• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- HexagonEarlyIfConv.cpp -------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements a Hexagon-specific if-conversion pass that runs on the
11 // SSA form.
12 // In SSA it is not straightforward to represent instructions that condi-
13 // tionally define registers, since a conditionally-defined register may
14 // only be used under the same condition on which the definition was based.
15 // To avoid complications of this nature, this patch will only generate
16 // predicated stores, and speculate other instructions from the "if-conver-
17 // ted" block.
18 // The code will recognize CFG patterns where a block with a conditional
19 // branch "splits" into a "true block" and a "false block". Either of these
20 // could be omitted (in case of a triangle, for example).
21 // If after conversion of the side block(s) the CFG allows it, the resul-
22 // ting blocks may be merged. If the "join" block contained PHI nodes, they
23 // will be replaced with MUX (or MUX-like) instructions to maintain the
24 // semantics of the PHI.
25 //
26 // Example:
27 //
28 //         %vreg40<def> = L2_loadrub_io %vreg39<kill>, 1
29 //         %vreg41<def> = S2_tstbit_i %vreg40<kill>, 0
30 //         J2_jumpt %vreg41<kill>, <BB#5>, %PC<imp-def,dead>
31 //         J2_jump <BB#4>, %PC<imp-def,dead>
32 //     Successors according to CFG: BB#4(62) BB#5(62)
33 //
34 // BB#4: derived from LLVM BB %if.then
35 //     Predecessors according to CFG: BB#3
36 //         %vreg11<def> = A2_addp %vreg6, %vreg10
37 //         S2_storerd_io %vreg32, 16, %vreg11
38 //     Successors according to CFG: BB#5
39 //
40 // BB#5: derived from LLVM BB %if.end
41 //     Predecessors according to CFG: BB#3 BB#4
42 //         %vreg12<def> = PHI %vreg6, <BB#3>, %vreg11, <BB#4>
43 //         %vreg13<def> = A2_addp %vreg7, %vreg12
44 //         %vreg42<def> = C2_cmpeqi %vreg9, 10
45 //         J2_jumpf %vreg42<kill>, <BB#3>, %PC<imp-def,dead>
46 //         J2_jump <BB#6>, %PC<imp-def,dead>
47 //     Successors according to CFG: BB#6(4) BB#3(124)
48 //
49 // would become:
50 //
51 //         %vreg40<def> = L2_loadrub_io %vreg39<kill>, 1
52 //         %vreg41<def> = S2_tstbit_i %vreg40<kill>, 0
53 // spec->  %vreg11<def> = A2_addp %vreg6, %vreg10
54 // pred->  S2_pstorerdf_io %vreg41, %vreg32, 16, %vreg11
55 //         %vreg46<def> = MUX64_rr %vreg41, %vreg6, %vreg11
56 //         %vreg13<def> = A2_addp %vreg7, %vreg46
57 //         %vreg42<def> = C2_cmpeqi %vreg9, 10
58 //         J2_jumpf %vreg42<kill>, <BB#3>, %PC<imp-def,dead>
59 //         J2_jump <BB#6>, %PC<imp-def,dead>
60 //     Successors according to CFG: BB#6 BB#3
61 
62 #define DEBUG_TYPE "hexagon-eif"
63 
64 #include "llvm/ADT/DenseSet.h"
65 #include "llvm/ADT/SetVector.h"
66 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
67 #include "llvm/CodeGen/MachineDominators.h"
68 #include "llvm/CodeGen/MachineFunctionPass.h"
69 #include "llvm/CodeGen/MachineInstrBuilder.h"
70 #include "llvm/CodeGen/MachineLoopInfo.h"
71 #include "llvm/CodeGen/MachineRegisterInfo.h"
72 #include "llvm/CodeGen/Passes.h"
73 #include "llvm/Support/CommandLine.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/raw_ostream.h"
76 #include "llvm/Target/TargetInstrInfo.h"
77 #include "llvm/Target/TargetMachine.h"
78 #include "HexagonTargetMachine.h"
79 
80 #include <functional>
81 
82 using namespace llvm;
83 
84 namespace llvm {
85   FunctionPass *createHexagonEarlyIfConversion();
86   void initializeHexagonEarlyIfConversionPass(PassRegistry& Registry);
87 }
88 
89 namespace {
90   cl::opt<bool> EnableHexagonBP("enable-hexagon-br-prob", cl::Hidden,
91     cl::init(false), cl::desc("Enable branch probability info"));
92   cl::opt<unsigned> SizeLimit("eif-limit", cl::init(6), cl::Hidden,
93     cl::desc("Size limit in Hexagon early if-conversion"));
94 
95   struct PrintMB {
PrintMB__anon2320980c0111::PrintMB96     PrintMB(const MachineBasicBlock *B) : MB(B) {}
97     const MachineBasicBlock *MB;
98   };
operator <<(raw_ostream & OS,const PrintMB & P)99   raw_ostream &operator<< (raw_ostream &OS, const PrintMB &P) {
100     if (!P.MB)
101       return OS << "<none>";
102     return OS << '#' << P.MB->getNumber();
103   }
104 
105   struct FlowPattern {
FlowPattern__anon2320980c0111::FlowPattern106     FlowPattern() : SplitB(0), TrueB(0), FalseB(0), JoinB(0), PredR(0) {}
FlowPattern__anon2320980c0111::FlowPattern107     FlowPattern(MachineBasicBlock *B, unsigned PR, MachineBasicBlock *TB,
108           MachineBasicBlock *FB, MachineBasicBlock *JB)
109       : SplitB(B), TrueB(TB), FalseB(FB), JoinB(JB), PredR(PR) {}
110 
111     MachineBasicBlock *SplitB;
112     MachineBasicBlock *TrueB, *FalseB, *JoinB;
113     unsigned PredR;
114   };
115   struct PrintFP {
PrintFP__anon2320980c0111::PrintFP116     PrintFP(const FlowPattern &P, const TargetRegisterInfo &T)
117       : FP(P), TRI(T) {}
118     const FlowPattern &FP;
119     const TargetRegisterInfo &TRI;
120     friend raw_ostream &operator<< (raw_ostream &OS, const PrintFP &P);
121   };
122   raw_ostream &operator<<(raw_ostream &OS,
123                           const PrintFP &P) LLVM_ATTRIBUTE_UNUSED;
