1 //===--- HexagonEarlyIfConv.cpp -------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements a Hexagon-specific if-conversion pass that runs on the
11 // SSA form.
12 // In SSA it is not straightforward to represent instructions that condi-
13 // tionally define registers, since a conditionally-defined register may
14 // only be used under the same condition on which the definition was based.
15 // To avoid complications of this nature, this patch will only generate
16 // predicated stores, and speculate other instructions from the "if-conver-
17 // ted" block.
18 // The code will recognize CFG patterns where a block with a conditional
19 // branch "splits" into a "true block" and a "false block". Either of these
20 // could be omitted (in case of a triangle, for example).
21 // If after conversion of the side block(s) the CFG allows it, the resul-
22 // ting blocks may be merged. If the "join" block contained PHI nodes, they
23 // will be replaced with MUX (or MUX-like) instructions to maintain the
24 // semantics of the PHI.
25 //
26 // Example:
27 //
28 // %vreg40<def> = L2_loadrub_io %vreg39<kill>, 1
29 // %vreg41<def> = S2_tstbit_i %vreg40<kill>, 0
30 // J2_jumpt %vreg41<kill>, <BB#5>, %PC<imp-def,dead>
31 // J2_jump <BB#4>, %PC<imp-def,dead>
32 // Successors according to CFG: BB#4(62) BB#5(62)
33 //
34 // BB#4: derived from LLVM BB %if.then
35 // Predecessors according to CFG: BB#3
36 // %vreg11<def> = A2_addp %vreg6, %vreg10
37 // S2_storerd_io %vreg32, 16, %vreg11
38 // Successors according to CFG: BB#5
39 //
40 // BB#5: derived from LLVM BB %if.end
41 // Predecessors according to CFG: BB#3 BB#4
42 // %vreg12<def> = PHI %vreg6, <BB#3>, %vreg11, <BB#4>
43 // %vreg13<def> = A2_addp %vreg7, %vreg12
44 // %vreg42<def> = C2_cmpeqi %vreg9, 10
45 // J2_jumpf %vreg42<kill>, <BB#3>, %PC<imp-def,dead>
46 // J2_jump <BB#6>, %PC<imp-def,dead>
47 // Successors according to CFG: BB#6(4) BB#3(124)
48 //
49 // would become:
50 //
51 // %vreg40<def> = L2_loadrub_io %vreg39<kill>, 1
52 // %vreg41<def> = S2_tstbit_i %vreg40<kill>, 0
53 // spec-> %vreg11<def> = A2_addp %vreg6, %vreg10
54 // pred-> S2_pstorerdf_io %vreg41, %vreg32, 16, %vreg11
55 // %vreg46<def> = MUX64_rr %vreg41, %vreg6, %vreg11
56 // %vreg13<def> = A2_addp %vreg7, %vreg46
57 // %vreg42<def> = C2_cmpeqi %vreg9, 10
58 // J2_jumpf %vreg42<kill>, <BB#3>, %PC<imp-def,dead>
59 // J2_jump <BB#6>, %PC<imp-def,dead>
60 // Successors according to CFG: BB#6 BB#3
61
62 #define DEBUG_TYPE "hexagon-eif"
63
64 #include "llvm/ADT/DenseSet.h"
65 #include "llvm/ADT/SetVector.h"
66 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
67 #include "llvm/CodeGen/MachineDominators.h"
68 #include "llvm/CodeGen/MachineFunctionPass.h"
69 #include "llvm/CodeGen/MachineInstrBuilder.h"
70 #include "llvm/CodeGen/MachineLoopInfo.h"
71 #include "llvm/CodeGen/MachineRegisterInfo.h"
72 #include "llvm/CodeGen/Passes.h"
73 #include "llvm/Support/CommandLine.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/raw_ostream.h"
76 #include "llvm/Target/TargetInstrInfo.h"
77 #include "llvm/Target/TargetMachine.h"
78 #include "HexagonTargetMachine.h"
79
80 #include <functional>
81
82 using namespace llvm;
83
84 namespace llvm {
85 FunctionPass *createHexagonEarlyIfConversion();
86 void initializeHexagonEarlyIfConversionPass(PassRegistry& Registry);
87 }
88
89 namespace {
90 cl::opt<bool> EnableHexagonBP("enable-hexagon-br-prob", cl::Hidden,
91 cl::init(false), cl::desc("Enable branch probability info"));
92 cl::opt<unsigned> SizeLimit("eif-limit", cl::init(6), cl::Hidden,
93 cl::desc("Size limit in Hexagon early if-conversion"));
94
95 struct PrintMB {
PrintMB__anon2320980c0111::PrintMB96 PrintMB(const MachineBasicBlock *B) : MB(B) {}
97 const MachineBasicBlock *MB;
98 };
operator <<(raw_ostream & OS,const PrintMB & P)99 raw_ostream &operator<< (raw_ostream &OS, const PrintMB &P) {
100 if (!P.MB)
101 return OS << "<none>";
102 return OS << '#' << P.MB->getNumber();
103 }
104
105 struct FlowPattern {
FlowPattern__anon2320980c0111::FlowPattern106 FlowPattern() : SplitB(0), TrueB(0), FalseB(0), JoinB(0), PredR(0) {}
FlowPattern__anon2320980c0111::FlowPattern107 FlowPattern(MachineBasicBlock *B, unsigned PR, MachineBasicBlock *TB,
108 MachineBasicBlock *FB, MachineBasicBlock *JB)
109 : SplitB(B), TrueB(TB), FalseB(FB), JoinB(JB), PredR(PR) {}
110
111 MachineBasicBlock *SplitB;
112 MachineBasicBlock *TrueB, *FalseB, *JoinB;
113 unsigned PredR;
114 };
115 struct PrintFP {
PrintFP__anon2320980c0111::PrintFP116 PrintFP(const FlowPattern &P, const TargetRegisterInfo &T)
117 : FP(P), TRI(T) {}
118 const FlowPattern &FP;
119 const TargetRegisterInfo &TRI;
120 friend raw_ostream &operator<< (raw_ostream &OS, const PrintFP &P);
121 };
122 raw_ostream &operator<<(raw_ostream &OS,
