)
1329 CheckForLiveRegDef(SU, *Reg, LiveRegDefs.get(), RegAdded, LRegs, TRI);
1330 }
1331
1332 return !LRegs.empty();
1333 }
1334
releaseInterferences(unsigned Reg)1335 void ScheduleDAGRRList::releaseInterferences(unsigned Reg) {
1336 // Add the nodes that aren't ready back onto the available list.
1337 for (unsigned i = Interferences.size(); i > 0; --i) {
1338 SUnit *SU = Interferences[i-1];
1339 LRegsMapT::iterator LRegsPos = LRegsMap.find(SU);
1340 if (Reg) {
1341 SmallVectorImpl<unsigned> &LRegs = LRegsPos->second;
1342 if (std::find(LRegs.begin(), LRegs.end(), Reg) == LRegs.end())
1343 continue;
1344 }
1345 SU->isPending = false;
1346 // The interfering node may no longer be available due to backtracking.
1347 // Furthermore, it may have been made available again, in which case it is
1348 // now already in the AvailableQueue.
1349 if (SU->isAvailable && !SU->NodeQueueId) {
1350 DEBUG(dbgs() << " Repushing SU #" << SU->NodeNum << '\n');
1351 AvailableQueue->push(SU);
1352 }
1353 if (i < Interferences.size())
1354 Interferences[i-1] = Interferences.back();
1355 Interferences.pop_back();
1356 LRegsMap.erase(LRegsPos);
1357 }
1358 }
1359
1360 /// Return a node that can be scheduled in this cycle. Requirements:
1361 /// (1) Ready: latency has been satisfied
1362 /// (2) No Hazards: resources are available
1363 /// (3) No Interferences: may unschedule to break register interferences.
PickNodeToScheduleBottomUp()1364 SUnit *ScheduleDAGRRList::PickNodeToScheduleBottomUp() {
1365 SUnit *CurSU = AvailableQueue->empty() ? nullptr : AvailableQueue->pop();
1366 while (CurSU) {
1367 SmallVector<unsigned, 4> LRegs;
1368 if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
1369 break;
1370 DEBUG(dbgs() << " Interfering reg " <<
1371 (LRegs[0] == TRI->getNumRegs() ? "CallResource"
1372 : TRI->getName(LRegs[0]))
1373 << " SU #" << CurSU->NodeNum << '\n');
1374 std::pair<LRegsMapT::iterator, bool> LRegsPair =
1375 LRegsMap.insert(std::make_pair(CurSU, LRegs));
1376 if (LRegsPair.second) {
1377 CurSU->isPending = true; // This SU is not in AvailableQueue right now.
1378 Interferences.push_back(CurSU);
1379 }
1380 else {
1381 assert(CurSU->isPending && "Interferences are pending");
1382 // Update the interference with current live regs.
1383 LRegsPair.first->second = LRegs;
1384 }
1385 CurSU = AvailableQueue->pop();
1386 }
1387 if (CurSU)
1388 return CurSU;
1389
1390 // All candidates are delayed due to live physical reg dependencies.
1391 // Try backtracking, code duplication, or inserting cross class copies
1392 // to resolve it.
1393 for (SUnit *TrySU : Interferences) {
1394 SmallVectorImpl<unsigned> &LRegs = LRegsMap[TrySU];
1395
1396 // Try unscheduling up to the point where it's safe to schedule
1397 // this node.
1398 SUnit *BtSU = nullptr;
1399 unsigned LiveCycle = UINT_MAX;
1400 for (unsigned Reg : LRegs) {
1401 if (LiveRegGens[Reg]->getHeight() < LiveCycle) {
1402 BtSU = LiveRegGens[Reg];
1403 LiveCycle = BtSU->getHeight();
1404 }
1405 }
1406 if (!WillCreateCycle(TrySU, BtSU)) {
1407 // BacktrackBottomUp mutates Interferences!
1408 BacktrackBottomUp(TrySU, BtSU);
1409
1410 // Force the current node to be scheduled before the node that
1411 // requires the physical reg dep.
1412 if (BtSU->isAvailable) {
1413 BtSU->isAvailable = false;
1414 if (!BtSU->isPending)
1415 AvailableQueue->remove(BtSU);
1416 }
1417 DEBUG(dbgs() << "ARTIFICIAL edge from SU(" << BtSU->NodeNum << ") to SU("
1418 << TrySU->NodeNum << ")\n");
1419 AddPred(TrySU, SDep(BtSU, SDep::Artificial));
1420
1421 // If one or more successors has been unscheduled, then the current
1422 // node is no longer available.
1423 if (!TrySU->isAvailable || !TrySU->NodeQueueId)
1424 CurSU = AvailableQueue->pop();
1425 else {
1426 // Available and in AvailableQueue
1427 AvailableQueue->remove(TrySU);
1428 CurSU = TrySU;
1429 }
1430 // Interferences has been mutated. We must break.
1431 break;
1432 }
1433 }
1434
1435 if (!CurSU) {
1436 // Can't backtrack. If it's too expensive to copy the value, then try
1437 // duplicate the nodes that produces these "too expensive to copy"
1438 // values to break the dependency. In case even that doesn't work,
1439 // insert cross class copies.
1440 // If it's not too expensive, i.e. cost != -1, issue copies.
1441 SUnit *TrySU = Interferences[0];
1442 SmallVectorImpl<unsigned> &LRegs = LRegsMap[TrySU];
1443 assert(LRegs.size() == 1 && "Can't handle this yet!");
1444 unsigned Reg = LRegs[0];
1445 SUnit *LRDef = LiveRegDefs[Reg];
1446 MVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
1447 const TargetRegisterClass *RC =
1448 TRI->getMinimalPhysRegClass(Reg, VT);
1449 const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
1450
1451 // If cross copy register class is the same as RC, then it must be possible
1452 // copy the value directly. Do not try duplicate the def.
1453 // If cross copy register class is not the same as RC, then it's possible to
1454 // copy the value but it require cross register class copies and it is
1455 // expensive.
1456 // If cross copy register class is null, then it's not possible to copy
1457 // the value at all.
1458 SUnit *NewDef = nullptr;
1459 if (DestRC != RC) {
1460 NewDef = CopyAndMoveSuccessors(LRDef);
1461 if (!DestRC && !NewDef)
1462 report_fatal_error("Can't handle live physical register dependency!");
1463 }
1464 if (!NewDef) {
1465 // Issue copies, these can be expensive cross register class copies.
1466 SmallVector<SUnit*, 2> Copies;
1467 InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
1468 DEBUG(dbgs() << " Adding an edge from SU #" << TrySU->NodeNum
1469 << " to SU #" << Copies.front()->NodeNum << "\n");
1470 AddPred(TrySU, SDep(Copies.front(), SDep::Artificial));
1471 NewDef = Copies.back();
1472 }
1473
1474 DEBUG(dbgs() << " Adding an edge from SU #" << NewDef->NodeNum
1475 << " to SU #" << TrySU->NodeNum << "\n");
1476 LiveRegDefs[Reg] = NewDef;
1477 AddPred(NewDef, SDep(TrySU, SDep::Artificial));
1478 TrySU->isAvailable = false;
1479 CurSU = NewDef;
1480 }
1481 assert(CurSU && "Unable to resolve live physical register dependencies!");
1482 return CurSU;
1483 }
1484
1485 /// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
1486 /// schedulers.
ListScheduleBottomUp()1487 void ScheduleDAGRRList::ListScheduleBottomUp() {
1488 // Release any predecessors of the special Exit node.
1489 ReleasePredecessors(&ExitSU);
1490
1491 // Add root to Available queue.
1492 if (!SUnits.empty()) {
1493 SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
1494 assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
1495 RootSU->isAvailable = true;
1496 AvailableQueue->push(RootSU);
1497 }
1498
1499 // While Available queue is not empty, grab the node with the highest
1500 // priority. If it is not ready put it back. Schedule the node.
1501 Sequence.reserve(SUnits.size());
1502 while (!AvailableQueue->empty() || !Interferences.empty()) {
1503 DEBUG(dbgs() << "\nExamining Available:\n";
1504 AvailableQueue->dump(this));
1505
1506 // Pick the best node to schedule taking all constraints into
1507 // consideration.
1508 SUnit *SU = PickNodeToScheduleBottomUp();
1509
1510 AdvancePastStalls(SU);
1511
1512 ScheduleNodeBottomUp(SU);
1513
1514 while (AvailableQueue->empty() && !PendingQueue.empty()) {
1515 // Advance the cycle to free resources. Skip ahead to the next ready SU.
1516 assert(MinAvailableCycle < UINT_MAX && "MinAvailableCycle uninitialized");
1517 AdvanceToCycle(std::max(CurCycle + 1, MinAvailableCycle));
1518 }
1519 }
1520
1521 // Reverse the order if it is bottom up.
1522 std::reverse(Sequence.begin(), Sequence.end());
1523
1524 #ifndef NDEBUG
1525 VerifyScheduledSequence(/*isBottomUp=*/true);
1526 #endif
1527 }
1528
1529 //===----------------------------------------------------------------------===//
1530 // RegReductionPriorityQueue Definition
1531 //===----------------------------------------------------------------------===//
1532 //
1533 // This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
1534 // to reduce register pressure.
