• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/crankshaft/lithium-allocator.h"
6 
7 #include "src/crankshaft/hydrogen.h"
8 #include "src/crankshaft/lithium-allocator-inl.h"
9 #include "src/crankshaft/lithium-inl.h"
10 #include "src/objects-inl.h"
11 #include "src/register-configuration.h"
12 #include "src/string-stream.h"
13 
14 namespace v8 {
15 namespace internal {
16 
17 const auto GetRegConfig = RegisterConfiguration::Crankshaft;
18 
Min(LifetimePosition a,LifetimePosition b)19 static inline LifetimePosition Min(LifetimePosition a, LifetimePosition b) {
20   return a.Value() < b.Value() ? a : b;
21 }
22 
23 
Max(LifetimePosition a,LifetimePosition b)24 static inline LifetimePosition Max(LifetimePosition a, LifetimePosition b) {
25   return a.Value() > b.Value() ? a : b;
26 }
27 
28 
UsePosition(LifetimePosition pos,LOperand * operand,LOperand * hint)29 UsePosition::UsePosition(LifetimePosition pos,
30                          LOperand* operand,
31                          LOperand* hint)
32     : operand_(operand),
33       hint_(hint),
34       pos_(pos),
35       next_(NULL),
36       requires_reg_(false),
37       register_beneficial_(true) {
38   if (operand_ != NULL && operand_->IsUnallocated()) {
39     LUnallocated* unalloc = LUnallocated::cast(operand_);
40     requires_reg_ = unalloc->HasRegisterPolicy() ||
41         unalloc->HasDoubleRegisterPolicy();
42     register_beneficial_ = !unalloc->HasAnyPolicy();
43   }
44   DCHECK(pos_.IsValid());
45 }
46 
47 
HasHint() const48 bool UsePosition::HasHint() const {
49   return hint_ != NULL && !hint_->IsUnallocated();
50 }
51 
52 
RequiresRegister() const53 bool UsePosition::RequiresRegister() const {
54   return requires_reg_;
55 }
56 
57 
RegisterIsBeneficial() const58 bool UsePosition::RegisterIsBeneficial() const {
59   return register_beneficial_;
60 }
61 
62 
SplitAt(LifetimePosition pos,Zone * zone)63 void UseInterval::SplitAt(LifetimePosition pos, Zone* zone) {
64   DCHECK(Contains(pos) && pos.Value() != start().Value());
65   UseInterval* after = new(zone) UseInterval(pos, end_);
66   after->next_ = next_;
67   next_ = after;
68   end_ = pos;
69 }
70 
71 
72 #ifdef DEBUG
73 
74 
Verify() const75 void LiveRange::Verify() const {
76   UsePosition* cur = first_pos_;
77   while (cur != NULL) {
78     DCHECK(Start().Value() <= cur->pos().Value() &&
79            cur->pos().Value() <= End().Value());
80     cur = cur->next();
81   }
82 }
83 
84 
HasOverlap(UseInterval * target) const85 bool LiveRange::HasOverlap(UseInterval* target) const {
86   UseInterval* current_interval = first_interval_;
87   while (current_interval != NULL) {
88     // Intervals overlap if the start of one is contained in the other.
89     if (current_interval->Contains(target->start()) ||
90         target->Contains(current_interval->start())) {
91       return true;
92     }
93     current_interval = current_interval->next();
94   }
95   return false;
96 }
97 
98 
99 #endif
100 
101 
LiveRange(int id,Zone * zone)102 LiveRange::LiveRange(int id, Zone* zone)
103     : id_(id),
104       spilled_(false),
105       kind_(UNALLOCATED_REGISTERS),
106       assigned_register_(kInvalidAssignment),
107       last_interval_(NULL),
108       first_interval_(NULL),
109       first_pos_(NULL),
110       parent_(NULL),
111       next_(NULL),
112       current_interval_(NULL),
113       last_processed_use_(NULL),
114       current_hint_operand_(NULL),
115       spill_operand_(new (zone) LOperand()),
116       spill_start_index_(kMaxInt) {}
117 
118 
set_assigned_register(int reg,Zone * zone)119 void LiveRange::set_assigned_register(int reg, Zone* zone) {
120   DCHECK(!HasRegisterAssigned() && !IsSpilled());
121   assigned_register_ = reg;
122   ConvertOperands(zone);
123 }
124 
125 
MakeSpilled(Zone * zone)126 void LiveRange::MakeSpilled(Zone* zone) {
127   DCHECK(!IsSpilled());
128   DCHECK(TopLevel()->HasAllocatedSpillOperand());
129   spilled_ = true;
130   assigned_register_ = kInvalidAssignment;
131   ConvertOperands(zone);
132 }
133 
134 
HasAllocatedSpillOperand() const135 bool LiveRange::HasAllocatedSpillOperand() const {
136   DCHECK(spill_operand_ != NULL);
137   return !spill_operand_->IsIgnored();
138 }
139 
140 
SetSpillOperand(LOperand * operand)141 void LiveRange::SetSpillOperand(LOperand* operand) {
142   DCHECK(!operand->IsUnallocated());
143   DCHECK(spill_operand_ != NULL);
144   DCHECK(spill_operand_->IsIgnored());
145   spill_operand_->ConvertTo(operand->kind(), operand->index());
146 }
147 
148 
NextUsePosition(LifetimePosition start)149 UsePosition* LiveRange::NextUsePosition(LifetimePosition start) {
150   UsePosition* use_pos = last_processed_use_;
151   if (use_pos == NULL) use_pos = first_pos();
152   while (use_pos != NULL && use_pos->pos().Value() < start.Value()) {
153     use_pos = use_pos->next();
154   }
155   last_processed_use_ = use_pos;
156   return use_pos;
157 }
158 
159 
NextUsePositionRegisterIsBeneficial(LifetimePosition start)160 UsePosition* LiveRange::NextUsePositionRegisterIsBeneficial(
161     LifetimePosition start) {
162   UsePosition* pos = NextUsePosition(start);
163   while (pos != NULL && !pos->RegisterIsBeneficial()) {
164     pos = pos->next();
165   }
166   return pos;
167 }
168 
169 
PreviousUsePositionRegisterIsBeneficial(LifetimePosition start)170 UsePosition* LiveRange::PreviousUsePositionRegisterIsBeneficial(
171     LifetimePosition start) {
172   UsePosition* pos = first_pos();
173   UsePosition* prev = NULL;
174   while (pos != NULL && pos->pos().Value() < start.Value()) {
175     if (pos->RegisterIsBeneficial()) prev = pos;
176     pos = pos->next();
177   }
178   return prev;
179 }
180 
181 
NextRegisterPosition(LifetimePosition start)182 UsePosition* LiveRange::NextRegisterPosition(LifetimePosition start) {
183   UsePosition* pos = NextUsePosition(start);
184   while (pos != NULL && !pos->RequiresRegister()) {
185     pos = pos->next();
186   }
187   return pos;
188 }
189 
190 
CanBeSpilled(LifetimePosition pos)191 bool LiveRange::CanBeSpilled(LifetimePosition pos) {
192   // We cannot spill a live range that has a use requiring a register
193   // at the current or the immediate next position.
194   UsePosition* use_pos = NextRegisterPosition(pos);
195   if (use_pos == NULL) return true;
196   return
197       use_pos->pos().Value() > pos.NextInstruction().InstructionEnd().Value();
198 }
199 
200 
CreateAssignedOperand(Zone * zone)201 LOperand* LiveRange::CreateAssignedOperand(Zone* zone) {
202   LOperand* op = NULL;
203   if (HasRegisterAssigned()) {
204     DCHECK(!IsSpilled());
205     switch (Kind()) {
206       case GENERAL_REGISTERS:
207         op = LRegister::Create(assigned_register(), zone);
208         break;
209       case DOUBLE_REGISTERS:
210         op = LDoubleRegister::Create(assigned_register(), zone);
211         break;
212       default:
213         UNREACHABLE();
214     }
215   } else if (IsSpilled()) {
216     DCHECK(!HasRegisterAssigned());
217     op = TopLevel()->GetSpillOperand();
218     DCHECK(!op->IsUnallocated());
219   } else {
220     LUnallocated* unalloc = new(zone) LUnallocated(LUnallocated::NONE);
221     unalloc->set_virtual_register(id_);
222     op = unalloc;
223   }
224   return op;
225 }
226 
227 
FirstSearchIntervalForPosition(LifetimePosition position) const228 UseInterval* LiveRange::FirstSearchIntervalForPosition(
229     LifetimePosition position) const {
230   if (current_interval_ == NULL) return first_interval_;
231   if (current_interval_->start().Value() > position.Value()) {
232     current_interval_ = NULL;
233     return first_interval_;
234   }
235   return current_interval_;
236 }
237 
238 
AdvanceLastProcessedMarker(UseInterval * to_start_of,LifetimePosition but_not_past) const239 void LiveRange::AdvanceLastProcessedMarker(
240     UseInterval* to_start_of, LifetimePosition but_not_past) const {
241   if (to_start_of == NULL) return;
242   if (to_start_of->start().Value() > but_not_past.Value()) return;
243   LifetimePosition start =
244       current_interval_ == NULL ? LifetimePosition::Invalid()
245                                 : current_interval_->start();
246   if (to_start_of->start().Value() > start.Value()) {
247     current_interval_ = to_start_of;
248   }
249 }
250 
251 
SplitAt(LifetimePosition position,LiveRange * result,Zone * zone)252 void LiveRange::SplitAt(LifetimePosition position,
253                         LiveRange* result,
254                         Zone* zone) {
255   DCHECK(Start().Value() < position.Value());
256   DCHECK(result->IsEmpty());
257   // Find the last interval that ends before the position. If the
258   // position is contained in one of the intervals in the chain, we
259   // split that interval and use the first part.
260   UseInterval* current = FirstSearchIntervalForPosition(position);
261 
262   // If the split position coincides with the beginning of a use interval
263   // we need to split use positons in a special way.
264   bool split_at_start = false;
265 
266   if (current->start().Value() == position.Value()) {
267     // When splitting at start we need to locate the previous use interval.
268     current = first_interval_;
269   }
270 
271   while (current != NULL) {
272     if (current->Contains(position)) {
273       current->SplitAt(position, zone);
274       break;
275     }
276     UseInterval* next = current->next();
277     if (next->start().Value() >= position.Value()) {
278       split_at_start = (next->start().Value() == position.Value());
279       break;
280     }
281     current = next;
282   }
283 
284   // Partition original use intervals to the two live ranges.
285   UseInterval* before = current;
286   UseInterval* after = before->next();
287   result->last_interval_ = (last_interval_ == before)
288       ? after            // Only interval in the range after split.
289       : last_interval_;  // Last interval of the original range.
290   result->first_interval_ = after;
291   last_interval_ = before;
292 
293   // Find the last use position before the split and the first use
294   // position after it.
295   UsePosition* use_after = first_pos_;
296   UsePosition* use_before = NULL;
297   if (split_at_start) {
298     // The split position coincides with the beginning of a use interval (the
299     // end of a lifetime hole). Use at this position should be attributed to
300     // the split child because split child owns use interval covering it.
301     while (use_after != NULL && use_after->pos().Value() < position.Value()) {
302       use_before = use_after;
303       use_after = use_after->next();
304     }
305   } else {
306     while (use_after != NULL && use_after->pos().Value() <= position.Value()) {
307       use_before = use_after;
308       use_after = use_after->next();
309     }
310   }
311 
312   // Partition original use positions to the two live ranges.