123 const PrintFP &P) LLVM_ATTRIBUTE_UNUSED;
operator <<(raw_ostream & OS,const PrintFP & P)124 raw_ostream &operator<<(raw_ostream &OS, const PrintFP &P) {
125 OS << "{ SplitB:" << PrintMB(P.FP.SplitB)
126 << ", PredR:" << PrintReg(P.FP.PredR, &P.TRI)
127 << ", TrueB:" << PrintMB(P.FP.TrueB) << ", FalseB:"
128 << PrintMB(P.FP.FalseB)
129 << ", JoinB:" << PrintMB(P.FP.JoinB) << " }";
130 return OS;
131 }
132
133 class HexagonEarlyIfConversion : public MachineFunctionPass {
134 public:
135 static char ID;
HexagonEarlyIfConversion()136 HexagonEarlyIfConversion() : MachineFunctionPass(ID),
137 TII(0), TRI(0), MFN(0), MRI(0), MDT(0), MLI(0) {
138 initializeHexagonEarlyIfConversionPass(*PassRegistry::getPassRegistry());
139 }
getPassName() const140 const char *getPassName() const override {
141 return "Hexagon early if conversion";
142 }
getAnalysisUsage(AnalysisUsage & AU) const143 void getAnalysisUsage(AnalysisUsage &AU) const override {
144 AU.addRequired<MachineBranchProbabilityInfo>();
145 AU.addRequired<MachineDominatorTree>();
146 AU.addPreserved<MachineDominatorTree>();
147 AU.addRequired<MachineLoopInfo>();
148 MachineFunctionPass::getAnalysisUsage(AU);
149 }
150 bool runOnMachineFunction(MachineFunction &MF) override;
151
152 private:
153 typedef DenseSet<MachineBasicBlock*> BlockSetType;
154
155 bool isPreheader(const MachineBasicBlock *B) const;
156 bool matchFlowPattern(MachineBasicBlock *B, MachineLoop *L,
157 FlowPattern &FP);
158 bool visitBlock(MachineBasicBlock *B, MachineLoop *L);
159 bool visitLoop(MachineLoop *L);
160
161 bool hasEHLabel(const MachineBasicBlock *B) const;
162 bool hasUncondBranch(const MachineBasicBlock *B) const;
163 bool isValidCandidate(const MachineBasicBlock *B) const;
164 bool usesUndefVReg(const MachineInstr *MI) const;
165 bool isValid(const FlowPattern &FP) const;
166 unsigned countPredicateDefs(const MachineBasicBlock *B) const;
167 unsigned computePhiCost(MachineBasicBlock *B) const;
168 bool isProfitable(const FlowPattern &FP) const;
169 bool isPredicableStore(const MachineInstr *MI) const;
170 bool isSafeToSpeculate(const MachineInstr *MI) const;
171
172 unsigned getCondStoreOpcode(unsigned Opc, bool IfTrue) const;
173 void predicateInstr(MachineBasicBlock *ToB, MachineBasicBlock::iterator At,
174 MachineInstr *MI, unsigned PredR, bool IfTrue);
175 void predicateBlockNB(MachineBasicBlock *ToB,
176 MachineBasicBlock::iterator At, MachineBasicBlock *FromB,
177 unsigned PredR, bool IfTrue);
178
179 void updatePhiNodes(MachineBasicBlock *WhereB, const FlowPattern &FP);
180 void convert(const FlowPattern &FP);
181
182 void removeBlock(MachineBasicBlock *B);
183 void eliminatePhis(MachineBasicBlock *B);
184 void replacePhiEdges(MachineBasicBlock *OldB, MachineBasicBlock *NewB);
185 void mergeBlocks(MachineBasicBlock *PredB, MachineBasicBlock *SuccB);
186 void simplifyFlowGraph(const FlowPattern &FP);
187
188 const TargetInstrInfo *TII;
189 const TargetRegisterInfo *TRI;
190 MachineFunction *MFN;
191 MachineRegisterInfo *MRI;
192 MachineDominatorTree *MDT;
193 MachineLoopInfo *MLI;
194 BlockSetType Deleted;
195 const MachineBranchProbabilityInfo *MBPI;
196 };
197
198 char HexagonEarlyIfConversion::ID = 0;
199 }
200
201 INITIALIZE_PASS(HexagonEarlyIfConversion, "hexagon-eif",
202 "Hexagon early if conversion", false, false)
203
isPreheader(const MachineBasicBlock * B) const204 bool HexagonEarlyIfConversion::isPreheader(const MachineBasicBlock *B) const {
205 if (B->succ_size() != 1)
206 return false;
207 MachineBasicBlock *SB = *B->succ_begin();
208 MachineLoop *L = MLI->getLoopFor(SB);
209 return L && SB == L->getHeader();
210 }
211
212
matchFlowPattern(MachineBasicBlock * B,MachineLoop * L,FlowPattern & FP)213 bool HexagonEarlyIfConversion::matchFlowPattern(MachineBasicBlock *B,
214 MachineLoop *L, FlowPattern &FP) {
215 DEBUG(dbgs() << "Checking flow pattern at BB#" << B->getNumber() << "\n");
216
217 // Interested only in conditional branches, no .new, no new-value, etc.
218 // Check the terminators directly, it's easier than handling all responses
219 // from AnalyzeBranch.
220 MachineBasicBlock *TB = 0, *FB = 0;
221 MachineBasicBlock::const_iterator T1I = B->getFirstTerminator();
222 if (T1I == B->end())
223 return false;
224 unsigned Opc = T1I->getOpcode();
225 if (Opc != Hexagon::J2_jumpt && Opc != Hexagon::J2_jumpf)
226 return false;
227 unsigned PredR = T1I->getOperand(0).getReg();
228
229 // Get the layout successor, or 0 if B does not have one.
230 MachineFunction::iterator NextBI = std::next(MachineFunction::iterator(B));
231 MachineBasicBlock *NextB = (NextBI != MFN->end()) ? &*NextBI : 0;
232
233 MachineBasicBlock *T1B = T1I->getOperand(1).getMBB();
234 MachineBasicBlock::const_iterator T2I = std::next(T1I);
235 // The second terminator should be an unconditional branch.