1535 //
1536 namespace {
1537 class RegReductionPQBase;
1538
1539 struct queue_sort : public std::binary_function<SUnit*, SUnit*, bool> {
isReady__anon7133554f0211::queue_sort1540 bool isReady(SUnit* SU, unsigned CurCycle) const { return true; }
1541 };
1542
1543 #ifndef NDEBUG
1544 template<class SF>
1545 struct reverse_sort : public queue_sort {
1546 SF &SortFunc;
reverse_sort__anon7133554f0211::reverse_sort1547 reverse_sort(SF &sf) : SortFunc(sf) {}
1548
operator ()__anon7133554f0211::reverse_sort1549 bool operator()(SUnit* left, SUnit* right) const {
1550 // reverse left/right rather than simply !SortFunc(left, right)
1551 // to expose different paths in the comparison logic.
1552 return SortFunc(right, left);
1553 }
1554 };
1555 #endif // NDEBUG
1556
1557 /// bu_ls_rr_sort - Priority function for bottom up register pressure
1558 // reduction scheduler.
1559 struct bu_ls_rr_sort : public queue_sort {
1560 enum {
1561 IsBottomUp = true,
1562 HasReadyFilter = false
1563 };
1564
1565 RegReductionPQBase *SPQ;
bu_ls_rr_sort__anon7133554f0211::bu_ls_rr_sort1566 bu_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {}
1567
1568 bool operator()(SUnit* left, SUnit* right) const;
1569 };
1570
1571 // src_ls_rr_sort - Priority function for source order scheduler.
1572 struct src_ls_rr_sort : public queue_sort {
1573 enum {
1574 IsBottomUp = true,
1575 HasReadyFilter = false
1576 };
1577
1578 RegReductionPQBase *SPQ;
src_ls_rr_sort__anon7133554f0211::src_ls_rr_sort1579 src_ls_rr_sort(RegReductionPQBase *spq)
1580 : SPQ(spq) {}
1581
1582 bool operator()(SUnit* left, SUnit* right) const;
1583 };
1584
1585 // hybrid_ls_rr_sort - Priority function for hybrid scheduler.
1586 struct hybrid_ls_rr_sort : public queue_sort {
1587 enum {
1588 IsBottomUp = true,
1589 HasReadyFilter = false
1590 };
1591
1592 RegReductionPQBase *SPQ;
hybrid_ls_rr_sort__anon7133554f0211::hybrid_ls_rr_sort1593 hybrid_ls_rr_sort(RegReductionPQBase *spq)
1594 : SPQ(spq) {}
1595
1596 bool isReady(SUnit *SU, unsigned CurCycle) const;
1597
1598 bool operator()(SUnit* left, SUnit* right) const;
1599 };
1600
1601 // ilp_ls_rr_sort - Priority function for ILP (instruction level parallelism)
1602 // scheduler.
1603 struct ilp_ls_rr_sort : public queue_sort {
1604 enum {
1605 IsBottomUp = true,
1606 HasReadyFilter = false
1607 };
1608
1609 RegReductionPQBase *SPQ;
ilp_ls_rr_sort__anon7133554f0211::ilp_ls_rr_sort1610 ilp_ls_rr_sort(RegReductionPQBase *spq)
1611 : SPQ(spq) {}
1612
1613 bool isReady(SUnit *SU, unsigned CurCycle) const;
1614
1615 bool operator()(SUnit* left, SUnit* right) const;
1616 };
1617
1618 class RegReductionPQBase : public SchedulingPriorityQueue {
1619 protected:
1620 std::vector<SUnit*> Queue;
1621 unsigned CurQueueId;
1622 bool TracksRegPressure;
1623 bool SrcOrder;
1624
1625 // SUnits - The SUnits for the current graph.
1626 std::vector<SUnit> *SUnits;
1627
1628 MachineFunction &MF;
1629 const TargetInstrInfo *TII;
1630 const TargetRegisterInfo *TRI;
1631 const TargetLowering *TLI;
1632 ScheduleDAGRRList *scheduleDAG;
1633
1634 // SethiUllmanNumbers - The SethiUllman number for each node.
1635 std::vector<unsigned> SethiUllmanNumbers;
1636
1637 /// RegPressure - Tracking current reg pressure per register class.
1638 ///
1639 std::vector<unsigned> RegPressure;
1640
1641 /// RegLimit - Tracking the number of allocatable registers per register
1642 /// class.
1643 std::vector<unsigned> RegLimit;
1644
1645 public:
RegReductionPQBase(MachineFunction & mf,bool hasReadyFilter,bool tracksrp,bool srcorder,const TargetInstrInfo * tii,const TargetRegisterInfo * tri,const TargetLowering * tli)1646 RegReductionPQBase(MachineFunction &mf,
1647 bool hasReadyFilter,
1648 bool tracksrp,
1649 bool srcorder,
1650 const TargetInstrInfo *tii,
1651 const TargetRegisterInfo *tri,
1652 const TargetLowering *tli)
1653 : SchedulingPriorityQueue(hasReadyFilter),
1654 CurQueueId(0), TracksRegPressure(tracksrp), SrcOrder(srcorder),
1655 MF(mf), TII(tii), TRI(tri), TLI(tli), scheduleDAG(nullptr) {
1656 if (TracksRegPressure) {
1657 unsigned NumRC = TRI->getNumRegClasses();
1658 RegLimit.resize(NumRC);
1659 RegPressure.resize(NumRC);
1660 std::fill(RegLimit.begin(), RegLimit.end(), 0);
1661 std::fill(RegPressure.begin(), RegPressure.end(), 0);
1662 for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
1663 E = TRI->regclass_end(); I != E; ++I)
1664 RegLimit[(*I)->getID()] = tri->getRegPressureLimit(*I, MF);
1665 }
1666 }
1667
setScheduleDAG(ScheduleDAGRRList * scheduleDag)1668 void setScheduleDAG(ScheduleDAGRRList *scheduleDag) {
1669 scheduleDAG = scheduleDag;
1670 }
1671
getHazardRec()1672 ScheduleHazardRecognizer* getHazardRec() {
1673 return scheduleDAG->getHazardRec();
1674 }
1675
1676 void initNodes(std::vector<SUnit> &sunits) override;
1677
1678 void addNode(const SUnit *SU) override;
1679
1680 void updateNode(const SUnit *SU) override;
1681
releaseState()1682 void releaseState() override {
1683 SUnits = nullptr;
1684 SethiUllmanNumbers.clear();
1685 std::fill(RegPressure.begin(), RegPressure.end(), 0);
1686 }
1687
1688 unsigned getNodePriority(const SUnit *SU) const;
1689
getNodeOrdering(const SUnit * SU) const1690 unsigned getNodeOrdering(const SUnit *SU) const {
1691 if (!SU->getNode()) return 0;
1692
1693 return SU->getNode()->getIROrder();
1694 }
1695
empty() const1696 bool empty() const override { return Queue.empty(); }
1697
push(SUnit * U)1698 void push(SUnit *U) override {
1699 assert(!U->NodeQueueId && "Node in the queue already");
1700 U->NodeQueueId = ++CurQueueId;
1701 Queue.push_back(U);
1702 }
1703
remove(SUnit * SU)1704 void remove(SUnit *SU) override {
1705 assert(!Queue.empty() && "Queue is empty!");
1706 assert(SU->NodeQueueId != 0 && "Not in queue!");
1707 std::vector<SUnit *>::iterator I = std::find(Queue.begin(), Queue.end(),
1708 SU);
1709 if (I != std::prev(Queue.end()))
1710 std::swap(*I, Queue.back());
1711 Queue.pop_back();
1712 SU->NodeQueueId = 0;
1713 }
1714
tracksRegPressure() const1715 bool tracksRegPressure() const override { return TracksRegPressure; }
1716
1717 void dumpRegPressure() const;
1718
1719 bool HighRegPressure(const SUnit *SU) const;
1720
1721 bool MayReduceRegPressure(SUnit *SU) const;
1722
1723 int RegPressureDiff(SUnit *SU, unsigned &LiveUses) const;
1724
1725 void scheduledNode(SUnit *SU) override;
1726
1727 void unscheduledNode(SUnit *SU) override;
1728
1729 protected:
1730 bool canClobber(const SUnit *SU, const SUnit *Op);
1731 void AddPseudoTwoAddrDeps();
1732 void PrescheduleNodesWithMultipleUses();
1733 void CalculateSethiUllmanNumbers();
1734 };
1735
1736 template<class SF>
popFromQueueImpl(std::vector<SUnit * > & Q,SF & Picker)1737 static SUnit *popFromQueueImpl(std::vector<SUnit*> &Q, SF &Picker) {
1738 std::vector<SUnit *>::iterator Best = Q.begin();
1739 for (std::vector<SUnit *>::iterator I = std::next(Q.begin()),
1740 E = Q.end(); I != E; ++I)
1741 if (Picker(*Best, *I))
1742 Best = I;
1743 SUnit *V = *Best;
1744 if (Best != std::prev(Q.end()))
1745 std::swap(*Best, Q.back());
1746 Q.pop_back();
1747 return V;
1748 }
1749
1750 template<class SF>
popFromQueue(std::vector<SUnit * > & Q,SF & Picker,ScheduleDAG * DAG)1751 SUnit *popFromQueue(std::vector<SUnit*> &Q, SF &Picker, ScheduleDAG *DAG) {
1752 #ifndef NDEBUG
1753 if (DAG->StressSched) {
1754 reverse_sort<SF> RPicker(Picker);
1755 return popFromQueueImpl(Q, RPicker);
1756 }
1757 #endif
1758 (void)DAG;
1759 return popFromQueueImpl(Q, Picker);
1760 }
1761
1762 template<class SF>
1763 class RegReductionPriorityQueue : public RegReductionPQBase {
1764 SF Picker;
1765
1766 public:
RegReductionPriorityQueue(MachineFunction & mf,bool tracksrp,bool srcorder,const TargetInstrInfo * tii,const TargetRegisterInfo * tri,const TargetLowering * tli)1767 RegReductionPriorityQueue(MachineFunction &mf,
1768 bool tracksrp,
1769 bool srcorder,
1770 const TargetInstrInfo *tii,
1771 const TargetRegisterInfo *tri,
1772 const TargetLowering *tli)
1773 : RegReductionPQBase(mf, SF::HasReadyFilter, tracksrp, srcorder,
1774 tii, tri, tli),
1775 Picker(this) {}
1776
isBottomUp() const1777 bool isBottomUp() const override { return SF::IsBottomUp; }
1778
isReady(SUnit * U) const1779 bool isReady(SUnit *U) const override {
1780 return Picker.HasReadyFilter && Picker.isReady(U, getCurCycle());
1781 }
1782
pop()1783 SUnit *pop() override {
1784 if (Queue.empty()) return nullptr;
1785
1786 SUnit *V = popFromQueue(Queue, Picker, scheduleDAG);
1787 V->NodeQueueId = 0;
1788 return V;
1789 }
1790
1791 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump(ScheduleDAG * DAG) const1792 void dump(ScheduleDAG *DAG) const override {
1793 // Emulate pop() without clobbering NodeQueueIds.
