1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 // This module contains the platform-specific code. This make the rest of the
6 // code less dependent on operating system, compilers and runtime libraries.
7 // This module does specifically not deal with differences between different
8 // processor architecture.
9 // The platform classes have the same definition for all platforms. The
10 // implementation for a particular platform is put in platform_<os>.cc.
11 // The build system then uses the implementation for the target platform.
12 //
13 // This design has been chosen because it is simple and fast. Alternatively,
14 // the platform dependent classes could have been implemented using abstract
15 // superclasses with virtual methods and having specializations for each
16 // platform. This design was rejected because it was more complicated and
17 // slower. It would require factory methods for selecting the right
18 // implementation and the overhead of virtual methods for performance
19 // sensitive like mutex locking/unlocking.
20
21 #ifndef V8_BASE_PLATFORM_PLATFORM_H_
22 #define V8_BASE_PLATFORM_PLATFORM_H_
23
24 #include <cstdarg>
25 #include <string>
26 #include <vector>
27
28 #include "src/base/base-export.h"
29 #include "src/base/build_config.h"
30 #include "src/base/compiler-specific.h"
31 #include "src/base/platform/mutex.h"
32 #include "src/base/platform/semaphore.h"
33
34 #if V8_OS_QNX
35 #include "src/base/qnx-math.h"
36 #endif
37
38 namespace v8 {
39 namespace base {
40
41 // ----------------------------------------------------------------------------
42 // Fast TLS support
43
44 #ifndef V8_NO_FAST_TLS
45
46 #if V8_CC_MSVC && V8_HOST_ARCH_IA32
47
48 #define V8_FAST_TLS_SUPPORTED 1
49
50 INLINE(intptr_t InternalGetExistingThreadLocal(intptr_t index));
51
InternalGetExistingThreadLocal(intptr_t index)52 inline intptr_t InternalGetExistingThreadLocal(intptr_t index) {
53 const intptr_t kTibInlineTlsOffset = 0xE10;
54 const intptr_t kTibExtraTlsOffset = 0xF94;
55 const intptr_t kMaxInlineSlots = 64;
56 const intptr_t kMaxSlots = kMaxInlineSlots + 1024;
57 const intptr_t kPointerSize = sizeof(void*);
58 DCHECK(0 <= index && index < kMaxSlots);
59 if (index < kMaxInlineSlots) {
60 return static_cast<intptr_t>(__readfsdword(kTibInlineTlsOffset +
61 kPointerSize * index));
62 }
63 intptr_t extra = static_cast<intptr_t>(__readfsdword(kTibExtraTlsOffset));
64 DCHECK(extra != 0);
65 return *reinterpret_cast<intptr_t*>(extra +
66 kPointerSize * (index - kMaxInlineSlots));
67 }
68
69 #elif defined(__APPLE__) && (V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64)
70
71 #define V8_FAST_TLS_SUPPORTED 1
72
73 extern V8_BASE_EXPORT intptr_t kMacTlsBaseOffset;
74
75 INLINE(intptr_t InternalGetExistingThreadLocal(intptr_t index));
76
77 inline intptr_t InternalGetExistingThreadLocal(intptr_t index) {
78 intptr_t result;
79 #if V8_HOST_ARCH_IA32
80 asm("movl %%gs:(%1,%2,4), %0;"
81 :"=r"(result) // Output must be a writable register.
82 :"r"(kMacTlsBaseOffset), "r"(index));
83 #else
84 asm("movq %%gs:(%1,%2,8), %0;"
85 :"=r"(result)
86 :"r"(kMacTlsBaseOffset), "r"(index));
87 #endif
88 return result;
89 }
90
91 #endif
92
93 #endif // V8_NO_FAST_TLS
94
95
96 class TimezoneCache;
97
98
99 // ----------------------------------------------------------------------------
100 // OS
101 //
102 // This class has static methods for the different platform specific
103 // functions. Add methods here to cope with differences between the
104 // supported platforms.
105
106 class V8_BASE_EXPORT OS {
107 public:
108 // Initialize the OS class.