236 assert(T2I == B->end() || T2I->getOpcode() == Hexagon::J2_jump);
237 MachineBasicBlock *T2B = (T2I == B->end()) ? NextB
238 : T2I->getOperand(0).getMBB();
239 if (T1B == T2B) {
240 // XXX merge if T1B == NextB, or convert branch to unconditional.
241 // mark as diamond with both sides equal?
242 return false;
243 }
244 // Loop could be null for both.
245 if (MLI->getLoopFor(T1B) != L || MLI->getLoopFor(T2B) != L)
246 return false;
247
248 // Record the true/false blocks in such a way that "true" means "if (PredR)",
249 // and "false" means "if (!PredR)".
250 if (Opc == Hexagon::J2_jumpt)
251 TB = T1B, FB = T2B;
252 else
253 TB = T2B, FB = T1B;
254
255 if (!MDT->properlyDominates(B, TB) || !MDT->properlyDominates(B, FB))
256 return false;
257
258 // Detect triangle first. In case of a triangle, one of the blocks TB/FB
259 // can fall through into the other, in other words, it will be executed
260 // in both cases. We only want to predicate the block that is executed
261 // conditionally.
262 unsigned TNP = TB->pred_size(), FNP = FB->pred_size();
263 unsigned TNS = TB->succ_size(), FNS = FB->succ_size();
264
265 // A block is predicable if it has one predecessor (it must be B), and
266 // it has a single successor. In fact, the block has to end either with
267 // an unconditional branch (which can be predicated), or with a fall-
268 // through.
269 bool TOk = (TNP == 1) && (TNS == 1);
270 bool FOk = (FNP == 1) && (FNS == 1);
271
272 // If neither is predicable, there is nothing interesting.
273 if (!TOk && !FOk)
274 return false;
275
276 MachineBasicBlock *TSB = (TNS > 0) ? *TB->succ_begin() : 0;
277 MachineBasicBlock *FSB = (FNS > 0) ? *FB->succ_begin() : 0;
278 MachineBasicBlock *JB = 0;
279
280 if (TOk) {
281 if (FOk) {
282 if (TSB == FSB)
283 JB = TSB;
284 // Diamond: "if (P) then TB; else FB;".
285 } else {
286 // TOk && !FOk
287 if (TSB == FB) {
288 JB = FB;
289 FB = 0;
290 }
291 }
292 } else {
293 // !TOk && FOk (at least one must be true by now).
294 if (FSB == TB) {
295 JB = TB;
296 TB = 0;
297 }
298 }
299 // Don't try to predicate loop preheaders.
300 if ((TB && isPreheader(TB)) || (FB && isPreheader(FB))) {
301 DEBUG(dbgs() << "One of blocks " << PrintMB(TB) << ", " << PrintMB(FB)
302 << " is a loop preheader. Skipping.\n");
303 return false;
304 }
305
306 FP = FlowPattern(B, PredR, TB, FB, JB);
307 DEBUG(dbgs() << "Detected " << PrintFP(FP, *TRI) << "\n");
308 return true;
309 }
310
311
312 // KLUDGE: HexagonInstrInfo::AnalyzeBranch won't work on a block that
313 // contains EH_LABEL.
hasEHLabel(const MachineBasicBlock * B) const314 bool HexagonEarlyIfConversion::hasEHLabel(const MachineBasicBlock *B) const {
315 for (auto &I : *B)
316 if (I.isEHLabel())
317 return true;
318 return false;
319 }
320
321
322 // KLUDGE: HexagonInstrInfo::AnalyzeBranch may be unable to recognize
323 // that a block can never fall-through.
hasUncondBranch(const MachineBasicBlock * B) const324 bool HexagonEarlyIfConversion::hasUncondBranch(const MachineBasicBlock *B)
325 const {
326 MachineBasicBlock::const_iterator I = B->getFirstTerminator(), E = B->end();
327 while (I != E) {
328 if (I->isBarrier())
329 return true;
330 ++I;
331 }
332 return false;
333 }
334
335
isValidCandidate(const MachineBasicBlock * B) const336 bool HexagonEarlyIfConversion::isValidCandidate(const MachineBasicBlock *B)
337 const {
338 if (!B)
339 return true;
340 if (B->isEHPad() || B->hasAddressTaken())
341 return false;
342 if (B->succ_size() == 0)
343 return false;
344
345 for (auto &MI : *B) {
346 if (MI.isDebugValue())
347 continue;
348 if (MI.isConditionalBranch())
349 return false;
350 unsigned Opc = MI.getOpcode();
351 bool IsJMP = (Opc == Hexagon::J2_jump);
352 if (!isPredicableStore(&MI) && !IsJMP && !isSafeToSpeculate(&MI))
353 return false;
354 // Look for predicate registers defined by this instruction. It's ok
355 // to speculate such an instruction, but the predicate register cannot
356 // be used outside of this block (or else it won't be possible to
357 // update the use of it after predication). PHI uses will be updated
358 // to use a result of a MUX, and a MUX cannot be created for predicate
359 // registers.
360 for (ConstMIOperands MO(MI); MO.isValid(); ++MO) {
361 if (!MO->isReg() || !MO->isDef())
362 continue;
363 unsigned R = MO->getReg();
364 if (!TargetRegisterInfo::isVirtualRegister(R))
365 continue;
366 if (MRI->getRegClass(R) != &Hexagon::PredRegsRegClass)
367 continue;
368 for (auto U = MRI->use_begin(R); U != MRI->use_end(); ++U)
369 if (U->getParent()->isPHI())
370 return false;
371 }
372 }
373 return true;
374 }
375
376
usesUndefVReg(const MachineInstr * MI) const377 bool HexagonEarlyIfConversion::usesUndefVReg(const MachineInstr *MI) const {
378 for (ConstMIOperands MO(*MI); MO.isValid(); ++MO) {
379 if (!MO->isReg() || !MO->isUse())
380 continue;
381 unsigned R = MO->getReg();
382 if (!TargetRegisterInfo::isVirtualRegister(R))
383 continue;
384 const MachineInstr *DefI = MRI->getVRegDef(R);
385 // "Undefined" virtual registers are actually defined via IMPLICIT_DEF.