1794 std::vector<SUnit*> DumpQueue = Queue;
1795 SF DumpPicker = Picker;
1796 while (!DumpQueue.empty()) {
1797 SUnit *SU = popFromQueue(DumpQueue, DumpPicker, scheduleDAG);
1798 dbgs() << "Height " << SU->getHeight() << ": ";
1799 SU->dump(DAG);
1800 }
1801 }
1802 #endif
1803 };
1804
1805 typedef RegReductionPriorityQueue<bu_ls_rr_sort>
1806 BURegReductionPriorityQueue;
1807
1808 typedef RegReductionPriorityQueue<src_ls_rr_sort>
1809 SrcRegReductionPriorityQueue;
1810
1811 typedef RegReductionPriorityQueue<hybrid_ls_rr_sort>
1812 HybridBURRPriorityQueue;
1813
1814 typedef RegReductionPriorityQueue<ilp_ls_rr_sort>
1815 ILPBURRPriorityQueue;
1816 } // end anonymous namespace
1817
1818 //===----------------------------------------------------------------------===//
1819 // Static Node Priority for Register Pressure Reduction
1820 //===----------------------------------------------------------------------===//
1821
1822 // Check for special nodes that bypass scheduling heuristics.
1823 // Currently this pushes TokenFactor nodes down, but may be used for other
1824 // pseudo-ops as well.
1825 //
1826 // Return -1 to schedule right above left, 1 for left above right.
1827 // Return 0 if no bias exists.
checkSpecialNodes(const SUnit * left,const SUnit * right)1828 static int checkSpecialNodes(const SUnit *left, const SUnit *right) {
1829 bool LSchedLow = left->isScheduleLow;
1830 bool RSchedLow = right->isScheduleLow;
1831 if (LSchedLow != RSchedLow)
1832 return LSchedLow < RSchedLow ? 1 : -1;
1833 return 0;
1834 }
1835
1836 /// CalcNodeSethiUllmanNumber - Compute Sethi Ullman number.
1837 /// Smaller number is the higher priority.
1838 static unsigned
CalcNodeSethiUllmanNumber(const SUnit * SU,std::vector<unsigned> & SUNumbers)1839 CalcNodeSethiUllmanNumber(const SUnit *SU, std::vector<unsigned> &SUNumbers) {
1840 unsigned &SethiUllmanNumber = SUNumbers[SU->NodeNum];
1841 if (SethiUllmanNumber != 0)
1842 return SethiUllmanNumber;
1843
1844 unsigned Extra = 0;
1845 for (const SDep &Pred : SU->Preds) {
1846 if (Pred.isCtrl()) continue; // ignore chain preds
1847 SUnit *PredSU = Pred.getSUnit();
1848 unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU, SUNumbers);
1849 if (PredSethiUllman > SethiUllmanNumber) {
1850 SethiUllmanNumber = PredSethiUllman;
1851 Extra = 0;
1852 } else if (PredSethiUllman == SethiUllmanNumber)
1853 ++Extra;
1854 }
1855
1856 SethiUllmanNumber += Extra;
1857
1858 if (SethiUllmanNumber == 0)
1859 SethiUllmanNumber = 1;
1860
1861 return SethiUllmanNumber;
1862 }
1863
1864 /// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
1865 /// scheduling units.
CalculateSethiUllmanNumbers()1866 void RegReductionPQBase::CalculateSethiUllmanNumbers() {
1867 SethiUllmanNumbers.assign(SUnits->size(), 0);
1868
1869 for (const SUnit &SU : *SUnits)
1870 CalcNodeSethiUllmanNumber(&SU, SethiUllmanNumbers);
1871 }
1872
addNode(const SUnit * SU)1873 void RegReductionPQBase::addNode(const SUnit *SU) {
1874 unsigned SUSize = SethiUllmanNumbers.size();
1875 if (SUnits->size() > SUSize)
1876 SethiUllmanNumbers.resize(SUSize*2, 0);
1877 CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
1878 }
1879
updateNode(const SUnit * SU)1880 void RegReductionPQBase::updateNode(const SUnit *SU) {
1881 SethiUllmanNumbers[SU->NodeNum] = 0;
1882 CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
1883 }
1884
1885 // Lower priority means schedule further down. For bottom-up scheduling, lower
1886 // priority SUs are scheduled before higher priority SUs.
getNodePriority(const SUnit * SU) const1887 unsigned RegReductionPQBase::getNodePriority(const SUnit *SU) const {
1888 assert(SU->NodeNum < SethiUllmanNumbers.size());
1889 unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
1890 if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
1891 // CopyToReg should be close to its uses to facilitate coalescing and
1892 // avoid spilling.
1893 return 0;
1894 if (Opc == TargetOpcode::EXTRACT_SUBREG ||
1895 Opc == TargetOpcode::SUBREG_TO_REG ||
1896 Opc == TargetOpcode::INSERT_SUBREG)
1897 // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
1898 // close to their uses to facilitate coalescing.
1899 return 0;
1900 if (SU->NumSuccs == 0 && SU->NumPreds != 0)
1901 // If SU does not have a register use, i.e. it doesn't produce a value
1902 // that would be consumed (e.g. store), then it terminates a chain of
1903 // computation. Give it a large SethiUllman number so it will be
1904 // scheduled right before its predecessors that it doesn't lengthen
1905 // their live ranges.
1906 return 0xffff;
1907 if (SU->NumPreds == 0 && SU->NumSuccs != 0)
1908 // If SU does not have a register def, schedule it close to its uses
1909 // because it does not lengthen any live ranges.
1910 return 0;
1911 #if 1
1912 return SethiUllmanNumbers[SU->NodeNum];
1913 #else
1914 unsigned Priority = SethiUllmanNumbers[SU->NodeNum];
1915 if (SU->isCallOp) {
1916 // FIXME: This assumes all of the defs are used as call operands.
1917 int NP = (int)Priority - SU->getNode()->getNumValues();
1918 return (NP > 0) ? NP : 0;
1919 }
1920 return Priority;
1921 #endif
1922 }
1923
1924 //===----------------------------------------------------------------------===//
1925 // Register Pressure Tracking
1926 //===----------------------------------------------------------------------===//
1927
dumpRegPressure() const1928 void RegReductionPQBase::dumpRegPressure() const {
1929 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1930 for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
1931 E = TRI->regclass_end(); I != E; ++I) {
1932 const TargetRegisterClass *RC = *I;
1933 unsigned Id = RC->getID();
1934 unsigned RP = RegPressure[Id];
1935 if (!RP) continue;
1936 DEBUG(dbgs() << TRI->getRegClassName(RC) << ": " << RP << " / "
1937 << RegLimit[Id] << '\n');
1938 }
1939 #endif
1940 }
1941
HighRegPressure(const SUnit * SU) const1942 bool RegReductionPQBase::HighRegPressure(const SUnit *SU) const {
1943 if (!TLI)
1944 return false;
1945
1946 for (const SDep &Pred : SU->Preds) {
1947 if (Pred.isCtrl())
1948 continue;
1949 SUnit *PredSU = Pred.getSUnit();
1950 // NumRegDefsLeft is zero when enough uses of this node have been scheduled
1951 // to cover the number of registers defined (they are all live).
1952 if (PredSU->NumRegDefsLeft == 0) {
1953 continue;
1954 }
1955 for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
1956 RegDefPos.IsValid(); RegDefPos.Advance()) {
1957 unsigned RCId, Cost;
1958 GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
1959
1960 if ((RegPressure[RCId] + Cost) >= RegLimit[RCId])
1961 return true;
1962 }
1963 }
1964 return false;
1965 }
1966
MayReduceRegPressure(SUnit * SU) const1967 bool RegReductionPQBase::MayReduceRegPressure(SUnit *SU) const {
1968 const SDNode *N = SU->getNode();
1969
1970 if (!N->isMachineOpcode() || !SU->NumSuccs)
1971 return false;
1972
1973 unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
1974 for (unsigned i = 0; i != NumDefs; ++i) {
1975 MVT VT = N->getSimpleValueType(i);
1976 if (!N->hasAnyUseOfValue(i))
1977 continue;
1978 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
1979 if (RegPressure[RCId] >= RegLimit[RCId])
1980 return true;
1981 }
1982 return false;
1983 }
1984
1985 // Compute the register pressure contribution by this instruction by count up
1986 // for uses that are not live and down for defs. Only count register classes
1987 // that are already under high pressure. As a side effect, compute the number of
1988 // uses of registers that are already live.