313   if (use_before != NULL) {
314     use_before->next_ = NULL;
315   } else {
316     first_pos_ = NULL;
317   }
318   result->first_pos_ = use_after;
319 
320   // Discard cached iteration state. It might be pointing
321   // to the use that no longer belongs to this live range.
322   last_processed_use_ = NULL;
323   current_interval_ = NULL;
324 
325   // Link the new live range in the chain before any of the other
326   // ranges linked from the range before the split.
327   result->parent_ = (parent_ == NULL) ? this : parent_;
328   result->kind_ = result->parent_->kind_;
329   result->next_ = next_;
330   next_ = result;
331 
332 #ifdef DEBUG
333   Verify();
334   result->Verify();
335 #endif
336 }
337 
338 
339 // This implements an ordering on live ranges so that they are ordered by their
340 // start positions.  This is needed for the correctness of the register
341 // allocation algorithm.  If two live ranges start at the same offset then there
342 // is a tie breaker based on where the value is first used.  This part of the
343 // ordering is merely a heuristic.
ShouldBeAllocatedBefore(const LiveRange * other) const344 bool LiveRange::ShouldBeAllocatedBefore(const LiveRange* other) const {
345   LifetimePosition start = Start();
346   LifetimePosition other_start = other->Start();
347   if (start.Value() == other_start.Value()) {
348     UsePosition* pos = first_pos();
349     if (pos == NULL) return false;
350     UsePosition* other_pos = other->first_pos();
351     if (other_pos == NULL) return true;
352     return pos->pos().Value() < other_pos->pos().Value();
353   }
354   return start.Value() < other_start.Value();
355 }
356 
357 
ShortenTo(LifetimePosition start)358 void LiveRange::ShortenTo(LifetimePosition start) {
359   LAllocator::TraceAlloc("Shorten live range %d to [%d\n", id_, start.Value());
360   DCHECK(first_interval_ != NULL);
361   DCHECK(first_interval_->start().Value() <= start.Value());
362   DCHECK(start.Value() < first_interval_->end().Value());
363   first_interval_->set_start(start);
364 }
365 
366 
EnsureInterval(LifetimePosition start,LifetimePosition end,Zone * zone)367 void LiveRange::EnsureInterval(LifetimePosition start,
368                                LifetimePosition end,
369                                Zone* zone) {
370   LAllocator::TraceAlloc("Ensure live range %d in interval [%d %d[\n",
371                          id_,
372                          start.Value(),
373                          end.Value());
374   LifetimePosition new_end = end;
375   while (first_interval_ != NULL &&
376          first_interval_->start().Value() <= end.Value()) {
377     if (first_interval_->end().Value() > end.Value()) {
378       new_end = first_interval_->end();
379     }
380     first_interval_ = first_interval_->next();
381   }
382 
383   UseInterval* new_interval = new(zone) UseInterval(start, new_end);
384   new_interval->next_ = first_interval_;
385   first_interval_ = new_interval;
386   if (new_interval->next() == NULL) {
387     last_interval_ = new_interval;
388   }
389 }
390 
391 
AddUseInterval(LifetimePosition start,LifetimePosition end,Zone * zone)392 void LiveRange::AddUseInterval(LifetimePosition start,
393                                LifetimePosition end,
394                                Zone* zone) {
395   LAllocator::TraceAlloc("Add to live range %d interval [%d %d[\n",
396                          id_,
397                          start.Value(),
398                          end.Value());
399   if (first_interval_ == NULL) {
400     UseInterval* interval = new(zone) UseInterval(start, end);
401     first_interval_ = interval;
402     last_interval_ = interval;
403   } else {
404     if (end.Value() == first_interval_->start().Value()) {
405       first_interval_->set_start(start);
406     } else if (end.Value() < first_interval_->start().Value()) {
407       UseInterval* interval = new(zone) UseInterval(start, end);
408       interval->set_next(first_interval_);
409       first_interval_ = interval;
410     } else {
411       // Order of instruction's processing (see ProcessInstructions) guarantees
412       // that each new use interval either precedes or intersects with
413       // last added interval.
414       DCHECK(start.Value() < first_interval_->end().Value());
415       first_interval_->start_ = Min(start, first_interval_->start_);
416       first_interval_->end_ = Max(end, first_interval_->end_);
417     }
418   }
419 }
420 
421 
AddUsePosition(LifetimePosition pos,LOperand * operand,LOperand * hint,Zone * zone)422 void LiveRange::AddUsePosition(LifetimePosition pos,
423                                LOperand* operand,
424                                LOperand* hint,
425                                Zone* zone) {
426   LAllocator::TraceAlloc("Add to live range %d use position %d\n",
427                          id_,
428                          pos.Value());
429   UsePosition* use_pos = new(zone) UsePosition(pos, operand, hint);
430   UsePosition* prev_hint = NULL;
431   UsePosition* prev = NULL;
432   UsePosition* current = first_pos_;
433   while (current != NULL && current->pos().Value() < pos.Value()) {
434     prev_hint = current->HasHint() ? current : prev_hint;
435     prev = current;
436     current = current->next();
437   }
438 
439   if (prev == NULL) {
440     use_pos->set_next(first_pos_);
441     first_pos_ = use_pos;
442   } else {
443     use_pos->next_ = prev->next_;
444     prev->next_ = use_pos;
445   }
446 
447   if (prev_hint == NULL && use_pos->HasHint()) {
448     current_hint_operand_ = hint;
449   }
450 }
451 
452 
ConvertOperands(Zone * zone)453 void LiveRange::ConvertOperands(Zone* zone) {
454   LOperand* op = CreateAssignedOperand(zone);
455   UsePosition* use_pos = first_pos();
456   while (use_pos != NULL) {
457     DCHECK(Start().Value() <= use_pos->pos().Value() &&
458            use_pos->pos().Value() <= End().Value());
459 
460     if (use_pos->HasOperand()) {
461       DCHECK(op->IsRegister() || op->IsDoubleRegister() ||
462              !use_pos->RequiresRegister());
463       use_pos->operand()->ConvertTo(op->kind(), op->index());
464     }
465     use_pos = use_pos->next();
466   }
467 }
468 
469 
CanCover(LifetimePosition position) const470 bool LiveRange::CanCover(LifetimePosition position) const {
471   if (IsEmpty()) return false;
472   return Start().Value() <= position.Value() &&
473          position.Value() < End().Value();
474 }
475 
476 
Covers(LifetimePosition position)477 bool LiveRange::Covers(LifetimePosition position) {
478   if (!CanCover(position)) return false;
479   UseInterval* start_search = FirstSearchIntervalForPosition(position);
480   for (UseInterval* interval = start_search;
481        interval != NULL;
482        interval = interval->next()) {
483     DCHECK(interval->next() == NULL ||
484            interval->next()->start().Value() >= interval->start().Value());
485     AdvanceLastProcessedMarker(interval, position);
486     if (interval->Contains(position)) return true;
487     if (interval->start().Value() > position.Value()) return false;
488   }
489   return false;
490 }
491 
492 
FirstIntersection(LiveRange * other)493 LifetimePosition LiveRange::FirstIntersection(LiveRange* other) {
494   UseInterval* b = other->first_interval();
495   if (b == NULL) return LifetimePosition::Invalid();
496   LifetimePosition advance_last_processed_up_to = b->start();
497   UseInterval* a = FirstSearchIntervalForPosition(b->start());
498   while (a != NULL && b != NULL) {
499     if (a->start().Value() > other->End().Value()) break;
500     if (b->start().Value() > End().Value()) break;
501     LifetimePosition cur_intersection = a->Intersect(b);
502     if (cur_intersection.IsValid()) {
503       return cur_intersection;
504     }
505     if (a->start().Value() < b->start().Value()) {
506       a = a->next();
507       if (a == NULL || a->start().Value() > other->End().Value()) break;
508       AdvanceLastProcessedMarker(a, advance_last_processed_up_to);
509     } else {
510       b = b->next();
511     }
512   }
513   return LifetimePosition::Invalid();
514 }
515 
LAllocator(int num_values,HGraph * graph)516 LAllocator::LAllocator(int num_values, HGraph* graph)
517     : zone_(graph->isolate()->allocator(), ZONE_NAME),
518       chunk_(NULL),
519       live_in_sets_(graph->blocks()->length(), zone()),
520       live_ranges_(num_values * 2, zone()),
521       fixed_live_ranges_(NULL),
522       fixed_double_live_ranges_(NULL),
523       unhandled_live_ranges_(num_values * 2, zone()),
524       active_live_ranges_(8, zone()),
525       inactive_live_ranges_(8, zone()),
526       reusable_slots_(8, zone()),
527       next_virtual_register_(num_values),
528       first_artificial_register_(num_values),
529       mode_(UNALLOCATED_REGISTERS),
530       num_registers_(-1),
531       graph_(graph),
532       has_osr_entry_(false),
533       allocation_ok_(true) {}
534 
InitializeLivenessAnalysis()535 void LAllocator::InitializeLivenessAnalysis() {
536   // Initialize the live_in sets for each block to NULL.
537   int block_count = graph_->blocks()->length();
538   live_in_sets_.Initialize(block_count, zone());
539   live_in_sets_.AddBlock(NULL, block_count, zone());
540 }
541 
542 
ComputeLiveOut(HBasicBlock * block)543 BitVector* LAllocator::ComputeLiveOut(HBasicBlock* block) {
544   // Compute live out for the given block, except not including backward
545   // successor edges.
546   BitVector* live_out = new(zone()) BitVector(next_virtual_register_, zone());
547 
548   // Process all successor blocks.
549   for (HSuccessorIterator it(block->end()); !it.Done(); it.Advance()) {
550     // Add values live on entry to the successor. Note the successor's
551     // live_in will not be computed yet for backwards edges.
552     HBasicBlock* successor = it.Current();
553     BitVector* live_in = live_in_sets_[successor->block_id()];
554     if (live_in != NULL) live_out->Union(*live_in);
555 
556     // All phi input operands corresponding to this successor edge are live
557     // out from this block.
558     int index = successor->PredecessorIndexOf(block);
559     const ZoneList<HPhi*>* phis = successor->phis();
560     for (int i = 0; i < phis->length(); ++i) {
561       HPhi* phi = phis->at(i);
562       if (!phi->OperandAt(index)->IsConstant()) {
563         live_out->Add(phi->OperandAt(index)->id());
564       }
565     }
566   }
567 
568   return live_out;
569 }
570 
571 
AddInitialIntervals(HBasicBlock * block,BitVector * live_out)572 void LAllocator::AddInitialIntervals(HBasicBlock* block,
573                                      BitVector* live_out) {
574   // Add an interval that includes the entire block to the live range for
575   // each live_out value.