386 assert(DefI && "Expecting a reaching def in MRI");
387 if (DefI->isImplicitDef())
388 return true;
389 }
390 return false;
391 }
392
393
isValid(const FlowPattern & FP) const394 bool HexagonEarlyIfConversion::isValid(const FlowPattern &FP) const {
395 if (hasEHLabel(FP.SplitB)) // KLUDGE: see function definition
396 return false;
397 if (FP.TrueB && !isValidCandidate(FP.TrueB))
398 return false;
399 if (FP.FalseB && !isValidCandidate(FP.FalseB))
400 return false;
401 // Check the PHIs in the join block. If any of them use a register
402 // that is defined as IMPLICIT_DEF, do not convert this. This can
403 // legitimately happen if one side of the split never executes, but
404 // the compiler is unable to prove it. That side may then seem to
405 // provide an "undef" value to the join block, however it will never
406 // execute at run-time. If we convert this case, the "undef" will
407 // be used in a MUX instruction, and that may seem like actually
408 // using an undefined value to other optimizations. This could lead
409 // to trouble further down the optimization stream, cause assertions
410 // to fail, etc.
411 if (FP.JoinB) {
412 const MachineBasicBlock &B = *FP.JoinB;
413 for (auto &MI : B) {
414 if (!MI.isPHI())
415 break;
416 if (usesUndefVReg(&MI))
417 return false;
418 unsigned DefR = MI.getOperand(0).getReg();
419 const TargetRegisterClass *RC = MRI->getRegClass(DefR);
420 if (RC == &Hexagon::PredRegsRegClass)
421 return false;
422 }
423 }
424 return true;
425 }
426
427
computePhiCost(MachineBasicBlock * B) const428 unsigned HexagonEarlyIfConversion::computePhiCost(MachineBasicBlock *B) const {
429 assert(B->pred_size() <= 2);
430 if (B->pred_size() < 2)
431 return 0;
432
433 unsigned Cost = 0;
434 MachineBasicBlock::const_iterator I, E = B->getFirstNonPHI();
435 for (I = B->begin(); I != E; ++I) {
436 const MachineOperand &RO1 = I->getOperand(1);
437 const MachineOperand &RO3 = I->getOperand(3);
438 assert(RO1.isReg() && RO3.isReg());
439 // Must have a MUX if the phi uses a subregister.
440 if (RO1.getSubReg() != 0 || RO3.getSubReg() != 0) {
441 Cost++;
442 continue;
443 }
444 MachineInstr *Def1 = MRI->getVRegDef(RO1.getReg());
445 MachineInstr *Def3 = MRI->getVRegDef(RO3.getReg());
446 if (!TII->isPredicable(*Def1) || !TII->isPredicable(*Def3))
447 Cost++;
448 }
449 return Cost;
450 }
451
452
countPredicateDefs(const MachineBasicBlock * B) const453 unsigned HexagonEarlyIfConversion::countPredicateDefs(
454 const MachineBasicBlock *B) const {
455 unsigned PredDefs = 0;
456 for (auto &MI : *B) {
457 for (ConstMIOperands MO(MI); MO.isValid(); ++MO) {
458 if (!MO->isReg() || !MO->isDef())
459 continue;
460 unsigned R = MO->getReg();
461 if (!TargetRegisterInfo::isVirtualRegister(R))
462 continue;
463 if (MRI->getRegClass(R) == &Hexagon::PredRegsRegClass)
464 PredDefs++;
465 }
466 }
467 return PredDefs;
468 }
469
470
isProfitable(const FlowPattern & FP) const471 bool HexagonEarlyIfConversion::isProfitable(const FlowPattern &FP) const {
472 if (FP.TrueB && FP.FalseB) {
473
474 // Do not IfCovert if the branch is one sided.
475 if (MBPI) {
476 BranchProbability Prob(9, 10);
477 if (MBPI->getEdgeProbability(FP.SplitB, FP.TrueB) > Prob)
478 return false;
479 if (MBPI->getEdgeProbability(FP.SplitB, FP.FalseB) > Prob)
480 return false;
481 }
482
483 // If both sides are predicable, convert them if they join, and the
484 // join block has no other predecessors.
485 MachineBasicBlock *TSB = *FP.TrueB->succ_begin();
486 MachineBasicBlock *FSB = *FP.FalseB->succ_begin();
487 if (TSB != FSB)
488 return false;
489 if (TSB->pred_size() != 2)
490 return false;
491 }
492
493 // Calculate the total size of the predicated blocks.
494 // Assume instruction counts without branches to be the approximation of
495 // the code size. If the predicated blocks are smaller than a packet size,
496 // approximate the spare room in the packet that could be filled with the
497 // predicated/speculated instructions.
498 unsigned TS = 0, FS = 0, Spare = 0;
499 if (FP.TrueB) {
500 TS = std::distance(FP.TrueB->begin(), FP.TrueB->getFirstTerminator());
501 if (TS < HEXAGON_PACKET_SIZE)
502 Spare += HEXAGON_PACKET_SIZE-TS;
503 }
504 if (FP.FalseB) {
505 FS = std::distance(FP.FalseB->begin(), FP.FalseB->getFirstTerminator());
506 if (FS < HEXAGON_PACKET_SIZE)
507 Spare += HEXAGON_PACKET_SIZE-TS;
508 }
509 unsigned TotalIn = TS+FS;
510 DEBUG(dbgs() << "Total number of instructions to be predicated/speculated: "
511 << TotalIn << ", spare room: " << Spare << "\n");
512 if (TotalIn >= SizeLimit+Spare)
513 return false;
514
515 // Count the number of PHI nodes that will need to be updated (converted
516 // to MUX). Those can be later converted to predicated instructions, so
517 // they aren't always adding extra cost.
518 // KLUDGE: Also, count the number of predicate register definitions in
519 // each block. The scheduler may increase the pressure of these and cause
520 // expensive spills (e.g. bitmnp01).