109 // - random_seed: Used for the GetRandomMmapAddress() if non-zero.
110 // - hard_abort: If true, OS::Abort() will crash instead of aborting.
111 // - gc_fake_mmap: Name of the file for fake gc mmap used in ll_prof.
112 static void Initialize(int64_t random_seed,
113 bool hard_abort,
114 const char* const gc_fake_mmap);
115
116 // Returns the accumulated user time for thread. This routine
117 // can be used for profiling. The implementation should
118 // strive for high-precision timer resolution, preferable
119 // micro-second resolution.
120 static int GetUserTime(uint32_t* secs, uint32_t* usecs);
121
122 // Returns current time as the number of milliseconds since
123 // 00:00:00 UTC, January 1, 1970.
124 static double TimeCurrentMillis();
125
126 static TimezoneCache* CreateTimezoneCache();
127 static void DisposeTimezoneCache(TimezoneCache* cache);
128 static void ClearTimezoneCache(TimezoneCache* cache);
129
130 // Returns a string identifying the current time zone. The
131 // timestamp is used for determining if DST is in effect.
132 static const char* LocalTimezone(double time, TimezoneCache* cache);
133
134 // Returns the local time offset in milliseconds east of UTC without
135 // taking daylight savings time into account.
136 static double LocalTimeOffset(TimezoneCache* cache);
137
138 // Returns the daylight savings offset for the given time.
139 static double DaylightSavingsOffset(double time, TimezoneCache* cache);
140
141 // Returns last OS error.
142 static int GetLastError();
143
144 static FILE* FOpen(const char* path, const char* mode);
145 static bool Remove(const char* path);
146
147 static char DirectorySeparator();
148 static bool isDirectorySeparator(const char ch);
149
150 // Opens a temporary file, the file is auto removed on close.
151 static FILE* OpenTemporaryFile();
152
153 // Log file open mode is platform-dependent due to line ends issues.
154 static const char* const LogFileOpenMode;
155
156 // Print output to console. This is mostly used for debugging output.
157 // On platforms that has standard terminal output, the output
158 // should go to stdout.
159 static PRINTF_FORMAT(1, 2) void Print(const char* format, ...);
160 static PRINTF_FORMAT(1, 0) void VPrint(const char* format, va_list args);
161
162 // Print output to a file. This is mostly used for debugging output.
163 static PRINTF_FORMAT(2, 3) void FPrint(FILE* out, const char* format, ...);
164 static PRINTF_FORMAT(2, 0) void VFPrint(FILE* out, const char* format,
165 va_list args);
166
167 // Print error output to console. This is mostly used for error message
168 // output. On platforms that has standard terminal output, the output
169 // should go to stderr.
170 static PRINTF_FORMAT(1, 2) void PrintError(const char* format, ...);
171 static PRINTF_FORMAT(1, 0) void VPrintError(const char* format, va_list args);
172
173 // Allocate/Free memory used by JS heap. Pages are readable/writable, but
174 // they are not guaranteed to be executable unless 'executable' is true.
175 // Returns the address of allocated memory, or NULL if failed.
176 static void* Allocate(const size_t requested,
177 size_t* allocated,
178 bool is_executable);
179 static void Free(void* address, const size_t size);
180
181 // Allocates a region of memory that is inaccessible. On Windows this reserves
182 // but does not commit the memory. On Linux, it is equivalent to a call to
183 // Allocate() followed by Guard().
184 static void* AllocateGuarded(const size_t requested);
185
186 // This is the granularity at which the ProtectCode(...) call can set page
187 // permissions.
188 static intptr_t CommitPageSize();
189
190 // Mark code segments non-writable.
191 static void ProtectCode(void* address, const size_t size);
192
193 // Assign memory as a guard page so that access will cause an exception.
194 static void Guard(void* address, const size_t size);
195
196 // Make a region of memory readable and writable.
197 static void Unprotect(void* address, const size_t size);
198
199 // Generate a random address to be used for hinting mmap().
200 static void* GetRandomMmapAddr();
201
202 // Get the Alignment guaranteed by Allocate().
