1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #define DEBUG_TYPE "isel"
15 #include "SDNodeDbgValue.h"
16 #include "SelectionDAGBuilder.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/PostOrderIterator.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/ConstantFolding.h"
22 #include "llvm/Constants.h"
23 #include "llvm/CallingConv.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/Function.h"
26 #include "llvm/GlobalVariable.h"
27 #include "llvm/InlineAsm.h"
28 #include "llvm/Instructions.h"
29 #include "llvm/Intrinsics.h"
30 #include "llvm/IntrinsicInst.h"
31 #include "llvm/LLVMContext.h"
32 #include "llvm/Module.h"
33 #include "llvm/CodeGen/Analysis.h"
34 #include "llvm/CodeGen/FastISel.h"
35 #include "llvm/CodeGen/FunctionLoweringInfo.h"
36 #include "llvm/CodeGen/GCStrategy.h"
37 #include "llvm/CodeGen/GCMetadata.h"
38 #include "llvm/CodeGen/MachineFunction.h"
39 #include "llvm/CodeGen/MachineFrameInfo.h"
40 #include "llvm/CodeGen/MachineInstrBuilder.h"
41 #include "llvm/CodeGen/MachineJumpTableInfo.h"
42 #include "llvm/CodeGen/MachineModuleInfo.h"
43 #include "llvm/CodeGen/MachineRegisterInfo.h"
44 #include "llvm/CodeGen/PseudoSourceValue.h"
45 #include "llvm/CodeGen/SelectionDAG.h"
46 #include "llvm/Analysis/DebugInfo.h"
47 #include "llvm/Target/TargetData.h"
48 #include "llvm/Target/TargetFrameLowering.h"
49 #include "llvm/Target/TargetInstrInfo.h"
50 #include "llvm/Target/TargetIntrinsicInfo.h"
51 #include "llvm/Target/TargetLowering.h"
52 #include "llvm/Target/TargetOptions.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/MathExtras.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include <algorithm>
59 using namespace llvm;
60
61 /// LimitFloatPrecision - Generate low-precision inline sequences for
62 /// some float libcalls (6, 8 or 12 bits).
63 static unsigned LimitFloatPrecision;
64
65 static cl::opt<unsigned, true>
66 LimitFPPrecision("limit-float-precision",
67 cl::desc("Generate low-precision inline sequences "
68 "for some float libcalls"),
69 cl::location(LimitFloatPrecision),
70 cl::init(0));
71
72 // Limit the width of DAG chains. This is important in general to prevent
73 // prevent DAG-based analysis from blowing up. For example, alias analysis and
74 // load clustering may not complete in reasonable time. It is difficult to
75 // recognize and avoid this situation within each individual analysis, and
76 // future analyses are likely to have the same behavior. Limiting DAG width is
77 // the safe approach, and will be especially important with global DAGs.
78 //
79 // MaxParallelChains default is arbitrarily high to avoid affecting
80 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
81 // sequence over this should have been converted to llvm.memcpy by the
82 // frontend. It easy to induce this behavior with .ll code such as:
83 // %buffer = alloca [4096 x i8]
84 // %data = load [4096 x i8]* %argPtr
85 // store [4096 x i8] %data, [4096 x i8]* %buffer
86 static const unsigned MaxParallelChains = 64;
87
88 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
89 const SDValue *Parts, unsigned NumParts,
90 EVT PartVT, EVT ValueVT);
91
92 /// getCopyFromParts - Create a value that contains the specified legal parts
93 /// combined into the value they represent. If the parts combine to a type
94 /// larger then ValueVT then AssertOp can be used to specify whether the extra
95 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
96 /// (ISD::AssertSext).
getCopyFromParts(SelectionDAG & DAG,DebugLoc DL,const SDValue * Parts,unsigned NumParts,EVT PartVT,EVT ValueVT,ISD::NodeType AssertOp=ISD::DELETED_NODE)97 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
98 const SDValue *Parts,
99 unsigned NumParts, EVT PartVT, EVT ValueVT,
100 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
101 if (ValueVT.isVector())
102 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT);
103
104 assert(NumParts > 0 && "No parts to assemble!");
105 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
106 SDValue Val = Parts[0];
107
108 if (NumParts > 1) {
109 // Assemble the value from multiple parts.
110 if (ValueVT.isInteger()) {
111 unsigned PartBits = PartVT.getSizeInBits();
112 unsigned ValueBits = ValueVT.getSizeInBits();
113
114 // Assemble the power of 2 part.
115 unsigned RoundParts = NumParts & (NumParts - 1) ?
116 1 << Log2_32(NumParts) : NumParts;
117 unsigned RoundBits = PartBits * RoundParts;
118 EVT RoundVT = RoundBits == ValueBits ?
119 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
120 SDValue Lo, Hi;
121
122 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
123
124 if (RoundParts > 2) {
125 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
126 PartVT, HalfVT);
127 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
128 RoundParts / 2, PartVT, HalfVT);
129 } else {
130 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
131 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
132 }
133
134 if (TLI.isBigEndian())
135 std::swap(Lo, Hi);
136
137 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
138
139 if (RoundParts < NumParts) {
140 // Assemble the trailing non-power-of-2 part.
141 unsigned OddParts = NumParts - RoundParts;
142 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
143 Hi = getCopyFromParts(DAG, DL,
144 Parts + RoundParts, OddParts, PartVT, OddVT);
145
146 // Combine the round and odd parts.
147 Lo = Val;
148 if (TLI.isBigEndian())
149 std::swap(Lo, Hi);
150 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
151 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
152 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
153 DAG.getConstant(Lo.getValueType().getSizeInBits(),
154 TLI.getPointerTy()));
155 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
156 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
157 }
158 } else if (PartVT.isFloatingPoint()) {
159 // FP split into multiple FP parts (for ppcf128)
160 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
161 "Unexpected split");
162 SDValue Lo, Hi;
163 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
164 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
165 if (TLI.isBigEndian())
166 std::swap(Lo, Hi);
167 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
168 } else {
169 // FP split into integer parts (soft fp)
170 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
171 !PartVT.isVector() && "Unexpected split");
172 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
173 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT);
174 }
175 }
176
177 // There is now one part, held in Val. Correct it to match ValueVT.
178 PartVT = Val.getValueType();
179
180 if (PartVT == ValueVT)
181 return Val;
182
183 if (PartVT.isInteger() && ValueVT.isInteger()) {
184 if (ValueVT.bitsLT(PartVT)) {
185 // For a truncate, see if we have any information to
186 // indicate whether the truncated bits will always be
187 // zero or sign-extension.
188 if (AssertOp != ISD::DELETED_NODE)
189 Val = DAG.getNode(AssertOp, DL, PartVT, Val,
190 DAG.getValueType(ValueVT));
191 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
192 }
193 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
194 }
195
196 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
197 // FP_ROUND's are always exact here.
198 if (ValueVT.bitsLT(Val.getValueType()))
199 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
200 DAG.getIntPtrConstant(1));
201
202 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
203 }
204
205 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
206 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
207
208 llvm_unreachable("Unknown mismatch!");
209 return SDValue();
210 }
211
212 /// getCopyFromParts - Create a value that contains the specified legal parts
213 /// combined into the value they represent. If the parts combine to a type
214 /// larger then ValueVT then AssertOp can be used to specify whether the extra
215 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
216 /// (ISD::AssertSext).
getCopyFromPartsVector(SelectionDAG & DAG,DebugLoc DL,const SDValue * Parts,unsigned NumParts,EVT PartVT,EVT ValueVT)217 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
218 const SDValue *Parts, unsigned NumParts,
219 EVT PartVT, EVT ValueVT) {
220 assert(ValueVT.isVector() && "Not a vector value");
221 assert(NumParts > 0 && "No parts to assemble!");
222 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
223 SDValue Val = Parts[0];
224
225 // Handle a multi-element vector.
226 if (NumParts > 1) {
227 EVT IntermediateVT, RegisterVT;
228 unsigned NumIntermediates;
229 unsigned NumRegs =
230 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
231 NumIntermediates, RegisterVT);
232 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
233 NumParts = NumRegs; // Silence a compiler warning.
234 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
235 assert(RegisterVT == Parts[0].getValueType() &&
236 "Part type doesn't match part!");
237
238 // Assemble the parts into intermediate operands.
239 SmallVector<SDValue, 8> Ops(NumIntermediates);
240 if (NumIntermediates == NumParts) {
241 // If the register was not expanded, truncate or copy the value,
242 // as appropriate.
243 for (unsigned i = 0; i != NumParts; ++i)
244 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
245 PartVT, IntermediateVT);
246 } else if (NumParts > 0) {
247 // If the intermediate type was expanded, build the intermediate
248 // operands from the parts.
249 assert(NumParts % NumIntermediates == 0 &&
250 "Must expand into a divisible number of parts!");
251 unsigned Factor = NumParts / NumIntermediates;
252 for (unsigned i = 0; i != NumIntermediates; ++i)
253 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
254 PartVT, IntermediateVT);
255 }
256
257 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
258 // intermediate operands.
259 Val = DAG.getNode(IntermediateVT.isVector() ?
260 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
261 ValueVT, &Ops[0], NumIntermediates);
262 }
263
264 // There is now one part, held in Val. Correct it to match ValueVT.
265 PartVT = Val.getValueType();
266
267 if (PartVT == ValueVT)
268 return Val;
269
270 if (PartVT.isVector()) {
271 // If the element type of the source/dest vectors are the same, but the
272 // parts vector has more elements than the value vector, then we have a
273 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the
274 // elements we want.
275 if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
276 assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
277 "Cannot narrow, it would be a lossy transformation");
278 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
279 DAG.getIntPtrConstant(0));
280 }
281
282 // Vector/Vector bitcast.
283 if (ValueVT.getSizeInBits() == PartVT.getSizeInBits())
284 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
285
286 assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
287 "Cannot handle this kind of promotion");
288 // Promoted vector extract
289 bool Smaller = ValueVT.bitsLE(PartVT);
290 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
291 DL, ValueVT, Val);
292
293 }
294
295 // Trivial bitcast if the types are the same size and the destination
296 // vector type is legal.
297 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() &&
298 TLI.isTypeLegal(ValueVT))
299 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
300
301 // Handle cases such as i8 -> <1 x i1>
302 assert(ValueVT.getVectorNumElements() == 1 &&
303 "Only trivial scalar-to-vector conversions should get here!");
304
305 if (ValueVT.getVectorNumElements() == 1 &&
306 ValueVT.getVectorElementType() != PartVT) {
307 bool Smaller = ValueVT.bitsLE(PartVT);
308 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
309 DL, ValueVT.getScalarType(), Val);
310 }
311
312 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
313 }
314
315
316
317
318 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
319 SDValue Val, SDValue *Parts, unsigned NumParts,
320 EVT PartVT);
321
322 /// getCopyToParts - Create a series of nodes that contain the specified value
323 /// split into legal parts. If the parts contain more bits than Val, then, for
324 /// integers, ExtendKind can be used to specify how to generate the extra bits.
getCopyToParts(SelectionDAG & DAG,DebugLoc DL,SDValue Val,SDValue * Parts,unsigned NumParts,EVT PartVT,ISD::NodeType ExtendKind=ISD::ANY_EXTEND)325 static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
326 SDValue Val, SDValue *Parts, unsigned NumParts,
327 EVT PartVT,
328 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
329 EVT ValueVT = Val.getValueType();
330
331 // Handle the vector case separately.
332 if (ValueVT.isVector())
333 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT);
334
335 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
336 unsigned PartBits = PartVT.getSizeInBits();
337 unsigned OrigNumParts = NumParts;
338 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
339
340 if (NumParts == 0)
341 return;
342
343 assert(!ValueVT.isVector() && "Vector case handled elsewhere");
344 if (PartVT == ValueVT) {
345 assert(NumParts == 1 && "No-op copy with multiple parts!");
346 Parts[0] = Val;
347 return;
348 }
349
350 if (NumParts * PartBits > ValueVT.getSizeInBits()) {
351 // If the parts cover more bits than the value has, promote the value.
352 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
353 assert(NumParts == 1 && "Do not know what to promote to!");
354 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
355 } else {
356 assert(PartVT.isInteger() && ValueVT.isInteger() &&
357 "Unknown mismatch!");
358 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
359 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
360 }
361 } else if (PartBits == ValueVT.getSizeInBits()) {
362 // Different types of the same size.
363 assert(NumParts == 1 && PartVT != ValueVT);
364 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
365 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
366 // If the parts cover less bits than value has, truncate the value.
367 assert(PartVT.isInteger() && ValueVT.isInteger() &&
368 "Unknown mismatch!");
369 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
370 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
371 }
372
373 // The value may have changed - recompute ValueVT.
374 ValueVT = Val.getValueType();
375 assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
376 "Failed to tile the value with PartVT!");
377
378 if (NumParts == 1) {
379 assert(PartVT == ValueVT && "Type conversion failed!");
380 Parts[0] = Val;
381 return;
382 }
383
384 // Expand the value into multiple parts.
385 if (NumParts & (NumParts - 1)) {
386 // The number of parts is not a power of 2. Split off and copy the tail.
387 assert(PartVT.isInteger() && ValueVT.isInteger() &&
388 "Do not know what to expand to!");
389 unsigned RoundParts = 1 << Log2_32(NumParts);
390 unsigned RoundBits = RoundParts * PartBits;
391 unsigned OddParts = NumParts - RoundParts;
392 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
393 DAG.getIntPtrConstant(RoundBits));
394 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT);
395
396 if (TLI.isBigEndian())
397 // The odd parts were reversed by getCopyToParts - unreverse them.
398 std::reverse(Parts + RoundParts, Parts + NumParts);
399
400 NumParts = RoundParts;
401 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
402 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
403 }
404
405 // The number of parts is a power of 2. Repeatedly bisect the value using
406 // EXTRACT_ELEMENT.
407 Parts[0] = DAG.getNode(ISD::BITCAST, DL,
408 EVT::getIntegerVT(*DAG.getContext(),
409 ValueVT.getSizeInBits()),
410 Val);
411
412 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
413 for (unsigned i = 0; i < NumParts; i += StepSize) {
414 unsigned ThisBits = StepSize * PartBits / 2;
415 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
416 SDValue &Part0 = Parts[i];
417 SDValue &Part1 = Parts[i+StepSize/2];
418
419 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
420 ThisVT, Part0, DAG.getIntPtrConstant(1));
421 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
422 ThisVT, Part0, DAG.getIntPtrConstant(0));
423
424 if (ThisBits == PartBits && ThisVT != PartVT) {
425 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
426 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
427 }
428 }
429 }
430
431 if (TLI.isBigEndian())
432 std::reverse(Parts, Parts + OrigNumParts);
433 }
434
435
436 /// getCopyToPartsVector - Create a series of nodes that contain the specified
437 /// value split into legal parts.
getCopyToPartsVector(SelectionDAG & DAG,DebugLoc DL,SDValue Val,SDValue * Parts,unsigned NumParts,EVT PartVT)438 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
439 SDValue Val, SDValue *Parts, unsigned NumParts,
440 EVT PartVT) {
441 EVT ValueVT = Val.getValueType();
442 assert(ValueVT.isVector() && "Not a vector");
443 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
444
445 if (NumParts == 1) {
446 if (PartVT == ValueVT) {
447 // Nothing to do.
448 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
449 // Bitconvert vector->vector case.
450 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
451 } else if (PartVT.isVector() &&
452 PartVT.getVectorElementType() == ValueVT.getVectorElementType() &&
453 PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
454 EVT ElementVT = PartVT.getVectorElementType();
455 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in
456 // undef elements.
457 SmallVector<SDValue, 16> Ops;
458 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
459 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
460 ElementVT, Val, DAG.getIntPtrConstant(i)));
461
462 for (unsigned i = ValueVT.getVectorNumElements(),
463 e = PartVT.getVectorNumElements(); i != e; ++i)
464 Ops.push_back(DAG.getUNDEF(ElementVT));
465
466 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
467
468 // FIXME: Use CONCAT for 2x -> 4x.
469
470 //SDValue UndefElts = DAG.getUNDEF(VectorTy);
471 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
472 } else if (PartVT.isVector() &&
473 PartVT.getVectorElementType().bitsGE(
474 ValueVT.getVectorElementType()) &&
475 PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
476
477 // Promoted vector extract
478 bool Smaller = PartVT.bitsLE(ValueVT);
479 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
480 DL, PartVT, Val);
481 } else{
482 // Vector -> scalar conversion.
483 assert(ValueVT.getVectorNumElements() == 1 &&
484 "Only trivial vector-to-scalar conversions should get here!");
485 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
486 PartVT, Val, DAG.getIntPtrConstant(0));
487
488 bool Smaller = ValueVT.bitsLE(PartVT);
489 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
490 DL, PartVT, Val);
491 }
492
493 Parts[0] = Val;
494 return;
495 }
496
497 // Handle a multi-element vector.
498 EVT IntermediateVT, RegisterVT;
499 unsigned NumIntermediates;
500 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
501 IntermediateVT,
502 NumIntermediates, RegisterVT);
503 unsigned NumElements = ValueVT.getVectorNumElements();
504
505 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
506 NumParts = NumRegs; // Silence a compiler warning.
507 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
508
509 // Split the vector into intermediate operands.
510 SmallVector<SDValue, 8> Ops(NumIntermediates);
511 for (unsigned i = 0; i != NumIntermediates; ++i) {
512 if (IntermediateVT.isVector())
513 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
514 IntermediateVT, Val,
515 DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
516 else
517 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
518 IntermediateVT, Val, DAG.getIntPtrConstant(i));
519 }
520
521 // Split the intermediate operands into legal parts.
522 if (NumParts == NumIntermediates) {
523 // If the register was not expanded, promote or copy the value,
524 // as appropriate.
525 for (unsigned i = 0; i != NumParts; ++i)
526 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT);
527 } else if (NumParts > 0) {
528 // If the intermediate type was expanded, split each the value into
529 // legal parts.
530 assert(NumParts % NumIntermediates == 0 &&
531 "Must expand into a divisible number of parts!");
532 unsigned Factor = NumParts / NumIntermediates;
533 for (unsigned i = 0; i != NumIntermediates; ++i)
534 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT);
535 }
536 }
537
538
539
540
541 namespace {
542 /// RegsForValue - This struct represents the registers (physical or virtual)
543 /// that a particular set of values is assigned, and the type information
544 /// about the value. The most common situation is to represent one value at a
545 /// time, but struct or array values are handled element-wise as multiple
546 /// values. The splitting of aggregates is performed recursively, so that we
547 /// never have aggregate-typed registers. The values at this point do not
548 /// necessarily have legal types, so each value may require one or more
549 /// registers of some legal type.
550 ///
551 struct RegsForValue {
552 /// ValueVTs - The value types of the values, which may not be legal, and
553 /// may need be promoted or synthesized from one or more registers.
554 ///
555 SmallVector<EVT, 4> ValueVTs;
556
557 /// RegVTs - The value types of the registers. This is the same size as
558 /// ValueVTs and it records, for each value, what the type of the assigned
559 /// register or registers are. (Individual values are never synthesized
560 /// from more than one type of register.)
561 ///
562 /// With virtual registers, the contents of RegVTs is redundant with TLI's
563 /// getRegisterType member function, however when with physical registers
564 /// it is necessary to have a separate record of the types.
565 ///
566 SmallVector<EVT, 4> RegVTs;
567
568 /// Regs - This list holds the registers assigned to the values.
569 /// Each legal or promoted value requires one register, and each
570 /// expanded value requires multiple registers.
571 ///
572 SmallVector<unsigned, 4> Regs;
573
RegsForValue__anonaf03ebfb0111::RegsForValue574 RegsForValue() {}
575
RegsForValue__anonaf03ebfb0111::RegsForValue576 RegsForValue(const SmallVector<unsigned, 4> ®s,
577 EVT regvt, EVT valuevt)
578 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
579
RegsForValue__anonaf03ebfb0111::RegsForValue580 RegsForValue(LLVMContext &Context, const TargetLowering &tli,
581 unsigned Reg, Type *Ty) {
582 ComputeValueVTs(tli, Ty, ValueVTs);
583
584 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
585 EVT ValueVT = ValueVTs[Value];
586 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
587 EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
588 for (unsigned i = 0; i != NumRegs; ++i)
589 Regs.push_back(Reg + i);
590 RegVTs.push_back(RegisterVT);
591 Reg += NumRegs;
592 }
593 }
594
595 /// areValueTypesLegal - Return true if types of all the values are legal.
areValueTypesLegal__anonaf03ebfb0111::RegsForValue596 bool areValueTypesLegal(const TargetLowering &TLI) {
597 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
598 EVT RegisterVT = RegVTs[Value];
599 if (!TLI.isTypeLegal(RegisterVT))
600 return false;
601 }
602 return true;
603 }
604
605 /// append - Add the specified values to this one.
append__anonaf03ebfb0111::RegsForValue606 void append(const RegsForValue &RHS) {
607 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
608 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
609 Regs.append(RHS.Regs.begin(), RHS.Regs.end());
610 }
611
612 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
613 /// this value and returns the result as a ValueVTs value. This uses
614 /// Chain/Flag as the input and updates them for the output Chain/Flag.
615 /// If the Flag pointer is NULL, no flag is used.
616 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
617 DebugLoc dl,
618 SDValue &Chain, SDValue *Flag) const;
619
620 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
621 /// specified value into the registers specified by this object. This uses
622 /// Chain/Flag as the input and updates them for the output Chain/Flag.
623 /// If the Flag pointer is NULL, no flag is used.
624 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
625 SDValue &Chain, SDValue *Flag) const;
626
627 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
628 /// operand list. This adds the code marker, matching input operand index
629 /// (if applicable), and includes the number of values added into it.
630 void AddInlineAsmOperands(unsigned Kind,
631 bool HasMatching, unsigned MatchingIdx,
632 SelectionDAG &DAG,
633 std::vector<SDValue> &Ops) const;
634 };
635 }
636
637 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
638 /// this value and returns the result as a ValueVT value. This uses
639 /// Chain/Flag as the input and updates them for the output Chain/Flag.
640 /// If the Flag pointer is NULL, no flag is used.
getCopyFromRegs(SelectionDAG & DAG,FunctionLoweringInfo & FuncInfo,DebugLoc dl,SDValue & Chain,SDValue * Flag) const641 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
642 FunctionLoweringInfo &FuncInfo,
643 DebugLoc dl,
644 SDValue &Chain, SDValue *Flag) const {
645 // A Value with type {} or [0 x %t] needs no registers.
646 if (ValueVTs.empty())
647 return SDValue();
648
649 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
650
651 // Assemble the legal parts into the final values.
652 SmallVector<SDValue, 4> Values(ValueVTs.size());
653 SmallVector<SDValue, 8> Parts;
654 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
655 // Copy the legal parts from the registers.
656 EVT ValueVT = ValueVTs[Value];
657 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
658 EVT RegisterVT = RegVTs[Value];
659
660 Parts.resize(NumRegs);
661 for (unsigned i = 0; i != NumRegs; ++i) {
662 SDValue P;
663 if (Flag == 0) {
664 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
665 } else {
666 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
667 *Flag = P.getValue(2);
668 }
669
670 Chain = P.getValue(1);
671 Parts[i] = P;
672
673 // If the source register was virtual and if we know something about it,
674 // add an assert node.
675 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
676 !RegisterVT.isInteger() || RegisterVT.isVector())
677 continue;
678
679 const FunctionLoweringInfo::LiveOutInfo *LOI =
680 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
681 if (!LOI)
682 continue;
683
684 unsigned RegSize = RegisterVT.getSizeInBits();
685 unsigned NumSignBits = LOI->NumSignBits;
686 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
687
688 // FIXME: We capture more information than the dag can represent. For
689 // now, just use the tightest assertzext/assertsext possible.
690 bool isSExt = true;
691 EVT FromVT(MVT::Other);
692 if (NumSignBits == RegSize)
693 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1
694 else if (NumZeroBits >= RegSize-1)
695 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1
696 else if (NumSignBits > RegSize-8)
697 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8
698 else if (NumZeroBits >= RegSize-8)
699 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8
700 else if (NumSignBits > RegSize-16)
701 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16
702 else if (NumZeroBits >= RegSize-16)
703 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
704 else if (NumSignBits > RegSize-32)
705 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32
706 else if (NumZeroBits >= RegSize-32)
707 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
708 else
709 continue;
710
711 // Add an assertion node.
712 assert(FromVT != MVT::Other);
713 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
714 RegisterVT, P, DAG.getValueType(FromVT));
715 }
716
717 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
718 NumRegs, RegisterVT, ValueVT);
719 Part += NumRegs;
720 Parts.clear();
721 }
722
723 return DAG.getNode(ISD::MERGE_VALUES, dl,
724 DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
725 &Values[0], ValueVTs.size());
726 }
727
728 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
729 /// specified value into the registers specified by this object. This uses
730 /// Chain/Flag as the input and updates them for the output Chain/Flag.
731 /// If the Flag pointer is NULL, no flag is used.
getCopyToRegs(SDValue Val,SelectionDAG & DAG,DebugLoc dl,SDValue & Chain,SDValue * Flag) const732 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
733 SDValue &Chain, SDValue *Flag) const {
734 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
735
736 // Get the list of the values's legal parts.
737 unsigned NumRegs = Regs.size();
738 SmallVector<SDValue, 8> Parts(NumRegs);
739 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
740 EVT ValueVT = ValueVTs[Value];
741 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
742 EVT RegisterVT = RegVTs[Value];
743
744 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
745 &Parts[Part], NumParts, RegisterVT);
746 Part += NumParts;
747 }
748
749 // Copy the parts into the registers.
750 SmallVector<SDValue, 8> Chains(NumRegs);
751 for (unsigned i = 0; i != NumRegs; ++i) {
752 SDValue Part;
753 if (Flag == 0) {
754 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
755 } else {
756 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
757 *Flag = Part.getValue(1);
758 }
759
760 Chains[i] = Part.getValue(0);
761 }
762
763 if (NumRegs == 1 || Flag)
764 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
765 // flagged to it. That is the CopyToReg nodes and the user are considered
766 // a single scheduling unit. If we create a TokenFactor and return it as
767 // chain, then the TokenFactor is both a predecessor (operand) of the
768 // user as well as a successor (the TF operands are flagged to the user).
769 // c1, f1 = CopyToReg
770 // c2, f2 = CopyToReg
771 // c3 = TokenFactor c1, c2
772 // ...
773 // = op c3, ..., f2
774 Chain = Chains[NumRegs-1];
775 else
776 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
777 }
778
779 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
780 /// operand list. This adds the code marker and includes the number of
781 /// values added into it.
AddInlineAsmOperands(unsigned Code,bool HasMatching,unsigned MatchingIdx,SelectionDAG & DAG,std::vector<SDValue> & Ops) const782 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
783 unsigned MatchingIdx,
784 SelectionDAG &DAG,
785 std::vector<SDValue> &Ops) const {
786 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
787
788 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
789 if (HasMatching)
790 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
791 else if (!Regs.empty() &&
792 TargetRegisterInfo::isVirtualRegister(Regs.front())) {
793 // Put the register class of the virtual registers in the flag word. That
794 // way, later passes can recompute register class constraints for inline
795 // assembly as well as normal instructions.
796 // Don't do this for tied operands that can use the regclass information
797 // from the def.
798 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
799 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
800 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
801 }
802
803 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
804 Ops.push_back(Res);
805
806 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
807 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
808 EVT RegisterVT = RegVTs[Value];
809 for (unsigned i = 0; i != NumRegs; ++i) {
810 assert(Reg < Regs.size() && "Mismatch in # registers expected");
811 Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
812 }
813 }
814 }
815
init(GCFunctionInfo * gfi,AliasAnalysis & aa)816 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
817 AA = &aa;
818 GFI = gfi;
819 TD = DAG.getTarget().getTargetData();
820 LPadToCallSiteMap.clear();
821 }
822
823 /// clear - Clear out the current SelectionDAG and the associated
824 /// state and prepare this SelectionDAGBuilder object to be used
825 /// for a new block. This doesn't clear out information about
826 /// additional blocks that are needed to complete switch lowering
827 /// or PHI node updating; that information is cleared out as it is
828 /// consumed.
clear()829 void SelectionDAGBuilder::clear() {
830 NodeMap.clear();
831 UnusedArgNodeMap.clear();
832 PendingLoads.clear();
833 PendingExports.clear();
834 CurDebugLoc = DebugLoc();
835 HasTailCall = false;
836 }
837
838 /// clearDanglingDebugInfo - Clear the dangling debug information
839 /// map. This function is seperated from the clear so that debug
840 /// information that is dangling in a basic block can be properly
841 /// resolved in a different basic block. This allows the
842 /// SelectionDAG to resolve dangling debug information attached
843 /// to PHI nodes.
clearDanglingDebugInfo()844 void SelectionDAGBuilder::clearDanglingDebugInfo() {
845 DanglingDebugInfoMap.clear();
846 }
847
848 /// getRoot - Return the current virtual root of the Selection DAG,
849 /// flushing any PendingLoad items. This must be done before emitting
850 /// a store or any other node that may need to be ordered after any
851 /// prior load instructions.
852 ///
getRoot()853 SDValue SelectionDAGBuilder::getRoot() {
854 if (PendingLoads.empty())
855 return DAG.getRoot();
856
857 if (PendingLoads.size() == 1) {
858 SDValue Root = PendingLoads[0];
859 DAG.setRoot(Root);
860 PendingLoads.clear();
861 return Root;
862 }
863
864 // Otherwise, we have to make a token factor node.