1989 //
1990 // FIXME: This encompasses the logic in HighRegPressure and MayReduceRegPressure
1991 // so could probably be factored.
RegPressureDiff(SUnit * SU,unsigned & LiveUses) const1992 int RegReductionPQBase::RegPressureDiff(SUnit *SU, unsigned &LiveUses) const {
1993 LiveUses = 0;
1994 int PDiff = 0;
1995 for (const SDep &Pred : SU->Preds) {
1996 if (Pred.isCtrl())
1997 continue;
1998 SUnit *PredSU = Pred.getSUnit();
1999 // NumRegDefsLeft is zero when enough uses of this node have been scheduled
2000 // to cover the number of registers defined (they are all live).
2001 if (PredSU->NumRegDefsLeft == 0) {
2002 if (PredSU->getNode()->isMachineOpcode())
2003 ++LiveUses;
2004 continue;
2005 }
2006 for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
2007 RegDefPos.IsValid(); RegDefPos.Advance()) {
2008 MVT VT = RegDefPos.GetValue();
2009 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2010 if (RegPressure[RCId] >= RegLimit[RCId])
2011 ++PDiff;
2012 }
2013 }
2014 const SDNode *N = SU->getNode();
2015
2016 if (!N || !N->isMachineOpcode() || !SU->NumSuccs)
2017 return PDiff;
2018
2019 unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
2020 for (unsigned i = 0; i != NumDefs; ++i) {
2021 MVT VT = N->getSimpleValueType(i);
2022 if (!N->hasAnyUseOfValue(i))
2023 continue;
2024 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2025 if (RegPressure[RCId] >= RegLimit[RCId])
2026 --PDiff;
2027 }
2028 return PDiff;
2029 }
2030
scheduledNode(SUnit * SU)2031 void RegReductionPQBase::scheduledNode(SUnit *SU) {
2032 if (!TracksRegPressure)
2033 return;
2034
2035 if (!SU->getNode())
2036 return;
2037
2038 for (const SDep &Pred : SU->Preds) {
2039 if (Pred.isCtrl())
2040 continue;
2041 SUnit *PredSU = Pred.getSUnit();
2042 // NumRegDefsLeft is zero when enough uses of this node have been scheduled
2043 // to cover the number of registers defined (they are all live).
2044 if (PredSU->NumRegDefsLeft == 0) {
2045 continue;
2046 }
2047 // FIXME: The ScheduleDAG currently loses information about which of a
2048 // node's values is consumed by each dependence. Consequently, if the node
2049 // defines multiple register classes, we don't know which to pressurize
2050 // here. Instead the following loop consumes the register defs in an
2051 // arbitrary order. At least it handles the common case of clustered loads
2052 // to the same class. For precise liveness, each SDep needs to indicate the
2053 // result number. But that tightly couples the ScheduleDAG with the
2054 // SelectionDAG making updates tricky. A simpler hack would be to attach a
2055 // value type or register class to SDep.
2056 //
2057 // The most important aspect of register tracking is balancing the increase
2058 // here with the reduction further below. Note that this SU may use multiple
2059 // defs in PredSU. The can't be determined here, but we've already
2060 // compensated by reducing NumRegDefsLeft in PredSU during
2061 // ScheduleDAGSDNodes::AddSchedEdges.
2062 --PredSU->NumRegDefsLeft;
2063 unsigned SkipRegDefs = PredSU->NumRegDefsLeft;
2064 for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
2065 RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) {
2066 if (SkipRegDefs)
2067 continue;
2068
2069 unsigned RCId, Cost;
2070 GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
2071 RegPressure[RCId] += Cost;
2072 break;
2073 }
2074 }
2075
2076 // We should have this assert, but there may be dead SDNodes that never
2077 // materialize as SUnits, so they don't appear to generate liveness.
2078 //assert(SU->NumRegDefsLeft == 0 && "not all regdefs have scheduled uses");
2079 int SkipRegDefs = (int)SU->NumRegDefsLeft;
2080 for (ScheduleDAGSDNodes::RegDefIter RegDefPos(SU, scheduleDAG);
2081 RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) {
2082 if (SkipRegDefs > 0)
2083 continue;
2084 unsigned RCId, Cost;
2085 GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
2086 if (RegPressure[RCId] < Cost) {
2087 // Register pressure tracking is imprecise. This can happen. But we try
2088 // hard not to let it happen because it likely results in poor scheduling.
2089 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") has too many regdefs\n");
2090 RegPressure[RCId] = 0;
2091 }
2092 else {
2093 RegPressure[RCId] -= Cost;
2094 }
2095 }
2096 dumpRegPressure();
2097 }
2098
unscheduledNode(SUnit * SU)2099 void RegReductionPQBase::unscheduledNode(SUnit *SU) {
2100 if (!TracksRegPressure)
2101 return;
2102
2103 const SDNode *N = SU->getNode();
2104 if (!N) return;
2105
2106 if (!N->isMachineOpcode()) {
2107 if (N->getOpcode() != ISD::CopyToReg)
2108 return;
2109 } else {
2110 unsigned Opc = N->getMachineOpcode();
2111 if (Opc == TargetOpcode::EXTRACT_SUBREG ||
2112 Opc == TargetOpcode::INSERT_SUBREG ||
2113 Opc == TargetOpcode::SUBREG_TO_REG ||
2114 Opc == TargetOpcode::REG_SEQUENCE ||
2115 Opc == TargetOpcode::IMPLICIT_DEF)
2116 return;
2117 }
2118
2119 for (const SDep &Pred : SU->Preds) {
2120 if (Pred.isCtrl())
2121 continue;
2122 SUnit *PredSU = Pred.getSUnit();
2123 // NumSuccsLeft counts all deps. Don't compare it with NumSuccs which only
2124 // counts data deps.
2125 if (PredSU->NumSuccsLeft != PredSU->Succs.size())
2126 continue;
2127 const SDNode *PN = PredSU->getNode();
2128 if (!PN->isMachineOpcode()) {
2129 if (PN->getOpcode() == ISD::CopyFromReg) {
2130 MVT VT = PN->getSimpleValueType(0);
2131 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2132 RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
2133 }
2134 continue;
2135 }
2136 unsigned POpc = PN->getMachineOpcode();
2137 if (POpc == TargetOpcode::IMPLICIT_DEF)
2138 continue;
2139 if (POpc == TargetOpcode::EXTRACT_SUBREG ||
2140 POpc == TargetOpcode::INSERT_SUBREG ||
2141 POpc == TargetOpcode::SUBREG_TO_REG) {
2142 MVT VT = PN->getSimpleValueType(0);
2143 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2144 RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
2145 continue;
2146 }
2147 unsigned NumDefs = TII->get(PN->getMachineOpcode()).getNumDefs();
2148 for (unsigned i = 0; i != NumDefs; ++i) {
2149 MVT VT = PN->getSimpleValueType(i);
2150 if (!PN->hasAnyUseOfValue(i))
2151 continue;
2152 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2153 if (RegPressure[RCId] < TLI->getRepRegClassCostFor(VT))
2154 // Register pressure tracking is imprecise. This can happen.
2155 RegPressure[RCId] = 0;
2156 else
2157 RegPressure[RCId] -= TLI->getRepRegClassCostFor(VT);
2158 }
2159 }
2160
2161 // Check for isMachineOpcode() as PrescheduleNodesWithMultipleUses()
2162 // may transfer data dependencies to CopyToReg.
2163 if (SU->NumSuccs && N->isMachineOpcode()) {
2164 unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
2165 for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
2166 MVT VT = N->getSimpleValueType(i);
2167 if (VT == MVT::Glue || VT == MVT::Other)
2168 continue;
2169 if (!N->hasAnyUseOfValue(i))
2170 continue;
2171 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2172 RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
2173 }
2174 }
2175
2176 dumpRegPressure();
2177 }
2178
2179 //===----------------------------------------------------------------------===//
2180 // Dynamic Node Priority for Register Pressure Reduction
2181 //===----------------------------------------------------------------------===//
2182
2183 /// closestSucc - Returns the scheduled cycle of the successor which is
2184 /// closest to the current cycle.
closestSucc(const SUnit * SU)2185 static unsigned closestSucc(const SUnit *SU) {
2186 unsigned MaxHeight = 0;
2187 for (const SDep &Succ : SU->Succs) {
2188 if (Succ.isCtrl()) continue; // ignore chain succs
2189 unsigned Height = Succ.getSUnit()->getHeight();
2190 // If there are bunch of CopyToRegs stacked up, they should be considered
2191 // to be at the same position.