521 unsigned TotalPh = 0;
522 unsigned PredDefs = countPredicateDefs(FP.SplitB);
523 if (FP.JoinB) {
524 TotalPh = computePhiCost(FP.JoinB);
525 PredDefs += countPredicateDefs(FP.JoinB);
526 } else {
527 if (FP.TrueB && FP.TrueB->succ_size() > 0) {
528 MachineBasicBlock *SB = *FP.TrueB->succ_begin();
529 TotalPh += computePhiCost(SB);
530 PredDefs += countPredicateDefs(SB);
531 }
532 if (FP.FalseB && FP.FalseB->succ_size() > 0) {
533 MachineBasicBlock *SB = *FP.FalseB->succ_begin();
534 TotalPh += computePhiCost(SB);
535 PredDefs += countPredicateDefs(SB);
536 }
537 }
538 DEBUG(dbgs() << "Total number of extra muxes from converted phis: "
539 << TotalPh << "\n");
540 if (TotalIn+TotalPh >= SizeLimit+Spare)
541 return false;
542
543 DEBUG(dbgs() << "Total number of predicate registers: " << PredDefs << "\n");
544 if (PredDefs > 4)
545 return false;
546
547 return true;
548 }
549
550
visitBlock(MachineBasicBlock * B,MachineLoop * L)551 bool HexagonEarlyIfConversion::visitBlock(MachineBasicBlock *B,
552 MachineLoop *L) {
553 bool Changed = false;
554
555 // Visit all dominated blocks from the same loop first, then process B.
556 MachineDomTreeNode *N = MDT->getNode(B);
557 typedef GraphTraits<MachineDomTreeNode*> GTN;
558 // We will change CFG/DT during this traversal, so take precautions to
559 // avoid problems related to invalidated iterators. In fact, processing
560 // a child C of B cannot cause another child to be removed, but it can
561 // cause a new child to be added (which was a child of C before C itself
562 // was removed. This new child C, however, would have been processed
563 // prior to processing B, so there is no need to process it again.
564 // Simply keep a list of children of B, and traverse that list.
565 typedef SmallVector<MachineDomTreeNode*,4> DTNodeVectType;
566 DTNodeVectType Cn(GTN::child_begin(N), GTN::child_end(N));
567 for (DTNodeVectType::iterator I = Cn.begin(), E = Cn.end(); I != E; ++I) {
568 MachineBasicBlock *SB = (*I)->getBlock();
569 if (!Deleted.count(SB))
570 Changed |= visitBlock(SB, L);
571 }
572 // When walking down the dominator tree, we want to traverse through
573 // blocks from nested (other) loops, because they can dominate blocks
574 // that are in L. Skip the non-L blocks only after the tree traversal.
575 if (MLI->getLoopFor(B) != L)
576 return Changed;
577
578 FlowPattern FP;
579 if (!matchFlowPattern(B, L, FP))
580 return Changed;
581
582 if (!isValid(FP)) {
583 DEBUG(dbgs() << "Conversion is not valid\n");
584 return Changed;
585 }
586 if (!isProfitable(FP)) {
587 DEBUG(dbgs() << "Conversion is not profitable\n");
588 return Changed;
589 }
590
591 convert(FP);
592 simplifyFlowGraph(FP);
593 return true;
594 }
595
596
visitLoop(MachineLoop * L)597 bool HexagonEarlyIfConversion::visitLoop(MachineLoop *L) {
598 MachineBasicBlock *HB = L ? L->getHeader() : 0;
599 DEBUG((L ? dbgs() << "Visiting loop H:" << PrintMB(HB)
600 : dbgs() << "Visiting function") << "\n");
601 bool Changed = false;
602 if (L) {
603 for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I)
604 Changed |= visitLoop(*I);
605 }
606
607 MachineBasicBlock *EntryB = GraphTraits<MachineFunction*>::getEntryNode(MFN);
608 Changed |= visitBlock(L ? HB : EntryB, L);
609 return Changed;
610 }
611
612
isPredicableStore(const MachineInstr * MI) const613 bool HexagonEarlyIfConversion::isPredicableStore(const MachineInstr *MI)
614 const {
615 // Exclude post-increment stores. Those return a value, so we cannot
616 // predicate them.
617 unsigned Opc = MI->getOpcode();
618 using namespace Hexagon;
619 switch (Opc) {
620 // Store byte:
621 case S2_storerb_io: case S4_storerb_rr:
622 case S2_storerbabs: case S4_storeirb_io: case S2_storerbgp:
623 // Store halfword:
624 case S2_storerh_io: case S4_storerh_rr:
625 case S2_storerhabs: case S4_storeirh_io: case S2_storerhgp:
626 // Store upper halfword:
627 case S2_storerf_io: case S4_storerf_rr:
628 case S2_storerfabs: case S2_storerfgp:
629 // Store word:
630 case S2_storeri_io: case S4_storeri_rr:
631 case S2_storeriabs: case S4_storeiri_io: case S2_storerigp:
632 // Store doubleword:
633 case S2_storerd_io: case S4_storerd_rr:
634 case S2_storerdabs: case S2_storerdgp:
635 return true;
636 }
637 return false;
638 }
639
640
isSafeToSpeculate(const MachineInstr * MI) const641 bool HexagonEarlyIfConversion::isSafeToSpeculate(const MachineInstr *MI)
642 const {
643 if (MI->mayLoad() || MI->mayStore())
644 return false;
645 if (MI->isCall() || MI->isBarrier() || MI->isBranch())
646 return false;
647 if (MI->hasUnmodeledSideEffects())
648 return false;
649
650 return true;
651 }
652
653
getCondStoreOpcode(unsigned Opc,bool IfTrue) const654 unsigned HexagonEarlyIfConversion::getCondStoreOpcode(unsigned Opc,
655 bool IfTrue) const {
656 // Exclude post-increment stores.