865 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
866 &PendingLoads[0], PendingLoads.size());
867 PendingLoads.clear();
868 DAG.setRoot(Root);
869 return Root;
870 }
871
872 /// getControlRoot - Similar to getRoot, but instead of flushing all the
873 /// PendingLoad items, flush all the PendingExports items. It is necessary
874 /// to do this before emitting a terminator instruction.
875 ///
getControlRoot()876 SDValue SelectionDAGBuilder::getControlRoot() {
877 SDValue Root = DAG.getRoot();
878
879 if (PendingExports.empty())
880 return Root;
881
882 // Turn all of the CopyToReg chains into one factored node.
883 if (Root.getOpcode() != ISD::EntryToken) {
884 unsigned i = 0, e = PendingExports.size();
885 for (; i != e; ++i) {
886 assert(PendingExports[i].getNode()->getNumOperands() > 1);
887 if (PendingExports[i].getNode()->getOperand(0) == Root)
888 break; // Don't add the root if we already indirectly depend on it.
889 }
890
891 if (i == e)
892 PendingExports.push_back(Root);
893 }
894
895 Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
896 &PendingExports[0],
897 PendingExports.size());
898 PendingExports.clear();
899 DAG.setRoot(Root);
900 return Root;
901 }
902
AssignOrderingToNode(const SDNode * Node)903 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
904 if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
905 DAG.AssignOrdering(Node, SDNodeOrder);
906
907 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
908 AssignOrderingToNode(Node->getOperand(I).getNode());
909 }
910
visit(const Instruction & I)911 void SelectionDAGBuilder::visit(const Instruction &I) {
912 // Set up outgoing PHI node register values before emitting the terminator.
913 if (isa<TerminatorInst>(&I))
914 HandlePHINodesInSuccessorBlocks(I.getParent());
915
916 CurDebugLoc = I.getDebugLoc();
917
918 visit(I.getOpcode(), I);
919
920 if (!isa<TerminatorInst>(&I) && !HasTailCall)
921 CopyToExportRegsIfNeeded(&I);
922
923 CurDebugLoc = DebugLoc();
924 }
925
visitPHI(const PHINode &)926 void SelectionDAGBuilder::visitPHI(const PHINode &) {
927 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
928 }
929
visit(unsigned Opcode,const User & I)930 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
931 // Note: this doesn't use InstVisitor, because it has to work with
932 // ConstantExpr's in addition to instructions.
933 switch (Opcode) {
934 default: llvm_unreachable("Unknown instruction type encountered!");
935 // Build the switch statement using the Instruction.def file.
936 #define HANDLE_INST(NUM, OPCODE, CLASS) \
937 case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
938 #include "llvm/Instruction.def"
939 }
940
941 // Assign the ordering to the freshly created DAG nodes.
942 if (NodeMap.count(&I)) {
943 ++SDNodeOrder;
944 AssignOrderingToNode(getValue(&I).getNode());
945 }
946 }
947
948 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
949 // generate the debug data structures now that we've seen its definition.
resolveDanglingDebugInfo(const Value * V,SDValue Val)950 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
951 SDValue Val) {
952 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
953 if (DDI.getDI()) {
954 const DbgValueInst *DI = DDI.getDI();
955 DebugLoc dl = DDI.getdl();
956 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
957 MDNode *Variable = DI->getVariable();
958 uint64_t Offset = DI->getOffset();
959 SDDbgValue *SDV;
960 if (Val.getNode()) {
961 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
962 SDV = DAG.getDbgValue(Variable, Val.getNode(),
963 Val.getResNo(), Offset, dl, DbgSDNodeOrder);
964 DAG.AddDbgValue(SDV, Val.getNode(), false);
965 }
966 } else
967 DEBUG(dbgs() << "Dropping debug info for " << DI);
968 DanglingDebugInfoMap[V] = DanglingDebugInfo();
969 }
970 }
971
972 /// getValue - Return an SDValue for the given Value.
getValue(const Value * V)973 SDValue SelectionDAGBuilder::getValue(const Value *V) {
974 // If we already have an SDValue for this value, use it. It's important
975 // to do this first, so that we don't create a CopyFromReg if we already
976 // have a regular SDValue.
977 SDValue &N = NodeMap[V];
978 if (N.getNode()) return N;
979
980 // If there's a virtual register allocated and initialized for this
981 // value, use it.
982 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
983 if (It != FuncInfo.ValueMap.end()) {
984 unsigned InReg = It->second;
985 RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
986 SDValue Chain = DAG.getEntryNode();
987 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
988 resolveDanglingDebugInfo(V, N);
989 return N;
990 }
991
992 // Otherwise create a new SDValue and remember it.
993 SDValue Val = getValueImpl(V);
994 NodeMap[V] = Val;
995 resolveDanglingDebugInfo(V, Val);
996 return Val;
997 }
998
999 /// getNonRegisterValue - Return an SDValue for the given Value, but
1000 /// don't look in FuncInfo.ValueMap for a virtual register.
getNonRegisterValue(const Value * V)1001 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1002 // If we already have an SDValue for this value, use it.
1003 SDValue &N = NodeMap[V];
1004 if (N.getNode()) return N;
1005
1006 // Otherwise create a new SDValue and remember it.
1007 SDValue Val = getValueImpl(V);
1008 NodeMap[V] = Val;
1009 resolveDanglingDebugInfo(V, Val);
1010 return Val;
1011 }
1012
1013 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1014 /// Create an SDValue for the given value.
getValueImpl(const Value * V)1015 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1016 if (const Constant *C = dyn_cast<Constant>(V)) {
1017 EVT VT = TLI.getValueType(V->getType(), true);
1018
1019 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1020 return DAG.getConstant(*CI, VT);
1021
1022 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1023 return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
1024
1025 if (isa<ConstantPointerNull>(C))
1026 return DAG.getConstant(0, TLI.getPointerTy());
1027
1028 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1029 return DAG.getConstantFP(*CFP, VT);
1030
1031 if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1032 return DAG.getUNDEF(VT);
1033
1034 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1035 visit(CE->getOpcode(), *CE);
1036 SDValue N1 = NodeMap[V];
1037 assert(N1.getNode() && "visit didn't populate the NodeMap!");
1038 return N1;
1039 }
1040
1041 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1042 SmallVector<SDValue, 4> Constants;
1043 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1044 OI != OE; ++OI) {
1045 SDNode *Val = getValue(*OI).getNode();
1046 // If the operand is an empty aggregate, there are no values.
1047 if (!Val) continue;
1048 // Add each leaf value from the operand to the Constants list
1049 // to form a flattened list of all the values.
1050 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1051 Constants.push_back(SDValue(Val, i));
1052 }
1053
1054 return DAG.getMergeValues(&Constants[0], Constants.size(),
1055 getCurDebugLoc());
1056 }
1057
1058 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1059 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1060 "Unknown struct or array constant!");
1061
1062 SmallVector<EVT, 4> ValueVTs;
1063 ComputeValueVTs(TLI, C->getType(), ValueVTs);
1064 unsigned NumElts = ValueVTs.size();
1065 if (NumElts == 0)
1066 return SDValue(); // empty struct
1067 SmallVector<SDValue, 4> Constants(NumElts);
1068 for (unsigned i = 0; i != NumElts; ++i) {
1069 EVT EltVT = ValueVTs[i];
1070 if (isa<UndefValue>(C))
1071 Constants[i] = DAG.getUNDEF(EltVT);
1072 else if (EltVT.isFloatingPoint())
1073 Constants[i] = DAG.getConstantFP(0, EltVT);
1074 else
1075 Constants[i] = DAG.getConstant(0, EltVT);
1076 }
1077
1078 return DAG.getMergeValues(&Constants[0], NumElts,
1079 getCurDebugLoc());
1080 }
1081
1082 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1083 return DAG.getBlockAddress(BA, VT);
1084
1085 VectorType *VecTy = cast<VectorType>(V->getType());
1086 unsigned NumElements = VecTy->getNumElements();
1087
1088 // Now that we know the number and type of the elements, get that number of
1089 // elements into the Ops array based on what kind of constant it is.
1090 SmallVector<SDValue, 16> Ops;
1091 if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
1092 for (unsigned i = 0; i != NumElements; ++i)
1093 Ops.push_back(getValue(CP->getOperand(i)));
1094 } else {
1095 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1096 EVT EltVT = TLI.getValueType(VecTy->getElementType());
1097
1098 SDValue Op;
1099 if (EltVT.isFloatingPoint())
1100 Op = DAG.getConstantFP(0, EltVT);
1101 else
1102 Op = DAG.getConstant(0, EltVT);
1103 Ops.assign(NumElements, Op);
1104 }
1105
1106 // Create a BUILD_VECTOR node.
1107 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1108 VT, &Ops[0], Ops.size());
1109 }
1110
1111 // If this is a static alloca, generate it as the frameindex instead of
1112 // computation.
1113 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1114 DenseMap<const AllocaInst*, int>::iterator SI =
1115 FuncInfo.StaticAllocaMap.find(AI);
1116 if (SI != FuncInfo.StaticAllocaMap.end())
1117 return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1118 }
1119
1120 // If this is an instruction which fast-isel has deferred, select it now.
1121 if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1122 unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1123 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1124 SDValue Chain = DAG.getEntryNode();
1125 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
1126 }
1127
1128 llvm_unreachable("Can't get register for value!");
1129 return SDValue();
1130 }
1131
visitRet(const ReturnInst & I)1132 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1133 SDValue Chain = getControlRoot();
1134 SmallVector<ISD::OutputArg, 8> Outs;
1135 SmallVector<SDValue, 8> OutVals;
1136
1137 if (!FuncInfo.CanLowerReturn) {
1138 unsigned DemoteReg = FuncInfo.DemoteRegister;
1139 const Function *F = I.getParent()->getParent();
1140
1141 // Emit a store of the return value through the virtual register.
1142 // Leave Outs empty so that LowerReturn won't try to load return
1143 // registers the usual way.
1144 SmallVector<EVT, 1> PtrValueVTs;
1145 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1146 PtrValueVTs);
1147
1148 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1149 SDValue RetOp = getValue(I.getOperand(0));
1150
1151 SmallVector<EVT, 4> ValueVTs;
1152 SmallVector<uint64_t, 4> Offsets;
1153 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1154 unsigned NumValues = ValueVTs.size();
1155
1156 SmallVector<SDValue, 4> Chains(NumValues);
1157 for (unsigned i = 0; i != NumValues; ++i) {
1158 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1159 RetPtr.getValueType(), RetPtr,
1160 DAG.getIntPtrConstant(Offsets[i]));
1161 Chains[i] =
1162 DAG.getStore(Chain, getCurDebugLoc(),
1163 SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1164 // FIXME: better loc info would be nice.
1165 Add, MachinePointerInfo(), false, false, 0);
1166 }
1167
1168 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1169 MVT::Other, &Chains[0], NumValues);
1170 } else if (I.getNumOperands() != 0) {
1171 SmallVector<EVT, 4> ValueVTs;
1172 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1173 unsigned NumValues = ValueVTs.size();
1174 if (NumValues) {
1175 SDValue RetOp = getValue(I.getOperand(0));
1176 for (unsigned j = 0, f = NumValues; j != f; ++j) {
1177 EVT VT = ValueVTs[j];
1178
1179 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1180
1181 const Function *F = I.getParent()->getParent();
1182 if (F->paramHasAttr(0, Attribute::SExt))
1183 ExtendKind = ISD::SIGN_EXTEND;
1184 else if (F->paramHasAttr(0, Attribute::ZExt))
1185 ExtendKind = ISD::ZERO_EXTEND;
1186
1187 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1188 VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind);
1189
1190 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1191 EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1192 SmallVector<SDValue, 4> Parts(NumParts);
1193 getCopyToParts(DAG, getCurDebugLoc(),
1194 SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1195 &Parts[0], NumParts, PartVT, ExtendKind);
1196
1197 // 'inreg' on function refers to return value
1198 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1199 if (F->paramHasAttr(0, Attribute::InReg))
1200 Flags.setInReg();
1201
1202 // Propagate extension type if any
1203 if (ExtendKind == ISD::SIGN_EXTEND)
1204 Flags.setSExt();
1205 else if (ExtendKind == ISD::ZERO_EXTEND)
1206 Flags.setZExt();
1207
1208 for (unsigned i = 0; i < NumParts; ++i) {
1209 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1210 /*isfixed=*/true));
1211 OutVals.push_back(Parts[i]);
1212 }
1213 }
1214 }
1215 }
1216
1217 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1218 CallingConv::ID CallConv =
1219 DAG.getMachineFunction().getFunction()->getCallingConv();
1220 Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1221 Outs, OutVals, getCurDebugLoc(), DAG);
1222
1223 // Verify that the target's LowerReturn behaved as expected.
1224 assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1225 "LowerReturn didn't return a valid chain!");
1226
1227 // Update the DAG with the new chain value resulting from return lowering.
1228 DAG.setRoot(Chain);
1229 }
1230
1231 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1232 /// created for it, emit nodes to copy the value into the virtual
1233 /// registers.
CopyToExportRegsIfNeeded(const Value * V)1234 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1235 // Skip empty types
1236 if (V->getType()->isEmptyTy())
1237 return;
1238
1239 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1240 if (VMI != FuncInfo.ValueMap.end()) {
1241 assert(!V->use_empty() && "Unused value assigned virtual registers!");
1242 CopyValueToVirtualRegister(V, VMI->second);
1243 }
1244 }
1245
1246 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1247 /// the current basic block, add it to ValueMap now so that we'll get a
1248 /// CopyTo/FromReg.
ExportFromCurrentBlock(const Value * V)1249 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1250 // No need to export constants.
1251 if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1252
1253 // Already exported?
1254 if (FuncInfo.isExportedInst(V)) return;
1255
1256 unsigned Reg = FuncInfo.InitializeRegForValue(V);
1257 CopyValueToVirtualRegister(V, Reg);
1258 }
1259
isExportableFromCurrentBlock(const Value * V,const BasicBlock * FromBB)1260 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1261 const BasicBlock *FromBB) {
1262 // The operands of the setcc have to be in this block. We don't know
1263 // how to export them from some other block.
1264 if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1265 // Can export from current BB.
1266 if (VI->getParent() == FromBB)
1267 return true;
1268
1269 // Is already exported, noop.
1270 return FuncInfo.isExportedInst(V);
1271 }
1272
1273 // If this is an argument, we can export it if the BB is the entry block or
1274 // if it is already exported.
1275 if (isa<Argument>(V)) {
1276 if (FromBB == &FromBB->getParent()->getEntryBlock())
1277 return true;
1278
1279 // Otherwise, can only export this if it is already exported.
1280 return FuncInfo.isExportedInst(V);
1281 }
1282
1283 // Otherwise, constants can always be exported.
1284 return true;
1285 }
1286
1287 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
getEdgeWeight(MachineBasicBlock * Src,MachineBasicBlock * Dst)1288 uint32_t SelectionDAGBuilder::getEdgeWeight(MachineBasicBlock *Src,
1289 MachineBasicBlock *Dst) {
1290 BranchProbabilityInfo *BPI = FuncInfo.BPI;
1291 if (!BPI)
1292 return 0;
1293 const BasicBlock *SrcBB = Src->getBasicBlock();
1294 const BasicBlock *DstBB = Dst->getBasicBlock();
1295 return BPI->getEdgeWeight(SrcBB, DstBB);
1296 }
1297
1298 void SelectionDAGBuilder::
addSuccessorWithWeight(MachineBasicBlock * Src,MachineBasicBlock * Dst,uint32_t Weight)1299 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1300 uint32_t Weight /* = 0 */) {
1301 if (!Weight)
1302 Weight = getEdgeWeight(Src, Dst);
1303 Src->addSuccessor(Dst, Weight);
1304 }
1305
1306
InBlock(const Value * V,const BasicBlock * BB)1307 static bool InBlock(const Value *V, const BasicBlock *BB) {
1308 if (const Instruction *I = dyn_cast<Instruction>(V))
1309 return I->getParent() == BB;
1310 return true;
1311 }
1312
1313 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1314 /// This function emits a branch and is used at the leaves of an OR or an
1315 /// AND operator tree.
1316 ///
1317 void
EmitBranchForMergedCondition(const Value * Cond,MachineBasicBlock * TBB,MachineBasicBlock * FBB,MachineBasicBlock * CurBB,MachineBasicBlock * SwitchBB)1318 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1319 MachineBasicBlock *TBB,
1320 MachineBasicBlock *FBB,
1321 MachineBasicBlock *CurBB,
1322 MachineBasicBlock *SwitchBB) {
1323 const BasicBlock *BB = CurBB->getBasicBlock();
1324
1325 // If the leaf of the tree is a comparison, merge the condition into
1326 // the caseblock.
1327 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1328 // The operands of the cmp have to be in this block. We don't know
1329 // how to export them from some other block. If this is the first block
1330 // of the sequence, no exporting is needed.
1331 if (CurBB == SwitchBB ||
1332 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1333 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1334 ISD::CondCode Condition;
1335 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1336 Condition = getICmpCondCode(IC->getPredicate());
1337 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1338 Condition = getFCmpCondCode(FC->getPredicate());
1339 } else {
1340 Condition = ISD::SETEQ; // silence warning.
1341 llvm_unreachable("Unknown compare instruction");
1342 }
1343
1344 CaseBlock CB(Condition, BOp->getOperand(0),
1345 BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1346 SwitchCases.push_back(CB);
1347 return;
1348 }
1349 }
1350
1351 // Create a CaseBlock record representing this branch.
1352 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1353 NULL, TBB, FBB, CurBB);
1354 SwitchCases.push_back(CB);
1355 }
1356
1357 /// FindMergedConditions - If Cond is an expression like
FindMergedConditions(const Value * Cond,MachineBasicBlock * TBB,MachineBasicBlock * FBB,MachineBasicBlock * CurBB,MachineBasicBlock * SwitchBB,unsigned Opc)1358 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1359 MachineBasicBlock *TBB,
1360 MachineBasicBlock *FBB,
1361 MachineBasicBlock *CurBB,
1362 MachineBasicBlock *SwitchBB,
1363 unsigned Opc) {
1364 // If this node is not part of the or/and tree, emit it as a branch.
1365 const Instruction *BOp = dyn_cast<Instruction>(Cond);
1366 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1367 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1368 BOp->getParent() != CurBB->getBasicBlock() ||
1369 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1370 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1371 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1372 return;
1373 }
1374
1375 // Create TmpBB after CurBB.
1376 MachineFunction::iterator BBI = CurBB;
1377 MachineFunction &MF = DAG.getMachineFunction();
1378 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1379 CurBB->getParent()->insert(++BBI, TmpBB);
1380
1381 if (Opc == Instruction::Or) {
1382 // Codegen X | Y as:
1383 // jmp_if_X TBB
1384 // jmp TmpBB
1385 // TmpBB:
1386 // jmp_if_Y TBB
1387 // jmp FBB
1388 //
1389
1390 // Emit the LHS condition.
1391 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1392
1393 // Emit the RHS condition into TmpBB.
1394 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1395 } else {
1396 assert(Opc == Instruction::And && "Unknown merge op!");
1397 // Codegen X & Y as:
1398 // jmp_if_X TmpBB
1399 // jmp FBB
1400 // TmpBB:
1401 // jmp_if_Y TBB
1402 // jmp FBB
1403 //
1404 // This requires creation of TmpBB after CurBB.
1405
1406 // Emit the LHS condition.
1407 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1408
1409 // Emit the RHS condition into TmpBB.
1410 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1411 }
1412 }
1413
1414 /// If the set of cases should be emitted as a series of branches, return true.
1415 /// If we should emit this as a bunch of and/or'd together conditions, return
1416 /// false.
1417 bool
ShouldEmitAsBranches(const std::vector<CaseBlock> & Cases)1418 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1419 if (Cases.size() != 2) return true;
1420
1421 // If this is two comparisons of the same values or'd or and'd together, they
1422 // will get folded into a single comparison, so don't emit two blocks.
1423 if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1424 Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1425 (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1426 Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1427 return false;
1428 }
1429
1430 // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1431 // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1432 if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1433 Cases[0].CC == Cases[1].CC &&
1434 isa<Constant>(Cases[0].CmpRHS) &&
1435 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1436 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1437 return false;
1438 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1439 return false;
1440 }
1441
1442 return true;
1443 }
1444
visitBr(const BranchInst & I)1445 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1446 MachineBasicBlock *BrMBB = FuncInfo.MBB;
1447
1448 // Update machine-CFG edges.
1449 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1450
1451 // Figure out which block is immediately after the current one.
1452 MachineBasicBlock *NextBlock = 0;
1453 MachineFunction::iterator BBI = BrMBB;
1454 if (++BBI != FuncInfo.MF->end())
1455 NextBlock = BBI;
1456
1457 if (I.isUnconditional()) {
1458 // Update machine-CFG edges.
1459 BrMBB->addSuccessor(Succ0MBB);
1460
1461 // If this is not a fall-through branch, emit the branch.
1462 if (Succ0MBB != NextBlock)
1463 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1464 MVT::Other, getControlRoot(),
1465 DAG.getBasicBlock(Succ0MBB)));
1466
1467 return;
1468 }
1469
1470 // If this condition is one of the special cases we handle, do special stuff
1471 // now.
1472 const Value *CondVal = I.getCondition();
1473 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1474
1475 // If this is a series of conditions that are or'd or and'd together, emit
1476 // this as a sequence of branches instead of setcc's with and/or operations.
1477 // As long as jumps are not expensive, this should improve performance.
1478 // For example, instead of something like:
1479 // cmp A, B
1480 // C = seteq
1481 // cmp D, E
1482 // F = setle
1483 // or C, F
1484 // jnz foo
1485 // Emit:
1486 // cmp A, B
1487 // je foo
1488 // cmp D, E
1489 // jle foo
1490 //
1491 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1492 if (!TLI.isJumpExpensive() &&
1493 BOp->hasOneUse() &&
1494 (BOp->getOpcode() == Instruction::And ||
1495 BOp->getOpcode() == Instruction::Or)) {
1496 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1497 BOp->getOpcode());
1498 // If the compares in later blocks need to use values not currently
1499 // exported from this block, export them now. This block should always
1500 // be the first entry.
1501 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1502
1503 // Allow some cases to be rejected.
1504 if (ShouldEmitAsBranches(SwitchCases)) {
1505 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1506 ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1507 ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1508 }
1509
1510 // Emit the branch for this block.
1511 visitSwitchCase(SwitchCases[0], BrMBB);
1512 SwitchCases.erase(SwitchCases.begin());
1513 return;
1514 }
1515
1516 // Okay, we decided not to do this, remove any inserted MBB's and clear
1517 // SwitchCases.
1518 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1519 FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1520
1521 SwitchCases.clear();
1522 }
1523 }
1524
1525 // Create a CaseBlock record representing this branch.
1526 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1527 NULL, Succ0MBB, Succ1MBB, BrMBB);
1528
1529 // Use visitSwitchCase to actually insert the fast branch sequence for this
1530 // cond branch.
1531 visitSwitchCase(CB, BrMBB);
1532 }
1533
1534 /// visitSwitchCase - Emits the necessary code to represent a single node in
1535 /// the binary search tree resulting from lowering a switch instruction.
visitSwitchCase(CaseBlock & CB,MachineBasicBlock * SwitchBB)1536 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1537 MachineBasicBlock *SwitchBB) {
1538 SDValue Cond;
1539 SDValue CondLHS = getValue(CB.CmpLHS);
1540 DebugLoc dl = getCurDebugLoc();
1541
1542 // Build the setcc now.
1543 if (CB.CmpMHS == NULL) {
1544 // Fold "(X == true)" to X and "(X == false)" to !X to
1545 // handle common cases produced by branch lowering.
1546 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1547 CB.CC == ISD::SETEQ)
1548 Cond = CondLHS;
1549 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1550 CB.CC == ISD::SETEQ) {
1551 SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1552 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1553 } else
1554 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1555 } else {
1556 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1557
1558 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1559 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
1560
1561 SDValue CmpOp = getValue(CB.CmpMHS);
1562 EVT VT = CmpOp.getValueType();
1563
1564 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1565 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1566 ISD::SETLE);
1567 } else {
1568 SDValue SUB = DAG.getNode(ISD::SUB, dl,
1569 VT, CmpOp, DAG.getConstant(Low, VT));
1570 Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1571 DAG.getConstant(High-Low, VT), ISD::SETULE);
1572 }
1573 }
1574
1575 // Update successor info
1576 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1577 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1578
1579 // Set NextBlock to be the MBB immediately after the current one, if any.
1580 // This is used to avoid emitting unnecessary branches to the next block.
1581 MachineBasicBlock *NextBlock = 0;
1582 MachineFunction::iterator BBI = SwitchBB;
1583 if (++BBI != FuncInfo.MF->end())
1584 NextBlock = BBI;
1585
1586 // If the lhs block is the next block, invert the condition so that we can
1587 // fall through to the lhs instead of the rhs block.
1588 if (CB.TrueBB == NextBlock) {
1589 std::swap(CB.TrueBB, CB.FalseBB);
1590 SDValue True = DAG.getConstant(1, Cond.getValueType());
1591 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1592 }
1593
1594 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1595 MVT::Other, getControlRoot(), Cond,
1596 DAG.getBasicBlock(CB.TrueBB));
1597
1598 // Insert the false branch. Do this even if it's a fall through branch,
1599 // this makes it easier to do DAG optimizations which require inverting
1600 // the branch condition.
1601 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1602 DAG.getBasicBlock(CB.FalseBB));
1603
1604 DAG.setRoot(BrCond);
1605 }
1606
1607 /// visitJumpTable - Emit JumpTable node in the current MBB
visitJumpTable(JumpTable & JT)1608 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1609 // Emit the code for the jump table
1610 assert(JT.Reg != -1U && "Should lower JT Header first!");
1611 EVT PTy = TLI.getPointerTy();
1612 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1613 JT.Reg, PTy);
1614 SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1615 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1616 MVT::Other, Index.getValue(1),
1617 Table, Index);
1618 DAG.setRoot(BrJumpTable);
1619 }
1620
1621 /// visitJumpTableHeader - This function emits necessary code to produce index
1622 /// in the JumpTable from switch case.
visitJumpTableHeader(JumpTable & JT,JumpTableHeader & JTH,MachineBasicBlock * SwitchBB)1623 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1624 JumpTableHeader &JTH,
1625 MachineBasicBlock *SwitchBB) {
1626 // Subtract the lowest switch case value from the value being switched on and
1627 // conditional branch to default mbb if the result is greater than the
1628 // difference between smallest and largest cases.
1629 SDValue SwitchOp = getValue(JTH.SValue);
1630 EVT VT = SwitchOp.getValueType();
1631 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1632 DAG.getConstant(JTH.First, VT));
1633
1634 // The SDNode we just created, which holds the value being switched on minus
1635 // the smallest case value, needs to be copied to a virtual register so it
1636 // can be used as an index into the jump table in a subsequent basic block.
1637 // This value may be smaller or larger than the target's pointer type, and
1638 // therefore require extension or truncating.
1639 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1640
1641 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1642 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1643 JumpTableReg, SwitchOp);
1644 JT.Reg = JumpTableReg;
1645
1646 // Emit the range check for the jump table, and branch to the default block
1647 // for the switch statement if the value being switched on exceeds the largest
1648 // case in the switch.
1649 SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1650 TLI.getSetCCResultType(Sub.getValueType()), Sub,
1651 DAG.getConstant(JTH.Last-JTH.First,VT),
1652 ISD::SETUGT);
1653
1654 // Set NextBlock to be the MBB immediately after the current one, if any.
1655 // This is used to avoid emitting unnecessary branches to the next block.
1656 MachineBasicBlock *NextBlock = 0;
1657 MachineFunction::iterator BBI = SwitchBB;
1658
1659 if (++BBI != FuncInfo.MF->end())
1660 NextBlock = BBI;
1661
1662 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1663 MVT::Other, CopyTo, CMP,
1664 DAG.getBasicBlock(JT.Default));
1665
1666 if (JT.MBB != NextBlock)
1667 BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1668 DAG.getBasicBlock(JT.MBB));
1669
1670 DAG.setRoot(BrCond);
1671 }
1672
1673 /// visitBitTestHeader - This function emits necessary code to produce value
1674 /// suitable for "bit tests"
visitBitTestHeader(BitTestBlock & B,MachineBasicBlock * SwitchBB)1675 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1676 MachineBasicBlock *SwitchBB) {
1677 // Subtract the minimum value
1678 SDValue SwitchOp = getValue(B.SValue);
1679 EVT VT = SwitchOp.getValueType();
1680 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1681 DAG.getConstant(B.First, VT));
1682
1683 // Check range
1684 SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1685 TLI.getSetCCResultType(Sub.getValueType()),
1686 Sub, DAG.getConstant(B.Range, VT),
1687 ISD::SETUGT);
1688
1689 // Determine the type of the test operands.
1690 bool UsePtrType = false;
1691 if (!TLI.isTypeLegal(VT))
1692 UsePtrType = true;
1693 else {
1694 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1695 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
1696 // Switch table case range are encoded into series of masks.
1697 // Just use pointer type, it's guaranteed to fit.