2192 if (Succ.getSUnit()->getNode() &&
2193 Succ.getSUnit()->getNode()->getOpcode() == ISD::CopyToReg)
2194 Height = closestSucc(Succ.getSUnit())+1;
2195 if (Height > MaxHeight)
2196 MaxHeight = Height;
2197 }
2198 return MaxHeight;
2199 }
2200
2201 /// calcMaxScratches - Returns an cost estimate of the worse case requirement
2202 /// for scratch registers, i.e. number of data dependencies.
calcMaxScratches(const SUnit * SU)2203 static unsigned calcMaxScratches(const SUnit *SU) {
2204 unsigned Scratches = 0;
2205 for (const SDep &Pred : SU->Preds) {
2206 if (Pred.isCtrl()) continue; // ignore chain preds
2207 Scratches++;
2208 }
2209 return Scratches;
2210 }
2211
2212 /// hasOnlyLiveInOpers - Return true if SU has only value predecessors that are
2213 /// CopyFromReg from a virtual register.
hasOnlyLiveInOpers(const SUnit * SU)2214 static bool hasOnlyLiveInOpers(const SUnit *SU) {
2215 bool RetVal = false;
2216 for (const SDep &Pred : SU->Preds) {
2217 if (Pred.isCtrl()) continue;
2218 const SUnit *PredSU = Pred.getSUnit();
2219 if (PredSU->getNode() &&
2220 PredSU->getNode()->getOpcode() == ISD::CopyFromReg) {
2221 unsigned Reg =
2222 cast<RegisterSDNode>(PredSU->getNode()->getOperand(1))->getReg();
2223 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2224 RetVal = true;
2225 continue;
2226 }
2227 }
2228 return false;
2229 }
2230 return RetVal;
2231 }
2232
2233 /// hasOnlyLiveOutUses - Return true if SU has only value successors that are
2234 /// CopyToReg to a virtual register. This SU def is probably a liveout and
2235 /// it has no other use. It should be scheduled closer to the terminator.
hasOnlyLiveOutUses(const SUnit * SU)2236 static bool hasOnlyLiveOutUses(const SUnit *SU) {
2237 bool RetVal = false;
2238 for (const SDep &Succ : SU->Succs) {
2239 if (Succ.isCtrl()) continue;
2240 const SUnit *SuccSU = Succ.getSUnit();
2241 if (SuccSU->getNode() && SuccSU->getNode()->getOpcode() == ISD::CopyToReg) {
2242 unsigned Reg =
2243 cast<RegisterSDNode>(SuccSU->getNode()->getOperand(1))->getReg();
2244 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2245 RetVal = true;
2246 continue;
2247 }
2248 }
2249 return false;
2250 }
2251 return RetVal;
2252 }
2253
2254 // Set isVRegCycle for a node with only live in opers and live out uses. Also
2255 // set isVRegCycle for its CopyFromReg operands.
2256 //
2257 // This is only relevant for single-block loops, in which case the VRegCycle
2258 // node is likely an induction variable in which the operand and target virtual
2259 // registers should be coalesced (e.g. pre/post increment values). Setting the
2260 // isVRegCycle flag helps the scheduler prioritize other uses of the same
2261 // CopyFromReg so that this node becomes the virtual register "kill". This
2262 // avoids interference between the values live in and out of the block and
2263 // eliminates a copy inside the loop.
initVRegCycle(SUnit * SU)2264 static void initVRegCycle(SUnit *SU) {
2265 if (DisableSchedVRegCycle)
2266 return;
2267
2268 if (!hasOnlyLiveInOpers(SU) || !hasOnlyLiveOutUses(SU))
2269 return;
2270
2271 DEBUG(dbgs() << "VRegCycle: SU(" << SU->NodeNum << ")\n");
2272
2273 SU->isVRegCycle = true;
2274
2275 for (const SDep &Pred : SU->Preds) {
2276 if (Pred.isCtrl()) continue;
2277 Pred.getSUnit()->isVRegCycle = true;
2278 }
2279 }
2280
2281 // After scheduling the definition of a VRegCycle, clear the isVRegCycle flag of
2282 // CopyFromReg operands. We should no longer penalize other uses of this VReg.
resetVRegCycle(SUnit * SU)2283 static void resetVRegCycle(SUnit *SU) {
2284 if (!SU->isVRegCycle)
2285 return;
2286
2287 for (const SDep &Pred : SU->Preds) {
2288 if (Pred.isCtrl()) continue; // ignore chain preds
2289 SUnit *PredSU = Pred.getSUnit();
2290 if (PredSU->isVRegCycle) {
2291 assert(PredSU->getNode()->getOpcode() == ISD::CopyFromReg &&
2292 "VRegCycle def must be CopyFromReg");
2293 Pred.getSUnit()->isVRegCycle = false;
2294 }
2295 }
2296 }
2297
2298 // Return true if this SUnit uses a CopyFromReg node marked as a VRegCycle. This
2299 // means a node that defines the VRegCycle has not been scheduled yet.
hasVRegCycleUse(const SUnit * SU)2300 static bool hasVRegCycleUse(const SUnit *SU) {
2301 // If this SU also defines the VReg, don't hoist it as a "use".
2302 if (SU->isVRegCycle)
2303 return false;
2304
2305 for (const SDep &Pred : SU->Preds) {
2306 if (Pred.isCtrl()) continue; // ignore chain preds
2307 if (Pred.getSUnit()->isVRegCycle &&
2308 Pred.getSUnit()->getNode()->getOpcode() == ISD::CopyFromReg) {
2309 DEBUG(dbgs() << " VReg cycle use: SU (" << SU->NodeNum << ")\n");
2310 return true;
2311 }
2312 }
2313 return false;
2314 }
2315
2316 // Check for either a dependence (latency) or resource (hazard) stall.
2317 //
2318 // Note: The ScheduleHazardRecognizer interface requires a non-const SU.
BUHasStall(SUnit * SU,int Height,RegReductionPQBase * SPQ)2319 static bool BUHasStall(SUnit *SU, int Height, RegReductionPQBase *SPQ) {
2320 if ((int)SPQ->getCurCycle() < Height) return true;
2321 if (SPQ->getHazardRec()->getHazardType(SU, 0)
2322 != ScheduleHazardRecognizer::NoHazard)
2323 return true;
2324 return false;
2325 }
2326
2327 // Return -1 if left has higher priority, 1 if right has higher priority.
2328 // Return 0 if latency-based priority is equivalent.
BUCompareLatency(SUnit * left,SUnit * right,bool checkPref,RegReductionPQBase * SPQ)2329 static int BUCompareLatency(SUnit *left, SUnit *right, bool checkPref,
2330 RegReductionPQBase *SPQ) {
2331 // Scheduling an instruction that uses a VReg whose postincrement has not yet
2332 // been scheduled will induce a copy. Model this as an extra cycle of latency.
2333 int LPenalty = hasVRegCycleUse(left) ? 1 : 0;
2334 int RPenalty = hasVRegCycleUse(right) ? 1 : 0;
2335 int LHeight = (int)left->getHeight() + LPenalty;
2336 int RHeight = (int)right->getHeight() + RPenalty;
2337
2338 bool LStall = (!checkPref || left->SchedulingPref == Sched::ILP) &&
2339 BUHasStall(left, LHeight, SPQ);
2340 bool RStall = (!checkPref || right->SchedulingPref == Sched::ILP) &&
2341 BUHasStall(right, RHeight, SPQ);
2342
2343 // If scheduling one of the node will cause a pipeline stall, delay it.
2344 // If scheduling either one of the node will cause a pipeline stall, sort
2345 // them according to their height.
2346 if (LStall) {
2347 if (!RStall)
2348 return 1;
2349 if (LHeight != RHeight)
2350 return LHeight > RHeight ? 1 : -1;
2351 } else if (RStall)
2352 return -1;
2353
2354 // If either node is scheduling for latency, sort them by height/depth
2355 // and latency.
2356 if (!checkPref || (left->SchedulingPref == Sched::ILP ||
2357 right->SchedulingPref == Sched::ILP)) {
2358 // If neither instruction stalls (!LStall && !RStall) and HazardRecognizer
2359 // is enabled, grouping instructions by cycle, then its height is already
2360 // covered so only its depth matters. We also reach this point if both stall
2361 // but have the same height.
2362 if (!SPQ->getHazardRec()->isEnabled()) {
2363 if (LHeight != RHeight)
2364 return LHeight > RHeight ? 1 : -1;
2365 }
2366 int LDepth = left->getDepth() - LPenalty;
2367 int RDepth = right->getDepth() - RPenalty;
2368 if (LDepth != RDepth) {
2369 DEBUG(dbgs() << " Comparing latency of SU (" << left->NodeNum
2370 << ") depth " << LDepth << " vs SU (" << right->NodeNum
2371 << ") depth " << RDepth << "\n");
2372 return LDepth < RDepth ? 1 : -1;
2373 }
2374 if (left->Latency != right->Latency)
2375 return left->Latency > right->Latency ? 1 : -1;
2376 }
2377 return 0;
2378 }
2379
BURRSort(SUnit * left,SUnit * right,RegReductionPQBase * SPQ)2380 static bool BURRSort(SUnit *left, SUnit *right, RegReductionPQBase *SPQ) {
2381 // Schedule physical register definitions close to their use. This is
2382 // motivated by microarchitectures that can fuse cmp+jump macro-ops. But as
2383 // long as shortening physreg live ranges is generally good, we can defer
2384 // creating a subtarget hook.
2385 if (!DisableSchedPhysRegJoin) {
2386 bool LHasPhysReg = left->hasPhysRegDefs;
2387 bool RHasPhysReg = right->hasPhysRegDefs;
2388 if (LHasPhysReg != RHasPhysReg) {
2389 #ifndef NDEBUG
2390 static const char *const PhysRegMsg[] = { " has no physreg",
2391 " defines a physreg" };
2392 #endif
2393 DEBUG(dbgs() << " SU (" << left->NodeNum << ") "
2394 << PhysRegMsg[LHasPhysReg] << " SU(" << right->NodeNum << ") "
2395 << PhysRegMsg[RHasPhysReg] << "\n");
2396 return LHasPhysReg < RHasPhysReg;
2397 }
2398 }
2399
2400 // Prioritize by Sethi-Ulmann number and push CopyToReg nodes down.
2401 unsigned LPriority = SPQ->getNodePriority(left);
2402 unsigned RPriority = SPQ->getNodePriority(right);
2403
2404 // Be really careful about hoisting call operands above previous calls.
2405 // Only allows it if it would reduce register pressure.