576   LifetimePosition start = LifetimePosition::FromInstructionIndex(
577       block->first_instruction_index());
578   LifetimePosition end = LifetimePosition::FromInstructionIndex(
579       block->last_instruction_index()).NextInstruction();
580   BitVector::Iterator iterator(live_out);
581   while (!iterator.Done()) {
582     int operand_index = iterator.Current();
583     LiveRange* range = LiveRangeFor(operand_index);
584     range->AddUseInterval(start, end, zone());
585     iterator.Advance();
586   }
587 }
588 
589 
FixedDoubleLiveRangeID(int index)590 int LAllocator::FixedDoubleLiveRangeID(int index) {
591   return -index - 1 - Register::kNumRegisters;
592 }
593 
594 
AllocateFixed(LUnallocated * operand,int pos,bool is_tagged)595 LOperand* LAllocator::AllocateFixed(LUnallocated* operand,
596                                     int pos,
597                                     bool is_tagged) {
598   TraceAlloc("Allocating fixed reg for op %d\n", operand->virtual_register());
599   DCHECK(operand->HasFixedPolicy());
600   if (operand->HasFixedSlotPolicy()) {
601     operand->ConvertTo(LOperand::STACK_SLOT, operand->fixed_slot_index());
602   } else if (operand->HasFixedRegisterPolicy()) {
603     int reg_index = operand->fixed_register_index();
604     operand->ConvertTo(LOperand::REGISTER, reg_index);
605   } else if (operand->HasFixedDoubleRegisterPolicy()) {
606     int reg_index = operand->fixed_register_index();
607     operand->ConvertTo(LOperand::DOUBLE_REGISTER, reg_index);
608   } else {
609     UNREACHABLE();
610   }
611   if (is_tagged) {
612     TraceAlloc("Fixed reg is tagged at %d\n", pos);
613     LInstruction* instr = InstructionAt(pos);
614     if (instr->HasPointerMap()) {
615       instr->pointer_map()->RecordPointer(operand, chunk()->zone());
616     }
617   }
618   return operand;
619 }
620 
621 
FixedLiveRangeFor(int index)622 LiveRange* LAllocator::FixedLiveRangeFor(int index) {
623   DCHECK(index < Register::kNumRegisters);
624   LiveRange* result = fixed_live_ranges_[index];
625   if (result == NULL) {
626     result = new(zone()) LiveRange(FixedLiveRangeID(index), chunk()->zone());
627     DCHECK(result->IsFixed());
628     result->kind_ = GENERAL_REGISTERS;
629     SetLiveRangeAssignedRegister(result, index);
630     fixed_live_ranges_[index] = result;
631   }
632   return result;
633 }
634 
635 
FixedDoubleLiveRangeFor(int index)636 LiveRange* LAllocator::FixedDoubleLiveRangeFor(int index) {
637   DCHECK(index < DoubleRegister::kMaxNumRegisters);
638   LiveRange* result = fixed_double_live_ranges_[index];
639   if (result == NULL) {
640     result = new(zone()) LiveRange(FixedDoubleLiveRangeID(index),
641                                    chunk()->zone());
642     DCHECK(result->IsFixed());
643     result->kind_ = DOUBLE_REGISTERS;
644     SetLiveRangeAssignedRegister(result, index);
645     fixed_double_live_ranges_[index] = result;
646   }
647   return result;
648 }
649 
650 
LiveRangeFor(int index)651 LiveRange* LAllocator::LiveRangeFor(int index) {
652   if (index >= live_ranges_.length()) {
653     live_ranges_.AddBlock(NULL, index - live_ranges_.length() + 1, zone());
654   }
655   LiveRange* result = live_ranges_[index];
656   if (result == NULL) {
657     result = new(zone()) LiveRange(index, chunk()->zone());
658     live_ranges_[index] = result;
659   }
660   return result;
661 }
662 
663 
GetLastGap(HBasicBlock * block)664 LGap* LAllocator::GetLastGap(HBasicBlock* block) {
665   int last_instruction = block->last_instruction_index();
666   int index = chunk_->NearestGapPos(last_instruction);
667   return GapAt(index);
668 }
669 
670 
LookupPhi(LOperand * operand) const671 HPhi* LAllocator::LookupPhi(LOperand* operand) const {
672   if (!operand->IsUnallocated()) return NULL;
673   int index = LUnallocated::cast(operand)->virtual_register();
674   HValue* instr = graph_->LookupValue(index);
675   if (instr != NULL && instr->IsPhi()) {
676     return HPhi::cast(instr);
677   }
678   return NULL;
679 }
680 
681 
LiveRangeFor(LOperand * operand)682 LiveRange* LAllocator::LiveRangeFor(LOperand* operand) {
683   if (operand->IsUnallocated()) {
684     return LiveRangeFor(LUnallocated::cast(operand)->virtual_register());
685   } else if (operand->IsRegister()) {
686     return FixedLiveRangeFor(operand->index());
687   } else if (operand->IsDoubleRegister()) {
688     return FixedDoubleLiveRangeFor(operand->index());
689   } else {
690     return NULL;
691   }
692 }
693 
694 
Define(LifetimePosition position,LOperand * operand,LOperand * hint)695 void LAllocator::Define(LifetimePosition position,
696                         LOperand* operand,
697                         LOperand* hint) {
698   LiveRange* range = LiveRangeFor(operand);
699   if (range == NULL) return;
700 
701   if (range->IsEmpty() || range->Start().Value() > position.Value()) {
702     // Can happen if there is a definition without use.
703     range->AddUseInterval(position, position.NextInstruction(), zone());
704     range->AddUsePosition(position.NextInstruction(), NULL, NULL, zone());
705   } else {
706     range->ShortenTo(position);
707   }
708 
709   if (operand->IsUnallocated()) {
710     LUnallocated* unalloc_operand = LUnallocated::cast(operand);
711     range->AddUsePosition(position, unalloc_operand, hint, zone());
712   }
713 }
714 
715 
Use(LifetimePosition block_start,LifetimePosition position,LOperand * operand,LOperand * hint)716 void LAllocator::Use(LifetimePosition block_start,
717                      LifetimePosition position,
718                      LOperand* operand,
719                      LOperand* hint) {
720   LiveRange* range = LiveRangeFor(operand);
721   if (range == NULL) return;
722   if (operand->IsUnallocated()) {
723     LUnallocated* unalloc_operand = LUnallocated::cast(operand);
724     range->AddUsePosition(position, unalloc_operand, hint, zone());
725   }
726   range->AddUseInterval(block_start, position, zone());
727 }
728 
729 
AddConstraintsGapMove(int index,LOperand * from,LOperand * to)730 void LAllocator::AddConstraintsGapMove(int index,
731                                        LOperand* from,
732                                        LOperand* to) {
733   LGap* gap = GapAt(index);
734   LParallelMove* move = gap->GetOrCreateParallelMove(LGap::START,
735                                                      chunk()->zone());
736   if (from->IsUnallocated()) {
737     const ZoneList<LMoveOperands>* move_operands = move->move_operands();
738     for (int i = 0; i < move_operands->length(); ++i) {
739       LMoveOperands cur = move_operands->at(i);
740       LOperand* cur_to = cur.destination();
741       if (cur_to->IsUnallocated()) {
742         if (LUnallocated::cast(cur_to)->virtual_register() ==
743             LUnallocated::cast(from)->virtual_register()) {
744           move->AddMove(cur.source(), to, chunk()->zone());
745           return;
746         }
747       }
748     }
749   }
750   move->AddMove(from, to, chunk()->zone());
751 }
752 
753 
MeetRegisterConstraints(HBasicBlock * block)754 void LAllocator::MeetRegisterConstraints(HBasicBlock* block) {
755   int start = block->first_instruction_index();
756   int end = block->last_instruction_index();
757   if (start == -1) return;
758   for (int i = start; i <= end; ++i) {
759     if (IsGapAt(i)) {
760       LInstruction* instr = NULL;
761       LInstruction* prev_instr = NULL;
762       if (i < end) instr = InstructionAt(i + 1);
763       if (i > start) prev_instr = InstructionAt(i - 1);
764       MeetConstraintsBetween(prev_instr, instr, i);
765       if (!AllocationOk()) return;
766     }
767   }
768 }
769 
770 
MeetConstraintsBetween(LInstruction * first,LInstruction * second,int gap_index)771 void LAllocator::MeetConstraintsBetween(LInstruction* first,
772                                         LInstruction* second,
773                                         int gap_index) {
774   // Handle fixed temporaries.
775   if (first != NULL) {
776     for (TempIterator it(first); !it.Done(); it.Advance()) {
777       LUnallocated* temp = LUnallocated::cast(it.Current());
778       if (temp->HasFixedPolicy()) {
779         AllocateFixed(temp, gap_index - 1, false);
780       }
781     }
782   }
783 
784   // Handle fixed output operand.
785   if (first != NULL && first->Output() != NULL) {
786     LUnallocated* first_output = LUnallocated::cast(first->Output());
787     LiveRange* range = LiveRangeFor(first_output->virtual_register());
788     bool assigned = false;
789     if (first_output->HasFixedPolicy()) {
790       LUnallocated* output_copy = first_output->CopyUnconstrained(
791           chunk()->zone());
792       bool is_tagged = HasTaggedValue(first_output->virtual_register());
793       AllocateFixed(first_output, gap_index, is_tagged);
794 
795       // This value is produced on the stack, we never need to spill it.
796       if (first_output->IsStackSlot()) {
797         range->SetSpillOperand(first_output);
798         range->SetSpillStartIndex(gap_index - 1);
799         assigned = true;
800       }
801       chunk_->AddGapMove(gap_index, first_output, output_copy);
802     }
803 
804     if (!assigned) {
805       range->SetSpillStartIndex(gap_index);
806 
807       // This move to spill operand is not a real use. Liveness analysis
808       // and splitting of live ranges do not account for it.
809       // Thus it should be inserted to a lifetime position corresponding to
810       // the instruction end.
811       LGap* gap = GapAt(gap_index);
812       LParallelMove* move = gap->GetOrCreateParallelMove(LGap::BEFORE,
813                                                          chunk()->zone());
814       move->AddMove(first_output, range->GetSpillOperand(),
815                     chunk()->zone());
816     }
817   }
818 
819   // Handle fixed input operands of second instruction.
820   if (second != NULL) {
821     for (UseIterator it(second); !it.Done(); it.Advance()) {
822       LUnallocated* cur_input = LUnallocated::cast(it.Current());
823       if (cur_input->HasFixedPolicy()) {
824         LUnallocated* input_copy = cur_input->CopyUnconstrained(
825             chunk()->zone());
826         bool is_tagged = HasTaggedValue(cur_input->virtual_register());
827         AllocateFixed(cur_input, gap_index + 1, is_tagged);
828         AddConstraintsGapMove(gap_index, input_copy, cur_input);
829       } else if (cur_input->HasWritableRegisterPolicy()) {
830         // The live range of writable input registers always goes until the end
831         // of the instruction.
832         DCHECK(!cur_input->IsUsedAtStart());
833 
834         LUnallocated* input_copy = cur_input->CopyUnconstrained(
835             chunk()->zone());
836         int vreg = GetVirtualRegister();
837         if (!AllocationOk()) return;
838         cur_input->set_virtual_register(vreg);
839 
840         if (RequiredRegisterKind(input_copy->virtual_register()) ==
841             DOUBLE_REGISTERS) {
842           double_artificial_registers_.Add(
843               cur_input->virtual_register() - first_artificial_register_,
844               zone());
845         }
846 
847         AddConstraintsGapMove(gap_index, input_copy, cur_input);
848       }
849     }
850   }
851 
852   // Handle "output same as input" for second instruction.