1698 UsePtrType = true;
1699 break;
1700 }
1701 }
1702 if (UsePtrType) {
1703 VT = TLI.getPointerTy();
1704 Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT);
1705 }
1706
1707 B.RegVT = VT;
1708 B.Reg = FuncInfo.CreateReg(VT);
1709 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1710 B.Reg, Sub);
1711
1712 // Set NextBlock to be the MBB immediately after the current one, if any.
1713 // This is used to avoid emitting unnecessary branches to the next block.
1714 MachineBasicBlock *NextBlock = 0;
1715 MachineFunction::iterator BBI = SwitchBB;
1716 if (++BBI != FuncInfo.MF->end())
1717 NextBlock = BBI;
1718
1719 MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1720
1721 addSuccessorWithWeight(SwitchBB, B.Default);
1722 addSuccessorWithWeight(SwitchBB, MBB);
1723
1724 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1725 MVT::Other, CopyTo, RangeCmp,
1726 DAG.getBasicBlock(B.Default));
1727
1728 if (MBB != NextBlock)
1729 BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1730 DAG.getBasicBlock(MBB));
1731
1732 DAG.setRoot(BrRange);
1733 }
1734
1735 /// visitBitTestCase - this function produces one "bit test"
visitBitTestCase(BitTestBlock & BB,MachineBasicBlock * NextMBB,unsigned Reg,BitTestCase & B,MachineBasicBlock * SwitchBB)1736 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1737 MachineBasicBlock* NextMBB,
1738 unsigned Reg,
1739 BitTestCase &B,
1740 MachineBasicBlock *SwitchBB) {
1741 EVT VT = BB.RegVT;
1742 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1743 Reg, VT);
1744 SDValue Cmp;
1745 unsigned PopCount = CountPopulation_64(B.Mask);
1746 if (PopCount == 1) {
1747 // Testing for a single bit; just compare the shift count with what it
1748 // would need to be to shift a 1 bit in that position.
1749 Cmp = DAG.getSetCC(getCurDebugLoc(),
1750 TLI.getSetCCResultType(VT),
1751 ShiftOp,
1752 DAG.getConstant(CountTrailingZeros_64(B.Mask), VT),
1753 ISD::SETEQ);
1754 } else if (PopCount == BB.Range) {
1755 // There is only one zero bit in the range, test for it directly.
1756 Cmp = DAG.getSetCC(getCurDebugLoc(),
1757 TLI.getSetCCResultType(VT),
1758 ShiftOp,
1759 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
1760 ISD::SETNE);
1761 } else {
1762 // Make desired shift
1763 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT,
1764 DAG.getConstant(1, VT), ShiftOp);
1765
1766 // Emit bit tests and jumps
1767 SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1768 VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1769 Cmp = DAG.getSetCC(getCurDebugLoc(),
1770 TLI.getSetCCResultType(VT),
1771 AndOp, DAG.getConstant(0, VT),
1772 ISD::SETNE);
1773 }
1774
1775 addSuccessorWithWeight(SwitchBB, B.TargetBB);
1776 addSuccessorWithWeight(SwitchBB, NextMBB);
1777
1778 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1779 MVT::Other, getControlRoot(),
1780 Cmp, DAG.getBasicBlock(B.TargetBB));
1781
1782 // Set NextBlock to be the MBB immediately after the current one, if any.
1783 // This is used to avoid emitting unnecessary branches to the next block.
1784 MachineBasicBlock *NextBlock = 0;
1785 MachineFunction::iterator BBI = SwitchBB;
1786 if (++BBI != FuncInfo.MF->end())
1787 NextBlock = BBI;
1788
1789 if (NextMBB != NextBlock)
1790 BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1791 DAG.getBasicBlock(NextMBB));
1792
1793 DAG.setRoot(BrAnd);
1794 }
1795
visitInvoke(const InvokeInst & I)1796 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1797 MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1798
1799 // Retrieve successors.
1800 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1801 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1802
1803 const Value *Callee(I.getCalledValue());
1804 if (isa<InlineAsm>(Callee))
1805 visitInlineAsm(&I);
1806 else
1807 LowerCallTo(&I, getValue(Callee), false, LandingPad);
1808
1809 // If the value of the invoke is used outside of its defining block, make it
1810 // available as a virtual register.
1811 CopyToExportRegsIfNeeded(&I);
1812
1813 // Update successor info
1814 InvokeMBB->addSuccessor(Return);
1815 InvokeMBB->addSuccessor(LandingPad);
1816
1817 // Drop into normal successor.
1818 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1819 MVT::Other, getControlRoot(),
1820 DAG.getBasicBlock(Return)));
1821 }
1822
visitUnwind(const UnwindInst & I)1823 void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) {
1824 }
1825
visitResume(const ResumeInst & RI)1826 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
1827 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
1828 }
1829
visitLandingPad(const LandingPadInst & LP)1830 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
1831 assert(FuncInfo.MBB->isLandingPad() &&
1832 "Call to landingpad not in landing pad!");
1833
1834 MachineBasicBlock *MBB = FuncInfo.MBB;
1835 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
1836 AddLandingPadInfo(LP, MMI, MBB);
1837
1838 SmallVector<EVT, 2> ValueVTs;
1839 ComputeValueVTs(TLI, LP.getType(), ValueVTs);
1840
1841 // Insert the EXCEPTIONADDR instruction.
1842 assert(FuncInfo.MBB->isLandingPad() &&
1843 "Call to eh.exception not in landing pad!");
1844 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1845 SDValue Ops[2];
1846 Ops[0] = DAG.getRoot();
1847 SDValue Op1 = DAG.getNode(ISD::EXCEPTIONADDR, getCurDebugLoc(), VTs, Ops, 1);
1848 SDValue Chain = Op1.getValue(1);
1849
1850 // Insert the EHSELECTION instruction.
1851 VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1852 Ops[0] = Op1;
1853 Ops[1] = Chain;
1854 SDValue Op2 = DAG.getNode(ISD::EHSELECTION, getCurDebugLoc(), VTs, Ops, 2);
1855 Chain = Op2.getValue(1);
1856 Op2 = DAG.getSExtOrTrunc(Op2, getCurDebugLoc(), MVT::i32);
1857
1858 Ops[0] = Op1;
1859 Ops[1] = Op2;
1860 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
1861 DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
1862 &Ops[0], 2);
1863
1864 std::pair<SDValue, SDValue> RetPair = std::make_pair(Res, Chain);
1865 setValue(&LP, RetPair.first);
1866 DAG.setRoot(RetPair.second);
1867 }
1868
1869 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1870 /// small case ranges).
handleSmallSwitchRange(CaseRec & CR,CaseRecVector & WorkList,const Value * SV,MachineBasicBlock * Default,MachineBasicBlock * SwitchBB)1871 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1872 CaseRecVector& WorkList,
1873 const Value* SV,
1874 MachineBasicBlock *Default,
1875 MachineBasicBlock *SwitchBB) {
1876 Case& BackCase = *(CR.Range.second-1);
1877
1878 // Size is the number of Cases represented by this range.
1879 size_t Size = CR.Range.second - CR.Range.first;
1880 if (Size > 3)
1881 return false;
1882
1883 // Get the MachineFunction which holds the current MBB. This is used when
1884 // inserting any additional MBBs necessary to represent the switch.
1885 MachineFunction *CurMF = FuncInfo.MF;
1886
1887 // Figure out which block is immediately after the current one.
1888 MachineBasicBlock *NextBlock = 0;
1889 MachineFunction::iterator BBI = CR.CaseBB;
1890
1891 if (++BBI != FuncInfo.MF->end())
1892 NextBlock = BBI;
1893
1894 // If any two of the cases has the same destination, and if one value
1895 // is the same as the other, but has one bit unset that the other has set,
1896 // use bit manipulation to do two compares at once. For example:
1897 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1898 // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1899 // TODO: Handle cases where CR.CaseBB != SwitchBB.
1900 if (Size == 2 && CR.CaseBB == SwitchBB) {
1901 Case &Small = *CR.Range.first;
1902 Case &Big = *(CR.Range.second-1);
1903
1904 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1905 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1906 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1907
1908 // Check that there is only one bit different.
1909 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1910 (SmallValue | BigValue) == BigValue) {
1911 // Isolate the common bit.
1912 APInt CommonBit = BigValue & ~SmallValue;
1913 assert((SmallValue | CommonBit) == BigValue &&
1914 CommonBit.countPopulation() == 1 && "Not a common bit?");
1915
1916 SDValue CondLHS = getValue(SV);
1917 EVT VT = CondLHS.getValueType();
1918 DebugLoc DL = getCurDebugLoc();
1919
1920 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1921 DAG.getConstant(CommonBit, VT));
1922 SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1923 Or, DAG.getConstant(BigValue, VT),
1924 ISD::SETEQ);
1925
1926 // Update successor info.
1927 addSuccessorWithWeight(SwitchBB, Small.BB);
1928 addSuccessorWithWeight(SwitchBB, Default);
1929
1930 // Insert the true branch.
1931 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
1932 getControlRoot(), Cond,
1933 DAG.getBasicBlock(Small.BB));
1934
1935 // Insert the false branch.
1936 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
1937 DAG.getBasicBlock(Default));
1938
1939 DAG.setRoot(BrCond);
1940 return true;
1941 }
1942 }
1943 }
1944
1945 // Rearrange the case blocks so that the last one falls through if possible.
1946 if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1947 // The last case block won't fall through into 'NextBlock' if we emit the
1948 // branches in this order. See if rearranging a case value would help.
1949 for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1950 if (I->BB == NextBlock) {
1951 std::swap(*I, BackCase);
1952 break;
1953 }
1954 }
1955 }
1956
1957 // Create a CaseBlock record representing a conditional branch to
1958 // the Case's target mbb if the value being switched on SV is equal
1959 // to C.
1960 MachineBasicBlock *CurBlock = CR.CaseBB;
1961 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1962 MachineBasicBlock *FallThrough;
1963 if (I != E-1) {
1964 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1965 CurMF->insert(BBI, FallThrough);
1966
1967 // Put SV in a virtual register to make it available from the new blocks.
1968 ExportFromCurrentBlock(SV);
1969 } else {
1970 // If the last case doesn't match, go to the default block.
1971 FallThrough = Default;
1972 }
1973
1974 const Value *RHS, *LHS, *MHS;
1975 ISD::CondCode CC;
1976 if (I->High == I->Low) {
1977 // This is just small small case range :) containing exactly 1 case
1978 CC = ISD::SETEQ;
1979 LHS = SV; RHS = I->High; MHS = NULL;
1980 } else {
1981 CC = ISD::SETLE;
1982 LHS = I->Low; MHS = SV; RHS = I->High;
1983 }
1984
1985 uint32_t ExtraWeight = I->ExtraWeight;
1986 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
1987 /* me */ CurBlock,
1988 /* trueweight */ ExtraWeight / 2, /* falseweight */ ExtraWeight / 2);
1989
1990 // If emitting the first comparison, just call visitSwitchCase to emit the
1991 // code into the current block. Otherwise, push the CaseBlock onto the
1992 // vector to be later processed by SDISel, and insert the node's MBB
1993 // before the next MBB.
1994 if (CurBlock == SwitchBB)
1995 visitSwitchCase(CB, SwitchBB);
1996 else
1997 SwitchCases.push_back(CB);
1998
1999 CurBlock = FallThrough;
2000 }
2001
2002 return true;
2003 }
2004
areJTsAllowed(const TargetLowering & TLI)2005 static inline bool areJTsAllowed(const TargetLowering &TLI) {
2006 return !DisableJumpTables &&
2007 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
2008 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
2009 }
2010
ComputeRange(const APInt & First,const APInt & Last)2011 static APInt ComputeRange(const APInt &First, const APInt &Last) {
2012 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
2013 APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
2014 return (LastExt - FirstExt + 1ULL);
2015 }
2016
2017 /// handleJTSwitchCase - Emit jumptable for current switch case range
handleJTSwitchCase(CaseRec & CR,CaseRecVector & WorkList,const Value * SV,MachineBasicBlock * Default,MachineBasicBlock * SwitchBB)2018 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
2019 CaseRecVector &WorkList,
2020 const Value *SV,
2021 MachineBasicBlock *Default,
2022 MachineBasicBlock *SwitchBB) {
2023 Case& FrontCase = *CR.Range.first;
2024 Case& BackCase = *(CR.Range.second-1);
2025
2026 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2027 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue();
2028
2029 APInt TSize(First.getBitWidth(), 0);
2030 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
2031 TSize += I->size();
2032
2033 if (!areJTsAllowed(TLI) || TSize.ult(4))
2034 return false;
2035
2036 APInt Range = ComputeRange(First, Last);
2037 // The density is TSize / Range. Require at least 40%.
2038 // It should not be possible for IntTSize to saturate for sane code, but make
2039 // sure we handle Range saturation correctly.
2040 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10);
2041 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10);
2042 if (IntTSize * 10 < IntRange * 4)
2043 return false;
2044
2045 DEBUG(dbgs() << "Lowering jump table\n"
2046 << "First entry: " << First << ". Last entry: " << Last << '\n'
2047 << "Range: " << Range << ". Size: " << TSize << ".\n\n");
2048
2049 // Get the MachineFunction which holds the current MBB. This is used when
2050 // inserting any additional MBBs necessary to represent the switch.
2051 MachineFunction *CurMF = FuncInfo.MF;
2052
2053 // Figure out which block is immediately after the current one.
2054 MachineFunction::iterator BBI = CR.CaseBB;
2055 ++BBI;
2056
2057 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2058
2059 // Create a new basic block to hold the code for loading the address
2060 // of the jump table, and jumping to it. Update successor information;
2061 // we will either branch to the default case for the switch, or the jump
2062 // table.
2063 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2064 CurMF->insert(BBI, JumpTableBB);
2065
2066 addSuccessorWithWeight(CR.CaseBB, Default);
2067 addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2068
2069 // Build a vector of destination BBs, corresponding to each target
2070 // of the jump table. If the value of the jump table slot corresponds to
2071 // a case statement, push the case's BB onto the vector, otherwise, push
2072 // the default BB.
2073 std::vector<MachineBasicBlock*> DestBBs;
2074 APInt TEI = First;
2075 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2076 const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2077 const APInt &High = cast<ConstantInt>(I->High)->getValue();
2078
2079 if (Low.sle(TEI) && TEI.sle(High)) {
2080 DestBBs.push_back(I->BB);
2081 if (TEI==High)
2082 ++I;
2083 } else {
2084 DestBBs.push_back(Default);
2085 }
2086 }
2087
2088 // Update successor info. Add one edge to each unique successor.
2089 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2090 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2091 E = DestBBs.end(); I != E; ++I) {
2092 if (!SuccsHandled[(*I)->getNumber()]) {
2093 SuccsHandled[(*I)->getNumber()] = true;
2094 addSuccessorWithWeight(JumpTableBB, *I);
2095 }
2096 }
2097
2098 // Create a jump table index for this jump table.
2099 unsigned JTEncoding = TLI.getJumpTableEncoding();
2100 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2101 ->createJumpTableIndex(DestBBs);
2102
2103 // Set the jump table information so that we can codegen it as a second
2104 // MachineBasicBlock
2105 JumpTable JT(-1U, JTI, JumpTableBB, Default);
2106 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2107 if (CR.CaseBB == SwitchBB)
2108 visitJumpTableHeader(JT, JTH, SwitchBB);
2109
2110 JTCases.push_back(JumpTableBlock(JTH, JT));
2111 return true;
2112 }
2113
2114 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2115 /// 2 subtrees.
handleBTSplitSwitchCase(CaseRec & CR,CaseRecVector & WorkList,const Value * SV,MachineBasicBlock * Default,MachineBasicBlock * SwitchBB)2116 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2117 CaseRecVector& WorkList,
2118 const Value* SV,
2119 MachineBasicBlock *Default,
2120 MachineBasicBlock *SwitchBB) {
2121 // Get the MachineFunction which holds the current MBB. This is used when
2122 // inserting any additional MBBs necessary to represent the switch.
2123 MachineFunction *CurMF = FuncInfo.MF;
2124
2125 // Figure out which block is immediately after the current one.
2126 MachineFunction::iterator BBI = CR.CaseBB;
2127 ++BBI;
2128
2129 Case& FrontCase = *CR.Range.first;
2130 Case& BackCase = *(CR.Range.second-1);
2131 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2132
2133 // Size is the number of Cases represented by this range.
2134 unsigned Size = CR.Range.second - CR.Range.first;
2135
2136 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2137 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue();
2138 double FMetric = 0;
2139 CaseItr Pivot = CR.Range.first + Size/2;
2140
2141 // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2142 // (heuristically) allow us to emit JumpTable's later.
2143 APInt TSize(First.getBitWidth(), 0);
2144 for (CaseItr I = CR.Range.first, E = CR.Range.second;
2145 I!=E; ++I)
2146 TSize += I->size();
2147
2148 APInt LSize = FrontCase.size();
2149 APInt RSize = TSize-LSize;
2150 DEBUG(dbgs() << "Selecting best pivot: \n"
2151 << "First: " << First << ", Last: " << Last <<'\n'
2152 << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2153 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2154 J!=E; ++I, ++J) {
2155 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2156 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2157 APInt Range = ComputeRange(LEnd, RBegin);
2158 assert((Range - 2ULL).isNonNegative() &&
2159 "Invalid case distance");
2160 // Use volatile double here to avoid excess precision issues on some hosts,
2161 // e.g. that use 80-bit X87 registers.
2162 volatile double LDensity =
2163 (double)LSize.roundToDouble() /
2164 (LEnd - First + 1ULL).roundToDouble();
2165 volatile double RDensity =
2166 (double)RSize.roundToDouble() /
2167 (Last - RBegin + 1ULL).roundToDouble();
2168 double Metric = Range.logBase2()*(LDensity+RDensity);
2169 // Should always split in some non-trivial place
2170 DEBUG(dbgs() <<"=>Step\n"
2171 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2172 << "LDensity: " << LDensity
2173 << ", RDensity: " << RDensity << '\n'
2174 << "Metric: " << Metric << '\n');
2175 if (FMetric < Metric) {
2176 Pivot = J;
2177 FMetric = Metric;
2178 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2179 }
2180
2181 LSize += J->size();
2182 RSize -= J->size();
2183 }
2184 if (areJTsAllowed(TLI)) {
2185 // If our case is dense we *really* should handle it earlier!
2186 assert((FMetric > 0) && "Should handle dense range earlier!");
2187 } else {
2188 Pivot = CR.Range.first + Size/2;
2189 }
2190
2191 CaseRange LHSR(CR.Range.first, Pivot);
2192 CaseRange RHSR(Pivot, CR.Range.second);
2193 Constant *C = Pivot->Low;
2194 MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2195
2196 // We know that we branch to the LHS if the Value being switched on is
2197 // less than the Pivot value, C. We use this to optimize our binary
2198 // tree a bit, by recognizing that if SV is greater than or equal to the
2199 // LHS's Case Value, and that Case Value is exactly one less than the
2200 // Pivot's Value, then we can branch directly to the LHS's Target,
2201 // rather than creating a leaf node for it.
2202 if ((LHSR.second - LHSR.first) == 1 &&
2203 LHSR.first->High == CR.GE &&
2204 cast<ConstantInt>(C)->getValue() ==
2205 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2206 TrueBB = LHSR.first->BB;
2207 } else {
2208 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2209 CurMF->insert(BBI, TrueBB);
2210 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2211
2212 // Put SV in a virtual register to make it available from the new blocks.
2213 ExportFromCurrentBlock(SV);
2214 }
2215
2216 // Similar to the optimization above, if the Value being switched on is
2217 // known to be less than the Constant CR.LT, and the current Case Value
2218 // is CR.LT - 1, then we can branch directly to the target block for
2219 // the current Case Value, rather than emitting a RHS leaf node for it.
2220 if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2221 cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2222 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2223 FalseBB = RHSR.first->BB;
2224 } else {
2225 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2226 CurMF->insert(BBI, FalseBB);
2227 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2228
2229 // Put SV in a virtual register to make it available from the new blocks.
2230 ExportFromCurrentBlock(SV);
2231 }
2232
2233 // Create a CaseBlock record representing a conditional branch to
2234 // the LHS node if the value being switched on SV is less than C.
2235 // Otherwise, branch to LHS.
2236 CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2237
2238 if (CR.CaseBB == SwitchBB)
2239 visitSwitchCase(CB, SwitchBB);
2240 else
2241 SwitchCases.push_back(CB);
2242
2243 return true;
2244 }
2245
2246 /// handleBitTestsSwitchCase - if current case range has few destination and
2247 /// range span less, than machine word bitwidth, encode case range into series
2248 /// of masks and emit bit tests with these masks.
handleBitTestsSwitchCase(CaseRec & CR,CaseRecVector & WorkList,const Value * SV,MachineBasicBlock * Default,MachineBasicBlock * SwitchBB)2249 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2250 CaseRecVector& WorkList,
2251 const Value* SV,
2252 MachineBasicBlock* Default,
2253 MachineBasicBlock *SwitchBB){
2254 EVT PTy = TLI.getPointerTy();
2255 unsigned IntPtrBits = PTy.getSizeInBits();
2256
2257 Case& FrontCase = *CR.Range.first;
2258 Case& BackCase = *(CR.Range.second-1);
2259
2260 // Get the MachineFunction which holds the current MBB. This is used when
2261 // inserting any additional MBBs necessary to represent the switch.
2262 MachineFunction *CurMF = FuncInfo.MF;
2263
2264 // If target does not have legal shift left, do not emit bit tests at all.
2265 if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2266 return false;
2267
2268 size_t numCmps = 0;
2269 for (CaseItr I = CR.Range.first, E = CR.Range.second;
2270 I!=E; ++I) {
2271 // Single case counts one, case range - two.
2272 numCmps += (I->Low == I->High ? 1 : 2);
2273 }
2274
2275 // Count unique destinations
2276 SmallSet<MachineBasicBlock*, 4> Dests;
2277 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2278 Dests.insert(I->BB);
2279 if (Dests.size() > 3)
2280 // Don't bother the code below, if there are too much unique destinations
2281 return false;
2282 }
2283 DEBUG(dbgs() << "Total number of unique destinations: "
2284 << Dests.size() << '\n'
2285 << "Total number of comparisons: " << numCmps << '\n');
2286
2287 // Compute span of values.
2288 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2289 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2290 APInt cmpRange = maxValue - minValue;
2291
2292 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2293 << "Low bound: " << minValue << '\n'
2294 << "High bound: " << maxValue << '\n');
2295
2296 if (cmpRange.uge(IntPtrBits) ||
2297 (!(Dests.size() == 1 && numCmps >= 3) &&
2298 !(Dests.size() == 2 && numCmps >= 5) &&
2299 !(Dests.size() >= 3 && numCmps >= 6)))
2300 return false;
2301
2302 DEBUG(dbgs() << "Emitting bit tests\n");
2303 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2304
2305 // Optimize the case where all the case values fit in a
2306 // word without having to subtract minValue. In this case,
2307 // we can optimize away the subtraction.
2308 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2309 cmpRange = maxValue;
2310 } else {
2311 lowBound = minValue;
2312 }
2313
2314 CaseBitsVector CasesBits;
2315 unsigned i, count = 0;
2316
2317 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2318 MachineBasicBlock* Dest = I->BB;
2319 for (i = 0; i < count; ++i)
2320 if (Dest == CasesBits[i].BB)
2321 break;
2322
2323 if (i == count) {
2324 assert((count < 3) && "Too much destinations to test!");
2325 CasesBits.push_back(CaseBits(0, Dest, 0));
2326 count++;
2327 }
2328
2329 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2330 const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2331
2332 uint64_t lo = (lowValue - lowBound).getZExtValue();
2333 uint64_t hi = (highValue - lowBound).getZExtValue();
2334
2335 for (uint64_t j = lo; j <= hi; j++) {
2336 CasesBits[i].Mask |= 1ULL << j;
2337 CasesBits[i].Bits++;
2338 }
2339
2340 }
2341 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2342
2343 BitTestInfo BTC;
2344
2345 // Figure out which block is immediately after the current one.
2346 MachineFunction::iterator BBI = CR.CaseBB;
2347 ++BBI;
2348
2349 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2350
2351 DEBUG(dbgs() << "Cases:\n");
2352 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2353 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2354 << ", Bits: " << CasesBits[i].Bits
2355 << ", BB: " << CasesBits[i].BB << '\n');
2356
2357 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2358 CurMF->insert(BBI, CaseBB);
2359 BTC.push_back(BitTestCase(CasesBits[i].Mask,
2360 CaseBB,
2361 CasesBits[i].BB));
2362
2363 // Put SV in a virtual register to make it available from the new blocks.
2364 ExportFromCurrentBlock(SV);
2365 }
2366
2367 BitTestBlock BTB(lowBound, cmpRange, SV,
2368 -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2369 CR.CaseBB, Default, BTC);
2370
2371 if (CR.CaseBB == SwitchBB)
2372 visitBitTestHeader(BTB, SwitchBB);
2373
2374 BitTestCases.push_back(BTB);
2375
2376 return true;
2377 }
2378
2379 /// Clusterify - Transform simple list of Cases into list of CaseRange's
Clusterify(CaseVector & Cases,const SwitchInst & SI)2380 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2381 const SwitchInst& SI) {
2382 size_t numCmps = 0;
2383
2384 BranchProbabilityInfo *BPI = FuncInfo.BPI;
2385 // Start with "simple" cases
2386 for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
2387 BasicBlock *SuccBB = SI.getSuccessor(i);
2388 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
2389
2390 uint32_t ExtraWeight = BPI ? BPI->getEdgeWeight(SI.getParent(), SuccBB) : 0;
2391
2392 Cases.push_back(Case(SI.getSuccessorValue(i),
2393 SI.getSuccessorValue(i),
2394 SMBB, ExtraWeight));
2395 }
2396 std::sort(Cases.begin(), Cases.end(), CaseCmp());
2397
2398 // Merge case into clusters
2399 if (Cases.size() >= 2)
2400 // Must recompute end() each iteration because it may be
2401 // invalidated by erase if we hold on to it
2402 for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin());
2403 J != Cases.end(); ) {
2404 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2405 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2406 MachineBasicBlock* nextBB = J->BB;
2407 MachineBasicBlock* currentBB = I->BB;
2408
2409 // If the two neighboring cases go to the same destination, merge them
2410 // into a single case.
2411 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2412 I->High = J->High;
2413 J = Cases.erase(J);
2414
2415 if (BranchProbabilityInfo *BPI = FuncInfo.BPI) {
2416 uint32_t CurWeight = currentBB->getBasicBlock() ?
2417 BPI->getEdgeWeight(SI.getParent(), currentBB->getBasicBlock()) : 16;
2418 uint32_t NextWeight = nextBB->getBasicBlock() ?
2419 BPI->getEdgeWeight(SI.getParent(), nextBB->getBasicBlock()) : 16;
2420
2421 BPI->setEdgeWeight(SI.getParent(), currentBB->getBasicBlock(),
2422 CurWeight + NextWeight);
2423 }
2424 } else {
2425 I = J++;
2426 }
2427 }
2428
2429 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2430 if (I->Low != I->High)
2431 // A range counts double, since it requires two compares.
2432 ++numCmps;
2433 }
2434
2435 return numCmps;
2436 }
2437
UpdateSplitBlock(MachineBasicBlock * First,MachineBasicBlock * Last)2438 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2439 MachineBasicBlock *Last) {
2440 // Update JTCases.
2441 for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2442 if (JTCases[i].first.HeaderBB == First)
2443 JTCases[i].first.HeaderBB = Last;
2444
2445 // Update BitTestCases.
2446 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2447 if (BitTestCases[i].Parent == First)
2448 BitTestCases[i].Parent = Last;
2449 }
2450
visitSwitch(const SwitchInst & SI)2451 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2452 MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2453
2454 // Figure out which block is immediately after the current one.
2455 MachineBasicBlock *NextBlock = 0;
2456 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2457
2458 // If there is only the default destination, branch to it if it is not the
2459 // next basic block. Otherwise, just fall through.
2460 if (SI.getNumCases() == 1) {
2461 // Update machine-CFG edges.
2462
2463 // If this is not a fall-through branch, emit the branch.
2464 SwitchMBB->addSuccessor(Default);
2465 if (Default != NextBlock)
2466 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2467 MVT::Other, getControlRoot(),
2468 DAG.getBasicBlock(Default)));
2469
2470 return;
2471 }
2472
2473 // If there are any non-default case statements, create a vector of Cases
2474 // representing each one, and sort the vector so that we can efficiently
2475 // create a binary search tree from them.
2476 CaseVector Cases;
2477 size_t numCmps = Clusterify(Cases, SI);
2478 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2479 << ". Total compares: " << numCmps << '\n');
2480 (void)numCmps;
2481
2482 // Get the Value to be switched on and default basic blocks, which will be
2483 // inserted into CaseBlock records, representing basic blocks in the binary
2484 // search tree.
2485 const Value *SV = SI.getCondition();
2486
2487 // Push the initial CaseRec onto the worklist
2488 CaseRecVector WorkList;
2489 WorkList.push_back(CaseRec(SwitchMBB,0,0,
2490 CaseRange(Cases.begin(),Cases.end())));
2491
2492 while (!WorkList.empty()) {
2493 // Grab a record representing a case range to process off the worklist
2494 CaseRec CR = WorkList.back();
2495 WorkList.pop_back();
2496
2497 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2498 continue;
2499
2500 // If the range has few cases (two or less) emit a series of specific
2501 // tests.