operator <<(raw_ostream & OS,const PrintFP & P)124   raw_ostream &operator<<(raw_ostream &OS, const PrintFP &P) {
125     OS << "{ SplitB:" << PrintMB(P.FP.SplitB)
126        << ", PredR:" << PrintReg(P.FP.PredR, &P.TRI)
127        << ", TrueB:" << PrintMB(P.FP.TrueB) << ", FalseB:"
128        << PrintMB(P.FP.FalseB)
129        << ", JoinB:" << PrintMB(P.FP.JoinB) << " }";
130     return OS;
131   }
132 
133   class HexagonEarlyIfConversion : public MachineFunctionPass {
134   public:
135     static char ID;
HexagonEarlyIfConversion()136     HexagonEarlyIfConversion() : MachineFunctionPass(ID),
137         TII(0), TRI(0), MFN(0), MRI(0), MDT(0), MLI(0) {
138       initializeHexagonEarlyIfConversionPass(*PassRegistry::getPassRegistry());
139     }
getPassName() const140     const char *getPassName() const override {
141       return "Hexagon early if conversion";
142     }
getAnalysisUsage(AnalysisUsage & AU) const143     void getAnalysisUsage(AnalysisUsage &AU) const override {
144       AU.addRequired<MachineBranchProbabilityInfo>();
145       AU.addRequired<MachineDominatorTree>();
146       AU.addPreserved<MachineDominatorTree>();
147       AU.addRequired<MachineLoopInfo>();
148       MachineFunctionPass::getAnalysisUsage(AU);
149     }
150     bool runOnMachineFunction(MachineFunction &MF) override;
151 
152   private:
153     typedef DenseSet<MachineBasicBlock*> BlockSetType;
154 
155     bool isPreheader(const MachineBasicBlock *B) const;
156     bool matchFlowPattern(MachineBasicBlock *B, MachineLoop *L,
157           FlowPattern &FP);
158     bool visitBlock(MachineBasicBlock *B, MachineLoop *L);
159     bool visitLoop(MachineLoop *L);
160 
161     bool hasEHLabel(const MachineBasicBlock *B) const;
162     bool hasUncondBranch(const MachineBasicBlock *B) const;
163     bool isValidCandidate(const MachineBasicBlock *B) const;
164     bool usesUndefVReg(const MachineInstr *MI) const;
165     bool isValid(const FlowPattern &FP) const;
166     unsigned countPredicateDefs(const MachineBasicBlock *B) const;
167     unsigned computePhiCost(MachineBasicBlock *B) const;
168     bool isProfitable(const FlowPattern &FP) const;
169     bool isPredicableStore(const MachineInstr *MI) const;
170     bool isSafeToSpeculate(const MachineInstr *MI) const;
171 
172     unsigned getCondStoreOpcode(unsigned Opc, bool IfTrue) const;
173     void predicateInstr(MachineBasicBlock *ToB, MachineBasicBlock::iterator At,
174           MachineInstr *MI, unsigned PredR, bool IfTrue);
175     void predicateBlockNB(MachineBasicBlock *ToB,
176           MachineBasicBlock::iterator At, MachineBasicBlock *FromB,
177           unsigned PredR, bool IfTrue);
178 
179     void updatePhiNodes(MachineBasicBlock *WhereB, const FlowPattern &FP);
180     void convert(const FlowPattern &FP);
181 
182     void removeBlock(MachineBasicBlock *B);
183     void eliminatePhis(MachineBasicBlock *B);
184     void replacePhiEdges(MachineBasicBlock *OldB, MachineBasicBlock *NewB);
185     void mergeBlocks(MachineBasicBlock *PredB, MachineBasicBlock *SuccB);
186     void simplifyFlowGraph(const FlowPattern &FP);
187 
188     const TargetInstrInfo *TII;
189     const TargetRegisterInfo *TRI;
190     MachineFunction *MFN;
191     MachineRegisterInfo *MRI;
192     MachineDominatorTree *MDT;
193     MachineLoopInfo *MLI;
194     BlockSetType Deleted;
195     const MachineBranchProbabilityInfo *MBPI;
196   };
197 
198   char HexagonEarlyIfConversion::ID = 0;
199 }
200 
201 INITIALIZE_PASS(HexagonEarlyIfConversion, "hexagon-eif",
202   "Hexagon early if conversion", false, false)
203 
isPreheader(const MachineBasicBlock * B) const204 bool HexagonEarlyIfConversion::isPreheader(const MachineBasicBlock *B) const {
205   if (B->succ_size() != 1)
206     return false;
207   MachineBasicBlock *SB = *B->succ_begin();
208   MachineLoop *L = MLI->getLoopFor(SB);
209   return L && SB == L->getHeader();
210 }
211 
212 
matchFlowPattern(MachineBasicBlock * B,MachineLoop * L,FlowPattern & FP)213 bool HexagonEarlyIfConversion::matchFlowPattern(MachineBasicBlock *B,
214     MachineLoop *L, FlowPattern &FP) {
215   DEBUG(dbgs() << "Checking flow pattern at BB#" << B->getNumber() << "\n");
216 
217   // Interested only in conditional branches, no .new, no new-value, etc.
218   // Check the terminators directly, it's easier than handling all responses
219   // from AnalyzeBranch.
220   MachineBasicBlock *TB = 0, *FB = 0;
221   MachineBasicBlock::const_iterator T1I = B->getFirstTerminator();
222   if (T1I == B->end())
223     return false;
224   unsigned Opc = T1I->getOpcode();
225   if (Opc != Hexagon::J2_jumpt && Opc != Hexagon::J2_jumpf)
226     return false;
227   unsigned PredR = T1I->getOperand(0).getReg();
228 
229   // Get the layout successor, or 0 if B does not have one.
230   MachineFunction::iterator NextBI = std::next(MachineFunction::iterator(B));
231   MachineBasicBlock *NextB = (NextBI != MFN->end()) ? &*NextBI : 0;
232 
233   MachineBasicBlock *T1B = T1I->getOperand(1).getMBB();
234   MachineBasicBlock::const_iterator T2I = std::next(T1I);
235   // The second terminator should be an unconditional branch.