657 using namespace Hexagon;
658 switch (Opc) {
659 case S2_storerb_io:
660 return IfTrue ? S2_pstorerbt_io : S2_pstorerbf_io;
661 case S4_storerb_rr:
662 return IfTrue ? S4_pstorerbt_rr : S4_pstorerbf_rr;
663 case S2_storerbabs:
664 case S2_storerbgp:
665 return IfTrue ? S4_pstorerbt_abs : S4_pstorerbf_abs;
666 case S4_storeirb_io:
667 return IfTrue ? S4_storeirbt_io : S4_storeirbf_io;
668 case S2_storerh_io:
669 return IfTrue ? S2_pstorerht_io : S2_pstorerhf_io;
670 case S4_storerh_rr:
671 return IfTrue ? S4_pstorerht_rr : S4_pstorerhf_rr;
672 case S2_storerhabs:
673 case S2_storerhgp:
674 return IfTrue ? S4_pstorerht_abs : S4_pstorerhf_abs;
675 case S2_storerf_io:
676 return IfTrue ? S2_pstorerft_io : S2_pstorerff_io;
677 case S4_storerf_rr:
678 return IfTrue ? S4_pstorerft_rr : S4_pstorerff_rr;
679 case S2_storerfabs:
680 case S2_storerfgp:
681 return IfTrue ? S4_pstorerft_abs : S4_pstorerff_abs;
682 case S4_storeirh_io:
683 return IfTrue ? S4_storeirht_io : S4_storeirhf_io;
684 case S2_storeri_io:
685 return IfTrue ? S2_pstorerit_io : S2_pstorerif_io;
686 case S4_storeri_rr:
687 return IfTrue ? S4_pstorerit_rr : S4_pstorerif_rr;
688 case S2_storeriabs:
689 case S2_storerigp:
690 return IfTrue ? S4_pstorerit_abs : S4_pstorerif_abs;
691 case S4_storeiri_io:
692 return IfTrue ? S4_storeirit_io : S4_storeirif_io;
693 case S2_storerd_io:
694 return IfTrue ? S2_pstorerdt_io : S2_pstorerdf_io;
695 case S4_storerd_rr:
696 return IfTrue ? S4_pstorerdt_rr : S4_pstorerdf_rr;
697 case S2_storerdabs:
698 case S2_storerdgp:
699 return IfTrue ? S4_pstorerdt_abs : S4_pstorerdf_abs;
700 }
701 llvm_unreachable("Unexpected opcode");
702 return 0;
703 }
704
705
predicateInstr(MachineBasicBlock * ToB,MachineBasicBlock::iterator At,MachineInstr * MI,unsigned PredR,bool IfTrue)706 void HexagonEarlyIfConversion::predicateInstr(MachineBasicBlock *ToB,
707 MachineBasicBlock::iterator At, MachineInstr *MI,
708 unsigned PredR, bool IfTrue) {
709 DebugLoc DL;
710 if (At != ToB->end())
711 DL = At->getDebugLoc();
712 else if (!ToB->empty())
713 DL = ToB->back().getDebugLoc();
714
715 unsigned Opc = MI->getOpcode();
716
717 if (isPredicableStore(MI)) {
718 unsigned COpc = getCondStoreOpcode(Opc, IfTrue);
719 assert(COpc);
720 MachineInstrBuilder MIB = BuildMI(*ToB, At, DL, TII->get(COpc))
721 .addReg(PredR);
722 for (MIOperands MO(*MI); MO.isValid(); ++MO)
723 MIB.addOperand(*MO);
724
725 // Set memory references.
726 MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
727 MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
728 MIB.setMemRefs(MMOBegin, MMOEnd);
729
730 MI->eraseFromParent();
731 return;
732 }
733
734 if (Opc == Hexagon::J2_jump) {
735 MachineBasicBlock *TB = MI->getOperand(0).getMBB();
736 const MCInstrDesc &D = TII->get(IfTrue ? Hexagon::J2_jumpt
737 : Hexagon::J2_jumpf);
738 BuildMI(*ToB, At, DL, D)
739 .addReg(PredR)
740 .addMBB(TB);
741 MI->eraseFromParent();
742 return;
743 }
744
745 // Print the offending instruction unconditionally as we are about to
746 // abort.
747 dbgs() << *MI;
748 llvm_unreachable("Unexpected instruction");
749 }
750
751
752 // Predicate/speculate non-branch instructions from FromB into block ToB.
753 // Leave the branches alone, they will be handled later. Btw, at this point
754 // FromB should have at most one branch, and it should be unconditional.
predicateBlockNB(MachineBasicBlock * ToB,MachineBasicBlock::iterator At,MachineBasicBlock * FromB,unsigned PredR,bool IfTrue)755 void HexagonEarlyIfConversion::predicateBlockNB(MachineBasicBlock *ToB,
756 MachineBasicBlock::iterator At, MachineBasicBlock *FromB,
757 unsigned PredR, bool IfTrue) {
758 DEBUG(dbgs() << "Predicating block " << PrintMB(FromB) << "\n");
759 MachineBasicBlock::iterator End = FromB->getFirstTerminator();
760 MachineBasicBlock::iterator I, NextI;
761
762 for (I = FromB->begin(); I != End; I = NextI) {
763 assert(!I->isPHI());
764 NextI = std::next(I);
765 if (isSafeToSpeculate(&*I))
766 ToB->splice(At, FromB, I);
767 else
768 predicateInstr(ToB, At, &*I, PredR, IfTrue);
769 }
770 }
771
772
updatePhiNodes(MachineBasicBlock * WhereB,const FlowPattern & FP)773 void HexagonEarlyIfConversion::updatePhiNodes(MachineBasicBlock *WhereB,
774 const FlowPattern &FP) {
775 // Visit all PHI nodes in the WhereB block and generate MUX instructions
776 // in the split block. Update the PHI nodes with the values of the MUX.
777 auto NonPHI = WhereB->getFirstNonPHI();
778 for (auto I = WhereB->begin(); I != NonPHI; ++I) {
779 MachineInstr *PN = &*I;
780 // Registers and subregisters corresponding to TrueB, FalseB and SplitB.