2406 if (left->isCall && right->isCallOp) {
2407 unsigned RNumVals = right->getNode()->getNumValues();
2408 RPriority = (RPriority > RNumVals) ? (RPriority - RNumVals) : 0;
2409 }
2410 if (right->isCall && left->isCallOp) {
2411 unsigned LNumVals = left->getNode()->getNumValues();
2412 LPriority = (LPriority > LNumVals) ? (LPriority - LNumVals) : 0;
2413 }
2414
2415 if (LPriority != RPriority)
2416 return LPriority > RPriority;
2417
2418 // One or both of the nodes are calls and their sethi-ullman numbers are the
2419 // same, then keep source order.
2420 if (left->isCall || right->isCall) {
2421 unsigned LOrder = SPQ->getNodeOrdering(left);
2422 unsigned ROrder = SPQ->getNodeOrdering(right);
2423
2424 // Prefer an ordering where the lower the non-zero order number, the higher
2425 // the preference.
2426 if ((LOrder || ROrder) && LOrder != ROrder)
2427 return LOrder != 0 && (LOrder < ROrder || ROrder == 0);
2428 }
2429
2430 // Try schedule def + use closer when Sethi-Ullman numbers are the same.
2431 // e.g.
2432 // t1 = op t2, c1
2433 // t3 = op t4, c2
2434 //
2435 // and the following instructions are both ready.
2436 // t2 = op c3
2437 // t4 = op c4
2438 //
2439 // Then schedule t2 = op first.
2440 // i.e.
2441 // t4 = op c4
2442 // t2 = op c3
2443 // t1 = op t2, c1
2444 // t3 = op t4, c2
2445 //
2446 // This creates more short live intervals.
2447 unsigned LDist = closestSucc(left);
2448 unsigned RDist = closestSucc(right);
2449 if (LDist != RDist)
2450 return LDist < RDist;
2451
2452 // How many registers becomes live when the node is scheduled.
2453 unsigned LScratch = calcMaxScratches(left);
2454 unsigned RScratch = calcMaxScratches(right);
2455 if (LScratch != RScratch)
2456 return LScratch > RScratch;
2457
2458 // Comparing latency against a call makes little sense unless the node
2459 // is register pressure-neutral.
2460 if ((left->isCall && RPriority > 0) || (right->isCall && LPriority > 0))
2461 return (left->NodeQueueId > right->NodeQueueId);
2462
2463 // Do not compare latencies when one or both of the nodes are calls.
2464 if (!DisableSchedCycles &&
2465 !(left->isCall || right->isCall)) {
2466 int result = BUCompareLatency(left, right, false /*checkPref*/, SPQ);
2467 if (result != 0)
2468 return result > 0;
2469 }
2470 else {
2471 if (left->getHeight() != right->getHeight())
2472 return left->getHeight() > right->getHeight();
2473
2474 if (left->getDepth() != right->getDepth())
2475 return left->getDepth() < right->getDepth();
2476 }
2477
2478 assert(left->NodeQueueId && right->NodeQueueId &&
2479 "NodeQueueId cannot be zero");
2480 return (left->NodeQueueId > right->NodeQueueId);
2481 }
2482
2483 // Bottom up
operator ()(SUnit * left,SUnit * right) const2484 bool bu_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2485 if (int res = checkSpecialNodes(left, right))
2486 return res > 0;
2487
2488 return BURRSort(left, right, SPQ);
2489 }
2490
2491 // Source order, otherwise bottom up.
operator ()(SUnit * left,SUnit * right) const2492 bool src_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2493 if (int res = checkSpecialNodes(left, right))
2494 return res > 0;
2495
2496 unsigned LOrder = SPQ->getNodeOrdering(left);
2497 unsigned ROrder = SPQ->getNodeOrdering(right);
2498
2499 // Prefer an ordering where the lower the non-zero order number, the higher
2500 // the preference.
2501 if ((LOrder || ROrder) && LOrder != ROrder)
2502 return LOrder != 0 && (LOrder < ROrder || ROrder == 0);
2503
2504 return BURRSort(left, right, SPQ);
2505 }
2506
2507 // If the time between now and when the instruction will be ready can cover
2508 // the spill code, then avoid adding it to the ready queue. This gives long
2509 // stalls highest priority and allows hoisting across calls. It should also
2510 // speed up processing the available queue.
isReady(SUnit * SU,unsigned CurCycle) const2511 bool hybrid_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const {
2512 static const unsigned ReadyDelay = 3;
2513
2514 if (SPQ->MayReduceRegPressure(SU)) return true;
2515
2516 if (SU->getHeight() > (CurCycle + ReadyDelay)) return false;
2517
2518 if (SPQ->getHazardRec()->getHazardType(SU, -ReadyDelay)
2519 != ScheduleHazardRecognizer::NoHazard)
2520 return false;
2521
2522 return true;
2523 }
2524
2525 // Return true if right should be scheduled with higher priority than left.
operator ()(SUnit * left,SUnit * right) const2526 bool hybrid_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2527 if (int res = checkSpecialNodes(left, right))
2528 return res > 0;
2529
2530 if (left->isCall || right->isCall)
2531 // No way to compute latency of calls.
2532 return BURRSort(left, right, SPQ);
2533
2534 bool LHigh = SPQ->HighRegPressure(left);
2535 bool RHigh = SPQ->HighRegPressure(right);
2536 // Avoid causing spills. If register pressure is high, schedule for
2537 // register pressure reduction.
2538 if (LHigh && !RHigh) {
2539 DEBUG(dbgs() << " pressure SU(" << left->NodeNum << ") > SU("
2540 << right->NodeNum << ")\n");
2541 return true;
2542 }
2543 else if (!LHigh && RHigh) {
2544 DEBUG(dbgs() << " pressure SU(" << right->NodeNum << ") > SU("
2545 << left->NodeNum << ")\n");
2546 return false;
2547 }
2548 if (!LHigh && !RHigh) {
2549 int result = BUCompareLatency(left, right, true /*checkPref*/, SPQ);
2550 if (result != 0)
2551 return result > 0;
2552 }
2553 return BURRSort(left, right, SPQ);
2554 }
2555
2556 // Schedule as many instructions in each cycle as possible. So don't make an
2557 // instruction available unless it is ready in the current cycle.
isReady(SUnit * SU,unsigned CurCycle) const2558 bool ilp_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const {
2559 if (SU->getHeight() > CurCycle) return false;
2560
2561 if (SPQ->getHazardRec()->getHazardType(SU, 0)
2562 != ScheduleHazardRecognizer::NoHazard)
2563 return false;
2564
2565 return true;
2566 }
2567
canEnableCoalescing(SUnit * SU)2568 static bool canEnableCoalescing(SUnit *SU) {
2569 unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
2570 if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
2571 // CopyToReg should be close to its uses to facilitate coalescing and
2572 // avoid spilling.
2573 return true;
2574
2575 if (Opc == TargetOpcode::EXTRACT_SUBREG ||
2576 Opc == TargetOpcode::SUBREG_TO_REG ||
2577 Opc == TargetOpcode::INSERT_SUBREG)
2578 // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
2579 // close to their uses to facilitate coalescing.
2580 return true;
2581
2582 if (SU->NumPreds == 0 && SU->NumSuccs != 0)
2583 // If SU does not have a register def, schedule it close to its uses
2584 // because it does not lengthen any live ranges.
2585 return true;
2586
2587 return false;
2588 }
2589
2590 // list-ilp is currently an experimental scheduler that allows various
2591 // heuristics to be enabled prior to the normal register reduction logic.
operator ()(SUnit * left,SUnit * right) const2592 bool ilp_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2593 if (int res = checkSpecialNodes(left, right))
2594 return res > 0;
2595
2596 if (left->isCall || right->isCall)
2597 // No way to compute latency of calls.
2598 return BURRSort(left, right, SPQ);
2599
2600 unsigned LLiveUses = 0, RLiveUses = 0;
2601 int LPDiff = 0, RPDiff = 0;
2602 if (!DisableSchedRegPressure || !DisableSchedLiveUses) {
2603 LPDiff = SPQ->RegPressureDiff(left, LLiveUses);
2604 RPDiff = SPQ->RegPressureDiff(right, RLiveUses);
2605 }
2606 if (!DisableSchedRegPressure && LPDiff != RPDiff) {
2607 DEBUG(dbgs() << "RegPressureDiff SU(" << left->NodeNum << "): " << LPDiff
2608 << " != SU(" << right->NodeNum << "): " << RPDiff << "\n");
2609 return LPDiff > RPDiff;
2610 }
2611
2612 if (!DisableSchedRegPressure && (LPDiff > 0 || RPDiff > 0)) {
2613 bool LReduce = canEnableCoalescing(left);
2614 bool RReduce = canEnableCoalescing(right);
2615 if (LReduce && !RReduce) return false;
2616 if (RReduce && !LReduce) return true;
2617 }
2618
2619 if (!DisableSchedLiveUses && (LLiveUses != RLiveUses)) {
2620 DEBUG(dbgs() << "Live uses SU(" << left->NodeNum << "): " << LLiveUses
2621 << " != SU(" << right->NodeNum << "): " << RLiveUses << "\n");
2622 return LLiveUses < RLiveUses;
2623 }
2624
2625 if (!DisableSchedStalls) {
2626 bool LStall = BUHasStall(left, left->getHeight(), SPQ);
2627 bool RStall = BUHasStall(right, right->getHeight(), SPQ);
2628 if (LStall != RStall)
2629 return left->getHeight() > right->getHeight();
2630 }
2631
2632 if (!DisableSchedCriticalPath) {
2633 int spread = (int)left->getDepth() - (int)right->getDepth();
2634 if (std::abs(spread) > MaxReorderWindow) {
2635 DEBUG(dbgs() << "Depth of SU(" << left->NodeNum << "): "
2636 << left->getDepth() << " != SU(" << right->NodeNum << "): "
2637 << right->getDepth() << "\n");
2638 return left->getDepth() < right->getDepth();
2639 }
2640 }
2641
2642 if (!DisableSchedHeight && left->getHeight() != right->getHeight()) {
2643 int spread = (int)left->getHeight() - (int)right->getHeight();
2644 if (std::abs(spread) > MaxReorderWindow)
2645 return left->getHeight() > right->getHeight();
2646 }
2647
2648 return BURRSort(left, right, SPQ);
2649 }
2650
initNodes(std::vector<SUnit> & sunits)2651 void RegReductionPQBase::initNodes(std::vector<SUnit> &sunits) {
2652 SUnits = &sunits;
2653 // Add pseudo dependency edges for two-address nodes.