2502 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2503 continue;
2504
2505 // If the switch has more than 5 blocks, and at least 40% dense, and the
2506 // target supports indirect branches, then emit a jump table rather than
2507 // lowering the switch to a binary tree of conditional branches.
2508 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2509 continue;
2510
2511 // Emit binary tree. We need to pick a pivot, and push left and right ranges
2512 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2513 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2514 }
2515 }
2516
visitIndirectBr(const IndirectBrInst & I)2517 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2518 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2519
2520 // Update machine-CFG edges with unique successors.
2521 SmallVector<BasicBlock*, 32> succs;
2522 succs.reserve(I.getNumSuccessors());
2523 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2524 succs.push_back(I.getSuccessor(i));
2525 array_pod_sort(succs.begin(), succs.end());
2526 succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2527 for (unsigned i = 0, e = succs.size(); i != e; ++i) {
2528 MachineBasicBlock *Succ = FuncInfo.MBBMap[succs[i]];
2529 addSuccessorWithWeight(IndirectBrMBB, Succ);
2530 }
2531
2532 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2533 MVT::Other, getControlRoot(),
2534 getValue(I.getAddress())));
2535 }
2536
visitFSub(const User & I)2537 void SelectionDAGBuilder::visitFSub(const User &I) {
2538 // -0.0 - X --> fneg
2539 Type *Ty = I.getType();
2540 if (isa<Constant>(I.getOperand(0)) &&
2541 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2542 SDValue Op2 = getValue(I.getOperand(1));
2543 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2544 Op2.getValueType(), Op2));
2545 return;
2546 }
2547
2548 visitBinary(I, ISD::FSUB);
2549 }
2550
visitBinary(const User & I,unsigned OpCode)2551 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2552 SDValue Op1 = getValue(I.getOperand(0));
2553 SDValue Op2 = getValue(I.getOperand(1));
2554 setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2555 Op1.getValueType(), Op1, Op2));
2556 }
2557
visitShift(const User & I,unsigned Opcode)2558 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2559 SDValue Op1 = getValue(I.getOperand(0));
2560 SDValue Op2 = getValue(I.getOperand(1));
2561
2562 MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType());
2563
2564 // Coerce the shift amount to the right type if we can.
2565 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2566 unsigned ShiftSize = ShiftTy.getSizeInBits();
2567 unsigned Op2Size = Op2.getValueType().getSizeInBits();
2568 DebugLoc DL = getCurDebugLoc();
2569
2570 // If the operand is smaller than the shift count type, promote it.
2571 if (ShiftSize > Op2Size)
2572 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2573
2574 // If the operand is larger than the shift count type but the shift
2575 // count type has enough bits to represent any shift value, truncate
2576 // it now. This is a common case and it exposes the truncate to
2577 // optimization early.
2578 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2579 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2580 // Otherwise we'll need to temporarily settle for some other convenient
2581 // type. Type legalization will make adjustments once the shiftee is split.
2582 else
2583 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2584 }
2585
2586 setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2587 Op1.getValueType(), Op1, Op2));
2588 }
2589
visitSDiv(const User & I)2590 void SelectionDAGBuilder::visitSDiv(const User &I) {
2591 SDValue Op1 = getValue(I.getOperand(0));
2592 SDValue Op2 = getValue(I.getOperand(1));
2593
2594 // Turn exact SDivs into multiplications.
2595 // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2596 // exact bit.
2597 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2598 !isa<ConstantSDNode>(Op1) &&
2599 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2600 setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG));
2601 else
2602 setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(),
2603 Op1, Op2));
2604 }
2605
visitICmp(const User & I)2606 void SelectionDAGBuilder::visitICmp(const User &I) {
2607 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2608 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2609 predicate = IC->getPredicate();
2610 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2611 predicate = ICmpInst::Predicate(IC->getPredicate());
2612 SDValue Op1 = getValue(I.getOperand(0));
2613 SDValue Op2 = getValue(I.getOperand(1));
2614 ISD::CondCode Opcode = getICmpCondCode(predicate);
2615
2616 EVT DestVT = TLI.getValueType(I.getType());
2617 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2618 }
2619
visitFCmp(const User & I)2620 void SelectionDAGBuilder::visitFCmp(const User &I) {
2621 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2622 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2623 predicate = FC->getPredicate();
2624 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2625 predicate = FCmpInst::Predicate(FC->getPredicate());
2626 SDValue Op1 = getValue(I.getOperand(0));
2627 SDValue Op2 = getValue(I.getOperand(1));
2628 ISD::CondCode Condition = getFCmpCondCode(predicate);
2629 EVT DestVT = TLI.getValueType(I.getType());
2630 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2631 }
2632
visitSelect(const User & I)2633 void SelectionDAGBuilder::visitSelect(const User &I) {
2634 SmallVector<EVT, 4> ValueVTs;
2635 ComputeValueVTs(TLI, I.getType(), ValueVTs);
2636 unsigned NumValues = ValueVTs.size();
2637 if (NumValues == 0) return;
2638
2639 SmallVector<SDValue, 4> Values(NumValues);
2640 SDValue Cond = getValue(I.getOperand(0));
2641 SDValue TrueVal = getValue(I.getOperand(1));
2642 SDValue FalseVal = getValue(I.getOperand(2));
2643 ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2644 ISD::VSELECT : ISD::SELECT;
2645
2646 for (unsigned i = 0; i != NumValues; ++i)
2647 Values[i] = DAG.getNode(OpCode, getCurDebugLoc(),
2648 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2649 Cond,
2650 SDValue(TrueVal.getNode(),
2651 TrueVal.getResNo() + i),
2652 SDValue(FalseVal.getNode(),
2653 FalseVal.getResNo() + i));
2654
2655 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2656 DAG.getVTList(&ValueVTs[0], NumValues),
2657 &Values[0], NumValues));
2658 }
2659
visitTrunc(const User & I)2660 void SelectionDAGBuilder::visitTrunc(const User &I) {
2661 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2662 SDValue N = getValue(I.getOperand(0));
2663 EVT DestVT = TLI.getValueType(I.getType());
2664 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2665 }
2666
visitZExt(const User & I)2667 void SelectionDAGBuilder::visitZExt(const User &I) {
2668 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2669 // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2670 SDValue N = getValue(I.getOperand(0));
2671 EVT DestVT = TLI.getValueType(I.getType());
2672 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2673 }
2674
visitSExt(const User & I)2675 void SelectionDAGBuilder::visitSExt(const User &I) {
2676 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2677 // SExt also can't be a cast to bool for same reason. So, nothing much to do
2678 SDValue N = getValue(I.getOperand(0));
2679 EVT DestVT = TLI.getValueType(I.getType());
2680 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2681 }
2682
visitFPTrunc(const User & I)2683 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2684 // FPTrunc is never a no-op cast, no need to check
2685 SDValue N = getValue(I.getOperand(0));
2686 EVT DestVT = TLI.getValueType(I.getType());
2687 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2688 DestVT, N, DAG.getIntPtrConstant(0)));
2689 }
2690
visitFPExt(const User & I)2691 void SelectionDAGBuilder::visitFPExt(const User &I){
2692 // FPTrunc is never a no-op cast, no need to check
2693 SDValue N = getValue(I.getOperand(0));
2694 EVT DestVT = TLI.getValueType(I.getType());
2695 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2696 }
2697
visitFPToUI(const User & I)2698 void SelectionDAGBuilder::visitFPToUI(const User &I) {
2699 // FPToUI is never a no-op cast, no need to check
2700 SDValue N = getValue(I.getOperand(0));
2701 EVT DestVT = TLI.getValueType(I.getType());
2702 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2703 }
2704
visitFPToSI(const User & I)2705 void SelectionDAGBuilder::visitFPToSI(const User &I) {
2706 // FPToSI is never a no-op cast, no need to check
2707 SDValue N = getValue(I.getOperand(0));
2708 EVT DestVT = TLI.getValueType(I.getType());
2709 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2710 }
2711
visitUIToFP(const User & I)2712 void SelectionDAGBuilder::visitUIToFP(const User &I) {
2713 // UIToFP is never a no-op cast, no need to check
2714 SDValue N = getValue(I.getOperand(0));
2715 EVT DestVT = TLI.getValueType(I.getType());
2716 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2717 }
2718
visitSIToFP(const User & I)2719 void SelectionDAGBuilder::visitSIToFP(const User &I){
2720 // SIToFP is never a no-op cast, no need to check
2721 SDValue N = getValue(I.getOperand(0));
2722 EVT DestVT = TLI.getValueType(I.getType());
2723 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2724 }
2725
visitPtrToInt(const User & I)2726 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2727 // What to do depends on the size of the integer and the size of the pointer.
2728 // We can either truncate, zero extend, or no-op, accordingly.
2729 SDValue N = getValue(I.getOperand(0));
2730 EVT DestVT = TLI.getValueType(I.getType());
2731 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2732 }
2733
visitIntToPtr(const User & I)2734 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2735 // What to do depends on the size of the integer and the size of the pointer.
2736 // We can either truncate, zero extend, or no-op, accordingly.
2737 SDValue N = getValue(I.getOperand(0));
2738 EVT DestVT = TLI.getValueType(I.getType());
2739 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2740 }
2741
visitBitCast(const User & I)2742 void SelectionDAGBuilder::visitBitCast(const User &I) {
2743 SDValue N = getValue(I.getOperand(0));
2744 EVT DestVT = TLI.getValueType(I.getType());
2745
2746 // BitCast assures us that source and destination are the same size so this is
2747 // either a BITCAST or a no-op.
2748 if (DestVT != N.getValueType())
2749 setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
2750 DestVT, N)); // convert types.
2751 else
2752 setValue(&I, N); // noop cast.
2753 }
2754
visitInsertElement(const User & I)2755 void SelectionDAGBuilder::visitInsertElement(const User &I) {
2756 SDValue InVec = getValue(I.getOperand(0));
2757 SDValue InVal = getValue(I.getOperand(1));
2758 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2759 TLI.getPointerTy(),
2760 getValue(I.getOperand(2)));
2761 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2762 TLI.getValueType(I.getType()),
2763 InVec, InVal, InIdx));
2764 }
2765
visitExtractElement(const User & I)2766 void SelectionDAGBuilder::visitExtractElement(const User &I) {
2767 SDValue InVec = getValue(I.getOperand(0));
2768 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2769 TLI.getPointerTy(),
2770 getValue(I.getOperand(1)));
2771 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2772 TLI.getValueType(I.getType()), InVec, InIdx));
2773 }
2774
2775 // Utility for visitShuffleVector - Returns true if the mask is mask starting
2776 // from SIndx and increasing to the element length (undefs are allowed).
SequentialMask(SmallVectorImpl<int> & Mask,unsigned SIndx)2777 static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2778 unsigned MaskNumElts = Mask.size();
2779 for (unsigned i = 0; i != MaskNumElts; ++i)
2780 if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2781 return false;
2782 return true;
2783 }
2784
visitShuffleVector(const User & I)2785 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2786 SmallVector<int, 8> Mask;
2787 SDValue Src1 = getValue(I.getOperand(0));
2788 SDValue Src2 = getValue(I.getOperand(1));
2789
2790 // Convert the ConstantVector mask operand into an array of ints, with -1
2791 // representing undef values.
2792 SmallVector<Constant*, 8> MaskElts;
2793 cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
2794 unsigned MaskNumElts = MaskElts.size();
2795 for (unsigned i = 0; i != MaskNumElts; ++i) {
2796 if (isa<UndefValue>(MaskElts[i]))
2797 Mask.push_back(-1);
2798 else
2799 Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2800 }
2801
2802 EVT VT = TLI.getValueType(I.getType());
2803 EVT SrcVT = Src1.getValueType();
2804 unsigned SrcNumElts = SrcVT.getVectorNumElements();
2805
2806 if (SrcNumElts == MaskNumElts) {
2807 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2808 &Mask[0]));
2809 return;
2810 }
2811
2812 // Normalize the shuffle vector since mask and vector length don't match.
2813 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2814 // Mask is longer than the source vectors and is a multiple of the source
2815 // vectors. We can use concatenate vector to make the mask and vectors
2816 // lengths match.
2817 if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2818 // The shuffle is concatenating two vectors together.
2819 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2820 VT, Src1, Src2));
2821 return;
2822 }
2823
2824 // Pad both vectors with undefs to make them the same length as the mask.
2825 unsigned NumConcat = MaskNumElts / SrcNumElts;
2826 bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2827 bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2828 SDValue UndefVal = DAG.getUNDEF(SrcVT);
2829
2830 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2831 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2832 MOps1[0] = Src1;
2833 MOps2[0] = Src2;
2834
2835 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2836 getCurDebugLoc(), VT,
2837 &MOps1[0], NumConcat);
2838 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2839 getCurDebugLoc(), VT,
2840 &MOps2[0], NumConcat);
2841
2842 // Readjust mask for new input vector length.
2843 SmallVector<int, 8> MappedOps;
2844 for (unsigned i = 0; i != MaskNumElts; ++i) {
2845 int Idx = Mask[i];
2846 if (Idx < (int)SrcNumElts)
2847 MappedOps.push_back(Idx);
2848 else
2849 MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2850 }
2851
2852 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2853 &MappedOps[0]));
2854 return;
2855 }
2856
2857 if (SrcNumElts > MaskNumElts) {
2858 // Analyze the access pattern of the vector to see if we can extract
2859 // two subvectors and do the shuffle. The analysis is done by calculating
2860 // the range of elements the mask access on both vectors.
2861 int MinRange[2] = { static_cast<int>(SrcNumElts+1),
2862 static_cast<int>(SrcNumElts+1)};
2863 int MaxRange[2] = {-1, -1};
2864
2865 for (unsigned i = 0; i != MaskNumElts; ++i) {
2866 int Idx = Mask[i];
2867 int Input = 0;
2868 if (Idx < 0)
2869 continue;
2870
2871 if (Idx >= (int)SrcNumElts) {
2872 Input = 1;
2873 Idx -= SrcNumElts;
2874 }
2875 if (Idx > MaxRange[Input])
2876 MaxRange[Input] = Idx;
2877 if (Idx < MinRange[Input])
2878 MinRange[Input] = Idx;
2879 }
2880
2881 // Check if the access is smaller than the vector size and can we find
2882 // a reasonable extract index.
2883 int RangeUse[2] = { 2, 2 }; // 0 = Unused, 1 = Extract, 2 = Can not
2884 // Extract.
2885 int StartIdx[2]; // StartIdx to extract from
2886 for (int Input=0; Input < 2; ++Input) {
2887 if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2888 RangeUse[Input] = 0; // Unused
2889 StartIdx[Input] = 0;
2890 } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2891 // Fits within range but we should see if we can find a good
2892 // start index that is a multiple of the mask length.
2893 if (MaxRange[Input] < (int)MaskNumElts) {
2894 RangeUse[Input] = 1; // Extract from beginning of the vector
2895 StartIdx[Input] = 0;
2896 } else {
2897 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2898 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2899 StartIdx[Input] + MaskNumElts <= SrcNumElts)
2900 RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2901 }
2902 }
2903 }
2904
2905 if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2906 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2907 return;
2908 }
2909 else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2910 // Extract appropriate subvector and generate a vector shuffle
2911 for (int Input=0; Input < 2; ++Input) {
2912 SDValue &Src = Input == 0 ? Src1 : Src2;
2913 if (RangeUse[Input] == 0)
2914 Src = DAG.getUNDEF(VT);
2915 else
2916 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2917 Src, DAG.getIntPtrConstant(StartIdx[Input]));
2918 }
2919
2920 // Calculate new mask.
2921 SmallVector<int, 8> MappedOps;
2922 for (unsigned i = 0; i != MaskNumElts; ++i) {
2923 int Idx = Mask[i];
2924 if (Idx < 0)
2925 MappedOps.push_back(Idx);
2926 else if (Idx < (int)SrcNumElts)
2927 MappedOps.push_back(Idx - StartIdx[0]);
2928 else
2929 MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2930 }
2931
2932 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2933 &MappedOps[0]));
2934 return;
2935 }
2936 }
2937
2938 // We can't use either concat vectors or extract subvectors so fall back to
2939 // replacing the shuffle with extract and build vector.
2940 // to insert and build vector.
2941 EVT EltVT = VT.getVectorElementType();
2942 EVT PtrVT = TLI.getPointerTy();
2943 SmallVector<SDValue,8> Ops;
2944 for (unsigned i = 0; i != MaskNumElts; ++i) {
2945 if (Mask[i] < 0) {
2946 Ops.push_back(DAG.getUNDEF(EltVT));
2947 } else {
2948 int Idx = Mask[i];
2949 SDValue Res;
2950
2951 if (Idx < (int)SrcNumElts)
2952 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2953 EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2954 else
2955 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2956 EltVT, Src2,
2957 DAG.getConstant(Idx - SrcNumElts, PtrVT));
2958
2959 Ops.push_back(Res);
2960 }
2961 }
2962
2963 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2964 VT, &Ops[0], Ops.size()));
2965 }
2966
visitInsertValue(const InsertValueInst & I)2967 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2968 const Value *Op0 = I.getOperand(0);
2969 const Value *Op1 = I.getOperand(1);
2970 Type *AggTy = I.getType();
2971 Type *ValTy = Op1->getType();
2972 bool IntoUndef = isa<UndefValue>(Op0);
2973 bool FromUndef = isa<UndefValue>(Op1);
2974
2975 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
2976
2977 SmallVector<EVT, 4> AggValueVTs;
2978 ComputeValueVTs(TLI, AggTy, AggValueVTs);
2979 SmallVector<EVT, 4> ValValueVTs;
2980 ComputeValueVTs(TLI, ValTy, ValValueVTs);
2981
2982 unsigned NumAggValues = AggValueVTs.size();
2983 unsigned NumValValues = ValValueVTs.size();
2984 SmallVector<SDValue, 4> Values(NumAggValues);
2985
2986 SDValue Agg = getValue(Op0);
2987 unsigned i = 0;
2988 // Copy the beginning value(s) from the original aggregate.
2989 for (; i != LinearIndex; ++i)
2990 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2991 SDValue(Agg.getNode(), Agg.getResNo() + i);
2992 // Copy values from the inserted value(s).
2993 if (NumValValues) {
2994 SDValue Val = getValue(Op1);
2995 for (; i != LinearIndex + NumValValues; ++i)
2996 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2997 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2998 }
2999 // Copy remaining value(s) from the original aggregate.
3000 for (; i != NumAggValues; ++i)
3001 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3002 SDValue(Agg.getNode(), Agg.getResNo() + i);
3003
3004 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3005 DAG.getVTList(&AggValueVTs[0], NumAggValues),
3006 &Values[0], NumAggValues));
3007 }
3008
visitExtractValue(const ExtractValueInst & I)3009 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3010 const Value *Op0 = I.getOperand(0);
3011 Type *AggTy = Op0->getType();
3012 Type *ValTy = I.getType();
3013 bool OutOfUndef = isa<UndefValue>(Op0);
3014
3015 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3016
3017 SmallVector<EVT, 4> ValValueVTs;
3018 ComputeValueVTs(TLI, ValTy, ValValueVTs);
3019
3020 unsigned NumValValues = ValValueVTs.size();
3021
3022 // Ignore a extractvalue that produces an empty object
3023 if (!NumValValues) {
3024 setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3025 return;
3026 }
3027
3028 SmallVector<SDValue, 4> Values(NumValValues);
3029
3030 SDValue Agg = getValue(Op0);
3031 // Copy out the selected value(s).
3032 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3033 Values[i - LinearIndex] =
3034 OutOfUndef ?
3035 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3036 SDValue(Agg.getNode(), Agg.getResNo() + i);
3037
3038 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3039 DAG.getVTList(&ValValueVTs[0], NumValValues),
3040 &Values[0], NumValValues));
3041 }
3042
visitGetElementPtr(const User & I)3043 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3044 SDValue N = getValue(I.getOperand(0));
3045 Type *Ty = I.getOperand(0)->getType();
3046
3047 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
3048 OI != E; ++OI) {
3049 const Value *Idx = *OI;
3050 if (StructType *StTy = dyn_cast<StructType>(Ty)) {
3051 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
3052 if (Field) {
3053 // N = N + Offset
3054 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
3055 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3056 DAG.getIntPtrConstant(Offset));
3057 }
3058
3059 Ty = StTy->getElementType(Field);
3060 } else {
3061 Ty = cast<SequentialType>(Ty)->getElementType();
3062
3063 // If this is a constant subscript, handle it quickly.
3064 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3065 if (CI->isZero()) continue;
3066 uint64_t Offs =
3067 TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
3068 SDValue OffsVal;
3069 EVT PTy = TLI.getPointerTy();
3070 unsigned PtrBits = PTy.getSizeInBits();
3071 if (PtrBits < 64)
3072 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
3073 TLI.getPointerTy(),
3074 DAG.getConstant(Offs, MVT::i64));
3075 else
3076 OffsVal = DAG.getIntPtrConstant(Offs);
3077
3078 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3079 OffsVal);
3080 continue;
3081 }
3082
3083 // N = N + Idx * ElementSize;
3084 APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
3085 TD->getTypeAllocSize(Ty));
3086 SDValue IdxN = getValue(Idx);
3087
3088 // If the index is smaller or larger than intptr_t, truncate or extend
3089 // it.
3090 IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
3091
3092 // If this is a multiply by a power of two, turn it into a shl
3093 // immediately. This is a very common case.
3094 if (ElementSize != 1) {
3095 if (ElementSize.isPowerOf2()) {
3096 unsigned Amt = ElementSize.logBase2();
3097 IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
3098 N.getValueType(), IdxN,
3099 DAG.getConstant(Amt, TLI.getPointerTy()));
3100 } else {
3101 SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
3102 IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
3103 N.getValueType(), IdxN, Scale);
3104 }
3105 }
3106
3107 N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3108 N.getValueType(), N, IdxN);
3109 }
3110 }
3111
3112 setValue(&I, N);
3113 }
3114
visitAlloca(const AllocaInst & I)3115 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3116 // If this is a fixed sized alloca in the entry block of the function,
3117 // allocate it statically on the stack.
3118 if (FuncInfo.StaticAllocaMap.count(&I))
3119 return; // getValue will auto-populate this.
3120
3121 Type *Ty = I.getAllocatedType();
3122 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
3123 unsigned Align =
3124 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
3125 I.getAlignment());
3126
3127 SDValue AllocSize = getValue(I.getArraySize());
3128
3129 EVT IntPtr = TLI.getPointerTy();
3130 if (AllocSize.getValueType() != IntPtr)
3131 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
3132
3133 AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
3134 AllocSize,
3135 DAG.getConstant(TySize, IntPtr));
3136
3137 // Handle alignment. If the requested alignment is less than or equal to
3138 // the stack alignment, ignore it. If the size is greater than or equal to
3139 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3140 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3141 if (Align <= StackAlign)
3142 Align = 0;
3143
3144 // Round the size of the allocation up to the stack alignment size
3145 // by add SA-1 to the size.
3146 AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3147 AllocSize.getValueType(), AllocSize,
3148 DAG.getIntPtrConstant(StackAlign-1));
3149
3150 // Mask out the low bits for alignment purposes.
3151 AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
3152 AllocSize.getValueType(), AllocSize,
3153 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3154
3155 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3156 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3157 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
3158 VTs, Ops, 3);
3159 setValue(&I, DSA);
3160 DAG.setRoot(DSA.getValue(1));
3161
3162 // Inform the Frame Information that we have just allocated a variable-sized
3163 // object.
3164 FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3165 }
3166
visitLoad(const LoadInst & I)3167 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3168 if (I.isAtomic())
3169 return visitAtomicLoad(I);
3170
3171 const Value *SV = I.getOperand(0);
3172 SDValue Ptr = getValue(SV);
3173
3174 Type *Ty = I.getType();
3175
3176 bool isVolatile = I.isVolatile();
3177 bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3178 unsigned Alignment = I.getAlignment();
3179 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3180
3181 SmallVector<EVT, 4> ValueVTs;
3182 SmallVector<uint64_t, 4> Offsets;
3183 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3184 unsigned NumValues = ValueVTs.size();
3185 if (NumValues == 0)
3186 return;
3187
3188 SDValue Root;
3189 bool ConstantMemory = false;
3190 if (I.isVolatile() || NumValues > MaxParallelChains)
3191 // Serialize volatile loads with other side effects.
3192 Root = getRoot();
3193 else if (AA->pointsToConstantMemory(
3194 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3195 // Do not serialize (non-volatile) loads of constant memory with anything.
3196 Root = DAG.getEntryNode();
3197 ConstantMemory = true;
3198 } else {
3199 // Do not serialize non-volatile loads against each other.
3200 Root = DAG.getRoot();
3201 }
3202
3203 SmallVector<SDValue, 4> Values(NumValues);
3204 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3205 NumValues));
3206 EVT PtrVT = Ptr.getValueType();
3207 unsigned ChainI = 0;
3208 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3209 // Serializing loads here may result in excessive register pressure, and
3210 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3211 // could recover a bit by hoisting nodes upward in the chain by recognizing
3212 // they are side-effect free or do not alias. The optimizer should really
3213 // avoid this case by converting large object/array copies to llvm.memcpy
3214 // (MaxParallelChains should always remain as failsafe).
3215 if (ChainI == MaxParallelChains) {
3216 assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3217 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3218 MVT::Other, &Chains[0], ChainI);
3219 Root = Chain;
3220 ChainI = 0;
3221 }
3222 SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3223 PtrVT, Ptr,
3224 DAG.getConstant(Offsets[i], PtrVT));
3225 SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
3226 A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3227 isNonTemporal, Alignment, TBAAInfo);
3228
3229 Values[i] = L;
3230 Chains[ChainI] = L.getValue(1);
3231 }
3232
3233 if (!ConstantMemory) {
3234 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3235 MVT::Other, &Chains[0], ChainI);
3236 if (isVolatile)
3237 DAG.setRoot(Chain);
3238 else
3239 PendingLoads.push_back(Chain);
3240 }
3241
3242 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3243 DAG.getVTList(&ValueVTs[0], NumValues),
3244 &Values[0], NumValues));
3245 }
3246
visitStore(const StoreInst & I)3247 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3248 if (I.isAtomic())
3249 return visitAtomicStore(I);
3250
3251 const Value *SrcV = I.getOperand(0);
3252 const Value *PtrV = I.getOperand(1);
3253
3254 SmallVector<EVT, 4> ValueVTs;
3255 SmallVector<uint64_t, 4> Offsets;
3256 ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3257 unsigned NumValues = ValueVTs.size();
3258 if (NumValues == 0)
3259 return;
3260
3261 // Get the lowered operands. Note that we do this after
3262 // checking if NumResults is zero, because with zero results
3263 // the operands won't have values in the map.
3264 SDValue Src = getValue(SrcV);
3265 SDValue Ptr = getValue(PtrV);
3266
3267 SDValue Root = getRoot();
3268 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3269 NumValues));
3270 EVT PtrVT = Ptr.getValueType();
3271 bool isVolatile = I.isVolatile();
3272 bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3273 unsigned Alignment = I.getAlignment();
3274 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3275
3276 unsigned ChainI = 0;
3277 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3278 // See visitLoad comments.