781 unsigned TR = 0, TSR = 0, FR = 0, FSR = 0, SR = 0, SSR = 0;
782 for (int i = PN->getNumOperands()-2; i > 0; i -= 2) {
783 const MachineOperand &RO = PN->getOperand(i), &BO = PN->getOperand(i+1);
784 if (BO.getMBB() == FP.SplitB)
785 SR = RO.getReg(), SSR = RO.getSubReg();
786 else if (BO.getMBB() == FP.TrueB)
787 TR = RO.getReg(), TSR = RO.getSubReg();
788 else if (BO.getMBB() == FP.FalseB)
789 FR = RO.getReg(), FSR = RO.getSubReg();
790 else
791 continue;
792 PN->RemoveOperand(i+1);
793 PN->RemoveOperand(i);
794 }
795 if (TR == 0)
796 TR = SR, TSR = SSR;
797 else if (FR == 0)
798 FR = SR, FSR = SSR;
799 assert(TR && FR);
800
801 using namespace Hexagon;
802 unsigned DR = PN->getOperand(0).getReg();
803 const TargetRegisterClass *RC = MRI->getRegClass(DR);
804 const MCInstrDesc &D = RC == &IntRegsRegClass ? TII->get(C2_mux)
805 : TII->get(MUX64_rr);
806
807 MachineBasicBlock::iterator MuxAt = FP.SplitB->getFirstTerminator();
808 DebugLoc DL;
809 if (MuxAt != FP.SplitB->end())
810 DL = MuxAt->getDebugLoc();
811 unsigned MuxR = MRI->createVirtualRegister(RC);
812 BuildMI(*FP.SplitB, MuxAt, DL, D, MuxR)
813 .addReg(FP.PredR)
814 .addReg(TR, 0, TSR)
815 .addReg(FR, 0, FSR);
816
817 PN->addOperand(MachineOperand::CreateReg(MuxR, false));
818 PN->addOperand(MachineOperand::CreateMBB(FP.SplitB));
819 }
820 }
821
822
convert(const FlowPattern & FP)823 void HexagonEarlyIfConversion::convert(const FlowPattern &FP) {
824 MachineBasicBlock *TSB = 0, *FSB = 0;
825 MachineBasicBlock::iterator OldTI = FP.SplitB->getFirstTerminator();
826 assert(OldTI != FP.SplitB->end());
827 DebugLoc DL = OldTI->getDebugLoc();
828
829 if (FP.TrueB) {
830 TSB = *FP.TrueB->succ_begin();
831 predicateBlockNB(FP.SplitB, OldTI, FP.TrueB, FP.PredR, true);
832 }
833 if (FP.FalseB) {
834 FSB = *FP.FalseB->succ_begin();
835 MachineBasicBlock::iterator At = FP.SplitB->getFirstTerminator();
836 predicateBlockNB(FP.SplitB, At, FP.FalseB, FP.PredR, false);
837 }
838
839 // Regenerate new terminators in the split block and update the successors.
840 // First, remember any information that may be needed later and remove the
841 // existing terminators/successors from the split block.
842 MachineBasicBlock *SSB = 0;
843 FP.SplitB->erase(OldTI, FP.SplitB->end());
844 while (FP.SplitB->succ_size() > 0) {
845 MachineBasicBlock *T = *FP.SplitB->succ_begin();
846 // It's possible that the split block had a successor that is not a pre-
847 // dicated block. This could only happen if there was only one block to
848 // be predicated. Example:
849 // split_b:
850 // if (p) jump true_b
851 // jump unrelated2_b
852 // unrelated1_b:
853 // ...
854 // unrelated2_b: ; can have other predecessors, so it's not "false_b"
855 // jump other_b
856 // true_b: ; only reachable from split_b, can be predicated
857 // ...
858 //
859 // Find this successor (SSB) if it exists.
860 if (T != FP.TrueB && T != FP.FalseB) {
861 assert(!SSB);
862 SSB = T;
863 }
864 FP.SplitB->removeSuccessor(FP.SplitB->succ_begin());
865 }
866
867 // Insert new branches and update the successors of the split block. This
868 // may create unconditional branches to the layout successor, etc., but
869 // that will be cleaned up later. For now, make sure that correct code is
870 // generated.
871 if (FP.JoinB) {
872 assert(!SSB || SSB == FP.JoinB);
873 BuildMI(*FP.SplitB, FP.SplitB->end(), DL, TII->get(Hexagon::J2_jump))
874 .addMBB(FP.JoinB);
875 FP.SplitB->addSuccessor(FP.JoinB);
876 } else {
877 bool HasBranch = false;
878 if (TSB) {
879 BuildMI(*FP.SplitB, FP.SplitB->end(), DL, TII->get(Hexagon::J2_jumpt))
880 .addReg(FP.PredR)
881 .addMBB(TSB);
882 FP.SplitB->addSuccessor(TSB);
883 HasBranch = true;
884 }
885 if (FSB) {
886 const MCInstrDesc &D = HasBranch ? TII->get(Hexagon::J2_jump)
887 : TII->get(Hexagon::J2_jumpf);
888 MachineInstrBuilder MIB = BuildMI(*FP.SplitB, FP.SplitB->end(), DL, D);
889 if (!HasBranch)
890 MIB.addReg(FP.PredR);
891 MIB.addMBB(FSB);
892 FP.SplitB->addSuccessor(FSB);
893 }
894 if (SSB) {
895 // This cannot happen if both TSB and FSB are set. [TF]SB are the
896 // successor blocks of the TrueB and FalseB (or null of the TrueB
897 // or FalseB block is null). SSB is the potential successor block
898 // of the SplitB that is neither TrueB nor FalseB.
899 BuildMI(*FP.SplitB, FP.SplitB->end(), DL, TII->get(Hexagon::J2_jump))
900 .addMBB(SSB);
901 FP.SplitB->addSuccessor(SSB);
902 }
903 }
904
905 // What is left to do is to update the PHI nodes that could have entries
906 // referring to predicated blocks.
907 if (FP.JoinB) {
908 updatePhiNodes(FP.JoinB, FP);
909 } else {
910 if (TSB)
911 updatePhiNodes(TSB, FP);
912 if (FSB)
913 updatePhiNodes(FSB, FP);
914 // Nothing to update in SSB, since SSB's predecessors haven't changed.
915 }
916 }
917
918
removeBlock(MachineBasicBlock * B)919 void HexagonEarlyIfConversion::removeBlock(MachineBasicBlock *B) {
920 DEBUG(dbgs() << "Removing block " << PrintMB(B) << "\n");
921
922 // Transfer the immediate dominator information from B to its descendants.