236   assert(T2I == B->end() || T2I->getOpcode() == Hexagon::J2_jump);
237   MachineBasicBlock *T2B = (T2I == B->end()) ? NextB
238                                              : T2I->getOperand(0).getMBB();
239   if (T1B == T2B) {
240     // XXX merge if T1B == NextB, or convert branch to unconditional.
241     // mark as diamond with both sides equal?
242     return false;
243   }
244   // Loop could be null for both.
245   if (MLI->getLoopFor(T1B) != L || MLI->getLoopFor(T2B) != L)
246     return false;
247 
248   // Record the true/false blocks in such a way that "true" means "if (PredR)",
249   // and "false" means "if (!PredR)".
250   if (Opc == Hexagon::J2_jumpt)
251     TB = T1B, FB = T2B;
252   else
253     TB = T2B, FB = T1B;
254 
255   if (!MDT->properlyDominates(B, TB) || !MDT->properlyDominates(B, FB))
256     return false;
257 
258   // Detect triangle first. In case of a triangle, one of the blocks TB/FB
259   // can fall through into the other, in other words, it will be executed
260   // in both cases. We only want to predicate the block that is executed
261   // conditionally.
262   unsigned TNP = TB->pred_size(), FNP = FB->pred_size();
263   unsigned TNS = TB->succ_size(), FNS = FB->succ_size();
264 
265   // A block is predicable if it has one predecessor (it must be B), and
266   // it has a single successor. In fact, the block has to end either with
267   // an unconditional branch (which can be predicated), or with a fall-
268   // through.
269   bool TOk = (TNP == 1) && (TNS == 1);
270   bool FOk = (FNP == 1) && (FNS == 1);
271 
272   // If neither is predicable, there is nothing interesting.
273   if (!TOk && !FOk)
274     return false;
275 
276   MachineBasicBlock *TSB = (TNS > 0) ? *TB->succ_begin() : 0;
277   MachineBasicBlock *FSB = (FNS > 0) ? *FB->succ_begin() : 0;
278   MachineBasicBlock *JB = 0;
279 
280   if (TOk) {
281     if (FOk) {
282       if (TSB == FSB)
283         JB = TSB;
284       // Diamond: "if (P) then TB; else FB;".
285     } else {
286       // TOk && !FOk
287       if (TSB == FB) {
288         JB = FB;
289         FB = 0;
290       }
291     }
292   } else {
293     // !TOk && FOk  (at least one must be true by now).
294     if (FSB == TB) {
295       JB = TB;
296       TB = 0;
297     }
298   }
299   // Don't try to predicate loop preheaders.
300   if ((TB && isPreheader(TB)) || (FB && isPreheader(FB))) {
301     DEBUG(dbgs() << "One of blocks " << PrintMB(TB) << ", " << PrintMB(FB)
302                  << " is a loop preheader. Skipping.\n");
303     return false;
304   }
305 
306   FP = FlowPattern(B, PredR, TB, FB, JB);
307   DEBUG(dbgs() << "Detected " << PrintFP(FP, *TRI) << "\n");
308   return true;
309 }
310 
311 
312 // KLUDGE: HexagonInstrInfo::AnalyzeBranch won't work on a block that
313 // contains EH_LABEL.
hasEHLabel(const MachineBasicBlock * B) const314 bool HexagonEarlyIfConversion::hasEHLabel(const MachineBasicBlock *B) const {
315   for (auto &I : *B)
316     if (I.isEHLabel())
317       return true;
318   return false;
319 }
320 
321 
322 // KLUDGE: HexagonInstrInfo::AnalyzeBranch may be unable to recognize
323 // that a block can never fall-through.
hasUncondBranch(const MachineBasicBlock * B) const324 bool HexagonEarlyIfConversion::hasUncondBranch(const MachineBasicBlock *B)
325       const {
326   MachineBasicBlock::const_iterator I = B->getFirstTerminator(), E = B->end();
327   while (I != E) {
328     if (I->isBarrier())
329       return true;
330     ++I;
331   }
332   return false;
333 }
334 
335 
isValidCandidate(const MachineBasicBlock * B) const336 bool HexagonEarlyIfConversion::isValidCandidate(const MachineBasicBlock *B)
337       const {
338   if (!B)
339     return true;
340   if (B->isEHPad() || B->hasAddressTaken())
341     return false;
342   if (B->succ_size() == 0)
343     return false;
344 
345   for (auto &MI : *B) {
346     if (MI.isDebugValue())
347       continue;
348     if (MI.isConditionalBranch())
349       return false;
350     unsigned Opc = MI.getOpcode();
351     bool IsJMP = (Opc == Hexagon::J2_jump);
352     if (!isPredicableStore(&MI) && !IsJMP && !isSafeToSpeculate(&MI))
353       return false;
354     // Look for predicate registers defined by this instruction. It's ok
355     // to speculate such an instruction, but the predicate register cannot
356     // be used outside of this block (or else it won't be possible to
357     // update the use of it after predication). PHI uses will be updated
358     // to use a result of a MUX, and a MUX cannot be created for predicate
359     // registers.
360     for (ConstMIOperands MO(MI); MO.isValid(); ++MO) {
361       if (!MO->isReg() || !MO->isDef())
362         continue;
363       unsigned R = MO->getReg();
364       if (!TargetRegisterInfo::isVirtualRegister(R))
365         continue;
366       if (MRI->getRegClass(R) != &Hexagon::PredRegsRegClass)
367         continue;
368       for (auto U = MRI->use_begin(R); U != MRI->use_end(); ++U)
369         if (U->getParent()->isPHI())
370           return false;
371     }
372   }
373   return true;
374 }
375 
376 
usesUndefVReg(const MachineInstr * MI) const377 bool HexagonEarlyIfConversion::usesUndefVReg(const MachineInstr *MI) const {
378   for (ConstMIOperands MO(*MI); MO.isValid(); ++MO) {
379     if (!MO->isReg() || !MO->isUse())
380       continue;
381     unsigned R = MO->getReg();
382     if (!TargetRegisterInfo::isVirtualRegister(R))
383       continue;
384     const MachineInstr *DefI = MRI->getVRegDef(R);
385     // "Undefined" virtual registers are actually defined via IMPLICIT_DEF.