853   if (second != NULL && second->Output() != NULL) {
854     LUnallocated* second_output = LUnallocated::cast(second->Output());
855     if (second_output->HasSameAsInputPolicy()) {
856       LUnallocated* cur_input = LUnallocated::cast(second->FirstInput());
857       int output_vreg = second_output->virtual_register();
858       int input_vreg = cur_input->virtual_register();
859 
860       LUnallocated* input_copy = cur_input->CopyUnconstrained(
861           chunk()->zone());
862       cur_input->set_virtual_register(second_output->virtual_register());
863       AddConstraintsGapMove(gap_index, input_copy, cur_input);
864 
865       if (HasTaggedValue(input_vreg) && !HasTaggedValue(output_vreg)) {
866         int index = gap_index + 1;
867         LInstruction* instr = InstructionAt(index);
868         if (instr->HasPointerMap()) {
869           instr->pointer_map()->RecordPointer(input_copy, chunk()->zone());
870         }
871       } else if (!HasTaggedValue(input_vreg) && HasTaggedValue(output_vreg)) {
872         // The input is assumed to immediately have a tagged representation,
873         // before the pointer map can be used. I.e. the pointer map at the
874         // instruction will include the output operand (whose value at the
875         // beginning of the instruction is equal to the input operand). If
876         // this is not desired, then the pointer map at this instruction needs
877         // to be adjusted manually.
878       }
879     }
880   }
881 }
882 
883 
ProcessInstructions(HBasicBlock * block,BitVector * live)884 void LAllocator::ProcessInstructions(HBasicBlock* block, BitVector* live) {
885   int block_start = block->first_instruction_index();
886   int index = block->last_instruction_index();
887 
888   LifetimePosition block_start_position =
889       LifetimePosition::FromInstructionIndex(block_start);
890 
891   while (index >= block_start) {
892     LifetimePosition curr_position =
893         LifetimePosition::FromInstructionIndex(index);
894 
895     if (IsGapAt(index)) {
896       // We have a gap at this position.
897       LGap* gap = GapAt(index);
898       LParallelMove* move = gap->GetOrCreateParallelMove(LGap::START,
899                                                          chunk()->zone());
900       const ZoneList<LMoveOperands>* move_operands = move->move_operands();
901       for (int i = 0; i < move_operands->length(); ++i) {
902         LMoveOperands* cur = &move_operands->at(i);
903         if (cur->IsIgnored()) continue;
904         LOperand* from = cur->source();
905         LOperand* to = cur->destination();
906         HPhi* phi = LookupPhi(to);
907         LOperand* hint = to;
908         if (phi != NULL) {
909           // This is a phi resolving move.
910           if (!phi->block()->IsLoopHeader()) {
911             hint = LiveRangeFor(phi->id())->current_hint_operand();
912           }
913         } else {
914           if (to->IsUnallocated()) {
915             if (live->Contains(LUnallocated::cast(to)->virtual_register())) {
916               Define(curr_position, to, from);
917               live->Remove(LUnallocated::cast(to)->virtual_register());
918             } else {
919               cur->Eliminate();
920               continue;
921             }
922           } else {
923             Define(curr_position, to, from);
924           }
925         }
926         Use(block_start_position, curr_position, from, hint);
927         if (from->IsUnallocated()) {
928           live->Add(LUnallocated::cast(from)->virtual_register());
929         }
930       }
931     } else {
932       DCHECK(!IsGapAt(index));
933       LInstruction* instr = InstructionAt(index);
934 
935       if (instr != NULL) {
936         LOperand* output = instr->Output();
937         if (output != NULL) {
938           if (output->IsUnallocated()) {
939             live->Remove(LUnallocated::cast(output)->virtual_register());
940           }
941           Define(curr_position, output, NULL);
942         }
943 
944         if (instr->ClobbersRegisters()) {
945           for (int i = 0; i < Register::kNumRegisters; ++i) {
946             if (GetRegConfig()->IsAllocatableGeneralCode(i)) {
947               if (output == NULL || !output->IsRegister() ||
948                   output->index() != i) {
949                 LiveRange* range = FixedLiveRangeFor(i);
950                 range->AddUseInterval(curr_position,
951                                       curr_position.InstructionEnd(), zone());
952               }
953             }
954           }
955         }
956 
957         if (instr->ClobbersDoubleRegisters(isolate())) {
958           for (int i = 0; i < DoubleRegister::kMaxNumRegisters; ++i) {
959             if (GetRegConfig()->IsAllocatableDoubleCode(i)) {
960               if (output == NULL || !output->IsDoubleRegister() ||
961                   output->index() != i) {
962                 LiveRange* range = FixedDoubleLiveRangeFor(i);
963                 range->AddUseInterval(curr_position,
964                                       curr_position.InstructionEnd(), zone());
965               }
966             }
967           }
968         }
969 
970         for (UseIterator it(instr); !it.Done(); it.Advance()) {
971           LOperand* input = it.Current();
972 
973           LifetimePosition use_pos;
974           if (input->IsUnallocated() &&
975               LUnallocated::cast(input)->IsUsedAtStart()) {
976             use_pos = curr_position;
977           } else {
978             use_pos = curr_position.InstructionEnd();
979           }
980 
981           Use(block_start_position, use_pos, input, NULL);
982           if (input->IsUnallocated()) {
983             live->Add(LUnallocated::cast(input)->virtual_register());
984           }
985         }
986 
987         for (TempIterator it(instr); !it.Done(); it.Advance()) {
988           LOperand* temp = it.Current();
989           if (instr->ClobbersTemps()) {
990             if (temp->IsRegister()) continue;
991             if (temp->IsUnallocated()) {
992               LUnallocated* temp_unalloc = LUnallocated::cast(temp);
993               if (temp_unalloc->HasFixedPolicy()) {
994                 continue;
995               }
996             }
997           }
998           Use(block_start_position, curr_position.InstructionEnd(), temp, NULL);
999           Define(curr_position, temp, NULL);
1000 
1001           if (temp->IsUnallocated()) {
1002             LUnallocated* temp_unalloc = LUnallocated::cast(temp);
1003             if (temp_unalloc->HasDoubleRegisterPolicy()) {
1004               double_artificial_registers_.Add(
1005                   temp_unalloc->virtual_register() - first_artificial_register_,
1006                   zone());
1007             }
1008           }
1009         }
1010       }
1011     }
1012 
1013     index = index - 1;
1014   }
1015 }
1016 
1017 
ResolvePhis(HBasicBlock * block)1018 void LAllocator::ResolvePhis(HBasicBlock* block) {
1019   const ZoneList<HPhi*>* phis = block->phis();
1020   for (int i = 0; i < phis->length(); ++i) {
1021     HPhi* phi = phis->at(i);
1022     LUnallocated* phi_operand =
1023         new (chunk()->zone()) LUnallocated(LUnallocated::NONE);
1024     phi_operand->set_virtual_register(phi->id());
1025     for (int j = 0; j < phi->OperandCount(); ++j) {
1026       HValue* op = phi->OperandAt(j);
1027       LOperand* operand = NULL;
1028       if (op->IsConstant() && op->EmitAtUses()) {
1029         HConstant* constant = HConstant::cast(op);
1030         operand = chunk_->DefineConstantOperand(constant);
1031       } else {
1032         DCHECK(!op->EmitAtUses());
1033         LUnallocated* unalloc =
1034             new(chunk()->zone()) LUnallocated(LUnallocated::ANY);
1035         unalloc->set_virtual_register(op->id());
1036         operand = unalloc;
1037       }
1038       HBasicBlock* cur_block = block->predecessors()->at(j);
1039       // The gap move must be added without any special processing as in
1040       // the AddConstraintsGapMove.
1041       chunk_->AddGapMove(cur_block->last_instruction_index() - 1,
1042                          operand,
1043                          phi_operand);
1044 
1045       // We are going to insert a move before the branch instruction.
1046       // Some branch instructions (e.g. loops' back edges)
1047       // can potentially cause a GC so they have a pointer map.
1048       // By inserting a move we essentially create a copy of a
1049       // value which is invisible to PopulatePointerMaps(), because we store
1050       // it into a location different from the operand of a live range
1051       // covering a branch instruction.
1052       // Thus we need to manually record a pointer.
1053       LInstruction* branch =
1054           InstructionAt(cur_block->last_instruction_index());
1055       if (branch->HasPointerMap()) {
1056         if (phi->representation().IsTagged() && !phi->type().IsSmi()) {
1057           branch->pointer_map()->RecordPointer(phi_operand, chunk()->zone());
1058         } else if (!phi->representation().IsDouble()) {
1059           branch->pointer_map()->RecordUntagged(phi_operand, chunk()->zone());
1060         }
1061       }
1062     }
1063 
1064     LiveRange* live_range = LiveRangeFor(phi->id());
1065     LLabel* label = chunk_->GetLabel(phi->block()->block_id());
1066     label->GetOrCreateParallelMove(LGap::START, chunk()->zone())->
1067         AddMove(phi_operand, live_range->GetSpillOperand(), chunk()->zone());
1068     live_range->SetSpillStartIndex(phi->block()->first_instruction_index());
1069   }
1070 }
1071 
1072 
Allocate(LChunk * chunk)1073 bool LAllocator::Allocate(LChunk* chunk) {
1074   DCHECK(chunk_ == NULL);
1075   chunk_ = static_cast<LPlatformChunk*>(chunk);
1076   assigned_registers_ =
1077       new (chunk->zone()) BitVector(Register::kNumRegisters, chunk->zone());
1078   assigned_double_registers_ = new (chunk->zone())
1079       BitVector(DoubleRegister::kMaxNumRegisters, chunk->zone());
1080   MeetRegisterConstraints();
1081   if (!AllocationOk()) return false;
1082   ResolvePhis();
1083   BuildLiveRanges();
1084   AllocateGeneralRegisters();
1085   if (!AllocationOk()) return false;
1086   AllocateDoubleRegisters();
1087   if (!AllocationOk()) return false;
1088   PopulatePointerMaps();
1089   ConnectRanges();
1090   ResolveControlFlow();
1091   return true;
1092 }
1093 
1094 
MeetRegisterConstraints()1095 void LAllocator::MeetRegisterConstraints() {
1096   LAllocatorPhase phase("L_Register constraints", this);
1097   const ZoneList<HBasicBlock*>* blocks = graph_->blocks();
1098   for (int i = 0; i < blocks->length(); ++i) {
1099     HBasicBlock* block = blocks->at(i);
1100     MeetRegisterConstraints(block);
1101     if (!AllocationOk()) return;
1102   }
1103 }
1104 
1105 
ResolvePhis()1106 void LAllocator::ResolvePhis() {
1107   LAllocatorPhase phase("L_Resolve phis", this);
1108 
1109   // Process the blocks in reverse order.
1110   const ZoneList<HBasicBlock*>* blocks = graph_->blocks();
1111   for (int block_id = blocks->length() - 1; block_id >= 0; --block_id) {
1112     HBasicBlock* block = blocks->at(block_id);
1113     ResolvePhis(block);
1114   }
1115 }
1116 
1117 
ResolveControlFlow(LiveRange * range,HBasicBlock * block,HBasicBlock * pred)1118 void LAllocator::ResolveControlFlow(LiveRange* range,
1119                                     HBasicBlock* block,
1120                                     HBasicBlock* pred) {
1121   LifetimePosition pred_end =
1122       LifetimePosition::FromInstructionIndex(pred->last_instruction_index());
1123   LifetimePosition cur_start =
1124       LifetimePosition::FromInstructionIndex(block->first_instruction_index());
1125   LiveRange* pred_cover = NULL;
1126   LiveRange* cur_cover = NULL;
1127   LiveRange* cur_range = range;
1128   while (cur_range != NULL && (cur_cover == NULL || pred_cover == NULL)) {
1129     if (cur_range->CanCover(cur_start)) {
1130       DCHECK(cur_cover == NULL);
1131       cur_cover = cur_range;
1132     }
1133     if (cur_range->CanCover(pred_end)) {
1134       DCHECK(pred_cover == NULL);
1135       pred_cover = cur_range;
1136     }
1137     cur_range = cur_range->next();
1138   }
1139 
1140   if (cur_cover->IsSpilled()) return;
1141   DCHECK(pred_cover != NULL && cur_cover != NULL);
1142   if (pred_cover != cur_cover) {
1143     LOperand* pred_op = pred_cover->CreateAssignedOperand(chunk()->zone());
1144     LOperand* cur_op = cur_cover->CreateAssignedOperand(chunk()->zone());
1145     if (!pred_op->Equals(cur_op)) {
1146       LGap* gap = NULL;
1147       if (block->predecessors()->length() == 1) {
1148         gap = GapAt(block->first_instruction_index());
1149       } else {
1150         DCHECK(pred->end()->SecondSuccessor() == NULL);
1151         gap = GetLastGap(pred);
1152 
1153         // We are going to insert a move before the branch instruction.