3279 if (ChainI == MaxParallelChains) {
3280 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3281 MVT::Other, &Chains[0], ChainI);
3282 Root = Chain;
3283 ChainI = 0;
3284 }
3285 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3286 DAG.getConstant(Offsets[i], PtrVT));
3287 SDValue St = DAG.getStore(Root, getCurDebugLoc(),
3288 SDValue(Src.getNode(), Src.getResNo() + i),
3289 Add, MachinePointerInfo(PtrV, Offsets[i]),
3290 isVolatile, isNonTemporal, Alignment, TBAAInfo);
3291 Chains[ChainI] = St;
3292 }
3293
3294 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3295 MVT::Other, &Chains[0], ChainI);
3296 ++SDNodeOrder;
3297 AssignOrderingToNode(StoreNode.getNode());
3298 DAG.setRoot(StoreNode);
3299 }
3300
InsertFenceForAtomic(SDValue Chain,AtomicOrdering Order,SynchronizationScope Scope,bool Before,DebugLoc dl,SelectionDAG & DAG,const TargetLowering & TLI)3301 static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order,
3302 SynchronizationScope Scope,
3303 bool Before, DebugLoc dl,
3304 SelectionDAG &DAG,
3305 const TargetLowering &TLI) {
3306 // Fence, if necessary
3307 if (Before) {
3308 if (Order == AcquireRelease || Order == SequentiallyConsistent)
3309 Order = Release;
3310 else if (Order == Acquire || Order == Monotonic)
3311 return Chain;
3312 } else {
3313 if (Order == AcquireRelease)
3314 Order = Acquire;
3315 else if (Order == Release || Order == Monotonic)
3316 return Chain;
3317 }
3318 SDValue Ops[3];
3319 Ops[0] = Chain;
3320 Ops[1] = DAG.getConstant(Order, TLI.getPointerTy());
3321 Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy());
3322 return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3);
3323 }
3324
visitAtomicCmpXchg(const AtomicCmpXchgInst & I)3325 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3326 DebugLoc dl = getCurDebugLoc();
3327 AtomicOrdering Order = I.getOrdering();
3328 SynchronizationScope Scope = I.getSynchScope();
3329
3330 SDValue InChain = getRoot();
3331
3332 if (TLI.getInsertFencesForAtomic())
3333 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3334 DAG, TLI);
3335
3336 SDValue L =
3337 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
3338 getValue(I.getCompareOperand()).getValueType().getSimpleVT(),
3339 InChain,
3340 getValue(I.getPointerOperand()),
3341 getValue(I.getCompareOperand()),
3342 getValue(I.getNewValOperand()),
3343 MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */,
3344 TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3345 Scope);
3346
3347 SDValue OutChain = L.getValue(1);
3348
3349 if (TLI.getInsertFencesForAtomic())
3350 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3351 DAG, TLI);
3352
3353 setValue(&I, L);
3354 DAG.setRoot(OutChain);
3355 }
3356
visitAtomicRMW(const AtomicRMWInst & I)3357 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3358 DebugLoc dl = getCurDebugLoc();
3359 ISD::NodeType NT;
3360 switch (I.getOperation()) {
3361 default: llvm_unreachable("Unknown atomicrmw operation"); return;
3362 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3363 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break;
3364 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break;
3365 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break;
3366 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3367 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break;
3368 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break;
3369 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break;
3370 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break;
3371 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3372 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3373 }
3374 AtomicOrdering Order = I.getOrdering();
3375 SynchronizationScope Scope = I.getSynchScope();
3376
3377 SDValue InChain = getRoot();
3378
3379 if (TLI.getInsertFencesForAtomic())
3380 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3381 DAG, TLI);
3382
3383 SDValue L =
3384 DAG.getAtomic(NT, dl,
3385 getValue(I.getValOperand()).getValueType().getSimpleVT(),
3386 InChain,
3387 getValue(I.getPointerOperand()),
3388 getValue(I.getValOperand()),
3389 I.getPointerOperand(), 0 /* Alignment */,
3390 TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3391 Scope);
3392
3393 SDValue OutChain = L.getValue(1);
3394
3395 if (TLI.getInsertFencesForAtomic())
3396 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3397 DAG, TLI);
3398
3399 setValue(&I, L);
3400 DAG.setRoot(OutChain);
3401 }
3402
visitFence(const FenceInst & I)3403 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3404 DebugLoc dl = getCurDebugLoc();
3405 SDValue Ops[3];
3406 Ops[0] = getRoot();
3407 Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy());
3408 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy());
3409 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3));
3410 }
3411
visitAtomicLoad(const LoadInst & I)3412 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3413 DebugLoc dl = getCurDebugLoc();
3414 AtomicOrdering Order = I.getOrdering();
3415 SynchronizationScope Scope = I.getSynchScope();
3416
3417 SDValue InChain = getRoot();
3418
3419 EVT VT = EVT::getEVT(I.getType());
3420
3421 if (I.getAlignment() * 8 < VT.getSizeInBits())
3422 report_fatal_error("Cannot generate unaligned atomic load");
3423
3424 SDValue L =
3425 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3426 getValue(I.getPointerOperand()),
3427 I.getPointerOperand(), I.getAlignment(),
3428 TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3429 Scope);
3430
3431 SDValue OutChain = L.getValue(1);
3432
3433 if (TLI.getInsertFencesForAtomic())
3434 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3435 DAG, TLI);
3436
3437 setValue(&I, L);
3438 DAG.setRoot(OutChain);
3439 }
3440
visitAtomicStore(const StoreInst & I)3441 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3442 DebugLoc dl = getCurDebugLoc();
3443
3444 AtomicOrdering Order = I.getOrdering();
3445 SynchronizationScope Scope = I.getSynchScope();
3446
3447 SDValue InChain = getRoot();
3448
3449 EVT VT = EVT::getEVT(I.getValueOperand()->getType());
3450
3451 if (I.getAlignment() * 8 < VT.getSizeInBits())
3452 report_fatal_error("Cannot generate unaligned atomic store");
3453
3454 if (TLI.getInsertFencesForAtomic())
3455 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3456 DAG, TLI);
3457
3458 SDValue OutChain =
3459 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3460 InChain,
3461 getValue(I.getPointerOperand()),
3462 getValue(I.getValueOperand()),
3463 I.getPointerOperand(), I.getAlignment(),
3464 TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3465 Scope);
3466
3467 if (TLI.getInsertFencesForAtomic())
3468 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3469 DAG, TLI);
3470
3471 DAG.setRoot(OutChain);
3472 }
3473
3474 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3475 /// node.
visitTargetIntrinsic(const CallInst & I,unsigned Intrinsic)3476 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3477 unsigned Intrinsic) {
3478 bool HasChain = !I.doesNotAccessMemory();
3479 bool OnlyLoad = HasChain && I.onlyReadsMemory();
3480
3481 // Build the operand list.
3482 SmallVector<SDValue, 8> Ops;
3483 if (HasChain) { // If this intrinsic has side-effects, chainify it.
3484 if (OnlyLoad) {
3485 // We don't need to serialize loads against other loads.
3486 Ops.push_back(DAG.getRoot());
3487 } else {
3488 Ops.push_back(getRoot());
3489 }
3490 }
3491
3492 // Info is set by getTgtMemInstrinsic
3493 TargetLowering::IntrinsicInfo Info;
3494 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3495
3496 // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3497 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3498 Info.opc == ISD::INTRINSIC_W_CHAIN)
3499 Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
3500
3501 // Add all operands of the call to the operand list.
3502 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3503 SDValue Op = getValue(I.getArgOperand(i));
3504 assert(TLI.isTypeLegal(Op.getValueType()) &&
3505 "Intrinsic uses a non-legal type?");
3506 Ops.push_back(Op);
3507 }
3508
3509 SmallVector<EVT, 4> ValueVTs;
3510 ComputeValueVTs(TLI, I.getType(), ValueVTs);
3511 #ifndef NDEBUG
3512 for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
3513 assert(TLI.isTypeLegal(ValueVTs[Val]) &&
3514 "Intrinsic uses a non-legal type?");
3515 }
3516 #endif // NDEBUG
3517
3518 if (HasChain)
3519 ValueVTs.push_back(MVT::Other);
3520
3521 SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3522
3523 // Create the node.
3524 SDValue Result;
3525 if (IsTgtIntrinsic) {
3526 // This is target intrinsic that touches memory
3527 Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3528 VTs, &Ops[0], Ops.size(),
3529 Info.memVT,
3530 MachinePointerInfo(Info.ptrVal, Info.offset),
3531 Info.align, Info.vol,
3532 Info.readMem, Info.writeMem);
3533 } else if (!HasChain) {
3534 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3535 VTs, &Ops[0], Ops.size());
3536 } else if (!I.getType()->isVoidTy()) {
3537 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3538 VTs, &Ops[0], Ops.size());
3539 } else {
3540 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3541 VTs, &Ops[0], Ops.size());
3542 }
3543
3544 if (HasChain) {
3545 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3546 if (OnlyLoad)
3547 PendingLoads.push_back(Chain);
3548 else
3549 DAG.setRoot(Chain);
3550 }
3551
3552 if (!I.getType()->isVoidTy()) {
3553 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3554 EVT VT = TLI.getValueType(PTy);
3555 Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
3556 }
3557
3558 setValue(&I, Result);
3559 }
3560 }
3561
3562 /// GetSignificand - Get the significand and build it into a floating-point
3563 /// number with exponent of 1:
3564 ///
3565 /// Op = (Op & 0x007fffff) | 0x3f800000;
3566 ///
3567 /// where Op is the hexidecimal representation of floating point value.
3568 static SDValue
GetSignificand(SelectionDAG & DAG,SDValue Op,DebugLoc dl)3569 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3570 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3571 DAG.getConstant(0x007fffff, MVT::i32));
3572 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3573 DAG.getConstant(0x3f800000, MVT::i32));
3574 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3575 }
3576
3577 /// GetExponent - Get the exponent:
3578 ///
3579 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3580 ///
3581 /// where Op is the hexidecimal representation of floating point value.
3582 static SDValue
GetExponent(SelectionDAG & DAG,SDValue Op,const TargetLowering & TLI,DebugLoc dl)3583 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3584 DebugLoc dl) {
3585 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3586 DAG.getConstant(0x7f800000, MVT::i32));
3587 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3588 DAG.getConstant(23, TLI.getPointerTy()));
3589 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3590 DAG.getConstant(127, MVT::i32));
3591 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3592 }
3593
3594 /// getF32Constant - Get 32-bit floating point constant.
3595 static SDValue
getF32Constant(SelectionDAG & DAG,unsigned Flt)3596 getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3597 return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3598 }
3599
3600 // implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3601 const char *
implVisitAluOverflow(const CallInst & I,ISD::NodeType Op)3602 SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
3603 SDValue Op1 = getValue(I.getArgOperand(0));
3604 SDValue Op2 = getValue(I.getArgOperand(1));
3605
3606 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
3607 setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
3608 return 0;
3609 }
3610
3611 /// visitExp - Lower an exp intrinsic. Handles the special sequences for
3612 /// limited-precision mode.
3613 void
visitExp(const CallInst & I)3614 SelectionDAGBuilder::visitExp(const CallInst &I) {
3615 SDValue result;
3616 DebugLoc dl = getCurDebugLoc();
3617
3618 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3619 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3620 SDValue Op = getValue(I.getArgOperand(0));
3621
3622 // Put the exponent in the right bit position for later addition to the
3623 // final result:
3624 //
3625 // #define LOG2OFe 1.4426950f
3626 // IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3627 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3628 getF32Constant(DAG, 0x3fb8aa3b));
3629 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3630
3631 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3632 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3633 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3634
3635 // IntegerPartOfX <<= 23;
3636 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3637 DAG.getConstant(23, TLI.getPointerTy()));
3638
3639 if (LimitFloatPrecision <= 6) {
3640 // For floating-point precision of 6:
3641 //
3642 // TwoToFractionalPartOfX =
3643 // 0.997535578f +
3644 // (0.735607626f + 0.252464424f * x) * x;
3645 //
3646 // error 0.0144103317, which is 6 bits
3647 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3648 getF32Constant(DAG, 0x3e814304));
3649 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3650 getF32Constant(DAG, 0x3f3c50c8));
3651 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3652 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3653 getF32Constant(DAG, 0x3f7f5e7e));
3654 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5);
3655
3656 // Add the exponent into the result in integer domain.
3657 SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3658 TwoToFracPartOfX, IntegerPartOfX);
3659
3660 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6);
3661 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3662 // For floating-point precision of 12:
3663 //
3664 // TwoToFractionalPartOfX =
3665 // 0.999892986f +
3666 // (0.696457318f +
3667 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
3668 //
3669 // 0.000107046256 error, which is 13 to 14 bits
3670 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3671 getF32Constant(DAG, 0x3da235e3));
3672 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3673 getF32Constant(DAG, 0x3e65b8f3));
3674 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3675 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3676 getF32Constant(DAG, 0x3f324b07));
3677 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3678 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3679 getF32Constant(DAG, 0x3f7ff8fd));
3680 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7);
3681
3682 // Add the exponent into the result in integer domain.
3683 SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3684 TwoToFracPartOfX, IntegerPartOfX);
3685
3686 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8);
3687 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3688 // For floating-point precision of 18:
3689 //
3690 // TwoToFractionalPartOfX =
3691 // 0.999999982f +
3692 // (0.693148872f +
3693 // (0.240227044f +
3694 // (0.554906021e-1f +
3695 // (0.961591928e-2f +
3696 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3697 //
3698 // error 2.47208000*10^(-7), which is better than 18 bits
3699 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3700 getF32Constant(DAG, 0x3924b03e));
3701 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3702 getF32Constant(DAG, 0x3ab24b87));
3703 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3704 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3705 getF32Constant(DAG, 0x3c1d8c17));
3706 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3707 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3708 getF32Constant(DAG, 0x3d634a1d));
3709 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3710 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3711 getF32Constant(DAG, 0x3e75fe14));
3712 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3713 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3714 getF32Constant(DAG, 0x3f317234));
3715 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3716 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3717 getF32Constant(DAG, 0x3f800000));
3718 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,
3719 MVT::i32, t13);
3720
3721 // Add the exponent into the result in integer domain.
3722 SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3723 TwoToFracPartOfX, IntegerPartOfX);
3724
3725 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14);
3726 }
3727 } else {
3728 // No special expansion.
3729 result = DAG.getNode(ISD::FEXP, dl,
3730 getValue(I.getArgOperand(0)).getValueType(),
3731 getValue(I.getArgOperand(0)));
3732 }
3733
3734 setValue(&I, result);
3735 }
3736
3737 /// visitLog - Lower a log intrinsic. Handles the special sequences for
3738 /// limited-precision mode.
3739 void
visitLog(const CallInst & I)3740 SelectionDAGBuilder::visitLog(const CallInst &I) {
3741 SDValue result;
3742 DebugLoc dl = getCurDebugLoc();
3743
3744 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3745 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3746 SDValue Op = getValue(I.getArgOperand(0));
3747 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3748
3749 // Scale the exponent by log(2) [0.69314718f].
3750 SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3751 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3752 getF32Constant(DAG, 0x3f317218));
3753
3754 // Get the significand and build it into a floating-point number with
3755 // exponent of 1.
3756 SDValue X = GetSignificand(DAG, Op1, dl);
3757
3758 if (LimitFloatPrecision <= 6) {
3759 // For floating-point precision of 6:
3760 //
3761 // LogofMantissa =
3762 // -1.1609546f +
3763 // (1.4034025f - 0.23903021f * x) * x;
3764 //
3765 // error 0.0034276066, which is better than 8 bits
3766 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3767 getF32Constant(DAG, 0xbe74c456));
3768 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3769 getF32Constant(DAG, 0x3fb3a2b1));
3770 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3771 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3772 getF32Constant(DAG, 0x3f949a29));
3773
3774 result = DAG.getNode(ISD::FADD, dl,
3775 MVT::f32, LogOfExponent, LogOfMantissa);
3776 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3777 // For floating-point precision of 12:
3778 //
3779 // LogOfMantissa =
3780 // -1.7417939f +
3781 // (2.8212026f +
3782 // (-1.4699568f +
3783 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3784 //
3785 // error 0.000061011436, which is 14 bits
3786 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3787 getF32Constant(DAG, 0xbd67b6d6));
3788 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3789 getF32Constant(DAG, 0x3ee4f4b8));
3790 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3791 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3792 getF32Constant(DAG, 0x3fbc278b));
3793 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3794 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3795 getF32Constant(DAG, 0x40348e95));
3796 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3797 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3798 getF32Constant(DAG, 0x3fdef31a));
3799
3800 result = DAG.getNode(ISD::FADD, dl,
3801 MVT::f32, LogOfExponent, LogOfMantissa);
3802 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3803 // For floating-point precision of 18:
3804 //
3805 // LogOfMantissa =
3806 // -2.1072184f +
3807 // (4.2372794f +
3808 // (-3.7029485f +
3809 // (2.2781945f +
3810 // (-0.87823314f +
3811 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3812 //
3813 // error 0.0000023660568, which is better than 18 bits
3814 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3815 getF32Constant(DAG, 0xbc91e5ac));
3816 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3817 getF32Constant(DAG, 0x3e4350aa));
3818 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3819 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3820 getF32Constant(DAG, 0x3f60d3e3));
3821 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3822 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3823 getF32Constant(DAG, 0x4011cdf0));
3824 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3825 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3826 getF32Constant(DAG, 0x406cfd1c));
3827 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3828 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3829 getF32Constant(DAG, 0x408797cb));
3830 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3831 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3832 getF32Constant(DAG, 0x4006dcab));
3833
3834 result = DAG.getNode(ISD::FADD, dl,
3835 MVT::f32, LogOfExponent, LogOfMantissa);
3836 }
3837 } else {
3838 // No special expansion.
3839 result = DAG.getNode(ISD::FLOG, dl,
3840 getValue(I.getArgOperand(0)).getValueType(),
3841 getValue(I.getArgOperand(0)));
3842 }
3843
3844 setValue(&I, result);
3845 }
3846
3847 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3848 /// limited-precision mode.
3849 void
visitLog2(const CallInst & I)3850 SelectionDAGBuilder::visitLog2(const CallInst &I) {
3851 SDValue result;
3852 DebugLoc dl = getCurDebugLoc();
3853
3854 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3855 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3856 SDValue Op = getValue(I.getArgOperand(0));
3857 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3858
3859 // Get the exponent.
3860 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3861
3862 // Get the significand and build it into a floating-point number with
3863 // exponent of 1.
3864 SDValue X = GetSignificand(DAG, Op1, dl);
3865
3866 // Different possible minimax approximations of significand in
3867 // floating-point for various degrees of accuracy over [1,2].
3868 if (LimitFloatPrecision <= 6) {
3869 // For floating-point precision of 6:
3870 //
3871 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3872 //
3873 // error 0.0049451742, which is more than 7 bits
3874 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3875 getF32Constant(DAG, 0xbeb08fe0));
3876 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3877 getF32Constant(DAG, 0x40019463));
3878 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3879 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3880 getF32Constant(DAG, 0x3fd6633d));
3881
3882 result = DAG.getNode(ISD::FADD, dl,
3883 MVT::f32, LogOfExponent, Log2ofMantissa);
3884 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3885 // For floating-point precision of 12:
3886 //
3887 // Log2ofMantissa =
3888 // -2.51285454f +
3889 // (4.07009056f +
3890 // (-2.12067489f +
3891 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3892 //
3893 // error 0.0000876136000, which is better than 13 bits
3894 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3895 getF32Constant(DAG, 0xbda7262e));
3896 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3897 getF32Constant(DAG, 0x3f25280b));
3898 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3899 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3900 getF32Constant(DAG, 0x4007b923));
3901 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3902 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3903 getF32Constant(DAG, 0x40823e2f));
3904 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3905 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3906 getF32Constant(DAG, 0x4020d29c));
3907
3908 result = DAG.getNode(ISD::FADD, dl,
3909 MVT::f32, LogOfExponent, Log2ofMantissa);
3910 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3911 // For floating-point precision of 18:
3912 //
3913 // Log2ofMantissa =
3914 // -3.0400495f +
3915 // (6.1129976f +
3916 // (-5.3420409f +
3917 // (3.2865683f +
3918 // (-1.2669343f +
3919 // (0.27515199f -
3920 // 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3921 //
3922 // error 0.0000018516, which is better than 18 bits
3923 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3924 getF32Constant(DAG, 0xbcd2769e));
3925 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3926 getF32Constant(DAG, 0x3e8ce0b9));
3927 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3928 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3929 getF32Constant(DAG, 0x3fa22ae7));
3930 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3931 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3932 getF32Constant(DAG, 0x40525723));
3933 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3934 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3935 getF32Constant(DAG, 0x40aaf200));
3936 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3937 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3938 getF32Constant(DAG, 0x40c39dad));
3939 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3940 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3941 getF32Constant(DAG, 0x4042902c));
3942
3943 result = DAG.getNode(ISD::FADD, dl,
3944 MVT::f32, LogOfExponent, Log2ofMantissa);
3945 }
3946 } else {
3947 // No special expansion.
3948 result = DAG.getNode(ISD::FLOG2, dl,
3949 getValue(I.getArgOperand(0)).getValueType(),
3950 getValue(I.getArgOperand(0)));
3951 }
3952
3953 setValue(&I, result);
3954 }
3955
3956 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3957 /// limited-precision mode.
3958 void
visitLog10(const CallInst & I)3959 SelectionDAGBuilder::visitLog10(const CallInst &I) {
3960 SDValue result;
3961 DebugLoc dl = getCurDebugLoc();
3962
3963 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3964 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3965 SDValue Op = getValue(I.getArgOperand(0));
3966 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3967
3968 // Scale the exponent by log10(2) [0.30102999f].
3969 SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3970 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3971 getF32Constant(DAG, 0x3e9a209a));
3972
3973 // Get the significand and build it into a floating-point number with
3974 // exponent of 1.
3975 SDValue X = GetSignificand(DAG, Op1, dl);
3976
3977 if (LimitFloatPrecision <= 6) {
3978 // For floating-point precision of 6:
3979 //
3980 // Log10ofMantissa =
3981 // -0.50419619f +
3982 // (0.60948995f - 0.10380950f * x) * x;
3983 //
3984 // error 0.0014886165, which is 6 bits
3985 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3986 getF32Constant(DAG, 0xbdd49a13));
3987 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3988 getF32Constant(DAG, 0x3f1c0789));
3989 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3990 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3991 getF32Constant(DAG, 0x3f011300));
3992
3993 result = DAG.getNode(ISD::FADD, dl,
3994 MVT::f32, LogOfExponent, Log10ofMantissa);
3995 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3996 // For floating-point precision of 12:
3997 //
3998 // Log10ofMantissa =
3999 // -0.64831180f +
4000 // (0.91751397f +
4001 // (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4002 //
4003 // error 0.00019228036, which is better than 12 bits
4004 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4005 getF32Constant(DAG, 0x3d431f31));
4006 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4007 getF32Constant(DAG, 0x3ea21fb2));
4008 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4009 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4010 getF32Constant(DAG, 0x3f6ae232));
4011 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4012 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4013 getF32Constant(DAG, 0x3f25f7c3));
4014
4015 result = DAG.getNode(ISD::FADD, dl,
4016 MVT::f32, LogOfExponent, Log10ofMantissa);
4017 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4018 // For floating-point precision of 18:
4019 //
4020 // Log10ofMantissa =
4021 // -0.84299375f +
4022 // (1.5327582f +
4023 // (-1.0688956f +
4024 // (0.49102474f +
4025 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4026 //
4027 // error 0.0000037995730, which is better than 18 bits
4028 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4029 getF32Constant(DAG, 0x3c5d51ce));
4030 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4031 getF32Constant(DAG, 0x3e00685a));
4032 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4033 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4034 getF32Constant(DAG, 0x3efb6798));
4035 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4036 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4037 getF32Constant(DAG, 0x3f88d192));
4038 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4039 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4040 getF32Constant(DAG, 0x3fc4316c));
4041 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4042 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4043 getF32Constant(DAG, 0x3f57ce70));
4044
4045 result = DAG.getNode(ISD::FADD, dl,
4046 MVT::f32, LogOfExponent, Log10ofMantissa);
4047 }
4048 } else {
4049 // No special expansion.
4050 result = DAG.getNode(ISD::FLOG10, dl,
4051 getValue(I.getArgOperand(0)).getValueType(),
4052 getValue(I.getArgOperand(0)));
4053 }
4054
4055 setValue(&I, result);
4056 }
4057
4058 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4059 /// limited-precision mode.
4060 void
visitExp2(const CallInst & I)4061 SelectionDAGBuilder::visitExp2(const CallInst &I) {
4062 SDValue result;
4063 DebugLoc dl = getCurDebugLoc();
4064
4065 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
4066 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4067 SDValue Op = getValue(I.getArgOperand(0));
4068
4069 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
4070
4071 // FractionalPartOfX = x - (float)IntegerPartOfX;
4072 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4073 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
4074
4075 // IntegerPartOfX <<= 23;
4076 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4077 DAG.getConstant(23, TLI.getPointerTy()));
4078
4079 if (LimitFloatPrecision <= 6) {
4080 // For floating-point precision of 6:
4081 //
4082 // TwoToFractionalPartOfX =
4083 // 0.997535578f +
4084 // (0.735607626f + 0.252464424f * x) * x;
4085 //
4086 // error 0.0144103317, which is 6 bits
4087 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4088 getF32Constant(DAG, 0x3e814304));
4089 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4090 getF32Constant(DAG, 0x3f3c50c8));
4091 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4092 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4093 getF32Constant(DAG, 0x3f7f5e7e));
4094 SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
4095 SDValue TwoToFractionalPartOfX =
4096 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
4097
4098 result = DAG.getNode(ISD::BITCAST, dl,
4099 MVT::f32, TwoToFractionalPartOfX);
4100 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4101 // For floating-point precision of 12:
4102 //
4103 // TwoToFractionalPartOfX =
4104 // 0.999892986f +
4105 // (0.696457318f +
4106 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
4107 //
4108 // error 0.000107046256, which is 13 to 14 bits
4109 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4110 getF32Constant(DAG, 0x3da235e3));
4111 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4112 getF32Constant(DAG, 0x3e65b8f3));
4113 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4114 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4115 getF32Constant(DAG, 0x3f324b07));
4116 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4117 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4118 getF32Constant(DAG, 0x3f7ff8fd));
4119 SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
4120 SDValue TwoToFractionalPartOfX =
4121 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4122
4123 result = DAG.getNode(ISD::BITCAST, dl,
4124 MVT::f32, TwoToFractionalPartOfX);
4125 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4126 // For floating-point precision of 18:
4127 //
4128 // TwoToFractionalPartOfX =
4129 // 0.999999982f +
4130 // (0.693148872f +
4131 // (0.240227044f +
4132 // (0.554906021e-1f +
4133 // (0.961591928e-2f +
4134 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4135 // error 2.47208000*10^(-7), which is better than 18 bits
4136 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4137 getF32Constant(DAG, 0x3924b03e));
4138 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4139 getF32Constant(DAG, 0x3ab24b87));
4140 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4141 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4142 getF32Constant(DAG, 0x3c1d8c17));
4143 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4144 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4145 getF32Constant(DAG, 0x3d634a1d));
4146 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4147 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4148 getF32Constant(DAG, 0x3e75fe14));
4149 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4150 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4151 getF32Constant(DAG, 0x3f317234));
4152 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4153 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4154 getF32Constant(DAG, 0x3f800000));
4155 SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4156 SDValue TwoToFractionalPartOfX =
4157 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4158
4159 result = DAG.getNode(ISD::BITCAST, dl,
4160 MVT::f32, TwoToFractionalPartOfX);
4161 }
4162 } else {
4163 // No special expansion.
4164 result = DAG.getNode(ISD::FEXP2, dl,
4165 getValue(I.getArgOperand(0)).getValueType(),
4166 getValue(I.getArgOperand(0)));
4167 }
4168
4169 setValue(&I, result);
4170 }
4171
4172 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4173 /// limited-precision mode with x == 10.0f.
4174 void
visitPow(const CallInst & I)4175 SelectionDAGBuilder::visitPow(const CallInst &I) {
4176 SDValue result;
4177 const Value *Val = I.getArgOperand(0);
4178 DebugLoc dl = getCurDebugLoc();
4179 bool IsExp10 = false;
4180
4181 if (getValue(Val).getValueType() == MVT::f32 &&
4182 getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
4183 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4184 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
4185 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
4186 APFloat Ten(10.0f);
4187 IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
4188 }
4189 }
4190 }
4191
4192 if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4193 SDValue Op = getValue(I.getArgOperand(1));
4194
4195 // Put the exponent in the right bit position for later addition to the
4196 // final result:
4197 //
4198 // #define LOG2OF10 3.3219281f
4199 // IntegerPartOfX = (int32_t)(x * LOG2OF10);
4200 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4201 getF32Constant(DAG, 0x40549a78));
4202 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4203
4204 // FractionalPartOfX = x - (float)IntegerPartOfX;
4205 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4206 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4207
4208 // IntegerPartOfX <<= 23;
4209 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4210 DAG.getConstant(23, TLI.getPointerTy()));
4211
4212 if (LimitFloatPrecision <= 6) {
4213 // For floating-point precision of 6:
4214 //
4215 // twoToFractionalPartOfX =
4216 // 0.997535578f +
4217 // (0.735607626f + 0.252464424f * x) * x;
4218 //
4219 // error 0.0144103317, which is 6 bits
4220 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4221 getF32Constant(DAG, 0x3e814304));
4222 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4223 getF32Constant(DAG, 0x3f3c50c8));
4224 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4225 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4226 getF32Constant(DAG, 0x3f7f5e7e));
4227 SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
4228 SDValue TwoToFractionalPartOfX =
4229 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
4230
4231 result = DAG.getNode(ISD::BITCAST, dl,
4232 MVT::f32, TwoToFractionalPartOfX);
4233 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4234 // For floating-point precision of 12:
4235 //
4236 // TwoToFractionalPartOfX =
4237 // 0.999892986f +
4238 // (0.696457318f +
4239 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
4240 //
4241 // error 0.000107046256, which is 13 to 14 bits
4242 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4243 getF32Constant(DAG, 0x3da235e3));
4244 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4245 getF32Constant(DAG, 0x3e65b8f3));
4246 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4247 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4248 getF32Constant(DAG, 0x3f324b07));
4249 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4250 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4251 getF32Constant(DAG, 0x3f7ff8fd));
4252 SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
4253 SDValue TwoToFractionalPartOfX =
4254 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4255
4256 result = DAG.getNode(ISD::BITCAST, dl,
4257 MVT::f32, TwoToFractionalPartOfX);
4258 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4259 // For floating-point precision of 18:
4260 //
4261 // TwoToFractionalPartOfX =
4262 // 0.999999982f +
4263 // (0.693148872f +
4264 // (0.240227044f +
4265 // (0.554906021e-1f +
4266 // (0.961591928e-2f +
4267 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4268 // error 2.47208000*10^(-7), which is better than 18 bits
4269 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4270 getF32Constant(DAG, 0x3924b03e));
4271 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4272 getF32Constant(DAG, 0x3ab24b87));
4273 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4274 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4275 getF32Constant(DAG, 0x3c1d8c17));
4276 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4277 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4278 getF32Constant(DAG, 0x3d634a1d));
4279 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4280 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4281 getF32Constant(DAG, 0x3e75fe14));
4282 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4283 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4284 getF32Constant(DAG, 0x3f317234));
4285 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4286 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4287 getF32Constant(DAG, 0x3f800000));
4288 SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4289 SDValue TwoToFractionalPartOfX =
4290 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4291
4292 result = DAG.getNode(ISD::BITCAST, dl,
4293 MVT::f32, TwoToFractionalPartOfX);
4294 }
4295 } else {
4296 // No special expansion.