386     assert(DefI && "Expecting a reaching def in MRI");
387     if (DefI->isImplicitDef())
388       return true;
389   }
390   return false;
391 }
392 
393 
isValid(const FlowPattern & FP) const394 bool HexagonEarlyIfConversion::isValid(const FlowPattern &FP) const {
395   if (hasEHLabel(FP.SplitB))  // KLUDGE: see function definition
396     return false;
397   if (FP.TrueB && !isValidCandidate(FP.TrueB))
398     return false;
399   if (FP.FalseB && !isValidCandidate(FP.FalseB))
400     return false;
401   // Check the PHIs in the join block. If any of them use a register
402   // that is defined as IMPLICIT_DEF, do not convert this. This can
403   // legitimately happen if one side of the split never executes, but
404   // the compiler is unable to prove it. That side may then seem to
405   // provide an "undef" value to the join block, however it will never
406   // execute at run-time. If we convert this case, the "undef" will
407   // be used in a MUX instruction, and that may seem like actually
408   // using an undefined value to other optimizations. This could lead
409   // to trouble further down the optimization stream, cause assertions
410   // to fail, etc.
411   if (FP.JoinB) {
412     const MachineBasicBlock &B = *FP.JoinB;
413     for (auto &MI : B) {
414       if (!MI.isPHI())
415         break;
416       if (usesUndefVReg(&MI))
417         return false;
418       unsigned DefR = MI.getOperand(0).getReg();
419       const TargetRegisterClass *RC = MRI->getRegClass(DefR);
420       if (RC == &Hexagon::PredRegsRegClass)
421         return false;
422     }
423   }
424   return true;
425 }
426 
427 
computePhiCost(MachineBasicBlock * B) const428 unsigned HexagonEarlyIfConversion::computePhiCost(MachineBasicBlock *B) const {
429   assert(B->pred_size() <= 2);
430   if (B->pred_size() < 2)
431     return 0;
432 
433   unsigned Cost = 0;
434   MachineBasicBlock::const_iterator I, E = B->getFirstNonPHI();
435   for (I = B->begin(); I != E; ++I) {
436     const MachineOperand &RO1 = I->getOperand(1);
437     const MachineOperand &RO3 = I->getOperand(3);
438     assert(RO1.isReg() && RO3.isReg());
439     // Must have a MUX if the phi uses a subregister.
440     if (RO1.getSubReg() != 0 || RO3.getSubReg() != 0) {
441       Cost++;
442       continue;
443     }
444     MachineInstr *Def1 = MRI->getVRegDef(RO1.getReg());
445     MachineInstr *Def3 = MRI->getVRegDef(RO3.getReg());
446     if (!TII->isPredicable(*Def1) || !TII->isPredicable(*Def3))
447       Cost++;
448   }
449   return Cost;
450 }
451 
452 
countPredicateDefs(const MachineBasicBlock * B) const453 unsigned HexagonEarlyIfConversion::countPredicateDefs(
454       const MachineBasicBlock *B) const {
455   unsigned PredDefs = 0;
456   for (auto &MI : *B) {
457     for (ConstMIOperands MO(MI); MO.isValid(); ++MO) {
458       if (!MO->isReg() || !MO->isDef())
459         continue;
460       unsigned R = MO->getReg();
461       if (!TargetRegisterInfo::isVirtualRegister(R))
462         continue;
463       if (MRI->getRegClass(R) == &Hexagon::PredRegsRegClass)
464         PredDefs++;
465     }
466   }
467   return PredDefs;
468 }
469 
470 
isProfitable(const FlowPattern & FP) const471 bool HexagonEarlyIfConversion::isProfitable(const FlowPattern &FP) const {
472   if (FP.TrueB && FP.FalseB) {
473 
474     // Do not IfCovert if the branch is one sided.
475     if (MBPI) {
476       BranchProbability Prob(9, 10);
477       if (MBPI->getEdgeProbability(FP.SplitB, FP.TrueB) > Prob)
478         return false;
479       if (MBPI->getEdgeProbability(FP.SplitB, FP.FalseB) > Prob)
480         return false;
481     }
482 
483     // If both sides are predicable, convert them if they join, and the
484     // join block has no other predecessors.
485     MachineBasicBlock *TSB = *FP.TrueB->succ_begin();
486     MachineBasicBlock *FSB = *FP.FalseB->succ_begin();
487     if (TSB != FSB)
488       return false;
489     if (TSB->pred_size() != 2)
490       return false;
491   }
492 
493   // Calculate the total size of the predicated blocks.
494   // Assume instruction counts without branches to be the approximation of
495   // the code size. If the predicated blocks are smaller than a packet size,
496   // approximate the spare room in the packet that could be filled with the
497   // predicated/speculated instructions.
498   unsigned TS = 0, FS = 0, Spare = 0;
499   if (FP.TrueB) {
500     TS = std::distance(FP.TrueB->begin(), FP.TrueB->getFirstTerminator());
501     if (TS < HEXAGON_PACKET_SIZE)
502       Spare += HEXAGON_PACKET_SIZE-TS;
503   }
504   if (FP.FalseB) {
505     FS = std::distance(FP.FalseB->begin(), FP.FalseB->getFirstTerminator());
506     if (FS < HEXAGON_PACKET_SIZE)
507       Spare += HEXAGON_PACKET_SIZE-TS;
508   }
509   unsigned TotalIn = TS+FS;
510   DEBUG(dbgs() << "Total number of instructions to be predicated/speculated: "
511                << TotalIn << ", spare room: " << Spare << "\n");
512   if (TotalIn >= SizeLimit+Spare)
513     return false;
514 
515   // Count the number of PHI nodes that will need to be updated (converted
516   // to MUX). Those can be later converted to predicated instructions, so
517   // they aren't always adding extra cost.
518   // KLUDGE: Also, count the number of predicate register definitions in
519   // each block. The scheduler may increase the pressure of these and cause
520   // expensive spills (e.g. bitmnp01).