1154         // Some branch instructions (e.g. loops' back edges)
1155         // can potentially cause a GC so they have a pointer map.
1156         // By inserting a move we essentially create a copy of a
1157         // value which is invisible to PopulatePointerMaps(), because we store
1158         // it into a location different from the operand of a live range
1159         // covering a branch instruction.
1160         // Thus we need to manually record a pointer.
1161         LInstruction* branch = InstructionAt(pred->last_instruction_index());
1162         if (branch->HasPointerMap()) {
1163           if (HasTaggedValue(range->id())) {
1164             branch->pointer_map()->RecordPointer(cur_op, chunk()->zone());
1165           } else if (!cur_op->IsDoubleStackSlot() &&
1166                      !cur_op->IsDoubleRegister()) {
1167             branch->pointer_map()->RemovePointer(cur_op);
1168           }
1169         }
1170       }
1171       gap->GetOrCreateParallelMove(
1172           LGap::START, chunk()->zone())->AddMove(pred_op, cur_op,
1173                                                  chunk()->zone());
1174     }
1175   }
1176 }
1177 
1178 
GetConnectingParallelMove(LifetimePosition pos)1179 LParallelMove* LAllocator::GetConnectingParallelMove(LifetimePosition pos) {
1180   int index = pos.InstructionIndex();
1181   if (IsGapAt(index)) {
1182     LGap* gap = GapAt(index);
1183     return gap->GetOrCreateParallelMove(
1184         pos.IsInstructionStart() ? LGap::START : LGap::END, chunk()->zone());
1185   }
1186   int gap_pos = pos.IsInstructionStart() ? (index - 1) : (index + 1);
1187   return GapAt(gap_pos)->GetOrCreateParallelMove(
1188       (gap_pos < index) ? LGap::AFTER : LGap::BEFORE, chunk()->zone());
1189 }
1190 
1191 
GetBlock(LifetimePosition pos)1192 HBasicBlock* LAllocator::GetBlock(LifetimePosition pos) {
1193   LGap* gap = GapAt(chunk_->NearestGapPos(pos.InstructionIndex()));
1194   return gap->block();
1195 }
1196 
1197 
ConnectRanges()1198 void LAllocator::ConnectRanges() {
1199   LAllocatorPhase phase("L_Connect ranges", this);
1200   for (int i = 0; i < live_ranges()->length(); ++i) {
1201     LiveRange* first_range = live_ranges()->at(i);
1202     if (first_range == NULL || first_range->parent() != NULL) continue;
1203 
1204     LiveRange* second_range = first_range->next();
1205     while (second_range != NULL) {
1206       LifetimePosition pos = second_range->Start();
1207 
1208       if (!second_range->IsSpilled()) {
1209         // Add gap move if the two live ranges touch and there is no block
1210         // boundary.
1211         if (first_range->End().Value() == pos.Value()) {
1212           bool should_insert = true;
1213           if (IsBlockBoundary(pos)) {
1214             should_insert = CanEagerlyResolveControlFlow(GetBlock(pos));
1215           }
1216           if (should_insert) {
1217             LParallelMove* move = GetConnectingParallelMove(pos);
1218             LOperand* prev_operand = first_range->CreateAssignedOperand(
1219                 chunk()->zone());
1220             LOperand* cur_operand = second_range->CreateAssignedOperand(
1221                 chunk()->zone());
1222             move->AddMove(prev_operand, cur_operand,
1223                           chunk()->zone());
1224           }
1225         }
1226       }
1227 
1228       first_range = second_range;
1229       second_range = second_range->next();
1230     }
1231   }
1232 }
1233 
1234 
CanEagerlyResolveControlFlow(HBasicBlock * block) const1235 bool LAllocator::CanEagerlyResolveControlFlow(HBasicBlock* block) const {
1236   if (block->predecessors()->length() != 1) return false;
1237   return block->predecessors()->first()->block_id() == block->block_id() - 1;
1238 }
1239 
1240 
ResolveControlFlow()1241 void LAllocator::ResolveControlFlow() {
1242   LAllocatorPhase phase("L_Resolve control flow", this);
1243   const ZoneList<HBasicBlock*>* blocks = graph_->blocks();
1244   for (int block_id = 1; block_id < blocks->length(); ++block_id) {
1245     HBasicBlock* block = blocks->at(block_id);
1246     if (CanEagerlyResolveControlFlow(block)) continue;
1247     BitVector* live = live_in_sets_[block->block_id()];
1248     BitVector::Iterator iterator(live);
1249     while (!iterator.Done()) {
1250       int operand_index = iterator.Current();
1251       for (int i = 0; i < block->predecessors()->length(); ++i) {
1252         HBasicBlock* cur = block->predecessors()->at(i);
1253         LiveRange* cur_range = LiveRangeFor(operand_index);
1254         ResolveControlFlow(cur_range, block, cur);
1255       }
1256       iterator.Advance();
1257     }
1258   }
1259 }
1260 
1261 
BuildLiveRanges()1262 void LAllocator::BuildLiveRanges() {
1263   LAllocatorPhase phase("L_Build live ranges", this);
1264   InitializeLivenessAnalysis();
1265   // Process the blocks in reverse order.
1266   const ZoneList<HBasicBlock*>* blocks = graph_->blocks();
1267   for (int block_id = blocks->length() - 1; block_id >= 0; --block_id) {
1268     HBasicBlock* block = blocks->at(block_id);
1269     BitVector* live = ComputeLiveOut(block);
1270     // Initially consider all live_out values live for the entire block. We
1271     // will shorten these intervals if necessary.
1272     AddInitialIntervals(block, live);
1273 
1274     // Process the instructions in reverse order, generating and killing
1275     // live values.
1276     ProcessInstructions(block, live);
1277     // All phi output operands are killed by this block.
1278     const ZoneList<HPhi*>* phis = block->phis();
1279     for (int i = 0; i < phis->length(); ++i) {
1280       // The live range interval already ends at the first instruction of the
1281       // block.
1282       HPhi* phi = phis->at(i);
1283       live->Remove(phi->id());
1284 
1285       LOperand* hint = NULL;
1286       LOperand* phi_operand = NULL;
1287       LGap* gap = GetLastGap(phi->block()->predecessors()->at(0));
1288       LParallelMove* move = gap->GetOrCreateParallelMove(LGap::START,
1289                                                          chunk()->zone());
1290       for (int j = 0; j < move->move_operands()->length(); ++j) {
1291         LOperand* to = move->move_operands()->at(j).destination();
1292         if (to->IsUnallocated() &&
1293             LUnallocated::cast(to)->virtual_register() == phi->id()) {
1294           hint = move->move_operands()->at(j).source();
1295           phi_operand = to;
1296           break;
1297         }
1298       }
1299       DCHECK(hint != NULL);
1300 
1301       LifetimePosition block_start = LifetimePosition::FromInstructionIndex(
1302               block->first_instruction_index());
1303       Define(block_start, phi_operand, hint);
1304     }
1305 
1306     // Now live is live_in for this block except not including values live
1307     // out on backward successor edges.
1308     live_in_sets_[block_id] = live;
1309 
1310     // If this block is a loop header go back and patch up the necessary
1311     // predecessor blocks.
1312     if (block->IsLoopHeader()) {
1313       // TODO(kmillikin): Need to be able to get the last block of the loop
1314       // in the loop information. Add a live range stretching from the first
1315       // loop instruction to the last for each value live on entry to the
1316       // header.
1317       HBasicBlock* back_edge = block->loop_information()->GetLastBackEdge();
1318       BitVector::Iterator iterator(live);
1319       LifetimePosition start = LifetimePosition::FromInstructionIndex(
1320           block->first_instruction_index());
1321       LifetimePosition end = LifetimePosition::FromInstructionIndex(
1322           back_edge->last_instruction_index()).NextInstruction();
1323       while (!iterator.Done()) {
1324         int operand_index = iterator.Current();
1325         LiveRange* range = LiveRangeFor(operand_index);
1326         range->EnsureInterval(start, end, zone());
1327         iterator.Advance();
1328       }
1329 
1330       for (int i = block->block_id() + 1; i <= back_edge->block_id(); ++i) {
1331         live_in_sets_[i]->Union(*live);
1332       }
1333     }
1334 
1335 #ifdef DEBUG
1336     if (block_id == 0) {
1337       BitVector::Iterator iterator(live);
1338       bool found = false;
1339       while (!iterator.Done()) {
1340         found = true;
1341         int operand_index = iterator.Current();
1342         {
1343           AllowHandleDereference allow_deref;
1344           PrintF("Function: %s\n", chunk_->info()->GetDebugName().get());
1345         }
1346         PrintF("Value %d used before first definition!\n", operand_index);
1347         LiveRange* range = LiveRangeFor(operand_index);
1348         PrintF("First use is at %d\n", range->first_pos()->pos().Value());
1349         iterator.Advance();
1350       }
1351       DCHECK(!found);
1352     }
1353 #endif
1354   }
1355 
1356   for (int i = 0; i < live_ranges_.length(); ++i) {
1357     if (live_ranges_[i] != NULL) {
1358       live_ranges_[i]->kind_ = RequiredRegisterKind(live_ranges_[i]->id());
1359     }
1360   }
1361 }
1362 
1363 
SafePointsAreInOrder() const1364 bool LAllocator::SafePointsAreInOrder() const {
1365   const ZoneList<LPointerMap*>* pointer_maps = chunk_->pointer_maps();
1366   int safe_point = 0;
1367   for (int i = 0; i < pointer_maps->length(); ++i) {
1368     LPointerMap* map = pointer_maps->at(i);
1369     if (safe_point > map->lithium_position()) return false;
1370     safe_point = map->lithium_position();
1371   }
1372   return true;
1373 }
1374 
1375 
PopulatePointerMaps()1376 void LAllocator::PopulatePointerMaps() {
1377   LAllocatorPhase phase("L_Populate pointer maps", this);
1378   const ZoneList<LPointerMap*>* pointer_maps = chunk_->pointer_maps();
1379 
1380   DCHECK(SafePointsAreInOrder());
1381 
1382   // Iterate over all safe point positions and record a pointer
1383   // for all spilled live ranges at this point.
1384   int first_safe_point_index = 0;
1385   int last_range_start = 0;
1386   for (int range_idx = 0; range_idx < live_ranges()->length(); ++range_idx) {
1387     LiveRange* range = live_ranges()->at(range_idx);
1388     if (range == NULL) continue;
1389     // Iterate over the first parts of multi-part live ranges.
1390     if (range->parent() != NULL) continue;
1391     // Skip non-pointer values.