2654 if (!Disable2AddrHack)
2655 AddPseudoTwoAddrDeps();
2656 // Reroute edges to nodes with multiple uses.
2657 if (!TracksRegPressure && !SrcOrder)
2658 PrescheduleNodesWithMultipleUses();
2659 // Calculate node priorities.
2660 CalculateSethiUllmanNumbers();
2661
2662 // For single block loops, mark nodes that look like canonical IV increments.
2663 if (scheduleDAG->BB->isSuccessor(scheduleDAG->BB))
2664 for (SUnit &SU : sunits)
2665 initVRegCycle(&SU);
2666 }
2667
2668 //===----------------------------------------------------------------------===//
2669 // Preschedule for Register Pressure
2670 //===----------------------------------------------------------------------===//
2671
canClobber(const SUnit * SU,const SUnit * Op)2672 bool RegReductionPQBase::canClobber(const SUnit *SU, const SUnit *Op) {
2673 if (SU->isTwoAddress) {
2674 unsigned Opc = SU->getNode()->getMachineOpcode();
2675 const MCInstrDesc &MCID = TII->get(Opc);
2676 unsigned NumRes = MCID.getNumDefs();
2677 unsigned NumOps = MCID.getNumOperands() - NumRes;
2678 for (unsigned i = 0; i != NumOps; ++i) {
2679 if (MCID.getOperandConstraint(i+NumRes, MCOI::TIED_TO) != -1) {
2680 SDNode *DU = SU->getNode()->getOperand(i).getNode();
2681 if (DU->getNodeId() != -1 &&
2682 Op->OrigNode == &(*SUnits)[DU->getNodeId()])
2683 return true;
2684 }
2685 }
2686 }
2687 return false;
2688 }
2689
2690 /// canClobberReachingPhysRegUse - True if SU would clobber one of it's
2691 /// successor's explicit physregs whose definition can reach DepSU.
2692 /// i.e. DepSU should not be scheduled above SU.
canClobberReachingPhysRegUse(const SUnit * DepSU,const SUnit * SU,ScheduleDAGRRList * scheduleDAG,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI)2693 static bool canClobberReachingPhysRegUse(const SUnit *DepSU, const SUnit *SU,
2694 ScheduleDAGRRList *scheduleDAG,
2695 const TargetInstrInfo *TII,
2696 const TargetRegisterInfo *TRI) {
2697 const MCPhysReg *ImpDefs
2698 = TII->get(SU->getNode()->getMachineOpcode()).getImplicitDefs();
2699 const uint32_t *RegMask = getNodeRegMask(SU->getNode());
2700 if(!ImpDefs && !RegMask)
2701 return false;
2702
2703 for (const SDep &Succ : SU->Succs) {
2704 SUnit *SuccSU = Succ.getSUnit();
2705 for (const SDep &SuccPred : SuccSU->Preds) {
2706 if (!SuccPred.isAssignedRegDep())
2707 continue;
2708
2709 if (RegMask &&
2710 MachineOperand::clobbersPhysReg(RegMask, SuccPred.getReg()) &&
2711 scheduleDAG->IsReachable(DepSU, SuccPred.getSUnit()))
2712 return true;
2713
2714 if (ImpDefs)
2715 for (const MCPhysReg *ImpDef = ImpDefs; *ImpDef; ++ImpDef)
2716 // Return true if SU clobbers this physical register use and the
2717 // definition of the register reaches from DepSU. IsReachable queries
2718 // a topological forward sort of the DAG (following the successors).
2719 if (TRI->regsOverlap(*ImpDef, SuccPred.getReg()) &&
2720 scheduleDAG->IsReachable(DepSU, SuccPred.getSUnit()))
2721 return true;
2722 }
2723 }
2724 return false;
2725 }
2726
2727 /// canClobberPhysRegDefs - True if SU would clobber one of SuccSU's
2728 /// physical register defs.
canClobberPhysRegDefs(const SUnit * SuccSU,const SUnit * SU,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI)2729 static bool canClobberPhysRegDefs(const SUnit *SuccSU, const SUnit *SU,
2730 const TargetInstrInfo *TII,
2731 const TargetRegisterInfo *TRI) {
2732 SDNode *N = SuccSU->getNode();
2733 unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
2734 const MCPhysReg *ImpDefs = TII->get(N->getMachineOpcode()).getImplicitDefs();
2735 assert(ImpDefs && "Caller should check hasPhysRegDefs");
2736 for (const SDNode *SUNode = SU->getNode(); SUNode;
2737 SUNode = SUNode->getGluedNode()) {
2738 if (!SUNode->isMachineOpcode())
2739 continue;
2740 const MCPhysReg *SUImpDefs =
2741 TII->get(SUNode->getMachineOpcode()).getImplicitDefs();
2742 const uint32_t *SURegMask = getNodeRegMask(SUNode);
2743 if (!SUImpDefs && !SURegMask)
2744 continue;
2745 for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
2746 MVT VT = N->getSimpleValueType(i);
2747 if (VT == MVT::Glue || VT == MVT::Other)
2748 continue;
2749 if (!N->hasAnyUseOfValue(i))
2750 continue;
2751 unsigned Reg = ImpDefs[i - NumDefs];
2752 if (SURegMask && MachineOperand::clobbersPhysReg(SURegMask, Reg))
2753 return true;
2754 if (!SUImpDefs)
2755 continue;
2756 for (;*SUImpDefs; ++SUImpDefs) {
2757 unsigned SUReg = *SUImpDefs;
2758 if (TRI->regsOverlap(Reg, SUReg))
2759 return true;
2760 }
2761 }
2762 }
2763 return false;
2764 }
2765
2766 /// PrescheduleNodesWithMultipleUses - Nodes with multiple uses
2767 /// are not handled well by the general register pressure reduction
2768 /// heuristics. When presented with code like this:
2769 ///
2770 /// N
2771 /// / |
2772 /// / |
2773 /// U store
2774 /// |
2775 /// ...
2776 ///
2777 /// the heuristics tend to push the store up, but since the
2778 /// operand of the store has another use (U), this would increase
2779 /// the length of that other use (the U->N edge).
2780 ///
2781 /// This function transforms code like the above to route U's
2782 /// dependence through the store when possible, like this:
2783 ///
2784 /// N
2785 /// ||
2786 /// ||
2787 /// store
2788 /// |
2789 /// U
2790 /// |
2791 /// ...
2792 ///
2793 /// This results in the store being scheduled immediately
2794 /// after N, which shortens the U->N live range, reducing
2795 /// register pressure.
2796 ///
PrescheduleNodesWithMultipleUses()2797 void RegReductionPQBase::PrescheduleNodesWithMultipleUses() {
2798 // Visit all the nodes in topological order, working top-down.
2799 for (SUnit &SU : *SUnits) {
2800 // For now, only look at nodes with no data successors, such as stores.
2801 // These are especially important, due to the heuristics in
2802 // getNodePriority for nodes with no data successors.
2803 if (SU.NumSuccs != 0)
2804 continue;
2805 // For now, only look at nodes with exactly one data predecessor.
2806 if (SU.NumPreds != 1)
2807 continue;
2808 // Avoid prescheduling copies to virtual registers, which don't behave
2809 // like other nodes from the perspective of scheduling heuristics.
2810 if (SDNode *N = SU.getNode())
2811 if (N->getOpcode() == ISD::CopyToReg &&
2812 TargetRegisterInfo::isVirtualRegister
2813 (cast<RegisterSDNode>(N->getOperand(1))->getReg()))
2814 continue;
2815
2816 // Locate the single data predecessor.
2817 SUnit *PredSU = nullptr;
2818 for (const SDep &Pred : SU.Preds)
2819 if (!Pred.isCtrl()) {
2820 PredSU = Pred.getSUnit();
2821 break;
2822 }
2823 assert(PredSU);
2824
2825 // Don't rewrite edges that carry physregs, because that requires additional
2826 // support infrastructure.
2827 if (PredSU->hasPhysRegDefs)
2828 continue;
2829 // Short-circuit the case where SU is PredSU's only data successor.
2830 if (PredSU->NumSuccs == 1)
2831 continue;
2832 // Avoid prescheduling to copies from virtual registers, which don't behave
2833 // like other nodes from the perspective of scheduling heuristics.
2834 if (SDNode *N = SU.getNode())
2835 if (N->getOpcode() == ISD::CopyFromReg &&
2836 TargetRegisterInfo::isVirtualRegister
2837 (cast<RegisterSDNode>(N->getOperand(1))->getReg()))
2838 continue;
2839
2840 // Perform checks on the successors of PredSU.