521   unsigned TotalPh = 0;
522   unsigned PredDefs = countPredicateDefs(FP.SplitB);
523   if (FP.JoinB) {
524     TotalPh = computePhiCost(FP.JoinB);
525     PredDefs += countPredicateDefs(FP.JoinB);
526   } else {
527     if (FP.TrueB && FP.TrueB->succ_size() > 0) {
528       MachineBasicBlock *SB = *FP.TrueB->succ_begin();
529       TotalPh += computePhiCost(SB);
530       PredDefs += countPredicateDefs(SB);
531     }
532     if (FP.FalseB && FP.FalseB->succ_size() > 0) {
533       MachineBasicBlock *SB = *FP.FalseB->succ_begin();
534       TotalPh += computePhiCost(SB);
535       PredDefs += countPredicateDefs(SB);
536     }
537   }
538   DEBUG(dbgs() << "Total number of extra muxes from converted phis: "
539                << TotalPh << "\n");
540   if (TotalIn+TotalPh >= SizeLimit+Spare)
541     return false;
542 
543   DEBUG(dbgs() << "Total number of predicate registers: " << PredDefs << "\n");
544   if (PredDefs > 4)
545     return false;
546 
547   return true;
548 }
549 
550 
visitBlock(MachineBasicBlock * B,MachineLoop * L)551 bool HexagonEarlyIfConversion::visitBlock(MachineBasicBlock *B,
552       MachineLoop *L) {
553   bool Changed = false;
554 
555   // Visit all dominated blocks from the same loop first, then process B.
556   MachineDomTreeNode *N = MDT->getNode(B);
557   typedef GraphTraits<MachineDomTreeNode*> GTN;
558   // We will change CFG/DT during this traversal, so take precautions to
559   // avoid problems related to invalidated iterators. In fact, processing
560   // a child C of B cannot cause another child to be removed, but it can
561   // cause a new child to be added (which was a child of C before C itself
562   // was removed. This new child C, however, would have been processed
563   // prior to processing B, so there is no need to process it again.
564   // Simply keep a list of children of B, and traverse that list.
565   typedef SmallVector<MachineDomTreeNode*,4> DTNodeVectType;
566   DTNodeVectType Cn(GTN::child_begin(N), GTN::child_end(N));
567   for (DTNodeVectType::iterator I = Cn.begin(), E = Cn.end(); I != E; ++I) {
568     MachineBasicBlock *SB = (*I)->getBlock();
569     if (!Deleted.count(SB))
570       Changed |= visitBlock(SB, L);
571   }
572   // When walking down the dominator tree, we want to traverse through
573   // blocks from nested (other) loops, because they can dominate blocks
574   // that are in L. Skip the non-L blocks only after the tree traversal.
575   if (MLI->getLoopFor(B) != L)
576     return Changed;
577 
578   FlowPattern FP;
579   if (!matchFlowPattern(B, L, FP))
580     return Changed;
581 
582   if (!isValid(FP)) {
583     DEBUG(dbgs() << "Conversion is not valid\n");
584     return Changed;
585   }
586   if (!isProfitable(FP)) {
587     DEBUG(dbgs() << "Conversion is not profitable\n");
588     return Changed;
589   }
590 
591   convert(FP);
592   simplifyFlowGraph(FP);
593   return true;
594 }
595 
596 
visitLoop(MachineLoop * L)597 bool HexagonEarlyIfConversion::visitLoop(MachineLoop *L) {
598   MachineBasicBlock *HB = L ? L->getHeader() : 0;
599   DEBUG((L ? dbgs() << "Visiting loop H:" << PrintMB(HB)
600            : dbgs() << "Visiting function") << "\n");
601   bool Changed = false;
602   if (L) {
603     for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I)
604       Changed |= visitLoop(*I);
605   }
606 
607   MachineBasicBlock *EntryB = GraphTraits<MachineFunction*>::getEntryNode(MFN);
608   Changed |= visitBlock(L ? HB : EntryB, L);
609   return Changed;
610 }
611 
612 
isPredicableStore(const MachineInstr * MI) const613 bool HexagonEarlyIfConversion::isPredicableStore(const MachineInstr *MI)
614       const {
615   // Exclude post-increment stores. Those return a value, so we cannot
616   // predicate them.
617   unsigned Opc = MI->getOpcode();
618   using namespace Hexagon;
619   switch (Opc) {
620     // Store byte:
621     case S2_storerb_io: case S4_storerb_rr:
622     case S2_storerbabs: case S4_storeirb_io:  case S2_storerbgp:
623     // Store halfword:
624     case S2_storerh_io: case S4_storerh_rr:
625     case S2_storerhabs: case S4_storeirh_io:  case S2_storerhgp:
626     // Store upper halfword:
627     case S2_storerf_io: case S4_storerf_rr:
628     case S2_storerfabs: case S2_storerfgp:
629     // Store word:
630     case S2_storeri_io: case S4_storeri_rr:
631     case S2_storeriabs: case S4_storeiri_io:  case S2_storerigp:
632     // Store doubleword:
633     case S2_storerd_io: case S4_storerd_rr:
634     case S2_storerdabs: case S2_storerdgp:
635       return true;
636   }
637   return false;
638 }
639 
640 
isSafeToSpeculate(const MachineInstr * MI) const641 bool HexagonEarlyIfConversion::isSafeToSpeculate(const MachineInstr *MI)
642       const {
643   if (MI->mayLoad() || MI->mayStore())
644     return false;
645   if (MI->isCall() || MI->isBarrier() || MI->isBranch())
646     return false;
647   if (MI->hasUnmodeledSideEffects())
648     return false;
649 
650   return true;
651 }
652 
653 
getCondStoreOpcode(unsigned Opc,bool IfTrue) const654 unsigned HexagonEarlyIfConversion::getCondStoreOpcode(unsigned Opc,
655       bool IfTrue) const {
656   // Exclude post-increment stores.