4297 result = DAG.getNode(ISD::FPOW, dl,
4298 getValue(I.getArgOperand(0)).getValueType(),
4299 getValue(I.getArgOperand(0)),
4300 getValue(I.getArgOperand(1)));
4301 }
4302
4303 setValue(&I, result);
4304 }
4305
4306
4307 /// ExpandPowI - Expand a llvm.powi intrinsic.
ExpandPowI(DebugLoc DL,SDValue LHS,SDValue RHS,SelectionDAG & DAG)4308 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
4309 SelectionDAG &DAG) {
4310 // If RHS is a constant, we can expand this out to a multiplication tree,
4311 // otherwise we end up lowering to a call to __powidf2 (for example). When
4312 // optimizing for size, we only want to do this if the expansion would produce
4313 // a small number of multiplies, otherwise we do the full expansion.
4314 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4315 // Get the exponent as a positive value.
4316 unsigned Val = RHSC->getSExtValue();
4317 if ((int)Val < 0) Val = -Val;
4318
4319 // powi(x, 0) -> 1.0
4320 if (Val == 0)
4321 return DAG.getConstantFP(1.0, LHS.getValueType());
4322
4323 const Function *F = DAG.getMachineFunction().getFunction();
4324 if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
4325 // If optimizing for size, don't insert too many multiplies. This
4326 // inserts up to 5 multiplies.
4327 CountPopulation_32(Val)+Log2_32(Val) < 7) {
4328 // We use the simple binary decomposition method to generate the multiply
4329 // sequence. There are more optimal ways to do this (for example,
4330 // powi(x,15) generates one more multiply than it should), but this has
4331 // the benefit of being both really simple and much better than a libcall.
4332 SDValue Res; // Logically starts equal to 1.0
4333 SDValue CurSquare = LHS;
4334 while (Val) {
4335 if (Val & 1) {
4336 if (Res.getNode())
4337 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4338 else
4339 Res = CurSquare; // 1.0*CurSquare.
4340 }
4341
4342 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4343 CurSquare, CurSquare);
4344 Val >>= 1;
4345 }
4346
4347 // If the original was negative, invert the result, producing 1/(x*x*x).
4348 if (RHSC->getSExtValue() < 0)
4349 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4350 DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4351 return Res;
4352 }
4353 }
4354
4355 // Otherwise, expand to a libcall.
4356 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4357 }
4358
4359 // getTruncatedArgReg - Find underlying register used for an truncated
4360 // argument.
getTruncatedArgReg(const SDValue & N)4361 static unsigned getTruncatedArgReg(const SDValue &N) {
4362 if (N.getOpcode() != ISD::TRUNCATE)
4363 return 0;
4364
4365 const SDValue &Ext = N.getOperand(0);
4366 if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){
4367 const SDValue &CFR = Ext.getOperand(0);
4368 if (CFR.getOpcode() == ISD::CopyFromReg)
4369 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4370 else
4371 if (CFR.getOpcode() == ISD::TRUNCATE)
4372 return getTruncatedArgReg(CFR);
4373 }
4374 return 0;
4375 }
4376
4377 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4378 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
4379 /// At the end of instruction selection, they will be inserted to the entry BB.
4380 bool
EmitFuncArgumentDbgValue(const Value * V,MDNode * Variable,int64_t Offset,const SDValue & N)4381 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4382 int64_t Offset,
4383 const SDValue &N) {
4384 const Argument *Arg = dyn_cast<Argument>(V);
4385 if (!Arg)
4386 return false;
4387
4388 MachineFunction &MF = DAG.getMachineFunction();
4389 const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4390 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4391
4392 // Ignore inlined function arguments here.
4393 DIVariable DV(Variable);
4394 if (DV.isInlinedFnArgument(MF.getFunction()))
4395 return false;
4396
4397 unsigned Reg = 0;
4398 // Some arguments' frame index is recorded during argument lowering.
4399 Offset = FuncInfo.getArgumentFrameIndex(Arg);
4400 if (Offset)
4401 Reg = TRI->getFrameRegister(MF);
4402
4403 if (!Reg && N.getNode()) {
4404 if (N.getOpcode() == ISD::CopyFromReg)
4405 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4406 else
4407 Reg = getTruncatedArgReg(N);
4408 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4409 MachineRegisterInfo &RegInfo = MF.getRegInfo();
4410 unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4411 if (PR)
4412 Reg = PR;
4413 }
4414 }
4415
4416 if (!Reg) {
4417 // Check if ValueMap has reg number.
4418 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4419 if (VMI != FuncInfo.ValueMap.end())
4420 Reg = VMI->second;
4421 }
4422
4423 if (!Reg && N.getNode()) {
4424 // Check if frame index is available.
4425 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4426 if (FrameIndexSDNode *FINode =
4427 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
4428 Reg = TRI->getFrameRegister(MF);
4429 Offset = FINode->getIndex();
4430 }
4431 }
4432
4433 if (!Reg)
4434 return false;
4435
4436 MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
4437 TII->get(TargetOpcode::DBG_VALUE))
4438 .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
4439 FuncInfo.ArgDbgValues.push_back(&*MIB);
4440 return true;
4441 }
4442
4443 // VisualStudio defines setjmp as _setjmp
4444 #if defined(_MSC_VER) && defined(setjmp) && \
4445 !defined(setjmp_undefined_for_msvc)
4446 # pragma push_macro("setjmp")
4447 # undef setjmp
4448 # define setjmp_undefined_for_msvc
4449 #endif
4450
4451 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If
4452 /// we want to emit this as a call to a named external function, return the name
4453 /// otherwise lower it and return null.
4454 const char *
visitIntrinsicCall(const CallInst & I,unsigned Intrinsic)4455 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4456 DebugLoc dl = getCurDebugLoc();
4457 SDValue Res;
4458
4459 switch (Intrinsic) {
4460 default:
4461 // By default, turn this into a target intrinsic node.
4462 visitTargetIntrinsic(I, Intrinsic);
4463 return 0;
4464 case Intrinsic::vastart: visitVAStart(I); return 0;
4465 case Intrinsic::vaend: visitVAEnd(I); return 0;
4466 case Intrinsic::vacopy: visitVACopy(I); return 0;
4467 case Intrinsic::returnaddress:
4468 setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4469 getValue(I.getArgOperand(0))));
4470 return 0;
4471 case Intrinsic::frameaddress:
4472 setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4473 getValue(I.getArgOperand(0))));
4474 return 0;
4475 case Intrinsic::setjmp:
4476 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
4477 case Intrinsic::longjmp:
4478 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
4479 case Intrinsic::memcpy: {
4480 // Assert for address < 256 since we support only user defined address
4481 // spaces.
4482 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4483 < 256 &&
4484 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4485 < 256 &&
4486 "Unknown address space");
4487 SDValue Op1 = getValue(I.getArgOperand(0));
4488 SDValue Op2 = getValue(I.getArgOperand(1));
4489 SDValue Op3 = getValue(I.getArgOperand(2));
4490 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4491 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4492 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4493 MachinePointerInfo(I.getArgOperand(0)),
4494 MachinePointerInfo(I.getArgOperand(1))));
4495 return 0;
4496 }
4497 case Intrinsic::memset: {
4498 // Assert for address < 256 since we support only user defined address
4499 // spaces.
4500 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4501 < 256 &&
4502 "Unknown address space");
4503 SDValue Op1 = getValue(I.getArgOperand(0));
4504 SDValue Op2 = getValue(I.getArgOperand(1));
4505 SDValue Op3 = getValue(I.getArgOperand(2));
4506 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4507 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4508 DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4509 MachinePointerInfo(I.getArgOperand(0))));
4510 return 0;
4511 }
4512 case Intrinsic::memmove: {
4513 // Assert for address < 256 since we support only user defined address
4514 // spaces.
4515 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4516 < 256 &&
4517 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4518 < 256 &&
4519 "Unknown address space");
4520 SDValue Op1 = getValue(I.getArgOperand(0));
4521 SDValue Op2 = getValue(I.getArgOperand(1));
4522 SDValue Op3 = getValue(I.getArgOperand(2));
4523 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4524 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4525 DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4526 MachinePointerInfo(I.getArgOperand(0)),
4527 MachinePointerInfo(I.getArgOperand(1))));
4528 return 0;
4529 }
4530 case Intrinsic::dbg_declare: {
4531 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4532 MDNode *Variable = DI.getVariable();
4533 const Value *Address = DI.getAddress();
4534 if (!Address || !DIVariable(Variable).Verify())
4535 return 0;
4536
4537 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder
4538 // but do not always have a corresponding SDNode built. The SDNodeOrder
4539 // absolute, but not relative, values are different depending on whether
4540 // debug info exists.
4541 ++SDNodeOrder;
4542
4543 // Check if address has undef value.
4544 if (isa<UndefValue>(Address) ||
4545 (Address->use_empty() && !isa<Argument>(Address))) {
4546 DEBUG(dbgs() << "Dropping debug info for " << DI);
4547 return 0;
4548 }
4549
4550 SDValue &N = NodeMap[Address];
4551 if (!N.getNode() && isa<Argument>(Address))
4552 // Check unused arguments map.
4553 N = UnusedArgNodeMap[Address];
4554 SDDbgValue *SDV;
4555 if (N.getNode()) {
4556 // Parameters are handled specially.
4557 bool isParameter =
4558 DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable;
4559 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4560 Address = BCI->getOperand(0);
4561 const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4562
4563 if (isParameter && !AI) {
4564 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4565 if (FINode)
4566 // Byval parameter. We have a frame index at this point.
4567 SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4568 0, dl, SDNodeOrder);
4569 else {
4570 // Address is an argument, so try to emit its dbg value using
4571 // virtual register info from the FuncInfo.ValueMap.
4572 EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4573 return 0;
4574 }
4575 } else if (AI)
4576 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4577 0, dl, SDNodeOrder);
4578 else {
4579 // Can't do anything with other non-AI cases yet.
4580 DEBUG(dbgs() << "Dropping debug info for " << DI);
4581 return 0;
4582 }
4583 DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4584 } else {
4585 // If Address is an argument then try to emit its dbg value using
4586 // virtual register info from the FuncInfo.ValueMap.
4587 if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4588 // If variable is pinned by a alloca in dominating bb then
4589 // use StaticAllocaMap.
4590 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4591 if (AI->getParent() != DI.getParent()) {
4592 DenseMap<const AllocaInst*, int>::iterator SI =
4593 FuncInfo.StaticAllocaMap.find(AI);
4594 if (SI != FuncInfo.StaticAllocaMap.end()) {
4595 SDV = DAG.getDbgValue(Variable, SI->second,
4596 0, dl, SDNodeOrder);
4597 DAG.AddDbgValue(SDV, 0, false);
4598 return 0;
4599 }
4600 }
4601 }
4602 DEBUG(dbgs() << "Dropping debug info for " << DI);
4603 }
4604 }
4605 return 0;
4606 }
4607 case Intrinsic::dbg_value: {
4608 const DbgValueInst &DI = cast<DbgValueInst>(I);
4609 if (!DIVariable(DI.getVariable()).Verify())
4610 return 0;
4611
4612 MDNode *Variable = DI.getVariable();
4613 uint64_t Offset = DI.getOffset();
4614 const Value *V = DI.getValue();
4615 if (!V)
4616 return 0;
4617
4618 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder
4619 // but do not always have a corresponding SDNode built. The SDNodeOrder
4620 // absolute, but not relative, values are different depending on whether
4621 // debug info exists.
4622 ++SDNodeOrder;
4623 SDDbgValue *SDV;
4624 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4625 SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4626 DAG.AddDbgValue(SDV, 0, false);
4627 } else {
4628 // Do not use getValue() in here; we don't want to generate code at
4629 // this point if it hasn't been done yet.
4630 SDValue N = NodeMap[V];
4631 if (!N.getNode() && isa<Argument>(V))
4632 // Check unused arguments map.
4633 N = UnusedArgNodeMap[V];
4634 if (N.getNode()) {
4635 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4636 SDV = DAG.getDbgValue(Variable, N.getNode(),
4637 N.getResNo(), Offset, dl, SDNodeOrder);
4638 DAG.AddDbgValue(SDV, N.getNode(), false);
4639 }
4640 } else if (!V->use_empty() ) {
4641 // Do not call getValue(V) yet, as we don't want to generate code.
4642 // Remember it for later.
4643 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4644 DanglingDebugInfoMap[V] = DDI;
4645 } else {
4646 // We may expand this to cover more cases. One case where we have no
4647 // data available is an unreferenced parameter.
4648 DEBUG(dbgs() << "Dropping debug info for " << DI);
4649 }
4650 }
4651
4652 // Build a debug info table entry.
4653 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4654 V = BCI->getOperand(0);
4655 const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4656 // Don't handle byval struct arguments or VLAs, for example.
4657 if (!AI)
4658 return 0;
4659 DenseMap<const AllocaInst*, int>::iterator SI =
4660 FuncInfo.StaticAllocaMap.find(AI);
4661 if (SI == FuncInfo.StaticAllocaMap.end())
4662 return 0; // VLAs.
4663 int FI = SI->second;
4664
4665 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4666 if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4667 MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4668 return 0;
4669 }
4670 case Intrinsic::eh_exception: {
4671 // Insert the EXCEPTIONADDR instruction.
4672 assert(FuncInfo.MBB->isLandingPad() &&
4673 "Call to eh.exception not in landing pad!");
4674 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4675 SDValue Ops[1];
4676 Ops[0] = DAG.getRoot();
4677 SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
4678 setValue(&I, Op);
4679 DAG.setRoot(Op.getValue(1));
4680 return 0;
4681 }
4682
4683 case Intrinsic::eh_selector: {
4684 MachineBasicBlock *CallMBB = FuncInfo.MBB;
4685 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4686 if (CallMBB->isLandingPad())
4687 AddCatchInfo(I, &MMI, CallMBB);
4688 else {
4689 #ifndef NDEBUG
4690 FuncInfo.CatchInfoLost.insert(&I);
4691 #endif
4692 // FIXME: Mark exception selector register as live in. Hack for PR1508.
4693 unsigned Reg = TLI.getExceptionSelectorRegister();
4694 if (Reg) FuncInfo.MBB->addLiveIn(Reg);
4695 }
4696
4697 // Insert the EHSELECTION instruction.
4698 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4699 SDValue Ops[2];
4700 Ops[0] = getValue(I.getArgOperand(0));
4701 Ops[1] = getRoot();
4702 SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
4703 DAG.setRoot(Op.getValue(1));
4704 setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
4705 return 0;
4706 }
4707
4708 case Intrinsic::eh_typeid_for: {
4709 // Find the type id for the given typeinfo.
4710 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4711 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4712 Res = DAG.getConstant(TypeID, MVT::i32);
4713 setValue(&I, Res);
4714 return 0;
4715 }
4716
4717 case Intrinsic::eh_return_i32:
4718 case Intrinsic::eh_return_i64:
4719 DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4720 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4721 MVT::Other,
4722 getControlRoot(),
4723 getValue(I.getArgOperand(0)),
4724 getValue(I.getArgOperand(1))));
4725 return 0;
4726 case Intrinsic::eh_unwind_init:
4727 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4728 return 0;
4729 case Intrinsic::eh_dwarf_cfa: {
4730 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4731 TLI.getPointerTy());
4732 SDValue Offset = DAG.getNode(ISD::ADD, dl,
4733 TLI.getPointerTy(),
4734 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4735 TLI.getPointerTy()),
4736 CfaArg);
4737 SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4738 TLI.getPointerTy(),
4739 DAG.getConstant(0, TLI.getPointerTy()));
4740 setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4741 FA, Offset));
4742 return 0;
4743 }
4744 case Intrinsic::eh_sjlj_callsite: {
4745 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4746 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4747 assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4748 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4749
4750 MMI.setCurrentCallSite(CI->getZExtValue());
4751 return 0;
4752 }
4753 case Intrinsic::eh_sjlj_functioncontext: {
4754 // Get and store the index of the function context.
4755 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4756 AllocaInst *FnCtx =
4757 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4758 int FI = FuncInfo.StaticAllocaMap[FnCtx];
4759 MFI->setFunctionContextIndex(FI);
4760 return 0;
4761 }
4762 case Intrinsic::eh_sjlj_setjmp: {
4763 SDValue Ops[2];
4764 Ops[0] = getRoot();
4765 Ops[1] = getValue(I.getArgOperand(0));
4766 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, dl,
4767 DAG.getVTList(MVT::i32, MVT::Other),
4768 Ops, 2);
4769 setValue(&I, Op.getValue(0));
4770 DAG.setRoot(Op.getValue(1));
4771 return 0;
4772 }
4773 case Intrinsic::eh_sjlj_longjmp: {
4774 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4775 getRoot(), getValue(I.getArgOperand(0))));
4776 return 0;
4777 }
4778 case Intrinsic::eh_sjlj_dispatch_setup: {
4779 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other,
4780 getRoot(), getValue(I.getArgOperand(0))));
4781 return 0;
4782 }
4783
4784 case Intrinsic::x86_mmx_pslli_w:
4785 case Intrinsic::x86_mmx_pslli_d:
4786 case Intrinsic::x86_mmx_pslli_q:
4787 case Intrinsic::x86_mmx_psrli_w:
4788 case Intrinsic::x86_mmx_psrli_d:
4789 case Intrinsic::x86_mmx_psrli_q:
4790 case Intrinsic::x86_mmx_psrai_w:
4791 case Intrinsic::x86_mmx_psrai_d: {
4792 SDValue ShAmt = getValue(I.getArgOperand(1));
4793 if (isa<ConstantSDNode>(ShAmt)) {
4794 visitTargetIntrinsic(I, Intrinsic);
4795 return 0;
4796 }
4797 unsigned NewIntrinsic = 0;
4798 EVT ShAmtVT = MVT::v2i32;
4799 switch (Intrinsic) {
4800 case Intrinsic::x86_mmx_pslli_w:
4801 NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4802 break;
4803 case Intrinsic::x86_mmx_pslli_d:
4804 NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4805 break;
4806 case Intrinsic::x86_mmx_pslli_q:
4807 NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4808 break;
4809 case Intrinsic::x86_mmx_psrli_w:
4810 NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4811 break;
4812 case Intrinsic::x86_mmx_psrli_d:
4813 NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4814 break;
4815 case Intrinsic::x86_mmx_psrli_q:
4816 NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4817 break;
4818 case Intrinsic::x86_mmx_psrai_w:
4819 NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4820 break;
4821 case Intrinsic::x86_mmx_psrai_d:
4822 NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4823 break;
4824 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
4825 }
4826
4827 // The vector shift intrinsics with scalars uses 32b shift amounts but
4828 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4829 // to be zero.
4830 // We must do this early because v2i32 is not a legal type.
4831 DebugLoc dl = getCurDebugLoc();
4832 SDValue ShOps[2];
4833 ShOps[0] = ShAmt;
4834 ShOps[1] = DAG.getConstant(0, MVT::i32);
4835 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
4836 EVT DestVT = TLI.getValueType(I.getType());
4837 ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
4838 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4839 DAG.getConstant(NewIntrinsic, MVT::i32),
4840 getValue(I.getArgOperand(0)), ShAmt);
4841 setValue(&I, Res);
4842 return 0;
4843 }
4844 case Intrinsic::convertff:
4845 case Intrinsic::convertfsi:
4846 case Intrinsic::convertfui:
4847 case Intrinsic::convertsif:
4848 case Intrinsic::convertuif:
4849 case Intrinsic::convertss:
4850 case Intrinsic::convertsu:
4851 case Intrinsic::convertus:
4852 case Intrinsic::convertuu: {
4853 ISD::CvtCode Code = ISD::CVT_INVALID;
4854 switch (Intrinsic) {
4855 case Intrinsic::convertff: Code = ISD::CVT_FF; break;
4856 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4857 case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4858 case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4859 case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4860 case Intrinsic::convertss: Code = ISD::CVT_SS; break;
4861 case Intrinsic::convertsu: Code = ISD::CVT_SU; break;
4862 case Intrinsic::convertus: Code = ISD::CVT_US; break;
4863 case Intrinsic::convertuu: Code = ISD::CVT_UU; break;
4864 }
4865 EVT DestVT = TLI.getValueType(I.getType());
4866 const Value *Op1 = I.getArgOperand(0);
4867 Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4868 DAG.getValueType(DestVT),
4869 DAG.getValueType(getValue(Op1).getValueType()),
4870 getValue(I.getArgOperand(1)),
4871 getValue(I.getArgOperand(2)),
4872 Code);
4873 setValue(&I, Res);
4874 return 0;
4875 }
4876 case Intrinsic::sqrt:
4877 setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4878 getValue(I.getArgOperand(0)).getValueType(),
4879 getValue(I.getArgOperand(0))));
4880 return 0;
4881 case Intrinsic::powi:
4882 setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4883 getValue(I.getArgOperand(1)), DAG));
4884 return 0;
4885 case Intrinsic::sin:
4886 setValue(&I, DAG.getNode(ISD::FSIN, dl,
4887 getValue(I.getArgOperand(0)).getValueType(),
4888 getValue(I.getArgOperand(0))));
4889 return 0;
4890 case Intrinsic::cos:
4891 setValue(&I, DAG.getNode(ISD::FCOS, dl,
4892 getValue(I.getArgOperand(0)).getValueType(),
4893 getValue(I.getArgOperand(0))));
4894 return 0;
4895 case Intrinsic::log:
4896 visitLog(I);
4897 return 0;
4898 case Intrinsic::log2:
4899 visitLog2(I);
4900 return 0;
4901 case Intrinsic::log10:
4902 visitLog10(I);
4903 return 0;
4904 case Intrinsic::exp:
4905 visitExp(I);
4906 return 0;
4907 case Intrinsic::exp2:
4908 visitExp2(I);
4909 return 0;
4910 case Intrinsic::pow:
4911 visitPow(I);
4912 return 0;
4913 case Intrinsic::fma:
4914 setValue(&I, DAG.getNode(ISD::FMA, dl,
4915 getValue(I.getArgOperand(0)).getValueType(),
4916 getValue(I.getArgOperand(0)),
4917 getValue(I.getArgOperand(1)),
4918 getValue(I.getArgOperand(2))));
4919 return 0;
4920 case Intrinsic::convert_to_fp16:
4921 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4922 MVT::i16, getValue(I.getArgOperand(0))));
4923 return 0;
4924 case Intrinsic::convert_from_fp16:
4925 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4926 MVT::f32, getValue(I.getArgOperand(0))));
4927 return 0;
4928 case Intrinsic::pcmarker: {
4929 SDValue Tmp = getValue(I.getArgOperand(0));
4930 DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4931 return 0;
4932 }
4933 case Intrinsic::readcyclecounter: {
4934 SDValue Op = getRoot();
4935 Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4936 DAG.getVTList(MVT::i64, MVT::Other),
4937 &Op, 1);
4938 setValue(&I, Res);
4939 DAG.setRoot(Res.getValue(1));
4940 return 0;
4941 }
4942 case Intrinsic::bswap:
4943 setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4944 getValue(I.getArgOperand(0)).getValueType(),
4945 getValue(I.getArgOperand(0))));
4946 return 0;
4947 case Intrinsic::cttz: {
4948 SDValue Arg = getValue(I.getArgOperand(0));
4949 EVT Ty = Arg.getValueType();
4950 setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
4951 return 0;
4952 }
4953 case Intrinsic::ctlz: {
4954 SDValue Arg = getValue(I.getArgOperand(0));
4955 EVT Ty = Arg.getValueType();
4956 setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
4957 return 0;
4958 }
4959 case Intrinsic::ctpop: {
4960 SDValue Arg = getValue(I.getArgOperand(0));
4961 EVT Ty = Arg.getValueType();
4962 setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4963 return 0;
4964 }
4965 case Intrinsic::stacksave: {
4966 SDValue Op = getRoot();
4967 Res = DAG.getNode(ISD::STACKSAVE, dl,
4968 DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4969 setValue(&I, Res);
4970 DAG.setRoot(Res.getValue(1));
4971 return 0;
4972 }
4973 case Intrinsic::stackrestore: {
4974 Res = getValue(I.getArgOperand(0));
4975 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4976 return 0;
4977 }
4978 case Intrinsic::stackprotector: {
4979 // Emit code into the DAG to store the stack guard onto the stack.
4980 MachineFunction &MF = DAG.getMachineFunction();
4981 MachineFrameInfo *MFI = MF.getFrameInfo();
4982 EVT PtrTy = TLI.getPointerTy();
4983
4984 SDValue Src = getValue(I.getArgOperand(0)); // The guard's value.
4985 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4986
4987 int FI = FuncInfo.StaticAllocaMap[Slot];
4988 MFI->setStackProtectorIndex(FI);
4989
4990 SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4991
4992 // Store the stack protector onto the stack.
4993 Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4994 MachinePointerInfo::getFixedStack(FI),
4995 true, false, 0);
4996 setValue(&I, Res);
4997 DAG.setRoot(Res);
4998 return 0;
4999 }
5000 case Intrinsic::objectsize: {
5001 // If we don't know by now, we're never going to know.
5002 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5003
5004 assert(CI && "Non-constant type in __builtin_object_size?");
5005
5006 SDValue Arg = getValue(I.getCalledValue());
5007 EVT Ty = Arg.getValueType();
5008
5009 if (CI->isZero())
5010 Res = DAG.getConstant(-1ULL, Ty);
5011 else
5012 Res = DAG.getConstant(0, Ty);
5013
5014 setValue(&I, Res);
5015 return 0;
5016 }
5017 case Intrinsic::var_annotation:
5018 // Discard annotate attributes
5019 return 0;
5020
5021 case Intrinsic::init_trampoline: {
5022 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5023
5024 SDValue Ops[6];
5025 Ops[0] = getRoot();
5026 Ops[1] = getValue(I.getArgOperand(0));
5027 Ops[2] = getValue(I.getArgOperand(1));
5028 Ops[3] = getValue(I.getArgOperand(2));
5029 Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5030 Ops[5] = DAG.getSrcValue(F);
5031
5032 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, dl, MVT::Other, Ops, 6);
5033
5034 DAG.setRoot(Res);
5035 return 0;
5036 }
5037 case Intrinsic::adjust_trampoline: {
5038 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, dl,
5039 TLI.getPointerTy(),
5040 getValue(I.getArgOperand(0))));
5041 return 0;
5042 }
5043 case Intrinsic::gcroot:
5044 if (GFI) {
5045 const Value *Alloca = I.getArgOperand(0);
5046 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5047
5048 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5049 GFI->addStackRoot(FI->getIndex(), TypeMap);
5050 }
5051 return 0;
5052 case Intrinsic::gcread:
5053 case Intrinsic::gcwrite:
5054 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5055 return 0;
5056 case Intrinsic::flt_rounds:
5057 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
5058 return 0;
5059
5060 case Intrinsic::expect: {
5061 // Just replace __builtin_expect(exp, c) with EXP.
5062 setValue(&I, getValue(I.getArgOperand(0)));
5063 return 0;
5064 }
5065
5066 case Intrinsic::trap: {
5067 StringRef TrapFuncName = getTrapFunctionName();
5068 if (TrapFuncName.empty()) {
5069 DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
5070 return 0;
5071 }
5072 TargetLowering::ArgListTy Args;
5073 std::pair<SDValue, SDValue> Result =
5074 TLI.LowerCallTo(getRoot(), I.getType(),
5075 false, false, false, false, 0, CallingConv::C,
5076 /*isTailCall=*/false, /*isReturnValueUsed=*/true,
5077 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
5078 Args, DAG, getCurDebugLoc());
5079 DAG.setRoot(Result.second);
5080 return 0;
5081 }
5082 case Intrinsic::uadd_with_overflow:
5083 return implVisitAluOverflow(I, ISD::UADDO);
5084 case Intrinsic::sadd_with_overflow:
5085 return implVisitAluOverflow(I, ISD::SADDO);
5086 case Intrinsic::usub_with_overflow:
5087 return implVisitAluOverflow(I, ISD::USUBO);
5088 case Intrinsic::ssub_with_overflow:
5089 return implVisitAluOverflow(I, ISD::SSUBO);
5090 case Intrinsic::umul_with_overflow:
5091 return implVisitAluOverflow(I, ISD::UMULO);
5092 case Intrinsic::smul_with_overflow:
5093 return implVisitAluOverflow(I, ISD::SMULO);
5094
5095 case Intrinsic::prefetch: {
5096 SDValue Ops[5];
5097 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5098 Ops[0] = getRoot();
5099 Ops[1] = getValue(I.getArgOperand(0));
5100 Ops[2] = getValue(I.getArgOperand(1));
5101 Ops[3] = getValue(I.getArgOperand(2));
5102 Ops[4] = getValue(I.getArgOperand(3));
5103 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
5104 DAG.getVTList(MVT::Other),
5105 &Ops[0], 5,
5106 EVT::getIntegerVT(*Context, 8),
5107 MachinePointerInfo(I.getArgOperand(0)),
5108 0, /* align */
5109 false, /* volatile */
5110 rw==0, /* read */
5111 rw==1)); /* write */
5112 return 0;
5113 }
5114
5115 case Intrinsic::invariant_start:
5116 case Intrinsic::lifetime_start:
5117 // Discard region information.