203 static size_t AllocateAlignment();
204
205 // Sleep for a specified time interval.
206 static void Sleep(TimeDelta interval);
207
208 // Abort the current process.
209 V8_NORETURN static void Abort();
210
211 // Debug break.
212 static void DebugBreak();
213
214 // Walk the stack.
215 static const int kStackWalkError = -1;
216 static const int kStackWalkMaxNameLen = 256;
217 static const int kStackWalkMaxTextLen = 256;
218 struct StackFrame {
219 void* address;
220 char text[kStackWalkMaxTextLen];
221 };
222
223 class V8_BASE_EXPORT MemoryMappedFile {
224 public:
~MemoryMappedFile()225 virtual ~MemoryMappedFile() {}
226 virtual void* memory() const = 0;
227 virtual size_t size() const = 0;
228
229 static MemoryMappedFile* open(const char* name);
230 static MemoryMappedFile* create(const char* name, size_t size,
231 void* initial);
232 };
233
234 // Safe formatting print. Ensures that str is always null-terminated.
235 // Returns the number of chars written, or -1 if output was truncated.
236 static PRINTF_FORMAT(3, 4) int SNPrintF(char* str, int length,
237 const char* format, ...);
238 static PRINTF_FORMAT(3, 0) int VSNPrintF(char* str, int length,
239 const char* format, va_list args);
240
241 static char* StrChr(char* str, int c);
242 static void StrNCpy(char* dest, int length, const char* src, size_t n);
243
244 // Support for the profiler. Can do nothing, in which case ticks
245 // occuring in shared libraries will not be properly accounted for.
246 struct SharedLibraryAddress {
SharedLibraryAddressSharedLibraryAddress247 SharedLibraryAddress(const std::string& library_path, uintptr_t start,
248 uintptr_t end)
249 : library_path(library_path), start(start), end(end), aslr_slide(0) {}
SharedLibraryAddressSharedLibraryAddress250 SharedLibraryAddress(const std::string& library_path, uintptr_t start,
251 uintptr_t end, intptr_t aslr_slide)
252 : library_path(library_path),
253 start(start),
254 end(end),
255 aslr_slide(aslr_slide) {}
256
257 std::string library_path;
258 uintptr_t start;
259 uintptr_t end;
260 intptr_t aslr_slide;
261 };
262
263 static std::vector<SharedLibraryAddress> GetSharedLibraryAddresses();
264
265 // Support for the profiler. Notifies the external profiling
266 // process that a code moving garbage collection starts. Can do
267 // nothing, in which case the code objects must not move (e.g., by
268 // using --never-compact) if accurate profiling is desired.
269 static void SignalCodeMovingGC();
270
271 // Support runtime detection of whether the hard float option of the
272 // EABI is used.
273 static bool ArmUsingHardFloat();
274
275 // Returns the activation frame alignment constraint or zero if
276 // the platform doesn't care. Guaranteed to be a power of two.
277 static int ActivationFrameAlignment();
278
279 static int GetCurrentProcessId();
280
281 static int GetCurrentThreadId();
282
283 private:
284 static const int msPerSecond = 1000;
285
286 #if V8_OS_POSIX
287 static const char* GetGCFakeMMapFile();
288 #endif
289
290 DISALLOW_IMPLICIT_CONSTRUCTORS(OS);
291 };
292
293
294 // Represents and controls an area of reserved memory.
295 // Control of the reserved memory can be assigned to another VirtualMemory
296 // object by assignment or copy-contructing. This removes the reserved memory
297 // from the original object.
298 class V8_BASE_EXPORT VirtualMemory {
299 public:
300 // Empty VirtualMemory object, controlling no reserved memory.
301 VirtualMemory();
302
303 // Reserves virtual memory with size.
304 explicit VirtualMemory(size_t size);
305
306 // Reserves virtual memory containing an area of the given size that
307 // is aligned per alignment. This may not be at the position returned
308 // by address().
309 VirtualMemory(size_t size, size_t alignment);
310
311 // Construct a virtual memory by assigning it some already mapped address
312 // and size.