657   using namespace Hexagon;
658   switch (Opc) {
659     case S2_storerb_io:
660       return IfTrue ? S2_pstorerbt_io : S2_pstorerbf_io;
661     case S4_storerb_rr:
662       return IfTrue ? S4_pstorerbt_rr : S4_pstorerbf_rr;
663     case S2_storerbabs:
664     case S2_storerbgp:
665       return IfTrue ? S4_pstorerbt_abs : S4_pstorerbf_abs;
666     case S4_storeirb_io:
667       return IfTrue ? S4_storeirbt_io : S4_storeirbf_io;
668     case S2_storerh_io:
669       return IfTrue ? S2_pstorerht_io : S2_pstorerhf_io;
670     case S4_storerh_rr:
671       return IfTrue ? S4_pstorerht_rr : S4_pstorerhf_rr;
672     case S2_storerhabs:
673     case S2_storerhgp:
674       return IfTrue ? S4_pstorerht_abs : S4_pstorerhf_abs;
675     case S2_storerf_io:
676       return IfTrue ? S2_pstorerft_io : S2_pstorerff_io;
677     case S4_storerf_rr:
678       return IfTrue ? S4_pstorerft_rr : S4_pstorerff_rr;
679     case S2_storerfabs:
680     case S2_storerfgp:
681       return IfTrue ? S4_pstorerft_abs : S4_pstorerff_abs;
682     case S4_storeirh_io:
683       return IfTrue ? S4_storeirht_io : S4_storeirhf_io;
684     case S2_storeri_io:
685       return IfTrue ? S2_pstorerit_io : S2_pstorerif_io;
686     case S4_storeri_rr:
687       return IfTrue ? S4_pstorerit_rr : S4_pstorerif_rr;
688     case S2_storeriabs:
689     case S2_storerigp:
690       return IfTrue ? S4_pstorerit_abs : S4_pstorerif_abs;
691     case S4_storeiri_io:
692       return IfTrue ? S4_storeirit_io : S4_storeirif_io;
693     case S2_storerd_io:
694       return IfTrue ? S2_pstorerdt_io : S2_pstorerdf_io;
695     case S4_storerd_rr:
696       return IfTrue ? S4_pstorerdt_rr : S4_pstorerdf_rr;
697     case S2_storerdabs:
698     case S2_storerdgp:
699       return IfTrue ? S4_pstorerdt_abs : S4_pstorerdf_abs;
700   }
701   llvm_unreachable("Unexpected opcode");
702   return 0;
703 }
704 
705 
predicateInstr(MachineBasicBlock * ToB,MachineBasicBlock::iterator At,MachineInstr * MI,unsigned PredR,bool IfTrue)706 void HexagonEarlyIfConversion::predicateInstr(MachineBasicBlock *ToB,
707       MachineBasicBlock::iterator At, MachineInstr *MI,
708       unsigned PredR, bool IfTrue) {
709   DebugLoc DL;
710   if (At != ToB->end())
711     DL = At->getDebugLoc();
712   else if (!ToB->empty())
713     DL = ToB->back().getDebugLoc();
714 
715   unsigned Opc = MI->getOpcode();
716 
717   if (isPredicableStore(MI)) {
718     unsigned COpc = getCondStoreOpcode(Opc, IfTrue);
719     assert(COpc);
720     MachineInstrBuilder MIB = BuildMI(*ToB, At, DL, TII->get(COpc))
721       .addReg(PredR);
722     for (MIOperands MO(*MI); MO.isValid(); ++MO)
723       MIB.addOperand(*MO);
724 
725     // Set memory references.
726     MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
727     MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
728     MIB.setMemRefs(MMOBegin, MMOEnd);
729 
730     MI->eraseFromParent();
731     return;
732   }
733 
734   if (Opc == Hexagon::J2_jump) {
735     MachineBasicBlock *TB = MI->getOperand(0).getMBB();
736     const MCInstrDesc &D = TII->get(IfTrue ? Hexagon::J2_jumpt
737                                            : Hexagon::J2_jumpf);
738     BuildMI(*ToB, At, DL, D)
739       .addReg(PredR)
740       .addMBB(TB);
741     MI->eraseFromParent();
742     return;
743   }
744 
745   // Print the offending instruction unconditionally as we are about to
746   // abort.
747   dbgs() << *MI;
748   llvm_unreachable("Unexpected instruction");
749 }
750 
751 
752 // Predicate/speculate non-branch instructions from FromB into block ToB.
753 // Leave the branches alone, they will be handled later. Btw, at this point
754 // FromB should have at most one branch, and it should be unconditional.
predicateBlockNB(MachineBasicBlock * ToB,MachineBasicBlock::iterator At,MachineBasicBlock * FromB,unsigned PredR,bool IfTrue)755 void HexagonEarlyIfConversion::predicateBlockNB(MachineBasicBlock *ToB,
756       MachineBasicBlock::iterator At, MachineBasicBlock *FromB,
757       unsigned PredR, bool IfTrue) {
758   DEBUG(dbgs() << "Predicating block " << PrintMB(FromB) << "\n");
759   MachineBasicBlock::iterator End = FromB->getFirstTerminator();
760   MachineBasicBlock::iterator I, NextI;
761 
762   for (I = FromB->begin(); I != End; I = NextI) {
763     assert(!I->isPHI());
764     NextI = std::next(I);
765     if (isSafeToSpeculate(&*I))
766       ToB->splice(At, FromB, I);
767     else
768       predicateInstr(ToB, At, &*I, PredR, IfTrue);
769   }
770 }
771 
772 
updatePhiNodes(MachineBasicBlock * WhereB,const FlowPattern & FP)773 void HexagonEarlyIfConversion::updatePhiNodes(MachineBasicBlock *WhereB,
774       const FlowPattern &FP) {
775   // Visit all PHI nodes in the WhereB block and generate MUX instructions
776   // in the split block. Update the PHI nodes with the values of the MUX.
777   auto NonPHI = WhereB->getFirstNonPHI();
778   for (auto I = WhereB->begin(); I != NonPHI; ++I) {
779     MachineInstr *PN = &*I;
780     // Registers and subregisters corresponding to TrueB, FalseB and SplitB.