2841 for (const SDep &PredSucc : PredSU->Succs) {
2842 SUnit *PredSuccSU = PredSucc.getSUnit();
2843 if (PredSuccSU == &SU) continue;
2844 // If PredSU has another successor with no data successors, for
2845 // now don't attempt to choose either over the other.
2846 if (PredSuccSU->NumSuccs == 0)
2847 goto outer_loop_continue;
2848 // Don't break physical register dependencies.
2849 if (SU.hasPhysRegClobbers && PredSuccSU->hasPhysRegDefs)
2850 if (canClobberPhysRegDefs(PredSuccSU, &SU, TII, TRI))
2851 goto outer_loop_continue;
2852 // Don't introduce graph cycles.
2853 if (scheduleDAG->IsReachable(&SU, PredSuccSU))
2854 goto outer_loop_continue;
2855 }
2856
2857 // Ok, the transformation is safe and the heuristics suggest it is
2858 // profitable. Update the graph.
2859 DEBUG(dbgs() << " Prescheduling SU #" << SU.NodeNum
2860 << " next to PredSU #" << PredSU->NodeNum
2861 << " to guide scheduling in the presence of multiple uses\n");
2862 for (unsigned i = 0; i != PredSU->Succs.size(); ++i) {
2863 SDep Edge = PredSU->Succs[i];
2864 assert(!Edge.isAssignedRegDep());
2865 SUnit *SuccSU = Edge.getSUnit();
2866 if (SuccSU != &SU) {
2867 Edge.setSUnit(PredSU);
2868 scheduleDAG->RemovePred(SuccSU, Edge);
2869 scheduleDAG->AddPred(&SU, Edge);
2870 Edge.setSUnit(&SU);
2871 scheduleDAG->AddPred(SuccSU, Edge);
2872 --i;
2873 }
2874 }
2875 outer_loop_continue:;
2876 }
2877 }
2878
2879 /// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
2880 /// it as a def&use operand. Add a pseudo control edge from it to the other
2881 /// node (if it won't create a cycle) so the two-address one will be scheduled
2882 /// first (lower in the schedule). If both nodes are two-address, favor the
2883 /// one that has a CopyToReg use (more likely to be a loop induction update).
2884 /// If both are two-address, but one is commutable while the other is not
2885 /// commutable, favor the one that's not commutable.
AddPseudoTwoAddrDeps()2886 void RegReductionPQBase::AddPseudoTwoAddrDeps() {
2887 for (SUnit &SU : *SUnits) {
2888 if (!SU.isTwoAddress)
2889 continue;
2890
2891 SDNode *Node = SU.getNode();
2892 if (!Node || !Node->isMachineOpcode() || SU.getNode()->getGluedNode())
2893 continue;
2894
2895 bool isLiveOut = hasOnlyLiveOutUses(&SU);
2896 unsigned Opc = Node->getMachineOpcode();
2897 const MCInstrDesc &MCID = TII->get(Opc);
2898 unsigned NumRes = MCID.getNumDefs();
2899 unsigned NumOps = MCID.getNumOperands() - NumRes;
2900 for (unsigned j = 0; j != NumOps; ++j) {
2901 if (MCID.getOperandConstraint(j+NumRes, MCOI::TIED_TO) == -1)
2902 continue;
2903 SDNode *DU = SU.getNode()->getOperand(j).getNode();
2904 if (DU->getNodeId() == -1)
2905 continue;
2906 const SUnit *DUSU = &(*SUnits)[DU->getNodeId()];
2907 if (!DUSU)
2908 continue;
2909 for (const SDep &Succ : DUSU->Succs) {
2910 if (Succ.isCtrl())
2911 continue;
2912 SUnit *SuccSU = Succ.getSUnit();
2913 if (SuccSU == &SU)
2914 continue;
2915 // Be conservative. Ignore if nodes aren't at roughly the same
2916 // depth and height.
2917 if (SuccSU->getHeight() < SU.getHeight() &&
2918 (SU.getHeight() - SuccSU->getHeight()) > 1)
2919 continue;
2920 // Skip past COPY_TO_REGCLASS nodes, so that the pseudo edge
2921 // constrains whatever is using the copy, instead of the copy
2922 // itself. In the case that the copy is coalesced, this
2923 // preserves the intent of the pseudo two-address heurietics.
2924 while (SuccSU->Succs.size() == 1 &&
2925 SuccSU->getNode()->isMachineOpcode() &&
2926 SuccSU->getNode()->getMachineOpcode() ==
2927 TargetOpcode::COPY_TO_REGCLASS)
2928 SuccSU = SuccSU->Succs.front().getSUnit();
2929 // Don't constrain non-instruction nodes.
2930 if (!SuccSU->getNode() || !SuccSU->getNode()->isMachineOpcode())
2931 continue;
2932 // Don't constrain nodes with physical register defs if the
2933 // predecessor can clobber them.
2934 if (SuccSU->hasPhysRegDefs && SU.hasPhysRegClobbers) {
2935 if (canClobberPhysRegDefs(SuccSU, &SU, TII, TRI))
2936 continue;
2937 }
2938 // Don't constrain EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG;
2939 // these may be coalesced away. We want them close to their uses.
2940 unsigned SuccOpc = SuccSU->getNode()->getMachineOpcode();
2941 if (SuccOpc == TargetOpcode::EXTRACT_SUBREG ||
2942 SuccOpc == TargetOpcode::INSERT_SUBREG ||
2943 SuccOpc == TargetOpcode::SUBREG_TO_REG)
2944 continue;
2945 if (!canClobberReachingPhysRegUse(SuccSU, &SU, scheduleDAG, TII, TRI) &&
2946 (!canClobber(SuccSU, DUSU) ||
2947 (isLiveOut && !hasOnlyLiveOutUses(SuccSU)) ||
2948 (!SU.isCommutable && SuccSU->isCommutable)) &&
2949 !scheduleDAG->IsReachable(SuccSU, &SU)) {
2950 DEBUG(dbgs() << " Adding a pseudo-two-addr edge from SU #"
2951 << SU.NodeNum << " to SU #" << SuccSU->NodeNum << "\n");
2952 scheduleDAG->AddPred(&SU, SDep(SuccSU, SDep::Artificial));
2953 }
2954 }
2955 }
2956 }
2957 }
2958
2959 //===----------------------------------------------------------------------===//
2960 // Public Constructor Functions
2961 //===----------------------------------------------------------------------===//
2962
2963 llvm::ScheduleDAGSDNodes *
createBURRListDAGScheduler(SelectionDAGISel * IS,CodeGenOpt::Level OptLevel)2964 llvm::createBURRListDAGScheduler(SelectionDAGISel *IS,
2965 CodeGenOpt::Level OptLevel) {
2966 const TargetSubtargetInfo &STI = IS->MF->getSubtarget();
2967 const TargetInstrInfo *TII = STI.getInstrInfo();
2968 const TargetRegisterInfo *TRI = STI.getRegisterInfo();
2969
2970 BURegReductionPriorityQueue *PQ =
2971 new BURegReductionPriorityQueue(*IS->MF, false, false, TII, TRI, nullptr);
2972 ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
2973 PQ->setScheduleDAG(SD);
2974 return SD;
2975 }
2976
2977 llvm::ScheduleDAGSDNodes *
createSourceListDAGScheduler(SelectionDAGISel * IS,CodeGenOpt::Level OptLevel)2978 llvm::createSourceListDAGScheduler(SelectionDAGISel *IS,
2979 CodeGenOpt::Level OptLevel) {
2980 const TargetSubtargetInfo &STI = IS->MF->getSubtarget();
2981 const TargetInstrInfo *TII = STI.getInstrInfo();
2982 const TargetRegisterInfo *TRI = STI.getRegisterInfo();
2983
2984 SrcRegReductionPriorityQueue *PQ =
2985 new SrcRegReductionPriorityQueue(*IS->MF, false, true, TII, TRI, nullptr);
2986 ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
2987 PQ->setScheduleDAG(SD);
2988 return SD;
2989 }
2990
2991 llvm::ScheduleDAGSDNodes *
createHybridListDAGScheduler(SelectionDAGISel * IS,CodeGenOpt::Level OptLevel)2992 llvm::createHybridListDAGScheduler(SelectionDAGISel *IS,
2993 CodeGenOpt::Level OptLevel) {
2994 const TargetSubtargetInfo &STI = IS->MF->getSubtarget();
2995 const TargetInstrInfo *TII = STI.getInstrInfo();
2996 const TargetRegisterInfo *TRI = STI.getRegisterInfo();
2997 const TargetLowering *TLI = IS->TLI;
2998
2999 HybridBURRPriorityQueue *PQ =
3000 new HybridBURRPriorityQueue(*IS->MF, true, false, TII, TRI, TLI);
3001
3002 ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel);
3003 PQ->setScheduleDAG(SD);
3004 return SD;
3005 }
3006
3007 llvm::ScheduleDAGSDNodes *
createILPListDAGScheduler(SelectionDAGISel * IS,CodeGenOpt::Level OptLevel)3008 llvm::createILPListDAGScheduler(SelectionDAGISel *IS,
3009 CodeGenOpt::Level OptLevel) {
3010 const TargetSubtargetInfo &STI = IS->MF->getSubtarget();
3011 const TargetInstrInfo *TII = STI.getInstrInfo();
3012 const TargetRegisterInfo *TRI = STI.getRegisterInfo();
3013 const TargetLowering *TLI = IS->TLI;
3014
3015 ILPBURRPriorityQueue *PQ =
3016 new ILPBURRPriorityQueue(*IS->MF, true, false, TII, TRI, TLI);
3017 ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel);
3018 PQ->setScheduleDAG(SD);
3019 return SD;
3020 }
3021