923 MachineDomTreeNode *N = MDT->getNode(B);
924 MachineDomTreeNode *IDN = N->getIDom();
925 if (IDN) {
926 MachineBasicBlock *IDB = IDN->getBlock();
927 typedef GraphTraits<MachineDomTreeNode*> GTN;
928 typedef SmallVector<MachineDomTreeNode*,4> DTNodeVectType;
929 DTNodeVectType Cn(GTN::child_begin(N), GTN::child_end(N));
930 for (DTNodeVectType::iterator I = Cn.begin(), E = Cn.end(); I != E; ++I) {
931 MachineBasicBlock *SB = (*I)->getBlock();
932 MDT->changeImmediateDominator(SB, IDB);
933 }
934 }
935
936 while (B->succ_size() > 0)
937 B->removeSuccessor(B->succ_begin());
938
939 for (auto I = B->pred_begin(), E = B->pred_end(); I != E; ++I)
940 (*I)->removeSuccessor(B, true);
941
942 Deleted.insert(B);
943 MDT->eraseNode(B);
944 MFN->erase(B->getIterator());
945 }
946
947
eliminatePhis(MachineBasicBlock * B)948 void HexagonEarlyIfConversion::eliminatePhis(MachineBasicBlock *B) {
949 DEBUG(dbgs() << "Removing phi nodes from block " << PrintMB(B) << "\n");
950 MachineBasicBlock::iterator I, NextI, NonPHI = B->getFirstNonPHI();
951 for (I = B->begin(); I != NonPHI; I = NextI) {
952 NextI = std::next(I);
953 MachineInstr *PN = &*I;
954 assert(PN->getNumOperands() == 3 && "Invalid phi node");
955 MachineOperand &UO = PN->getOperand(1);
956 unsigned UseR = UO.getReg(), UseSR = UO.getSubReg();
957 unsigned DefR = PN->getOperand(0).getReg();
958 unsigned NewR = UseR;
959 if (UseSR) {
960 // MRI.replaceVregUsesWith does not allow to update the subregister,
961 // so instead of doing the use-iteration here, create a copy into a
962 // "non-subregistered" register.
963 const DebugLoc &DL = PN->getDebugLoc();
964 const TargetRegisterClass *RC = MRI->getRegClass(DefR);
965 NewR = MRI->createVirtualRegister(RC);
966 NonPHI = BuildMI(*B, NonPHI, DL, TII->get(TargetOpcode::COPY), NewR)
967 .addReg(UseR, 0, UseSR);
968 }
969 MRI->replaceRegWith(DefR, NewR);
970 B->erase(I);
971 }
972 }
973
974
replacePhiEdges(MachineBasicBlock * OldB,MachineBasicBlock * NewB)975 void HexagonEarlyIfConversion::replacePhiEdges(MachineBasicBlock *OldB,
976 MachineBasicBlock *NewB) {
977 for (auto I = OldB->succ_begin(), E = OldB->succ_end(); I != E; ++I) {
978 MachineBasicBlock *SB = *I;
979 MachineBasicBlock::iterator P, N = SB->getFirstNonPHI();
980 for (P = SB->begin(); P != N; ++P) {
981 MachineInstr &PN = *P;
982 for (MIOperands MO(PN); MO.isValid(); ++MO)
983 if (MO->isMBB() && MO->getMBB() == OldB)
984 MO->setMBB(NewB);
985 }
986 }
987 }
988
989
mergeBlocks(MachineBasicBlock * PredB,MachineBasicBlock * SuccB)990 void HexagonEarlyIfConversion::mergeBlocks(MachineBasicBlock *PredB,
991 MachineBasicBlock *SuccB) {
992 DEBUG(dbgs() << "Merging blocks " << PrintMB(PredB) << " and "
993 << PrintMB(SuccB) << "\n");
994 bool TermOk = hasUncondBranch(SuccB);
995 eliminatePhis(SuccB);
996 TII->RemoveBranch(*PredB);
997 PredB->removeSuccessor(SuccB);
998 PredB->splice(PredB->end(), SuccB, SuccB->begin(), SuccB->end());
999 MachineBasicBlock::succ_iterator I, E = SuccB->succ_end();
1000 for (I = SuccB->succ_begin(); I != E; ++I)
1001 PredB->addSuccessor(*I);
1002 PredB->normalizeSuccProbs();
1003 replacePhiEdges(SuccB, PredB);
1004 removeBlock(SuccB);
1005 if (!TermOk)
1006 PredB->updateTerminator();
1007 }
1008
1009
simplifyFlowGraph(const FlowPattern & FP)1010 void HexagonEarlyIfConversion::simplifyFlowGraph(const FlowPattern &FP) {
1011 if (FP.TrueB)
1012 removeBlock(FP.TrueB);
1013 if (FP.FalseB)
1014 removeBlock(FP.FalseB);
1015
1016 FP.SplitB->updateTerminator();
1017 if (FP.SplitB->succ_size() != 1)
1018 return;
1019
1020 MachineBasicBlock *SB = *FP.SplitB->succ_begin();
1021 if (SB->pred_size() != 1)
1022 return;
1023
1024 // By now, the split block has only one successor (SB), and SB has only
1025 // one predecessor. We can try to merge them. We will need to update ter-
1026 // minators in FP.Split+SB, and that requires working AnalyzeBranch, which
1027 // fails on Hexagon for blocks that have EH_LABELs. However, if SB ends
1028 // with an unconditional branch, we won't need to touch the terminators.
1029 if (!hasEHLabel(SB) || hasUncondBranch(SB))
1030 mergeBlocks(FP.SplitB, SB);
1031 }
1032
1033
runOnMachineFunction(MachineFunction & MF)1034 bool HexagonEarlyIfConversion::runOnMachineFunction(MachineFunction &MF) {
1035 if (skipFunction(*MF.getFunction()))
1036 return false;
1037
1038 auto &ST = MF.getSubtarget();
1039 TII = ST.getInstrInfo();
1040 TRI = ST.getRegisterInfo();
1041 MFN = &MF;
1042 MRI = &MF.getRegInfo();
1043 MDT = &getAnalysis<MachineDominatorTree>();
1044 MLI = &getAnalysis<MachineLoopInfo>();
1045 MBPI = EnableHexagonBP ? &getAnalysis<MachineBranchProbabilityInfo>() :
1046 nullptr;
1047
1048 Deleted.clear();
1049 bool Changed = false;
1050
1051 for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end(); I != E; ++I)
1052 Changed |= visitLoop(*I);
1053 Changed |= visitLoop(0);
1054
1055 return Changed;
1056 }
1057
1058 //===----------------------------------------------------------------------===//
1059 // Public Constructor Functions
1060 //===----------------------------------------------------------------------===//
createHexagonEarlyIfConversion()1061 FunctionPass *llvm::createHexagonEarlyIfConversion() {
1062 return new HexagonEarlyIfConversion();
1063 }
1064
1065