5118 setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
5119 return 0;
5120 case Intrinsic::invariant_end:
5121 case Intrinsic::lifetime_end:
5122 // Discard region information.
5123 return 0;
5124 }
5125 }
5126
LowerCallTo(ImmutableCallSite CS,SDValue Callee,bool isTailCall,MachineBasicBlock * LandingPad)5127 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5128 bool isTailCall,
5129 MachineBasicBlock *LandingPad) {
5130 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5131 FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5132 Type *RetTy = FTy->getReturnType();
5133 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5134 MCSymbol *BeginLabel = 0;
5135
5136 TargetLowering::ArgListTy Args;
5137 TargetLowering::ArgListEntry Entry;
5138 Args.reserve(CS.arg_size());
5139
5140 // Check whether the function can return without sret-demotion.
5141 SmallVector<ISD::OutputArg, 4> Outs;
5142 SmallVector<uint64_t, 4> Offsets;
5143 GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
5144 Outs, TLI, &Offsets);
5145
5146 bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
5147 DAG.getMachineFunction(),
5148 FTy->isVarArg(), Outs,
5149 FTy->getContext());
5150
5151 SDValue DemoteStackSlot;
5152 int DemoteStackIdx = -100;
5153
5154 if (!CanLowerReturn) {
5155 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
5156 FTy->getReturnType());
5157 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(
5158 FTy->getReturnType());
5159 MachineFunction &MF = DAG.getMachineFunction();
5160 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5161 Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
5162
5163 DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
5164 Entry.Node = DemoteStackSlot;
5165 Entry.Ty = StackSlotPtrType;
5166 Entry.isSExt = false;
5167 Entry.isZExt = false;
5168 Entry.isInReg = false;
5169 Entry.isSRet = true;
5170 Entry.isNest = false;
5171 Entry.isByVal = false;
5172 Entry.Alignment = Align;
5173 Args.push_back(Entry);
5174 RetTy = Type::getVoidTy(FTy->getContext());
5175 }
5176
5177 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5178 i != e; ++i) {
5179 const Value *V = *i;
5180
5181 // Skip empty types
5182 if (V->getType()->isEmptyTy())
5183 continue;
5184
5185 SDValue ArgNode = getValue(V);
5186 Entry.Node = ArgNode; Entry.Ty = V->getType();
5187
5188 unsigned attrInd = i - CS.arg_begin() + 1;
5189 Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt);
5190 Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt);
5191 Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
5192 Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet);
5193 Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest);
5194 Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
5195 Entry.Alignment = CS.getParamAlignment(attrInd);
5196 Args.push_back(Entry);
5197 }
5198
5199 if (LandingPad) {
5200 // Insert a label before the invoke call to mark the try range. This can be
5201 // used to detect deletion of the invoke via the MachineModuleInfo.
5202 BeginLabel = MMI.getContext().CreateTempSymbol();
5203
5204 // For SjLj, keep track of which landing pads go with which invokes
5205 // so as to maintain the ordering of pads in the LSDA.
5206 unsigned CallSiteIndex = MMI.getCurrentCallSite();
5207 if (CallSiteIndex) {
5208 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5209 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex);
5210
5211 // Now that the call site is handled, stop tracking it.
5212 MMI.setCurrentCallSite(0);
5213 }
5214
5215 // Both PendingLoads and PendingExports must be flushed here;
5216 // this call might not return.
5217 (void)getRoot();
5218 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
5219 }
5220
5221 // Check if target-independent constraints permit a tail call here.
5222 // Target-dependent constraints are checked within TLI.LowerCallTo.
5223 if (isTailCall &&
5224 !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
5225 isTailCall = false;
5226
5227 // If there's a possibility that fast-isel has already selected some amount
5228 // of the current basic block, don't emit a tail call.
5229 if (isTailCall && EnableFastISel)
5230 isTailCall = false;
5231
5232 std::pair<SDValue,SDValue> Result =
5233 TLI.LowerCallTo(getRoot(), RetTy,
5234 CS.paramHasAttr(0, Attribute::SExt),
5235 CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
5236 CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
5237 CS.getCallingConv(),
5238 isTailCall,
5239 !CS.getInstruction()->use_empty(),
5240 Callee, Args, DAG, getCurDebugLoc());
5241 assert((isTailCall || Result.second.getNode()) &&
5242 "Non-null chain expected with non-tail call!");
5243 assert((Result.second.getNode() || !Result.first.getNode()) &&
5244 "Null value expected with tail call!");
5245 if (Result.first.getNode()) {
5246 setValue(CS.getInstruction(), Result.first);
5247 } else if (!CanLowerReturn && Result.second.getNode()) {
5248 // The instruction result is the result of loading from the
5249 // hidden sret parameter.
5250 SmallVector<EVT, 1> PVTs;
5251 Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5252
5253 ComputeValueVTs(TLI, PtrRetTy, PVTs);
5254 assert(PVTs.size() == 1 && "Pointers should fit in one register");
5255 EVT PtrVT = PVTs[0];
5256 unsigned NumValues = Outs.size();
5257 SmallVector<SDValue, 4> Values(NumValues);
5258 SmallVector<SDValue, 4> Chains(NumValues);
5259
5260 for (unsigned i = 0; i < NumValues; ++i) {
5261 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
5262 DemoteStackSlot,
5263 DAG.getConstant(Offsets[i], PtrVT));
5264 SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second,
5265 Add,
5266 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
5267 false, false, 1);
5268 Values[i] = L;
5269 Chains[i] = L.getValue(1);
5270 }
5271
5272 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
5273 MVT::Other, &Chains[0], NumValues);
5274 PendingLoads.push_back(Chain);
5275
5276 // Collect the legal value parts into potentially illegal values
5277 // that correspond to the original function's return values.
5278 SmallVector<EVT, 4> RetTys;
5279 RetTy = FTy->getReturnType();
5280 ComputeValueVTs(TLI, RetTy, RetTys);
5281 ISD::NodeType AssertOp = ISD::DELETED_NODE;
5282 SmallVector<SDValue, 4> ReturnValues;
5283 unsigned CurReg = 0;
5284 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5285 EVT VT = RetTys[I];
5286 EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
5287 unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
5288
5289 SDValue ReturnValue =
5290 getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
5291 RegisterVT, VT, AssertOp);
5292 ReturnValues.push_back(ReturnValue);
5293 CurReg += NumRegs;
5294 }
5295
5296 setValue(CS.getInstruction(),
5297 DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
5298 DAG.getVTList(&RetTys[0], RetTys.size()),
5299 &ReturnValues[0], ReturnValues.size()));
5300 }
5301
5302 // Assign order to nodes here. If the call does not produce a result, it won't
5303 // be mapped to a SDNode and visit() will not assign it an order number.
5304 if (!Result.second.getNode()) {
5305 // As a special case, a null chain means that a tail call has been emitted and
5306 // the DAG root is already updated.
5307 HasTailCall = true;
5308 ++SDNodeOrder;
5309 AssignOrderingToNode(DAG.getRoot().getNode());
5310 } else {
5311 DAG.setRoot(Result.second);
5312 ++SDNodeOrder;
5313 AssignOrderingToNode(Result.second.getNode());
5314 }
5315
5316 if (LandingPad) {
5317 // Insert a label at the end of the invoke call to mark the try range. This
5318 // can be used to detect deletion of the invoke via the MachineModuleInfo.
5319 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5320 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
5321
5322 // Inform MachineModuleInfo of range.
5323 MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5324 }
5325 }
5326
5327 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5328 /// value is equal or not-equal to zero.
IsOnlyUsedInZeroEqualityComparison(const Value * V)5329 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5330 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
5331 UI != E; ++UI) {
5332 if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5333 if (IC->isEquality())
5334 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5335 if (C->isNullValue())
5336 continue;
5337 // Unknown instruction.
5338 return false;
5339 }
5340 return true;
5341 }
5342
getMemCmpLoad(const Value * PtrVal,MVT LoadVT,Type * LoadTy,SelectionDAGBuilder & Builder)5343 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5344 Type *LoadTy,
5345 SelectionDAGBuilder &Builder) {
5346
5347 // Check to see if this load can be trivially constant folded, e.g. if the
5348 // input is from a string literal.
5349 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5350 // Cast pointer to the type we really want to load.
5351 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5352 PointerType::getUnqual(LoadTy));
5353
5354 if (const Constant *LoadCst =
5355 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5356 Builder.TD))
5357 return Builder.getValue(LoadCst);
5358 }
5359
5360 // Otherwise, we have to emit the load. If the pointer is to unfoldable but
5361 // still constant memory, the input chain can be the entry node.
5362 SDValue Root;
5363 bool ConstantMemory = false;
5364
5365 // Do not serialize (non-volatile) loads of constant memory with anything.
5366 if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5367 Root = Builder.DAG.getEntryNode();
5368 ConstantMemory = true;
5369 } else {
5370 // Do not serialize non-volatile loads against each other.
5371 Root = Builder.DAG.getRoot();
5372 }
5373
5374 SDValue Ptr = Builder.getValue(PtrVal);
5375 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
5376 Ptr, MachinePointerInfo(PtrVal),
5377 false /*volatile*/,
5378 false /*nontemporal*/, 1 /* align=1 */);
5379
5380 if (!ConstantMemory)
5381 Builder.PendingLoads.push_back(LoadVal.getValue(1));
5382 return LoadVal;
5383 }
5384
5385
5386 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5387 /// If so, return true and lower it, otherwise return false and it will be
5388 /// lowered like a normal call.
visitMemCmpCall(const CallInst & I)5389 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5390 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t)
5391 if (I.getNumArgOperands() != 3)
5392 return false;
5393
5394 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5395 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5396 !I.getArgOperand(2)->getType()->isIntegerTy() ||
5397 !I.getType()->isIntegerTy())
5398 return false;
5399
5400 const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5401
5402 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0
5403 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0
5404 if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5405 bool ActuallyDoIt = true;
5406 MVT LoadVT;
5407 Type *LoadTy;
5408 switch (Size->getZExtValue()) {
5409 default:
5410 LoadVT = MVT::Other;
5411 LoadTy = 0;
5412 ActuallyDoIt = false;
5413 break;
5414 case 2:
5415 LoadVT = MVT::i16;
5416 LoadTy = Type::getInt16Ty(Size->getContext());
5417 break;
5418 case 4:
5419 LoadVT = MVT::i32;
5420 LoadTy = Type::getInt32Ty(Size->getContext());
5421 break;
5422 case 8:
5423 LoadVT = MVT::i64;
5424 LoadTy = Type::getInt64Ty(Size->getContext());
5425 break;
5426 /*
5427 case 16:
5428 LoadVT = MVT::v4i32;
5429 LoadTy = Type::getInt32Ty(Size->getContext());
5430 LoadTy = VectorType::get(LoadTy, 4);
5431 break;
5432 */
5433 }
5434
5435 // This turns into unaligned loads. We only do this if the target natively
5436 // supports the MVT we'll be loading or if it is small enough (<= 4) that
5437 // we'll only produce a small number of byte loads.
5438
5439 // Require that we can find a legal MVT, and only do this if the target
5440 // supports unaligned loads of that type. Expanding into byte loads would
5441 // bloat the code.
5442 if (ActuallyDoIt && Size->getZExtValue() > 4) {
5443 // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5444 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5445 if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5446 ActuallyDoIt = false;
5447 }
5448
5449 if (ActuallyDoIt) {
5450 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5451 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5452
5453 SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
5454 ISD::SETNE);
5455 EVT CallVT = TLI.getValueType(I.getType(), true);
5456 setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
5457 return true;
5458 }
5459 }
5460
5461
5462 return false;
5463 }
5464
5465
visitCall(const CallInst & I)5466 void SelectionDAGBuilder::visitCall(const CallInst &I) {
5467 // Handle inline assembly differently.
5468 if (isa<InlineAsm>(I.getCalledValue())) {
5469 visitInlineAsm(&I);
5470 return;
5471 }
5472
5473 // See if any floating point values are being passed to this function. This is
5474 // used to emit an undefined reference to fltused on Windows.
5475 FunctionType *FT =
5476 cast<FunctionType>(I.getCalledValue()->getType()->getContainedType(0));
5477 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5478 if (FT->isVarArg() &&
5479 !MMI.callsExternalVAFunctionWithFloatingPointArguments()) {
5480 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
5481 Type* T = I.getArgOperand(i)->getType();
5482 for (po_iterator<Type*> i = po_begin(T), e = po_end(T);
5483 i != e; ++i) {
5484 if (!i->isFloatingPointTy()) continue;
5485 MMI.setCallsExternalVAFunctionWithFloatingPointArguments(true);
5486 break;
5487 }
5488 }
5489 }
5490
5491 const char *RenameFn = 0;
5492 if (Function *F = I.getCalledFunction()) {
5493 if (F->isDeclaration()) {
5494 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5495 if (unsigned IID = II->getIntrinsicID(F)) {
5496 RenameFn = visitIntrinsicCall(I, IID);
5497 if (!RenameFn)
5498 return;
5499 }
5500 }
5501 if (unsigned IID = F->getIntrinsicID()) {
5502 RenameFn = visitIntrinsicCall(I, IID);
5503 if (!RenameFn)
5504 return;
5505 }
5506 }
5507
5508 // Check for well-known libc/libm calls. If the function is internal, it
5509 // can't be a library call.
5510 if (!F->hasLocalLinkage() && F->hasName()) {
5511 StringRef Name = F->getName();
5512 if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") {
5513 if (I.getNumArgOperands() == 2 && // Basic sanity checks.
5514 I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5515 I.getType() == I.getArgOperand(0)->getType() &&
5516 I.getType() == I.getArgOperand(1)->getType()) {
5517 SDValue LHS = getValue(I.getArgOperand(0));
5518 SDValue RHS = getValue(I.getArgOperand(1));
5519 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5520 LHS.getValueType(), LHS, RHS));
5521 return;
5522 }
5523 } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
5524 if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5525 I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5526 I.getType() == I.getArgOperand(0)->getType()) {
5527 SDValue Tmp = getValue(I.getArgOperand(0));
5528 setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
5529 Tmp.getValueType(), Tmp));
5530 return;
5531 }
5532 } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
5533 if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5534 I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5535 I.getType() == I.getArgOperand(0)->getType() &&
5536 I.onlyReadsMemory()) {
5537 SDValue Tmp = getValue(I.getArgOperand(0));
5538 setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
5539 Tmp.getValueType(), Tmp));
5540 return;
5541 }
5542 } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
5543 if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5544 I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5545 I.getType() == I.getArgOperand(0)->getType() &&
5546 I.onlyReadsMemory()) {
5547 SDValue Tmp = getValue(I.getArgOperand(0));
5548 setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
5549 Tmp.getValueType(), Tmp));
5550 return;
5551 }
5552 } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
5553 if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5554 I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5555 I.getType() == I.getArgOperand(0)->getType() &&
5556 I.onlyReadsMemory()) {
5557 SDValue Tmp = getValue(I.getArgOperand(0));
5558 setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
5559 Tmp.getValueType(), Tmp));
5560 return;
5561 }
5562 } else if (Name == "memcmp") {
5563 if (visitMemCmpCall(I))
5564 return;
5565 }
5566 }
5567 }
5568
5569 SDValue Callee;
5570 if (!RenameFn)
5571 Callee = getValue(I.getCalledValue());
5572 else
5573 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5574
5575 // Check if we can potentially perform a tail call. More detailed checking is
5576 // be done within LowerCallTo, after more information about the call is known.
5577 LowerCallTo(&I, Callee, I.isTailCall());
5578 }
5579
5580 namespace {
5581
5582 /// AsmOperandInfo - This contains information for each constraint that we are
5583 /// lowering.
5584 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5585 public:
5586 /// CallOperand - If this is the result output operand or a clobber
5587 /// this is null, otherwise it is the incoming operand to the CallInst.
5588 /// This gets modified as the asm is processed.
5589 SDValue CallOperand;
5590
5591 /// AssignedRegs - If this is a register or register class operand, this
5592 /// contains the set of register corresponding to the operand.
5593 RegsForValue AssignedRegs;
5594
SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo & info)5595 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5596 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5597 }
5598
5599 /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
5600 /// busy in OutputRegs/InputRegs.
MarkAllocatedRegs(bool isOutReg,bool isInReg,std::set<unsigned> & OutputRegs,std::set<unsigned> & InputRegs,const TargetRegisterInfo & TRI) const5601 void MarkAllocatedRegs(bool isOutReg, bool isInReg,
5602 std::set<unsigned> &OutputRegs,
5603 std::set<unsigned> &InputRegs,
5604 const TargetRegisterInfo &TRI) const {
5605 if (isOutReg) {
5606 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5607 MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
5608 }
5609 if (isInReg) {
5610 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5611 MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
5612 }
5613 }
5614
5615 /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5616 /// corresponds to. If there is no Value* for this operand, it returns
5617 /// MVT::Other.
getCallOperandValEVT(LLVMContext & Context,const TargetLowering & TLI,const TargetData * TD) const5618 EVT getCallOperandValEVT(LLVMContext &Context,
5619 const TargetLowering &TLI,
5620 const TargetData *TD) const {
5621 if (CallOperandVal == 0) return MVT::Other;
5622
5623 if (isa<BasicBlock>(CallOperandVal))
5624 return TLI.getPointerTy();
5625
5626 llvm::Type *OpTy = CallOperandVal->getType();
5627
5628 // FIXME: code duplicated from TargetLowering::ParseConstraints().
5629 // If this is an indirect operand, the operand is a pointer to the
5630 // accessed type.
5631 if (isIndirect) {
5632 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5633 if (!PtrTy)
5634 report_fatal_error("Indirect operand for inline asm not a pointer!");
5635 OpTy = PtrTy->getElementType();
5636 }
5637
5638 // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5639 if (StructType *STy = dyn_cast<StructType>(OpTy))
5640 if (STy->getNumElements() == 1)
5641 OpTy = STy->getElementType(0);
5642
5643 // If OpTy is not a single value, it may be a struct/union that we
5644 // can tile with integers.
5645 if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5646 unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5647 switch (BitSize) {
5648 default: break;
5649 case 1:
5650 case 8:
5651 case 16:
5652 case 32:
5653 case 64:
5654 case 128:
5655 OpTy = IntegerType::get(Context, BitSize);
5656 break;
5657 }
5658 }
5659
5660 return TLI.getValueType(OpTy, true);
5661 }
5662
5663 private:
5664 /// MarkRegAndAliases - Mark the specified register and all aliases in the
5665 /// specified set.
MarkRegAndAliases(unsigned Reg,std::set<unsigned> & Regs,const TargetRegisterInfo & TRI)5666 static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
5667 const TargetRegisterInfo &TRI) {
5668 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
5669 Regs.insert(Reg);
5670 if (const unsigned *Aliases = TRI.getAliasSet(Reg))
5671 for (; *Aliases; ++Aliases)
5672 Regs.insert(*Aliases);
5673 }
5674 };
5675
5676 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5677
5678 } // end anonymous namespace
5679
5680 /// GetRegistersForValue - Assign registers (virtual or physical) for the
5681 /// specified operand. We prefer to assign virtual registers, to allow the
5682 /// register allocator to handle the assignment process. However, if the asm
5683 /// uses features that we can't model on machineinstrs, we have SDISel do the
5684 /// allocation. This produces generally horrible, but correct, code.
5685 ///
5686 /// OpInfo describes the operand.
5687 /// Input and OutputRegs are the set of already allocated physical registers.
5688 ///
GetRegistersForValue(SelectionDAG & DAG,const TargetLowering & TLI,DebugLoc DL,SDISelAsmOperandInfo & OpInfo,std::set<unsigned> & OutputRegs,std::set<unsigned> & InputRegs)5689 static void GetRegistersForValue(SelectionDAG &DAG,
5690 const TargetLowering &TLI,
5691 DebugLoc DL,
5692 SDISelAsmOperandInfo &OpInfo,
5693 std::set<unsigned> &OutputRegs,
5694 std::set<unsigned> &InputRegs) {
5695 LLVMContext &Context = *DAG.getContext();
5696
5697 // Compute whether this value requires an input register, an output register,
5698 // or both.
5699 bool isOutReg = false;
5700 bool isInReg = false;
5701 switch (OpInfo.Type) {
5702 case InlineAsm::isOutput:
5703 isOutReg = true;
5704
5705 // If there is an input constraint that matches this, we need to reserve
5706 // the input register so no other inputs allocate to it.
5707 isInReg = OpInfo.hasMatchingInput();
5708 break;
5709 case InlineAsm::isInput:
5710 isInReg = true;
5711 isOutReg = false;
5712 break;
5713 case InlineAsm::isClobber:
5714 isOutReg = true;
5715 isInReg = true;
5716 break;
5717 }
5718
5719
5720 MachineFunction &MF = DAG.getMachineFunction();
5721 SmallVector<unsigned, 4> Regs;
5722
5723 // If this is a constraint for a single physreg, or a constraint for a
5724 // register class, find it.
5725 std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5726 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5727 OpInfo.ConstraintVT);
5728
5729 unsigned NumRegs = 1;
5730 if (OpInfo.ConstraintVT != MVT::Other) {
5731 // If this is a FP input in an integer register (or visa versa) insert a bit
5732 // cast of the input value. More generally, handle any case where the input
5733 // value disagrees with the register class we plan to stick this in.
5734 if (OpInfo.Type == InlineAsm::isInput &&
5735 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5736 // Try to convert to the first EVT that the reg class contains. If the
5737 // types are identical size, use a bitcast to convert (e.g. two differing
5738 // vector types).
5739 EVT RegVT = *PhysReg.second->vt_begin();
5740 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5741 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5742 RegVT, OpInfo.CallOperand);
5743 OpInfo.ConstraintVT = RegVT;
5744 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5745 // If the input is a FP value and we want it in FP registers, do a
5746 // bitcast to the corresponding integer type. This turns an f64 value
5747 // into i64, which can be passed with two i32 values on a 32-bit
5748 // machine.
5749 RegVT = EVT::getIntegerVT(Context,
5750 OpInfo.ConstraintVT.getSizeInBits());
5751 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5752 RegVT, OpInfo.CallOperand);
5753 OpInfo.ConstraintVT = RegVT;
5754 }
5755 }
5756
5757 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5758 }
5759
5760 EVT RegVT;
5761 EVT ValueVT = OpInfo.ConstraintVT;
5762
5763 // If this is a constraint for a specific physical register, like {r17},
5764 // assign it now.
5765 if (unsigned AssignedReg = PhysReg.first) {
5766 const TargetRegisterClass *RC = PhysReg.second;
5767 if (OpInfo.ConstraintVT == MVT::Other)
5768 ValueVT = *RC->vt_begin();
5769
5770 // Get the actual register value type. This is important, because the user
5771 // may have asked for (e.g.) the AX register in i32 type. We need to
5772 // remember that AX is actually i16 to get the right extension.
5773 RegVT = *RC->vt_begin();
5774
5775 // This is a explicit reference to a physical register.
5776 Regs.push_back(AssignedReg);
5777
5778 // If this is an expanded reference, add the rest of the regs to Regs.
5779 if (NumRegs != 1) {
5780 TargetRegisterClass::iterator I = RC->begin();
5781 for (; *I != AssignedReg; ++I)
5782 assert(I != RC->end() && "Didn't find reg!");
5783
5784 // Already added the first reg.
5785 --NumRegs; ++I;
5786 for (; NumRegs; --NumRegs, ++I) {
5787 assert(I != RC->end() && "Ran out of registers to allocate!");
5788 Regs.push_back(*I);
5789 }
5790 }
5791
5792 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5793 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5794 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5795 return;
5796 }
5797
5798 // Otherwise, if this was a reference to an LLVM register class, create vregs
5799 // for this reference.
5800 if (const TargetRegisterClass *RC = PhysReg.second) {
5801 RegVT = *RC->vt_begin();
5802 if (OpInfo.ConstraintVT == MVT::Other)
5803 ValueVT = RegVT;
5804
5805 // Create the appropriate number of virtual registers.
5806 MachineRegisterInfo &RegInfo = MF.getRegInfo();
5807 for (; NumRegs; --NumRegs)
5808 Regs.push_back(RegInfo.createVirtualRegister(RC));
5809
5810 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5811 return;
5812 }
5813
5814 // Otherwise, we couldn't allocate enough registers for this.
5815 }
5816
5817 /// visitInlineAsm - Handle a call to an InlineAsm object.
5818 ///
visitInlineAsm(ImmutableCallSite CS)5819 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5820 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5821
5822 /// ConstraintOperands - Information about all of the constraints.
5823 SDISelAsmOperandInfoVector ConstraintOperands;
5824
5825 std::set<unsigned> OutputRegs, InputRegs;
5826
5827 TargetLowering::AsmOperandInfoVector
5828 TargetConstraints = TLI.ParseConstraints(CS);
5829
5830 bool hasMemory = false;
5831
5832 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
5833 unsigned ResNo = 0; // ResNo - The result number of the next output.
5834 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5835 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5836 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5837
5838 EVT OpVT = MVT::Other;
5839
5840 // Compute the value type for each operand.
5841 switch (OpInfo.Type) {
5842 case InlineAsm::isOutput:
5843 // Indirect outputs just consume an argument.
5844 if (OpInfo.isIndirect) {
5845 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5846 break;
5847 }
5848
5849 // The return value of the call is this value. As such, there is no
5850 // corresponding argument.
5851 assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5852 if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
5853 OpVT = TLI.getValueType(STy->getElementType(ResNo));
5854 } else {
5855 assert(ResNo == 0 && "Asm only has one result!");
5856 OpVT = TLI.getValueType(CS.getType());
5857 }
5858 ++ResNo;
5859 break;
5860 case InlineAsm::isInput:
5861 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5862 break;
5863 case InlineAsm::isClobber:
5864 // Nothing to do.
5865 break;
5866 }
5867
5868 // If this is an input or an indirect output, process the call argument.
5869 // BasicBlocks are labels, currently appearing only in asm's.
5870 if (OpInfo.CallOperandVal) {
5871 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5872 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5873 } else {
5874 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5875 }
5876
5877 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5878 }
5879
5880 OpInfo.ConstraintVT = OpVT;
5881
5882 // Indirect operand accesses access memory.
5883 if (OpInfo.isIndirect)
5884 hasMemory = true;
5885 else {
5886 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5887 TargetLowering::ConstraintType
5888 CType = TLI.getConstraintType(OpInfo.Codes[j]);
5889 if (CType == TargetLowering::C_Memory) {
5890 hasMemory = true;
5891 break;
5892 }
5893 }
5894 }
5895 }
5896
5897 SDValue Chain, Flag;
5898
5899 // We won't need to flush pending loads if this asm doesn't touch
5900 // memory and is nonvolatile.
5901 if (hasMemory || IA->hasSideEffects())
5902 Chain = getRoot();
5903 else
5904 Chain = DAG.getRoot();
5905
5906 // Second pass over the constraints: compute which constraint option to use
5907 // and assign registers to constraints that want a specific physreg.
5908 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5909 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5910
5911 // If this is an output operand with a matching input operand, look up the
5912 // matching input. If their types mismatch, e.g. one is an integer, the
5913 // other is floating point, or their sizes are different, flag it as an
5914 // error.
5915 if (OpInfo.hasMatchingInput()) {
5916 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5917
5918 if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5919 std::pair<unsigned, const TargetRegisterClass*> MatchRC =
5920 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5921 OpInfo.ConstraintVT);
5922 std::pair<unsigned, const TargetRegisterClass*> InputRC =
5923 TLI.getRegForInlineAsmConstraint(Input.ConstraintCode,
5924 Input.ConstraintVT);
5925 if ((OpInfo.ConstraintVT.isInteger() !=
5926 Input.ConstraintVT.isInteger()) ||
5927 (MatchRC.second != InputRC.second)) {
5928 report_fatal_error("Unsupported asm: input constraint"
5929 " with a matching output constraint of"
5930 " incompatible type!");
5931 }
5932 Input.ConstraintVT = OpInfo.ConstraintVT;
5933 }
5934 }
5935
5936 // Compute the constraint code and ConstraintType to use.
5937 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5938
5939 // If this is a memory input, and if the operand is not indirect, do what we
5940 // need to to provide an address for the memory input.
5941 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5942 !OpInfo.isIndirect) {
5943 assert((OpInfo.isMultipleAlternative ||
5944 (OpInfo.Type == InlineAsm::isInput)) &&
5945 "Can only indirectify direct input operands!");
5946
5947 // Memory operands really want the address of the value. If we don't have
5948 // an indirect input, put it in the constpool if we can, otherwise spill
5949 // it to a stack slot.
5950 // TODO: This isn't quite right. We need to handle these according to
5951 // the addressing mode that the constraint wants. Also, this may take
5952 // an additional register for the computation and we don't want that
5953 // either.
5954
5955 // If the operand is a float, integer, or vector constant, spill to a
5956 // constant pool entry to get its address.
5957 const Value *OpVal = OpInfo.CallOperandVal;
5958 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5959 isa<ConstantVector>(OpVal)) {
5960 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5961 TLI.getPointerTy());
5962 } else {
5963 // Otherwise, create a stack slot and emit a store to it before the
5964 // asm.
5965 Type *Ty = OpVal->getType();
5966 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5967 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5968 MachineFunction &MF = DAG.getMachineFunction();
5969 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5970 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5971 Chain = DAG.getStore(Chain, getCurDebugLoc(),
5972 OpInfo.CallOperand, StackSlot,
5973 MachinePointerInfo::getFixedStack(SSFI),
5974 false, false, 0);
5975 OpInfo.CallOperand = StackSlot;
5976 }
5977
5978 // There is no longer a Value* corresponding to this operand.