781     unsigned TR = 0, TSR = 0, FR = 0, FSR = 0, SR = 0, SSR = 0;
782     for (int i = PN->getNumOperands()-2; i > 0; i -= 2) {
783       const MachineOperand &RO = PN->getOperand(i), &BO = PN->getOperand(i+1);
784       if (BO.getMBB() == FP.SplitB)
785         SR = RO.getReg(), SSR = RO.getSubReg();
786       else if (BO.getMBB() == FP.TrueB)
787         TR = RO.getReg(), TSR = RO.getSubReg();
788       else if (BO.getMBB() == FP.FalseB)
789         FR = RO.getReg(), FSR = RO.getSubReg();
790       else
791         continue;
792       PN->RemoveOperand(i+1);
793       PN->RemoveOperand(i);
794     }
795     if (TR == 0)
796       TR = SR, TSR = SSR;
797     else if (FR == 0)
798       FR = SR, FSR = SSR;
799     assert(TR && FR);
800 
801     using namespace Hexagon;
802     unsigned DR = PN->getOperand(0).getReg();
803     const TargetRegisterClass *RC = MRI->getRegClass(DR);
804     const MCInstrDesc &D = RC == &IntRegsRegClass ? TII->get(C2_mux)
805                                                   : TII->get(MUX64_rr);
806 
807     MachineBasicBlock::iterator MuxAt = FP.SplitB->getFirstTerminator();
808     DebugLoc DL;
809     if (MuxAt != FP.SplitB->end())
810       DL = MuxAt->getDebugLoc();
811     unsigned MuxR = MRI->createVirtualRegister(RC);
812     BuildMI(*FP.SplitB, MuxAt, DL, D, MuxR)
813       .addReg(FP.PredR)
814       .addReg(TR, 0, TSR)
815       .addReg(FR, 0, FSR);
816 
817     PN->addOperand(MachineOperand::CreateReg(MuxR, false));
818     PN->addOperand(MachineOperand::CreateMBB(FP.SplitB));
819   }
820 }
821 
822 
convert(const FlowPattern & FP)823 void HexagonEarlyIfConversion::convert(const FlowPattern &FP) {
824   MachineBasicBlock *TSB = 0, *FSB = 0;
825   MachineBasicBlock::iterator OldTI = FP.SplitB->getFirstTerminator();
826   assert(OldTI != FP.SplitB->end());
827   DebugLoc DL = OldTI->getDebugLoc();
828 
829   if (FP.TrueB) {
830     TSB = *FP.TrueB->succ_begin();
831     predicateBlockNB(FP.SplitB, OldTI, FP.TrueB, FP.PredR, true);
832   }
833   if (FP.FalseB) {
834     FSB = *FP.FalseB->succ_begin();
835     MachineBasicBlock::iterator At = FP.SplitB->getFirstTerminator();
836     predicateBlockNB(FP.SplitB, At, FP.FalseB, FP.PredR, false);
837   }
838 
839   // Regenerate new terminators in the split block and update the successors.
840   // First, remember any information that may be needed later and remove the
841   // existing terminators/successors from the split block.
842   MachineBasicBlock *SSB = 0;
843   FP.SplitB->erase(OldTI, FP.SplitB->end());
844   while (FP.SplitB->succ_size() > 0) {
845     MachineBasicBlock *T = *FP.SplitB->succ_begin();
846     // It's possible that the split block had a successor that is not a pre-
847     // dicated block. This could only happen if there was only one block to
848     // be predicated. Example:
849     //   split_b:
850     //     if (p) jump true_b
851     //     jump unrelated2_b
852     //   unrelated1_b:
853     //     ...
854     //   unrelated2_b:  ; can have other predecessors, so it's not "false_b"
855     //     jump other_b
856     //   true_b:        ; only reachable from split_b, can be predicated
857     //     ...
858     //
859     // Find this successor (SSB) if it exists.
860     if (T != FP.TrueB && T != FP.FalseB) {
861       assert(!SSB);
862       SSB = T;
863     }
864     FP.SplitB->removeSuccessor(FP.SplitB->succ_begin());
865   }
866 
867   // Insert new branches and update the successors of the split block. This
868   // may create unconditional branches to the layout successor, etc., but
869   // that will be cleaned up later. For now, make sure that correct code is
870   // generated.
871   if (FP.JoinB) {
872     assert(!SSB || SSB == FP.JoinB);
873     BuildMI(*FP.SplitB, FP.SplitB->end(), DL, TII->get(Hexagon::J2_jump))
874       .addMBB(FP.JoinB);
875     FP.SplitB->addSuccessor(FP.JoinB);
876   } else {
877     bool HasBranch = false;
878     if (TSB) {
879       BuildMI(*FP.SplitB, FP.SplitB->end(), DL, TII->get(Hexagon::J2_jumpt))
880         .addReg(FP.PredR)
881         .addMBB(TSB);
882       FP.SplitB->addSuccessor(TSB);
883       HasBranch = true;
884     }
885     if (FSB) {
886       const MCInstrDesc &D = HasBranch ? TII->get(Hexagon::J2_jump)
887                                        : TII->get(Hexagon::J2_jumpf);
888       MachineInstrBuilder MIB = BuildMI(*FP.SplitB, FP.SplitB->end(), DL, D);
889       if (!HasBranch)
890         MIB.addReg(FP.PredR);
891       MIB.addMBB(FSB);
892       FP.SplitB->addSuccessor(FSB);
893     }
894     if (SSB) {
895       // This cannot happen if both TSB and FSB are set. [TF]SB are the
896       // successor blocks of the TrueB and FalseB (or null of the TrueB
897       // or FalseB block is null). SSB is the potential successor block
898       // of the SplitB that is neither TrueB nor FalseB.
899       BuildMI(*FP.SplitB, FP.SplitB->end(), DL, TII->get(Hexagon::J2_jump))
900         .addMBB(SSB);
901       FP.SplitB->addSuccessor(SSB);
902     }
903   }
904 
905   // What is left to do is to update the PHI nodes that could have entries
906   // referring to predicated blocks.
907   if (FP.JoinB) {
908     updatePhiNodes(FP.JoinB, FP);
909   } else {
910     if (TSB)
911       updatePhiNodes(TSB, FP);
912     if (FSB)
913       updatePhiNodes(FSB, FP);
914     // Nothing to update in SSB, since SSB's predecessors haven't changed.
915   }
916 }
917 
918 
removeBlock(MachineBasicBlock * B)919 void HexagonEarlyIfConversion::removeBlock(MachineBasicBlock *B) {
920   DEBUG(dbgs() << "Removing block " << PrintMB(B) << "\n");
921 
922   // Transfer the immediate dominator information from B to its descendants.