VirtualMemory(void * address,size_t size)313 VirtualMemory(void* address, size_t size) : address_(address), size_(size) {}
314
315 // Releases the reserved memory, if any, controlled by this VirtualMemory
316 // object.
317 ~VirtualMemory();
318
319 // Returns whether the memory has been reserved.
320 bool IsReserved();
321
322 // Initialize or resets an embedded VirtualMemory object.
323 void Reset();
324
325 // Returns the start address of the reserved memory.
326 // If the memory was reserved with an alignment, this address is not
327 // necessarily aligned. The user might need to round it up to a multiple of
328 // the alignment to get the start of the aligned block.
address()329 void* address() {
330 DCHECK(IsReserved());
331 return address_;
332 }
333
334 // Returns the size of the reserved memory. The returned value is only
335 // meaningful when IsReserved() returns true.
336 // If the memory was reserved with an alignment, this size may be larger
337 // than the requested size.
size()338 size_t size() { return size_; }
339
340 // Commits real memory. Returns whether the operation succeeded.
341 bool Commit(void* address, size_t size, bool is_executable);
342
343 // Uncommit real memory. Returns whether the operation succeeded.
344 bool Uncommit(void* address, size_t size);
345
346 // Creates a single guard page at the given address.
347 bool Guard(void* address);
348
349 // Releases the memory after |free_start|.
ReleasePartial(void * free_start)350 void ReleasePartial(void* free_start) {
351 DCHECK(IsReserved());
352 // Notice: Order is important here. The VirtualMemory object might live
353 // inside the allocated region.
354 size_t size = size_ - (reinterpret_cast<size_t>(free_start) -
355 reinterpret_cast<size_t>(address_));
356 CHECK(InVM(free_start, size));
357 DCHECK_LT(address_, free_start);
358 DCHECK_LT(free_start, reinterpret_cast<void*>(
359 reinterpret_cast<size_t>(address_) + size_));
360 bool result = ReleasePartialRegion(address_, size_, free_start, size);
361 USE(result);
362 DCHECK(result);
363 size_ -= size;
364 }
365
Release()366 void Release() {
367 DCHECK(IsReserved());
368 // Notice: Order is important here. The VirtualMemory object might live
369 // inside the allocated region.
370 void* address = address_;
371 size_t size = size_;
372 CHECK(InVM(address, size));
373 Reset();
374 bool result = ReleaseRegion(address, size);
375 USE(result);
376 DCHECK(result);
377 }
378
379 // Assign control of the reserved region to a different VirtualMemory object.
380 // The old object is no longer functional (IsReserved() returns false).
TakeControl(VirtualMemory * from)381 void TakeControl(VirtualMemory* from) {
382 DCHECK(!IsReserved());
383 address_ = from->address_;
384 size_ = from->size_;
385 from->Reset();
386 }
387
388 static void* ReserveRegion(size_t size);
389
390 static bool CommitRegion(void* base, size_t size, bool is_executable);
391
392 static bool UncommitRegion(void* base, size_t size);
393
394 // Must be called with a base pointer that has been returned by ReserveRegion
395 // and the same size it was reserved with.
396 static bool ReleaseRegion(void* base, size_t size);
397
398 // Must be called with a base pointer that has been returned by ReserveRegion
399 // and the same size it was reserved with.
400 // [free_start, free_start + free_size] is the memory that will be released.
401 static bool ReleasePartialRegion(void* base, size_t size, void* free_start,
402 size_t free_size);
403
404 // Returns true if OS performs lazy commits, i.e. the memory allocation call
405 // defers actual physical memory allocation till the first memory access.
406 // Otherwise returns false.
407 static bool HasLazyCommits();
408
409 private:
InVM(void * address,size_t size)410 bool InVM(void* address, size_t size) {
411 return (reinterpret_cast<uintptr_t>(address_) <=
412 reinterpret_cast<uintptr_t>(address)) &&
413 ((reinterpret_cast<uintptr_t>(address_) + size_) >=
414 (reinterpret_cast<uintptr_t>(address) + size));
415 }
416
417 void* address_; // Start address of the virtual memory.