1392     if (!HasTaggedValue(range->id())) continue;
1393     // Skip empty live ranges.
1394     if (range->IsEmpty()) continue;
1395 
1396     // Find the extent of the range and its children.
1397     int start = range->Start().InstructionIndex();
1398     int end = 0;
1399     for (LiveRange* cur = range; cur != NULL; cur = cur->next()) {
1400       LifetimePosition this_end = cur->End();
1401       if (this_end.InstructionIndex() > end) end = this_end.InstructionIndex();
1402       DCHECK(cur->Start().InstructionIndex() >= start);
1403     }
1404 
1405     // Most of the ranges are in order, but not all.  Keep an eye on when
1406     // they step backwards and reset the first_safe_point_index so we don't
1407     // miss any safe points.
1408     if (start < last_range_start) {
1409       first_safe_point_index = 0;
1410     }
1411     last_range_start = start;
1412 
1413     // Step across all the safe points that are before the start of this range,
1414     // recording how far we step in order to save doing this for the next range.
1415     while (first_safe_point_index < pointer_maps->length()) {
1416       LPointerMap* map = pointer_maps->at(first_safe_point_index);
1417       int safe_point = map->lithium_position();
1418       if (safe_point >= start) break;
1419       first_safe_point_index++;
1420     }
1421 
1422     // Step through the safe points to see whether they are in the range.
1423     for (int safe_point_index = first_safe_point_index;
1424          safe_point_index < pointer_maps->length();
1425          ++safe_point_index) {
1426       LPointerMap* map = pointer_maps->at(safe_point_index);
1427       int safe_point = map->lithium_position();
1428 
1429       // The safe points are sorted so we can stop searching here.
1430       if (safe_point - 1 > end) break;
1431 
1432       // Advance to the next active range that covers the current
1433       // safe point position.
1434       LifetimePosition safe_point_pos =
1435           LifetimePosition::FromInstructionIndex(safe_point);
1436       LiveRange* cur = range;
1437       while (cur != NULL && !cur->Covers(safe_point_pos)) {
1438         cur = cur->next();
1439       }
1440       if (cur == NULL) continue;
1441 
1442       // Check if the live range is spilled and the safe point is after
1443       // the spill position.
1444       if (range->HasAllocatedSpillOperand() &&
1445           safe_point >= range->spill_start_index()) {
1446         TraceAlloc("Pointer for range %d (spilled at %d) at safe point %d\n",
1447                    range->id(), range->spill_start_index(), safe_point);
1448         map->RecordPointer(range->GetSpillOperand(), chunk()->zone());
1449       }
1450 
1451       if (!cur->IsSpilled()) {
1452         TraceAlloc("Pointer in register for range %d (start at %d) "
1453                    "at safe point %d\n",
1454                    cur->id(), cur->Start().Value(), safe_point);
1455         LOperand* operand = cur->CreateAssignedOperand(chunk()->zone());
1456         DCHECK(!operand->IsStackSlot());
1457         map->RecordPointer(operand, chunk()->zone());
1458       }
1459     }
1460   }
1461 }
1462 
1463 
AllocateGeneralRegisters()1464 void LAllocator::AllocateGeneralRegisters() {
1465   LAllocatorPhase phase("L_Allocate general registers", this);
1466   num_registers_ = GetRegConfig()->num_allocatable_general_registers();
1467   allocatable_register_codes_ = GetRegConfig()->allocatable_general_codes();
1468   mode_ = GENERAL_REGISTERS;
1469   AllocateRegisters();
1470 }
1471 
1472 
AllocateDoubleRegisters()1473 void LAllocator::AllocateDoubleRegisters() {
1474   LAllocatorPhase phase("L_Allocate double registers", this);
1475   num_registers_ = GetRegConfig()->num_allocatable_double_registers();
1476   allocatable_register_codes_ = GetRegConfig()->allocatable_double_codes();
1477   mode_ = DOUBLE_REGISTERS;
1478   AllocateRegisters();
1479 }
1480 
1481 
AllocateRegisters()1482 void LAllocator::AllocateRegisters() {
1483   DCHECK(unhandled_live_ranges_.is_empty());
1484 
1485   for (int i = 0; i < live_ranges_.length(); ++i) {
1486     if (live_ranges_[i] != NULL) {
1487       if (live_ranges_[i]->Kind() == mode_) {
1488         AddToUnhandledUnsorted(live_ranges_[i]);
1489       }
1490     }
1491   }
1492   SortUnhandled();
1493   DCHECK(UnhandledIsSorted());
1494 
1495   DCHECK(reusable_slots_.is_empty());
1496   DCHECK(active_live_ranges_.is_empty());
1497   DCHECK(inactive_live_ranges_.is_empty());
1498 
1499   if (mode_ == DOUBLE_REGISTERS) {
1500     for (int i = 0; i < fixed_double_live_ranges_.length(); ++i) {
1501       LiveRange* current = fixed_double_live_ranges_.at(i);
1502       if (current != NULL) {
1503         AddToInactive(current);
1504       }
1505     }
1506   } else {
1507     DCHECK(mode_ == GENERAL_REGISTERS);
1508     for (int i = 0; i < fixed_live_ranges_.length(); ++i) {
1509       LiveRange* current = fixed_live_ranges_.at(i);
1510       if (current != NULL) {
1511         AddToInactive(current);
1512       }
1513     }
1514   }
1515 
1516   while (!unhandled_live_ranges_.is_empty()) {
1517     DCHECK(UnhandledIsSorted());
1518     LiveRange* current = unhandled_live_ranges_.RemoveLast();
1519     DCHECK(UnhandledIsSorted());
1520     LifetimePosition position = current->Start();
1521 #ifdef DEBUG
1522     allocation_finger_ = position;
1523 #endif
1524     TraceAlloc("Processing interval %d start=%d\n",
1525                current->id(),
1526                position.Value());
1527 
1528     if (current->HasAllocatedSpillOperand()) {
1529       TraceAlloc("Live range %d already has a spill operand\n", current->id());
1530       LifetimePosition next_pos = position;
1531       if (IsGapAt(next_pos.InstructionIndex())) {
1532         next_pos = next_pos.NextInstruction();
1533       }
1534       UsePosition* pos = current->NextUsePositionRegisterIsBeneficial(next_pos);
1535       // If the range already has a spill operand and it doesn't need a
1536       // register immediately, split it and spill the first part of the range.
1537       if (pos == NULL) {
1538         Spill(current);
1539         continue;
1540       } else if (pos->pos().Value() >
1541                  current->Start().NextInstruction().Value()) {
1542         // Do not spill live range eagerly if use position that can benefit from
1543         // the register is too close to the start of live range.
1544         SpillBetween(current, current->Start(), pos->pos());
1545         if (!AllocationOk()) return;
1546         DCHECK(UnhandledIsSorted());
1547         continue;
1548       }
1549     }
1550 
1551     for (int i = 0; i < active_live_ranges_.length(); ++i) {
1552       LiveRange* cur_active = active_live_ranges_.at(i);
1553       if (cur_active->End().Value() <= position.Value()) {
1554         ActiveToHandled(cur_active);
1555         --i;  // The live range was removed from the list of active live ranges.
1556       } else if (!cur_active->Covers(position)) {
1557         ActiveToInactive(cur_active);
1558         --i;  // The live range was removed from the list of active live ranges.
1559       }
1560     }
1561 
1562     for (int i = 0; i < inactive_live_ranges_.length(); ++i) {
1563       LiveRange* cur_inactive = inactive_live_ranges_.at(i);
1564       if (cur_inactive->End().Value() <= position.Value()) {
1565         InactiveToHandled(cur_inactive);
1566         --i;  // Live range was removed from the list of inactive live ranges.
1567       } else if (cur_inactive->Covers(position)) {
1568         InactiveToActive(cur_inactive);
1569         --i;  // Live range was removed from the list of inactive live ranges.
1570       }
1571     }
1572 
1573     DCHECK(!current->HasRegisterAssigned() && !current->IsSpilled());
1574 
1575     bool result = TryAllocateFreeReg(current);
1576     if (!AllocationOk()) return;
1577 
1578     if (!result) AllocateBlockedReg(current);
1579     if (!AllocationOk()) return;
1580 
1581     if (current->HasRegisterAssigned()) {
1582       AddToActive(current);
1583     }
1584   }
1585 
1586   reusable_slots_.Rewind(0);
1587   active_live_ranges_.Rewind(0);
1588   inactive_live_ranges_.Rewind(0);
1589 }
1590 
1591 
RegisterName(int allocation_index)1592 const char* LAllocator::RegisterName(int allocation_index) {
1593   if (mode_ == GENERAL_REGISTERS) {
1594     return GetRegConfig()->GetGeneralRegisterName(allocation_index);
1595   } else {
1596     return GetRegConfig()->GetDoubleRegisterName(allocation_index);
1597   }
1598 }
1599 
1600 
TraceAlloc(const char * msg,...)1601 void LAllocator::TraceAlloc(const char* msg, ...) {
1602   if (FLAG_trace_alloc) {
1603     va_list arguments;
1604     va_start(arguments, msg);
1605     base::OS::VPrint(msg, arguments);
1606     va_end(arguments);
1607   }
1608 }
1609 
1610 
HasTaggedValue(int virtual_register) const1611 bool LAllocator::HasTaggedValue(int virtual_register) const {
1612   HValue* value = graph_->LookupValue(virtual_register);
1613   if (value == NULL) return false;
1614   return value->representation().IsTagged() && !value->type().IsSmi();
1615 }
1616 
1617 
RequiredRegisterKind(int virtual_register) const1618 RegisterKind LAllocator::RequiredRegisterKind(int virtual_register) const {
1619   if (virtual_register < first_artificial_register_) {
1620     HValue* value = graph_->LookupValue(virtual_register);
1621     if (value != NULL && value->representation().IsDouble()) {
1622       return DOUBLE_REGISTERS;
1623     }
1624   } else if (double_artificial_registers_.Contains(
1625       virtual_register - first_artificial_register_)) {
1626     return DOUBLE_REGISTERS;
1627   }
1628 
1629   return GENERAL_REGISTERS;
1630 }
1631 
1632 
AddToActive(LiveRange * range)1633 void LAllocator::AddToActive(LiveRange* range) {
1634   TraceAlloc("Add live range %d to active\n", range->id());
1635   active_live_ranges_.Add(range, zone());
1636 }
1637 
1638 
AddToInactive(LiveRange * range)1639 void LAllocator::AddToInactive(LiveRange* range) {
1640   TraceAlloc("Add live range %d to inactive\n", range->id());
1641   inactive_live_ranges_.Add(range, zone());
1642 }
1643 
1644 
AddToUnhandledSorted(LiveRange * range)1645 void LAllocator::AddToUnhandledSorted(LiveRange* range) {
1646   if (range == NULL || range->IsEmpty()) return;
1647   DCHECK(!range->HasRegisterAssigned() && !range->IsSpilled());
1648   DCHECK(allocation_finger_.Value() <= range->Start().Value());
1649   for (int i = unhandled_live_ranges_.length() - 1; i >= 0; --i) {
1650     LiveRange* cur_range = unhandled_live_ranges_.at(i);
1651     if (range->ShouldBeAllocatedBefore(cur_range)) {
1652       TraceAlloc("Add live range %d to unhandled at %d\n", range->id(), i + 1);
1653       unhandled_live_ranges_.InsertAt(i + 1, range, zone());
1654       DCHECK(UnhandledIsSorted());
1655       return;
1656     }
1657   }
1658   TraceAlloc("Add live range %d to unhandled at start\n", range->id());
1659   unhandled_live_ranges_.InsertAt(0, range, zone());
1660   DCHECK(UnhandledIsSorted());
1661 }
1662 
1663 
AddToUnhandledUnsorted(LiveRange * range)1664 void LAllocator::AddToUnhandledUnsorted(LiveRange* range) {
1665   if (range == NULL || range->IsEmpty()) return;
1666   DCHECK(!range->HasRegisterAssigned() && !range->IsSpilled());
1667   TraceAlloc("Add live range %d to unhandled unsorted at end\n", range->id());
1668   unhandled_live_ranges_.Add(range, zone());
1669 }
1670 
1671 
UnhandledSortHelper(LiveRange * const * a,LiveRange * const * b)1672 static int UnhandledSortHelper(LiveRange* const* a, LiveRange* const* b) {
1673   DCHECK(!(*a)->ShouldBeAllocatedBefore(*b) ||
1674          !(*b)->ShouldBeAllocatedBefore(*a));
1675   if ((*a)->ShouldBeAllocatedBefore(*b)) return 1;
1676   if ((*b)->ShouldBeAllocatedBefore(*a)) return -1;
1677   return (*a)->id() - (*b)->id();
1678 }
1679 
1680 
1681 // Sort the unhandled live ranges so that the ranges to be processed first are
1682 // at the end of the array list.  This is convenient for the register allocation
1683 // algorithm because it is efficient to remove elements from the end.