5979 OpInfo.CallOperandVal = 0;
5980
5981 // It is now an indirect operand.
5982 OpInfo.isIndirect = true;
5983 }
5984
5985 // If this constraint is for a specific register, allocate it before
5986 // anything else.
5987 if (OpInfo.ConstraintType == TargetLowering::C_Register)
5988 GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
5989 InputRegs);
5990 }
5991
5992 // Second pass - Loop over all of the operands, assigning virtual or physregs
5993 // to register class operands.
5994 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5995 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5996
5997 // C_Register operands have already been allocated, Other/Memory don't need
5998 // to be.
5999 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6000 GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
6001 InputRegs);
6002 }
6003
6004 // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6005 std::vector<SDValue> AsmNodeOperands;
6006 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain
6007 AsmNodeOperands.push_back(
6008 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
6009 TLI.getPointerTy()));
6010
6011 // If we have a !srcloc metadata node associated with it, we want to attach
6012 // this to the ultimately generated inline asm machineinstr. To do this, we
6013 // pass in the third operand as this (potentially null) inline asm MDNode.
6014 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6015 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6016
6017 // Remember the HasSideEffect and AlignStack bits as operand 3.
6018 unsigned ExtraInfo = 0;
6019 if (IA->hasSideEffects())
6020 ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6021 if (IA->isAlignStack())
6022 ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6023 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
6024 TLI.getPointerTy()));
6025
6026 // Loop over all of the inputs, copying the operand values into the
6027 // appropriate registers and processing the output regs.
6028 RegsForValue RetValRegs;
6029
6030 // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6031 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6032
6033 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6034 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6035
6036 switch (OpInfo.Type) {
6037 case InlineAsm::isOutput: {
6038 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6039 OpInfo.ConstraintType != TargetLowering::C_Register) {
6040 // Memory output, or 'other' output (e.g. 'X' constraint).
6041 assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6042
6043 // Add information to the INLINEASM node to know about this output.
6044 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6045 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
6046 TLI.getPointerTy()));
6047 AsmNodeOperands.push_back(OpInfo.CallOperand);
6048 break;
6049 }
6050
6051 // Otherwise, this is a register or register class output.
6052
6053 // Copy the output from the appropriate register. Find a register that
6054 // we can use.
6055 if (OpInfo.AssignedRegs.Regs.empty())
6056 report_fatal_error("Couldn't allocate output reg for constraint '" +
6057 Twine(OpInfo.ConstraintCode) + "'!");
6058
6059 // If this is an indirect operand, store through the pointer after the
6060 // asm.
6061 if (OpInfo.isIndirect) {
6062 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6063 OpInfo.CallOperandVal));
6064 } else {
6065 // This is the result value of the call.
6066 assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6067 // Concatenate this output onto the outputs list.
6068 RetValRegs.append(OpInfo.AssignedRegs);
6069 }
6070
6071 // Add information to the INLINEASM node to know that this register is
6072 // set.
6073 OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
6074 InlineAsm::Kind_RegDefEarlyClobber :
6075 InlineAsm::Kind_RegDef,
6076 false,
6077 0,
6078 DAG,
6079 AsmNodeOperands);
6080 break;
6081 }
6082 case InlineAsm::isInput: {
6083 SDValue InOperandVal = OpInfo.CallOperand;
6084
6085 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint?
6086 // If this is required to match an output register we have already set,
6087 // just use its register.
6088 unsigned OperandNo = OpInfo.getMatchedOperand();
6089
6090 // Scan until we find the definition we already emitted of this operand.
6091 // When we find it, create a RegsForValue operand.
6092 unsigned CurOp = InlineAsm::Op_FirstOperand;
6093 for (; OperandNo; --OperandNo) {
6094 // Advance to the next operand.
6095 unsigned OpFlag =
6096 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6097 assert((InlineAsm::isRegDefKind(OpFlag) ||
6098 InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6099 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6100 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6101 }
6102
6103 unsigned OpFlag =
6104 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6105 if (InlineAsm::isRegDefKind(OpFlag) ||
6106 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6107 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6108 if (OpInfo.isIndirect) {
6109 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6110 LLVMContext &Ctx = *DAG.getContext();
6111 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:"
6112 " don't know how to handle tied "
6113 "indirect register inputs");
6114 }
6115
6116 RegsForValue MatchedRegs;
6117 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6118 EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
6119 MatchedRegs.RegVTs.push_back(RegVT);
6120 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6121 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6122 i != e; ++i)
6123 MatchedRegs.Regs.push_back
6124 (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
6125
6126 // Use the produced MatchedRegs object to
6127 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6128 Chain, &Flag);
6129 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6130 true, OpInfo.getMatchedOperand(),
6131 DAG, AsmNodeOperands);
6132 break;
6133 }
6134
6135 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6136 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6137 "Unexpected number of operands");
6138 // Add information to the INLINEASM node to know about this input.
6139 // See InlineAsm.h isUseOperandTiedToDef.
6140 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6141 OpInfo.getMatchedOperand());
6142 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6143 TLI.getPointerTy()));
6144 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6145 break;
6146 }
6147
6148 // Treat indirect 'X' constraint as memory.
6149 if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6150 OpInfo.isIndirect)
6151 OpInfo.ConstraintType = TargetLowering::C_Memory;
6152
6153 if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6154 std::vector<SDValue> Ops;
6155 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6156 Ops, DAG);
6157 if (Ops.empty())
6158 report_fatal_error("Invalid operand for inline asm constraint '" +
6159 Twine(OpInfo.ConstraintCode) + "'!");
6160
6161 // Add information to the INLINEASM node to know about this input.
6162 unsigned ResOpType =
6163 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6164 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6165 TLI.getPointerTy()));
6166 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6167 break;
6168 }
6169
6170 if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6171 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6172 assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
6173 "Memory operands expect pointer values");
6174
6175 // Add information to the INLINEASM node to know about this input.
6176 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6177 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6178 TLI.getPointerTy()));
6179 AsmNodeOperands.push_back(InOperandVal);
6180 break;
6181 }
6182
6183 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6184 OpInfo.ConstraintType == TargetLowering::C_Register) &&
6185 "Unknown constraint type!");
6186 assert(!OpInfo.isIndirect &&
6187 "Don't know how to handle indirect register inputs yet!");
6188
6189 // Copy the input into the appropriate registers.
6190 if (OpInfo.AssignedRegs.Regs.empty())
6191 report_fatal_error("Couldn't allocate input reg for constraint '" +
6192 Twine(OpInfo.ConstraintCode) + "'!");
6193
6194 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6195 Chain, &Flag);
6196
6197 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6198 DAG, AsmNodeOperands);
6199 break;
6200 }
6201 case InlineAsm::isClobber: {
6202 // Add the clobbered value to the operand list, so that the register
6203 // allocator is aware that the physreg got clobbered.
6204 if (!OpInfo.AssignedRegs.Regs.empty())
6205 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6206 false, 0, DAG,
6207 AsmNodeOperands);
6208 break;
6209 }
6210 }
6211 }
6212
6213 // Finish up input operands. Set the input chain and add the flag last.
6214 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6215 if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6216
6217 Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
6218 DAG.getVTList(MVT::Other, MVT::Glue),
6219 &AsmNodeOperands[0], AsmNodeOperands.size());
6220 Flag = Chain.getValue(1);
6221
6222 // If this asm returns a register value, copy the result from that register
6223 // and set it as the value of the call.
6224 if (!RetValRegs.Regs.empty()) {
6225 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6226 Chain, &Flag);
6227
6228 // FIXME: Why don't we do this for inline asms with MRVs?
6229 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6230 EVT ResultType = TLI.getValueType(CS.getType());
6231
6232 // If any of the results of the inline asm is a vector, it may have the
6233 // wrong width/num elts. This can happen for register classes that can
6234 // contain multiple different value types. The preg or vreg allocated may
6235 // not have the same VT as was expected. Convert it to the right type
6236 // with bit_convert.
6237 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6238 Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
6239 ResultType, Val);
6240
6241 } else if (ResultType != Val.getValueType() &&
6242 ResultType.isInteger() && Val.getValueType().isInteger()) {
6243 // If a result value was tied to an input value, the computed result may
6244 // have a wider width than the expected result. Extract the relevant
6245 // portion.
6246 Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
6247 }
6248
6249 assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6250 }
6251
6252 setValue(CS.getInstruction(), Val);
6253 // Don't need to use this as a chain in this case.
6254 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6255 return;
6256 }
6257
6258 std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6259
6260 // Process indirect outputs, first output all of the flagged copies out of
6261 // physregs.
6262 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6263 RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6264 const Value *Ptr = IndirectStoresToEmit[i].second;
6265 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6266 Chain, &Flag);
6267 StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6268 }
6269
6270 // Emit the non-flagged stores from the physregs.
6271 SmallVector<SDValue, 8> OutChains;
6272 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6273 SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
6274 StoresToEmit[i].first,
6275 getValue(StoresToEmit[i].second),
6276 MachinePointerInfo(StoresToEmit[i].second),
6277 false, false, 0);
6278 OutChains.push_back(Val);
6279 }
6280
6281 if (!OutChains.empty())
6282 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
6283 &OutChains[0], OutChains.size());
6284
6285 DAG.setRoot(Chain);
6286 }
6287
visitVAStart(const CallInst & I)6288 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6289 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
6290 MVT::Other, getRoot(),
6291 getValue(I.getArgOperand(0)),
6292 DAG.getSrcValue(I.getArgOperand(0))));
6293 }
6294
visitVAArg(const VAArgInst & I)6295 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6296 const TargetData &TD = *TLI.getTargetData();
6297 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
6298 getRoot(), getValue(I.getOperand(0)),
6299 DAG.getSrcValue(I.getOperand(0)),
6300 TD.getABITypeAlignment(I.getType()));
6301 setValue(&I, V);
6302 DAG.setRoot(V.getValue(1));
6303 }
6304
visitVAEnd(const CallInst & I)6305 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6306 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
6307 MVT::Other, getRoot(),
6308 getValue(I.getArgOperand(0)),
6309 DAG.getSrcValue(I.getArgOperand(0))));
6310 }
6311
visitVACopy(const CallInst & I)6312 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6313 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
6314 MVT::Other, getRoot(),
6315 getValue(I.getArgOperand(0)),
6316 getValue(I.getArgOperand(1)),
6317 DAG.getSrcValue(I.getArgOperand(0)),
6318 DAG.getSrcValue(I.getArgOperand(1))));
6319 }
6320
6321 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
6322 /// implementation, which just calls LowerCall.
6323 /// FIXME: When all targets are
6324 /// migrated to using LowerCall, this hook should be integrated into SDISel.
6325 std::pair<SDValue, SDValue>
LowerCallTo(SDValue Chain,Type * RetTy,bool RetSExt,bool RetZExt,bool isVarArg,bool isInreg,unsigned NumFixedArgs,CallingConv::ID CallConv,bool isTailCall,bool isReturnValueUsed,SDValue Callee,ArgListTy & Args,SelectionDAG & DAG,DebugLoc dl) const6326 TargetLowering::LowerCallTo(SDValue Chain, Type *RetTy,
6327 bool RetSExt, bool RetZExt, bool isVarArg,
6328 bool isInreg, unsigned NumFixedArgs,
6329 CallingConv::ID CallConv, bool isTailCall,
6330 bool isReturnValueUsed,
6331 SDValue Callee,
6332 ArgListTy &Args, SelectionDAG &DAG,
6333 DebugLoc dl) const {
6334 // Handle all of the outgoing arguments.
6335 SmallVector<ISD::OutputArg, 32> Outs;
6336 SmallVector<SDValue, 32> OutVals;
6337 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6338 SmallVector<EVT, 4> ValueVTs;
6339 ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6340 for (unsigned Value = 0, NumValues = ValueVTs.size();
6341 Value != NumValues; ++Value) {
6342 EVT VT = ValueVTs[Value];
6343 Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
6344 SDValue Op = SDValue(Args[i].Node.getNode(),
6345 Args[i].Node.getResNo() + Value);
6346 ISD::ArgFlagsTy Flags;
6347 unsigned OriginalAlignment =
6348 getTargetData()->getABITypeAlignment(ArgTy);
6349
6350 if (Args[i].isZExt)
6351 Flags.setZExt();
6352 if (Args[i].isSExt)
6353 Flags.setSExt();
6354 if (Args[i].isInReg)
6355 Flags.setInReg();
6356 if (Args[i].isSRet)
6357 Flags.setSRet();
6358 if (Args[i].isByVal) {
6359 Flags.setByVal();
6360 PointerType *Ty = cast<PointerType>(Args[i].Ty);
6361 Type *ElementTy = Ty->getElementType();
6362 Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy));
6363 // For ByVal, alignment should come from FE. BE will guess if this
6364 // info is not there but there are cases it cannot get right.
6365 unsigned FrameAlign;
6366 if (Args[i].Alignment)
6367 FrameAlign = Args[i].Alignment;
6368 else
6369 FrameAlign = getByValTypeAlignment(ElementTy);
6370 Flags.setByValAlign(FrameAlign);
6371 }
6372 if (Args[i].isNest)
6373 Flags.setNest();
6374 Flags.setOrigAlign(OriginalAlignment);
6375
6376 EVT PartVT = getRegisterType(RetTy->getContext(), VT);
6377 unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
6378 SmallVector<SDValue, 4> Parts(NumParts);
6379 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6380
6381 if (Args[i].isSExt)
6382 ExtendKind = ISD::SIGN_EXTEND;
6383 else if (Args[i].isZExt)
6384 ExtendKind = ISD::ZERO_EXTEND;
6385
6386 getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
6387 PartVT, ExtendKind);
6388
6389 for (unsigned j = 0; j != NumParts; ++j) {
6390 // if it isn't first piece, alignment must be 1
6391 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6392 i < NumFixedArgs);
6393 if (NumParts > 1 && j == 0)
6394 MyFlags.Flags.setSplit();
6395 else if (j != 0)
6396 MyFlags.Flags.setOrigAlign(1);
6397
6398 Outs.push_back(MyFlags);
6399 OutVals.push_back(Parts[j]);
6400 }
6401 }
6402 }
6403
6404 // Handle the incoming return values from the call.
6405 SmallVector<ISD::InputArg, 32> Ins;
6406 SmallVector<EVT, 4> RetTys;
6407 ComputeValueVTs(*this, RetTy, RetTys);
6408 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6409 EVT VT = RetTys[I];
6410 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6411 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6412 for (unsigned i = 0; i != NumRegs; ++i) {
6413 ISD::InputArg MyFlags;
6414 MyFlags.VT = RegisterVT.getSimpleVT();
6415 MyFlags.Used = isReturnValueUsed;
6416 if (RetSExt)
6417 MyFlags.Flags.setSExt();
6418 if (RetZExt)
6419 MyFlags.Flags.setZExt();
6420 if (isInreg)
6421 MyFlags.Flags.setInReg();
6422 Ins.push_back(MyFlags);
6423 }
6424 }
6425
6426 SmallVector<SDValue, 4> InVals;
6427 Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
6428 Outs, OutVals, Ins, dl, DAG, InVals);
6429
6430 // Verify that the target's LowerCall behaved as expected.
6431 assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
6432 "LowerCall didn't return a valid chain!");
6433 assert((!isTailCall || InVals.empty()) &&
6434 "LowerCall emitted a return value for a tail call!");
6435 assert((isTailCall || InVals.size() == Ins.size()) &&
6436 "LowerCall didn't emit the correct number of values!");
6437
6438 // For a tail call, the return value is merely live-out and there aren't
6439 // any nodes in the DAG representing it. Return a special value to
6440 // indicate that a tail call has been emitted and no more Instructions
6441 // should be processed in the current block.
6442 if (isTailCall) {
6443 DAG.setRoot(Chain);
6444 return std::make_pair(SDValue(), SDValue());
6445 }
6446
6447 DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6448 assert(InVals[i].getNode() &&
6449 "LowerCall emitted a null value!");
6450 assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6451 "LowerCall emitted a value with the wrong type!");
6452 });
6453
6454 // Collect the legal value parts into potentially illegal values
6455 // that correspond to the original function's return values.
6456 ISD::NodeType AssertOp = ISD::DELETED_NODE;
6457 if (RetSExt)
6458 AssertOp = ISD::AssertSext;
6459 else if (RetZExt)
6460 AssertOp = ISD::AssertZext;
6461 SmallVector<SDValue, 4> ReturnValues;
6462 unsigned CurReg = 0;
6463 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6464 EVT VT = RetTys[I];
6465 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6466 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6467
6468 ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
6469 NumRegs, RegisterVT, VT,
6470 AssertOp));
6471 CurReg += NumRegs;
6472 }
6473
6474 // For a function returning void, there is no return value. We can't create
6475 // such a node, so we just return a null return value in that case. In
6476 // that case, nothing will actually look at the value.
6477 if (ReturnValues.empty())
6478 return std::make_pair(SDValue(), Chain);
6479
6480 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
6481 DAG.getVTList(&RetTys[0], RetTys.size()),
6482 &ReturnValues[0], ReturnValues.size());
6483 return std::make_pair(Res, Chain);
6484 }
6485
LowerOperationWrapper(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const6486 void TargetLowering::LowerOperationWrapper(SDNode *N,
6487 SmallVectorImpl<SDValue> &Results,
6488 SelectionDAG &DAG) const {
6489 SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6490 if (Res.getNode())
6491 Results.push_back(Res);
6492 }
6493
LowerOperation(SDValue Op,SelectionDAG & DAG) const6494 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6495 llvm_unreachable("LowerOperation not implemented for this target!");
6496 return SDValue();
6497 }
6498
6499 void
CopyValueToVirtualRegister(const Value * V,unsigned Reg)6500 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6501 SDValue Op = getNonRegisterValue(V);
6502 assert((Op.getOpcode() != ISD::CopyFromReg ||
6503 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6504 "Copy from a reg to the same reg!");
6505 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6506
6507 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6508 SDValue Chain = DAG.getEntryNode();
6509 RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
6510 PendingExports.push_back(Chain);
6511 }
6512
6513 #include "llvm/CodeGen/SelectionDAGISel.h"
6514
6515 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
6516 /// entry block, return true. This includes arguments used by switches, since
6517 /// the switch may expand into multiple basic blocks.
isOnlyUsedInEntryBlock(const Argument * A)6518 static bool isOnlyUsedInEntryBlock(const Argument *A) {
6519 // With FastISel active, we may be splitting blocks, so force creation
6520 // of virtual registers for all non-dead arguments.
6521 if (EnableFastISel)
6522 return A->use_empty();
6523
6524 const BasicBlock *Entry = A->getParent()->begin();
6525 for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
6526 UI != E; ++UI) {
6527 const User *U = *UI;
6528 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
6529 return false; // Use not in entry block.
6530 }
6531 return true;
6532 }
6533
LowerArguments(const BasicBlock * LLVMBB)6534 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
6535 // If this is the entry block, emit arguments.
6536 const Function &F = *LLVMBB->getParent();
6537 SelectionDAG &DAG = SDB->DAG;
6538 DebugLoc dl = SDB->getCurDebugLoc();
6539 const TargetData *TD = TLI.getTargetData();
6540 SmallVector<ISD::InputArg, 16> Ins;
6541
6542 // Check whether the function can return without sret-demotion.
6543 SmallVector<ISD::OutputArg, 4> Outs;
6544 GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
6545 Outs, TLI);
6546
6547 if (!FuncInfo->CanLowerReturn) {
6548 // Put in an sret pointer parameter before all the other parameters.
6549 SmallVector<EVT, 1> ValueVTs;
6550 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6551
6552 // NOTE: Assuming that a pointer will never break down to more than one VT
6553 // or one register.
6554 ISD::ArgFlagsTy Flags;
6555 Flags.setSRet();
6556 EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6557 ISD::InputArg RetArg(Flags, RegisterVT, true);
6558 Ins.push_back(RetArg);
6559 }
6560
6561 // Set up the incoming argument description vector.
6562 unsigned Idx = 1;
6563 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6564 I != E; ++I, ++Idx) {
6565 SmallVector<EVT, 4> ValueVTs;
6566 ComputeValueVTs(TLI, I->getType(), ValueVTs);
6567 bool isArgValueUsed = !I->use_empty();
6568 for (unsigned Value = 0, NumValues = ValueVTs.size();
6569 Value != NumValues; ++Value) {
6570 EVT VT = ValueVTs[Value];
6571 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6572 ISD::ArgFlagsTy Flags;
6573 unsigned OriginalAlignment =
6574 TD->getABITypeAlignment(ArgTy);
6575
6576 if (F.paramHasAttr(Idx, Attribute::ZExt))
6577 Flags.setZExt();
6578 if (F.paramHasAttr(Idx, Attribute::SExt))
6579 Flags.setSExt();
6580 if (F.paramHasAttr(Idx, Attribute::InReg))
6581 Flags.setInReg();
6582 if (F.paramHasAttr(Idx, Attribute::StructRet))
6583 Flags.setSRet();
6584 if (F.paramHasAttr(Idx, Attribute::ByVal)) {
6585 Flags.setByVal();
6586 PointerType *Ty = cast<PointerType>(I->getType());
6587 Type *ElementTy = Ty->getElementType();
6588 Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
6589 // For ByVal, alignment should be passed from FE. BE will guess if
6590 // this info is not there but there are cases it cannot get right.
6591 unsigned FrameAlign;
6592 if (F.getParamAlignment(Idx))
6593 FrameAlign = F.getParamAlignment(Idx);
6594 else
6595 FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6596 Flags.setByValAlign(FrameAlign);
6597 }
6598 if (F.paramHasAttr(Idx, Attribute::Nest))
6599 Flags.setNest();
6600 Flags.setOrigAlign(OriginalAlignment);
6601
6602 EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6603 unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6604 for (unsigned i = 0; i != NumRegs; ++i) {
6605 ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
6606 if (NumRegs > 1 && i == 0)
6607 MyFlags.Flags.setSplit();
6608 // if it isn't first piece, alignment must be 1
6609 else if (i > 0)
6610 MyFlags.Flags.setOrigAlign(1);
6611 Ins.push_back(MyFlags);
6612 }
6613 }
6614 }
6615
6616 // Call the target to set up the argument values.
6617 SmallVector<SDValue, 8> InVals;
6618 SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6619 F.isVarArg(), Ins,
6620 dl, DAG, InVals);
6621
6622 // Verify that the target's LowerFormalArguments behaved as expected.
6623 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6624 "LowerFormalArguments didn't return a valid chain!");
6625 assert(InVals.size() == Ins.size() &&
6626 "LowerFormalArguments didn't emit the correct number of values!");
6627 DEBUG({
6628 for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6629 assert(InVals[i].getNode() &&
6630 "LowerFormalArguments emitted a null value!");
6631 assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6632 "LowerFormalArguments emitted a value with the wrong type!");
6633 }
6634 });
6635
6636 // Update the DAG with the new chain value resulting from argument lowering.
6637 DAG.setRoot(NewRoot);
6638
6639 // Set up the argument values.
6640 unsigned i = 0;
6641 Idx = 1;
6642 if (!FuncInfo->CanLowerReturn) {
6643 // Create a virtual register for the sret pointer, and put in a copy
6644 // from the sret argument into it.
6645 SmallVector<EVT, 1> ValueVTs;
6646 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6647 EVT VT = ValueVTs[0];
6648 EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6649 ISD::NodeType AssertOp = ISD::DELETED_NODE;
6650 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6651 RegVT, VT, AssertOp);
6652
6653 MachineFunction& MF = SDB->DAG.getMachineFunction();
6654 MachineRegisterInfo& RegInfo = MF.getRegInfo();
6655 unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6656 FuncInfo->DemoteRegister = SRetReg;
6657 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6658 SRetReg, ArgValue);
6659 DAG.setRoot(NewRoot);
6660
6661 // i indexes lowered arguments. Bump it past the hidden sret argument.
6662 // Idx indexes LLVM arguments. Don't touch it.
6663 ++i;
6664 }
6665
6666 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6667 ++I, ++Idx) {
6668 SmallVector<SDValue, 4> ArgValues;
6669 SmallVector<EVT, 4> ValueVTs;
6670 ComputeValueVTs(TLI, I->getType(), ValueVTs);
6671 unsigned NumValues = ValueVTs.size();
6672
6673 // If this argument is unused then remember its value. It is used to generate
6674 // debugging information.
6675 if (I->use_empty() && NumValues)
6676 SDB->setUnusedArgValue(I, InVals[i]);
6677
6678 for (unsigned Val = 0; Val != NumValues; ++Val) {
6679 EVT VT = ValueVTs[Val];
6680 EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6681 unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6682
6683 if (!I->use_empty()) {
6684 ISD::NodeType AssertOp = ISD::DELETED_NODE;
6685 if (F.paramHasAttr(Idx, Attribute::SExt))
6686 AssertOp = ISD::AssertSext;
6687 else if (F.paramHasAttr(Idx, Attribute::ZExt))
6688 AssertOp = ISD::AssertZext;
6689
6690 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6691 NumParts, PartVT, VT,
6692 AssertOp));
6693 }
6694
6695 i += NumParts;
6696 }
6697
6698 // We don't need to do anything else for unused arguments.
6699 if (ArgValues.empty())
6700 continue;
6701
6702 // Note down frame index.
6703 if (FrameIndexSDNode *FI =
6704 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6705 FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6706
6707 SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6708 SDB->getCurDebugLoc());
6709
6710 SDB->setValue(I, Res);
6711 if (!EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
6712 if (LoadSDNode *LNode =
6713 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
6714 if (FrameIndexSDNode *FI =
6715 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
6716 FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6717 }
6718
6719 // If this argument is live outside of the entry block, insert a copy from
6720 // wherever we got it to the vreg that other BB's will reference it as.
6721 if (!EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
6722 // If we can, though, try to skip creating an unnecessary vreg.
6723 // FIXME: This isn't very clean... it would be nice to make this more
6724 // general. It's also subtly incompatible with the hacks FastISel
6725 // uses with vregs.
6726 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
6727 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
6728 FuncInfo->ValueMap[I] = Reg;
6729 continue;
6730 }
6731 }
6732 if (!isOnlyUsedInEntryBlock(I)) {
6733 FuncInfo->InitializeRegForValue(I);
6734 SDB->CopyToExportRegsIfNeeded(I);
6735 }
6736 }
6737
6738 assert(i == InVals.size() && "Argument register count mismatch!");
6739
6740 // Finally, if the target has anything special to do, allow it to do so.
6741 // FIXME: this should insert code into the DAG!
6742 EmitFunctionEntryCode();
6743 }
6744
6745 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
6746 /// ensure constants are generated when needed. Remember the virtual registers
6747 /// that need to be added to the Machine PHI nodes as input. We cannot just
6748 /// directly add them, because expansion might result in multiple MBB's for one
6749 /// BB. As such, the start of the BB might correspond to a different MBB than
6750 /// the end.
6751 ///
6752 void
HandlePHINodesInSuccessorBlocks(const BasicBlock * LLVMBB)6753 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6754 const TerminatorInst *TI = LLVMBB->getTerminator();
6755
6756 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6757
6758 // Check successor nodes' PHI nodes that expect a constant to be available
6759 // from this block.
6760 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6761 const BasicBlock *SuccBB = TI->getSuccessor(succ);
6762 if (!isa<PHINode>(SuccBB->begin())) continue;
6763 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6764
6765 // If this terminator has multiple identical successors (common for
6766 // switches), only handle each succ once.
6767 if (!SuccsHandled.insert(SuccMBB)) continue;
6768
6769 MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6770
6771 // At this point we know that there is a 1-1 correspondence between LLVM PHI
6772 // nodes and Machine PHI nodes, but the incoming operands have not been
6773 // emitted yet.
6774 for (BasicBlock::const_iterator I = SuccBB->begin();
6775 const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6776 // Ignore dead phi's.
6777 if (PN->use_empty()) continue;
6778
6779 // Skip empty types
6780 if (PN->getType()->isEmptyTy())
6781 continue;
6782
6783 unsigned Reg;
6784 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6785
6786 if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6787 unsigned &RegOut = ConstantsOut[C];
6788 if (RegOut == 0) {
6789 RegOut = FuncInfo.CreateRegs(C->getType());
6790 CopyValueToVirtualRegister(C, RegOut);
6791 }
6792 Reg = RegOut;
6793 } else {
6794 DenseMap<const Value *, unsigned>::iterator I =
6795 FuncInfo.ValueMap.find(PHIOp);
6796 if (I != FuncInfo.ValueMap.end())
6797 Reg = I->second;
6798 else {
6799 assert(isa<AllocaInst>(PHIOp) &&
6800 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6801 "Didn't codegen value into a register!??");
6802 Reg = FuncInfo.CreateRegs(PHIOp->getType());
6803 CopyValueToVirtualRegister(PHIOp, Reg);
6804 }
6805 }
6806
6807 // Remember that this register needs to added to the machine PHI node as
6808 // the input for this MBB.
6809 SmallVector<EVT, 4> ValueVTs;
6810 ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6811 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6812 EVT VT = ValueVTs[vti];
6813 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6814 for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6815 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6816 Reg += NumRegisters;
6817 }
6818 }
6819 }
6820 ConstantsOut.clear();
6821 }
6822