418 size_t size_; // Size of the virtual memory.
419 };
420
421
422 // ----------------------------------------------------------------------------
423 // Thread
424 //
425 // Thread objects are used for creating and running threads. When the start()
426 // method is called the new thread starts running the run() method in the new
427 // thread. The Thread object should not be deallocated before the thread has
428 // terminated.
429
430 class V8_BASE_EXPORT Thread {
431 public:
432 // Opaque data type for thread-local storage keys.
433 typedef int32_t LocalStorageKey;
434
435 class Options {
436 public:
Options()437 Options() : name_("v8:<unknown>"), stack_size_(0) {}
438 explicit Options(const char* name, int stack_size = 0)
name_(name)439 : name_(name), stack_size_(stack_size) {}
440
name()441 const char* name() const { return name_; }
stack_size()442 int stack_size() const { return stack_size_; }
443
444 private:
445 const char* name_;
446 int stack_size_;
447 };
448
449 // Create new thread.
450 explicit Thread(const Options& options);
451 virtual ~Thread();
452
453 // Start new thread by calling the Run() method on the new thread.
454 void Start();
455
456 // Start new thread and wait until Run() method is called on the new thread.
StartSynchronously()457 void StartSynchronously() {
458 start_semaphore_ = new Semaphore(0);
459 Start();
460 start_semaphore_->Wait();
461 delete start_semaphore_;
462 start_semaphore_ = NULL;
463 }
464
465 // Wait until thread terminates.
466 void Join();
467
name()468 inline const char* name() const {
469 return name_;
470 }
471
472 // Abstract method for run handler.
473 virtual void Run() = 0;
474
475 // Thread-local storage.
476 static LocalStorageKey CreateThreadLocalKey();
477 static void DeleteThreadLocalKey(LocalStorageKey key);
478 static void* GetThreadLocal(LocalStorageKey key);
GetThreadLocalInt(LocalStorageKey key)479 static int GetThreadLocalInt(LocalStorageKey key) {
480 return static_cast<int>(reinterpret_cast<intptr_t>(GetThreadLocal(key)));
481 }
482 static void SetThreadLocal(LocalStorageKey key, void* value);
SetThreadLocalInt(LocalStorageKey key,int value)483 static void SetThreadLocalInt(LocalStorageKey key, int value) {
484 SetThreadLocal(key, reinterpret_cast<void*>(static_cast<intptr_t>(value)));
485 }
HasThreadLocal(LocalStorageKey key)486 static bool HasThreadLocal(LocalStorageKey key) {
487 return GetThreadLocal(key) != NULL;
488 }
489
490 #ifdef V8_FAST_TLS_SUPPORTED
GetExistingThreadLocal(LocalStorageKey key)491 static inline void* GetExistingThreadLocal(LocalStorageKey key) {
492 void* result = reinterpret_cast<void*>(
493 InternalGetExistingThreadLocal(static_cast<intptr_t>(key)));
494 DCHECK(result == GetThreadLocal(key));
495 return result;
496 }
497 #else
GetExistingThreadLocal(LocalStorageKey key)498 static inline void* GetExistingThreadLocal(LocalStorageKey key) {
499 return GetThreadLocal(key);
500 }
501 #endif
502
503 // The thread name length is limited to 16 based on Linux's implementation of
504 // prctl().
505 static const int kMaxThreadNameLength = 16;
506
507 class PlatformData;
data()508 PlatformData* data() { return data_; }
509
NotifyStartedAndRun()510 void NotifyStartedAndRun() {
511 if (start_semaphore_) start_semaphore_->Signal();
512 Run();
513 }
514
515 private:
516 void set_name(const char* name);
517
518 PlatformData* data_;
519
520 char name_[kMaxThreadNameLength];
521 int stack_size_;
522 Semaphore* start_semaphore_;
523
524 DISALLOW_COPY_AND_ASSIGN(Thread);
525 };
526
527 } // namespace base
528 } // namespace v8
529
530 #endif // V8_BASE_PLATFORM_PLATFORM_H_
531