SortUnhandled()1684 void LAllocator::SortUnhandled() {
1685   TraceAlloc("Sort unhandled\n");
1686   unhandled_live_ranges_.Sort(&UnhandledSortHelper);
1687 }
1688 
1689 
UnhandledIsSorted()1690 bool LAllocator::UnhandledIsSorted() {
1691   int len = unhandled_live_ranges_.length();
1692   for (int i = 1; i < len; i++) {
1693     LiveRange* a = unhandled_live_ranges_.at(i - 1);
1694     LiveRange* b = unhandled_live_ranges_.at(i);
1695     if (a->Start().Value() < b->Start().Value()) return false;
1696   }
1697   return true;
1698 }
1699 
1700 
FreeSpillSlot(LiveRange * range)1701 void LAllocator::FreeSpillSlot(LiveRange* range) {
1702   // Check that we are the last range.
1703   if (range->next() != NULL) return;
1704 
1705   if (!range->TopLevel()->HasAllocatedSpillOperand()) return;
1706 
1707   int index = range->TopLevel()->GetSpillOperand()->index();
1708   if (index >= 0) {
1709     reusable_slots_.Add(range, zone());
1710   }
1711 }
1712 
1713 
TryReuseSpillSlot(LiveRange * range)1714 LOperand* LAllocator::TryReuseSpillSlot(LiveRange* range) {
1715   if (reusable_slots_.is_empty()) return NULL;
1716   if (reusable_slots_.first()->End().Value() >
1717       range->TopLevel()->Start().Value()) {
1718     return NULL;
1719   }
1720   LOperand* result = reusable_slots_.first()->TopLevel()->GetSpillOperand();
1721   reusable_slots_.Remove(0);
1722   return result;
1723 }
1724 
1725 
ActiveToHandled(LiveRange * range)1726 void LAllocator::ActiveToHandled(LiveRange* range) {
1727   DCHECK(active_live_ranges_.Contains(range));
1728   active_live_ranges_.RemoveElement(range);
1729   TraceAlloc("Moving live range %d from active to handled\n", range->id());
1730   FreeSpillSlot(range);
1731 }
1732 
1733 
ActiveToInactive(LiveRange * range)1734 void LAllocator::ActiveToInactive(LiveRange* range) {
1735   DCHECK(active_live_ranges_.Contains(range));
1736   active_live_ranges_.RemoveElement(range);
1737   inactive_live_ranges_.Add(range, zone());
1738   TraceAlloc("Moving live range %d from active to inactive\n", range->id());
1739 }
1740 
1741 
InactiveToHandled(LiveRange * range)1742 void LAllocator::InactiveToHandled(LiveRange* range) {
1743   DCHECK(inactive_live_ranges_.Contains(range));
1744   inactive_live_ranges_.RemoveElement(range);
1745   TraceAlloc("Moving live range %d from inactive to handled\n", range->id());
1746   FreeSpillSlot(range);
1747 }
1748 
1749 
InactiveToActive(LiveRange * range)1750 void LAllocator::InactiveToActive(LiveRange* range) {
1751   DCHECK(inactive_live_ranges_.Contains(range));
1752   inactive_live_ranges_.RemoveElement(range);
1753   active_live_ranges_.Add(range, zone());
1754   TraceAlloc("Moving live range %d from inactive to active\n", range->id());
1755 }
1756 
1757 
TryAllocateFreeReg(LiveRange * current)1758 bool LAllocator::TryAllocateFreeReg(LiveRange* current) {
1759   DCHECK(DoubleRegister::kMaxNumRegisters >= Register::kNumRegisters);
1760 
1761   LifetimePosition free_until_pos[DoubleRegister::kMaxNumRegisters];
1762 
1763   for (int i = 0; i < DoubleRegister::kMaxNumRegisters; i++) {
1764     free_until_pos[i] = LifetimePosition::MaxPosition();
1765   }
1766 
1767   for (int i = 0; i < active_live_ranges_.length(); ++i) {
1768     LiveRange* cur_active = active_live_ranges_.at(i);
1769     free_until_pos[cur_active->assigned_register()] =
1770         LifetimePosition::FromInstructionIndex(0);
1771   }
1772 
1773   for (int i = 0; i < inactive_live_ranges_.length(); ++i) {
1774     LiveRange* cur_inactive = inactive_live_ranges_.at(i);
1775     DCHECK(cur_inactive->End().Value() > current->Start().Value());
1776     LifetimePosition next_intersection =
1777         cur_inactive->FirstIntersection(current);
1778     if (!next_intersection.IsValid()) continue;
1779     int cur_reg = cur_inactive->assigned_register();
1780     free_until_pos[cur_reg] = Min(free_until_pos[cur_reg], next_intersection);
1781   }
1782 
1783   LOperand* hint = current->FirstHint();
1784   if (hint != NULL && (hint->IsRegister() || hint->IsDoubleRegister())) {
1785     int register_index = hint->index();
1786     TraceAlloc(
1787         "Found reg hint %s (free until [%d) for live range %d (end %d[).\n",
1788         RegisterName(register_index),
1789         free_until_pos[register_index].Value(),
1790         current->id(),
1791         current->End().Value());
1792 
1793     // The desired register is free until the end of the current live range.
1794     if (free_until_pos[register_index].Value() >= current->End().Value()) {
1795       TraceAlloc("Assigning preferred reg %s to live range %d\n",
1796                  RegisterName(register_index),
1797                  current->id());
1798       SetLiveRangeAssignedRegister(current, register_index);
1799       return true;
1800     }
1801   }
1802 
1803   // Find the register which stays free for the longest time.
1804   int reg = allocatable_register_codes_[0];
1805   for (int i = 1; i < RegisterCount(); ++i) {
1806     int code = allocatable_register_codes_[i];
1807     if (free_until_pos[code].Value() > free_until_pos[reg].Value()) {
1808       reg = code;
1809     }
1810   }
1811 
1812   LifetimePosition pos = free_until_pos[reg];
1813 
1814   if (pos.Value() <= current->Start().Value()) {
1815     // All registers are blocked.
1816     return false;
1817   }
1818 
1819   if (pos.Value() < current->End().Value()) {
1820     // Register reg is available at the range start but becomes blocked before
1821     // the range end. Split current at position where it becomes blocked.
1822     LiveRange* tail = SplitRangeAt(current, pos);
1823     if (!AllocationOk()) return false;
1824     AddToUnhandledSorted(tail);
1825   }
1826 
1827 
1828   // Register reg is available at the range start and is free until
1829   // the range end.
1830   DCHECK(pos.Value() >= current->End().Value());
1831   TraceAlloc("Assigning free reg %s to live range %d\n",
1832              RegisterName(reg),
1833              current->id());
1834   SetLiveRangeAssignedRegister(current, reg);
1835 
1836   return true;
1837 }
1838 
1839 
AllocateBlockedReg(LiveRange * current)1840 void LAllocator::AllocateBlockedReg(LiveRange* current) {
1841   UsePosition* register_use = current->NextRegisterPosition(current->Start());
1842   if (register_use == NULL) {
1843     // There is no use in the current live range that requires a register.
1844     // We can just spill it.
1845     Spill(current);
1846     return;
1847   }
1848 
1849 
1850   LifetimePosition use_pos[DoubleRegister::kMaxNumRegisters];
1851   LifetimePosition block_pos[DoubleRegister::kMaxNumRegisters];
1852 
1853   for (int i = 0; i < DoubleRegister::kMaxNumRegisters; i++) {
1854     use_pos[i] = block_pos[i] = LifetimePosition::MaxPosition();
1855   }
1856 
1857   for (int i = 0; i < active_live_ranges_.length(); ++i) {
1858     LiveRange* range = active_live_ranges_[i];
1859     int cur_reg = range->assigned_register();
1860     if (range->IsFixed() || !range->CanBeSpilled(current->Start())) {
1861       block_pos[cur_reg] = use_pos[cur_reg] =
1862           LifetimePosition::FromInstructionIndex(0);
1863     } else {
1864       UsePosition* next_use = range->NextUsePositionRegisterIsBeneficial(
1865           current->Start());
1866       if (next_use == NULL) {
1867         use_pos[cur_reg] = range->End();
1868       } else {
1869         use_pos[cur_reg] = next_use->pos();
1870       }
1871     }
1872   }
1873 
1874   for (int i = 0; i < inactive_live_ranges_.length(); ++i) {
1875     LiveRange* range = inactive_live_ranges_.at(i);
1876     DCHECK(range->End().Value() > current->Start().Value());
1877     LifetimePosition next_intersection = range->FirstIntersection(current);
1878     if (!next_intersection.IsValid()) continue;
1879     int cur_reg = range->assigned_register();
1880     if (range->IsFixed()) {
1881       block_pos[cur_reg] = Min(block_pos[cur_reg], next_intersection);
1882       use_pos[cur_reg] = Min(block_pos[cur_reg], use_pos[cur_reg]);
1883     } else {
1884       use_pos[cur_reg] = Min(use_pos[cur_reg], next_intersection);
1885     }
1886   }
1887 
1888   int reg = allocatable_register_codes_[0];
1889   for (int i = 1; i < RegisterCount(); ++i) {
1890     int code = allocatable_register_codes_[i];
1891     if (use_pos[code].Value() > use_pos[reg].Value()) {
1892       reg = code;
1893     }
1894   }
1895 
1896   LifetimePosition pos = use_pos[reg];
1897 
1898   if (pos.Value() < register_use->pos().Value()) {
1899     // All registers are blocked before the first use that requires a register.
1900     // Spill starting part of live range up to that use.
1901     SpillBetween(current, current->Start(), register_use->pos());
1902     return;
1903   }
1904 
1905   if (block_pos[reg].Value() < current->End().Value()) {
1906     // Register becomes blocked before the current range end. Split before that
1907     // position.
1908     LiveRange* tail = SplitBetween(current,
1909                                    current->Start(),
1910                                    block_pos[reg].InstructionStart());
1911     if (!AllocationOk()) return;
1912     AddToUnhandledSorted(tail);
1913   }
1914 
1915   // Register reg is not blocked for the whole range.