923   MachineDomTreeNode *N = MDT->getNode(B);
924   MachineDomTreeNode *IDN = N->getIDom();
925   if (IDN) {
926     MachineBasicBlock *IDB = IDN->getBlock();
927     typedef GraphTraits<MachineDomTreeNode*> GTN;
928     typedef SmallVector<MachineDomTreeNode*,4> DTNodeVectType;
929     DTNodeVectType Cn(GTN::child_begin(N), GTN::child_end(N));
930     for (DTNodeVectType::iterator I = Cn.begin(), E = Cn.end(); I != E; ++I) {
931       MachineBasicBlock *SB = (*I)->getBlock();
932       MDT->changeImmediateDominator(SB, IDB);
933     }
934   }
935 
936   while (B->succ_size() > 0)
937     B->removeSuccessor(B->succ_begin());
938 
939   for (auto I = B->pred_begin(), E = B->pred_end(); I != E; ++I)
940     (*I)->removeSuccessor(B, true);
941 
942   Deleted.insert(B);
943   MDT->eraseNode(B);
944   MFN->erase(B->getIterator());
945 }
946 
947 
eliminatePhis(MachineBasicBlock * B)948 void HexagonEarlyIfConversion::eliminatePhis(MachineBasicBlock *B) {
949   DEBUG(dbgs() << "Removing phi nodes from block " << PrintMB(B) << "\n");
950   MachineBasicBlock::iterator I, NextI, NonPHI = B->getFirstNonPHI();
951   for (I = B->begin(); I != NonPHI; I = NextI) {
952     NextI = std::next(I);
953     MachineInstr *PN = &*I;
954     assert(PN->getNumOperands() == 3 && "Invalid phi node");
955     MachineOperand &UO = PN->getOperand(1);
956     unsigned UseR = UO.getReg(), UseSR = UO.getSubReg();
957     unsigned DefR = PN->getOperand(0).getReg();
958     unsigned NewR = UseR;
959     if (UseSR) {
960       // MRI.replaceVregUsesWith does not allow to update the subregister,
961       // so instead of doing the use-iteration here, create a copy into a
962       // "non-subregistered" register.
963       const DebugLoc &DL = PN->getDebugLoc();
964       const TargetRegisterClass *RC = MRI->getRegClass(DefR);
965       NewR = MRI->createVirtualRegister(RC);
966       NonPHI = BuildMI(*B, NonPHI, DL, TII->get(TargetOpcode::COPY), NewR)
967         .addReg(UseR, 0, UseSR);
968     }
969     MRI->replaceRegWith(DefR, NewR);
970     B->erase(I);
971   }
972 }
973 
974 
replacePhiEdges(MachineBasicBlock * OldB,MachineBasicBlock * NewB)975 void HexagonEarlyIfConversion::replacePhiEdges(MachineBasicBlock *OldB,
976       MachineBasicBlock *NewB) {
977   for (auto I = OldB->succ_begin(), E = OldB->succ_end(); I != E; ++I) {
978     MachineBasicBlock *SB = *I;
979     MachineBasicBlock::iterator P, N = SB->getFirstNonPHI();
980     for (P = SB->begin(); P != N; ++P) {
981       MachineInstr &PN = *P;
982       for (MIOperands MO(PN); MO.isValid(); ++MO)
983         if (MO->isMBB() && MO->getMBB() == OldB)
984           MO->setMBB(NewB);
985     }
986   }
987 }
988 
989 
mergeBlocks(MachineBasicBlock * PredB,MachineBasicBlock * SuccB)990 void HexagonEarlyIfConversion::mergeBlocks(MachineBasicBlock *PredB,
991       MachineBasicBlock *SuccB) {
992   DEBUG(dbgs() << "Merging blocks " << PrintMB(PredB) << " and "
993                << PrintMB(SuccB) << "\n");
994   bool TermOk = hasUncondBranch(SuccB);
995   eliminatePhis(SuccB);
996   TII->RemoveBranch(*PredB);
997   PredB->removeSuccessor(SuccB);
998   PredB->splice(PredB->end(), SuccB, SuccB->begin(), SuccB->end());
999   MachineBasicBlock::succ_iterator I, E = SuccB->succ_end();
1000   for (I = SuccB->succ_begin(); I != E; ++I)
1001     PredB->addSuccessor(*I);
1002   PredB->normalizeSuccProbs();
1003   replacePhiEdges(SuccB, PredB);
1004   removeBlock(SuccB);
1005   if (!TermOk)
1006     PredB->updateTerminator();
1007 }
1008 
1009 
simplifyFlowGraph(const FlowPattern & FP)1010 void HexagonEarlyIfConversion::simplifyFlowGraph(const FlowPattern &FP) {
1011   if (FP.TrueB)
1012     removeBlock(FP.TrueB);
1013   if (FP.FalseB)
1014     removeBlock(FP.FalseB);
1015 
1016   FP.SplitB->updateTerminator();
1017   if (FP.SplitB->succ_size() != 1)
1018     return;
1019 
1020   MachineBasicBlock *SB = *FP.SplitB->succ_begin();
1021   if (SB->pred_size() != 1)
1022     return;
1023 
1024   // By now, the split block has only one successor (SB), and SB has only
1025   // one predecessor. We can try to merge them. We will need to update ter-
1026   // minators in FP.Split+SB, and that requires working AnalyzeBranch, which
1027   // fails on Hexagon for blocks that have EH_LABELs. However, if SB ends
1028   // with an unconditional branch, we won't need to touch the terminators.
1029   if (!hasEHLabel(SB) || hasUncondBranch(SB))
1030     mergeBlocks(FP.SplitB, SB);
1031 }
1032 
1033 
runOnMachineFunction(MachineFunction & MF)1034 bool HexagonEarlyIfConversion::runOnMachineFunction(MachineFunction &MF) {
1035   if (skipFunction(*MF.getFunction()))
1036     return false;
1037 
1038   auto &ST = MF.getSubtarget();
1039   TII = ST.getInstrInfo();
1040   TRI = ST.getRegisterInfo();
1041   MFN = &MF;
1042   MRI = &MF.getRegInfo();
1043   MDT = &getAnalysis<MachineDominatorTree>();
1044   MLI = &getAnalysis<MachineLoopInfo>();
1045   MBPI = EnableHexagonBP ? &getAnalysis<MachineBranchProbabilityInfo>() :
1046     nullptr;
1047 
1048   Deleted.clear();
1049   bool Changed = false;
1050 
1051   for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end(); I != E; ++I)
1052     Changed |= visitLoop(*I);
1053   Changed |= visitLoop(0);
1054 
1055   return Changed;
1056 }
1057 
1058 //===----------------------------------------------------------------------===//
1059 //                         Public Constructor Functions
1060 //===----------------------------------------------------------------------===//
createHexagonEarlyIfConversion()1061 FunctionPass *llvm::createHexagonEarlyIfConversion() {
1062   return new HexagonEarlyIfConversion();
1063 }
1064 
1065