1916   DCHECK(block_pos[reg].Value() >= current->End().Value());
1917   TraceAlloc("Assigning blocked reg %s to live range %d\n",
1918              RegisterName(reg),
1919              current->id());
1920   SetLiveRangeAssignedRegister(current, reg);
1921 
1922   // This register was not free. Thus we need to find and spill
1923   // parts of active and inactive live regions that use the same register
1924   // at the same lifetime positions as current.
1925   SplitAndSpillIntersecting(current);
1926 }
1927 
1928 
FindOptimalSpillingPos(LiveRange * range,LifetimePosition pos)1929 LifetimePosition LAllocator::FindOptimalSpillingPos(LiveRange* range,
1930                                                     LifetimePosition pos) {
1931   HBasicBlock* block = GetBlock(pos.InstructionStart());
1932   HBasicBlock* loop_header =
1933       block->IsLoopHeader() ? block : block->parent_loop_header();
1934 
1935   if (loop_header == NULL) return pos;
1936 
1937   UsePosition* prev_use =
1938     range->PreviousUsePositionRegisterIsBeneficial(pos);
1939 
1940   while (loop_header != NULL) {
1941     // We are going to spill live range inside the loop.
1942     // If possible try to move spilling position backwards to loop header.
1943     // This will reduce number of memory moves on the back edge.
1944     LifetimePosition loop_start = LifetimePosition::FromInstructionIndex(
1945         loop_header->first_instruction_index());
1946 
1947     if (range->Covers(loop_start)) {
1948       if (prev_use == NULL || prev_use->pos().Value() < loop_start.Value()) {
1949         // No register beneficial use inside the loop before the pos.
1950         pos = loop_start;
1951       }
1952     }
1953 
1954     // Try hoisting out to an outer loop.
1955     loop_header = loop_header->parent_loop_header();
1956   }
1957 
1958   return pos;
1959 }
1960 
1961 
SplitAndSpillIntersecting(LiveRange * current)1962 void LAllocator::SplitAndSpillIntersecting(LiveRange* current) {
1963   DCHECK(current->HasRegisterAssigned());
1964   int reg = current->assigned_register();
1965   LifetimePosition split_pos = current->Start();
1966   for (int i = 0; i < active_live_ranges_.length(); ++i) {
1967     LiveRange* range = active_live_ranges_[i];
1968     if (range->assigned_register() == reg) {
1969       UsePosition* next_pos = range->NextRegisterPosition(current->Start());
1970       LifetimePosition spill_pos = FindOptimalSpillingPos(range, split_pos);
1971       if (next_pos == NULL) {
1972         SpillAfter(range, spill_pos);
1973       } else {
1974         // When spilling between spill_pos and next_pos ensure that the range
1975         // remains spilled at least until the start of the current live range.
1976         // This guarantees that we will not introduce new unhandled ranges that
1977         // start before the current range as this violates allocation invariant
1978         // and will lead to an inconsistent state of active and inactive
1979         // live-ranges: ranges are allocated in order of their start positions,
1980         // ranges are retired from active/inactive when the start of the
1981         // current live-range is larger than their end.
1982         SpillBetweenUntil(range, spill_pos, current->Start(), next_pos->pos());
1983       }
1984       if (!AllocationOk()) return;
1985       ActiveToHandled(range);
1986       --i;
1987     }
1988   }
1989 
1990   for (int i = 0; i < inactive_live_ranges_.length(); ++i) {
1991     LiveRange* range = inactive_live_ranges_[i];
1992     DCHECK(range->End().Value() > current->Start().Value());
1993     if (range->assigned_register() == reg && !range->IsFixed()) {
1994       LifetimePosition next_intersection = range->FirstIntersection(current);
1995       if (next_intersection.IsValid()) {
1996         UsePosition* next_pos = range->NextRegisterPosition(current->Start());
1997         if (next_pos == NULL) {
1998           SpillAfter(range, split_pos);
1999         } else {
2000           next_intersection = Min(next_intersection, next_pos->pos());
2001           SpillBetween(range, split_pos, next_intersection);
2002         }
2003         if (!AllocationOk()) return;
2004         InactiveToHandled(range);
2005         --i;
2006       }
2007     }
2008   }
2009 }
2010 
2011 
IsBlockBoundary(LifetimePosition pos)2012 bool LAllocator::IsBlockBoundary(LifetimePosition pos) {
2013   return pos.IsInstructionStart() &&
2014       InstructionAt(pos.InstructionIndex())->IsLabel();
2015 }
2016 
2017 
SplitRangeAt(LiveRange * range,LifetimePosition pos)2018 LiveRange* LAllocator::SplitRangeAt(LiveRange* range, LifetimePosition pos) {
2019   DCHECK(!range->IsFixed());
2020   TraceAlloc("Splitting live range %d at %d\n", range->id(), pos.Value());
2021 
2022   if (pos.Value() <= range->Start().Value()) return range;
2023 
2024   // We can't properly connect liveranges if split occured at the end
2025   // of control instruction.
2026   DCHECK(pos.IsInstructionStart() ||
2027          !chunk_->instructions()->at(pos.InstructionIndex())->IsControl());
2028 
2029   int vreg = GetVirtualRegister();
2030   if (!AllocationOk()) return NULL;
2031   LiveRange* result = LiveRangeFor(vreg);
2032   range->SplitAt(pos, result, zone());
2033   return result;
2034 }
2035 
2036 
SplitBetween(LiveRange * range,LifetimePosition start,LifetimePosition end)2037 LiveRange* LAllocator::SplitBetween(LiveRange* range,
2038                                     LifetimePosition start,
2039                                     LifetimePosition end) {
2040   DCHECK(!range->IsFixed());
2041   TraceAlloc("Splitting live range %d in position between [%d, %d]\n",
2042              range->id(),
2043              start.Value(),
2044              end.Value());
2045 
2046   LifetimePosition split_pos = FindOptimalSplitPos(start, end);
2047   DCHECK(split_pos.Value() >= start.Value());
2048   return SplitRangeAt(range, split_pos);
2049 }
2050 
2051 
FindOptimalSplitPos(LifetimePosition start,LifetimePosition end)2052 LifetimePosition LAllocator::FindOptimalSplitPos(LifetimePosition start,
2053                                                  LifetimePosition end) {
2054   int start_instr = start.InstructionIndex();
2055   int end_instr = end.InstructionIndex();
2056   DCHECK(start_instr <= end_instr);
2057 
2058   // We have no choice
2059   if (start_instr == end_instr) return end;
2060 
2061   HBasicBlock* start_block = GetBlock(start);
2062   HBasicBlock* end_block = GetBlock(end);
2063 
2064   if (end_block == start_block) {
2065     // The interval is split in the same basic block. Split at the latest
2066     // possible position.
2067     return end;
2068   }
2069 
2070   HBasicBlock* block = end_block;
2071   // Find header of outermost loop.
2072   while (block->parent_loop_header() != NULL &&
2073       block->parent_loop_header()->block_id() > start_block->block_id()) {
2074     block = block->parent_loop_header();
2075   }
2076 
2077   // We did not find any suitable outer loop. Split at the latest possible
2078   // position unless end_block is a loop header itself.
2079   if (block == end_block && !end_block->IsLoopHeader()) return end;
2080 
2081   return LifetimePosition::FromInstructionIndex(
2082       block->first_instruction_index());
2083 }
2084 
2085 
SpillAfter(LiveRange * range,LifetimePosition pos)2086 void LAllocator::SpillAfter(LiveRange* range, LifetimePosition pos) {
2087   LiveRange* second_part = SplitRangeAt(range, pos);
2088   if (!AllocationOk()) return;
2089   Spill(second_part);
2090 }
2091 
2092 
SpillBetween(LiveRange * range,LifetimePosition start,LifetimePosition end)2093 void LAllocator::SpillBetween(LiveRange* range,
2094                               LifetimePosition start,
2095                               LifetimePosition end) {
2096   SpillBetweenUntil(range, start, start, end);
2097 }
2098 
2099 
SpillBetweenUntil(LiveRange * range,LifetimePosition start,LifetimePosition until,LifetimePosition end)2100 void LAllocator::SpillBetweenUntil(LiveRange* range,
2101                                    LifetimePosition start,
2102                                    LifetimePosition until,
2103                                    LifetimePosition end) {
2104   CHECK(start.Value() < end.Value());
2105   LiveRange* second_part = SplitRangeAt(range, start);
2106   if (!AllocationOk()) return;
2107 
2108   if (second_part->Start().Value() < end.Value()) {
2109     // The split result intersects with [start, end[.
2110     // Split it at position between ]start+1, end[, spill the middle part
2111     // and put the rest to unhandled.
2112     LiveRange* third_part = SplitBetween(
2113         second_part,
2114         Max(second_part->Start().InstructionEnd(), until),
2115         end.PrevInstruction().InstructionEnd());
2116     if (!AllocationOk()) return;
2117 
2118     DCHECK(third_part != second_part);
2119 
2120     Spill(second_part);
2121     AddToUnhandledSorted(third_part);
2122   } else {
2123     // The split result does not intersect with [start, end[.
2124     // Nothing to spill. Just put it to unhandled as whole.
2125     AddToUnhandledSorted(second_part);
2126   }
2127 }
2128 
2129 
Spill(LiveRange * range)2130 void LAllocator::Spill(LiveRange* range) {
2131   DCHECK(!range->IsSpilled());
2132   TraceAlloc("Spilling live range %d\n", range->id());
2133   LiveRange* first = range->TopLevel();
2134 
2135   if (!first->HasAllocatedSpillOperand()) {
2136     LOperand* op = TryReuseSpillSlot(range);
2137     if (op == NULL) op = chunk_->GetNextSpillSlot(range->Kind());
2138     first->SetSpillOperand(op);
2139   }
2140   range->MakeSpilled(chunk()->zone());
2141 }
2142 
2143 
RegisterCount() const2144 int LAllocator::RegisterCount() const {
2145   return num_registers_;
2146 }
2147 
2148 
2149 #ifdef DEBUG
2150 
2151 
Verify() const2152 void LAllocator::Verify() const {
2153   for (int i = 0; i < live_ranges()->length(); ++i) {
2154     LiveRange* current = live_ranges()->at(i);
2155     if (current != NULL) current->Verify();
2156   }
2157 }
2158 
2159 
2160 #endif
2161 
2162 
LAllocatorPhase(const char * name,LAllocator * allocator)2163 LAllocatorPhase::LAllocatorPhase(const char* name, LAllocator* allocator)
2164     : CompilationPhase(name, allocator->graph()->info()),
2165       allocator_(allocator) {
2166   if (FLAG_hydrogen_stats) {
2167     allocator_zone_start_allocation_size_ =
2168         allocator->zone()->allocation_size();
2169   }
2170 }
2171 
2172 
~LAllocatorPhase()2173 LAllocatorPhase::~LAllocatorPhase() {
2174   if (FLAG_hydrogen_stats) {
2175     size_t size = allocator_->zone()->allocation_size() -
2176                   allocator_zone_start_allocation_size_;
2177     isolate()->GetHStatistics()->SaveTiming(name(), base::TimeDelta(), size);
2178   }
2179 
2180   if (ShouldProduceTraceOutput()) {
2181     isolate()->GetHTracer()->TraceLithium(name(), allocator_->chunk());
2182     isolate()->GetHTracer()->TraceLiveRanges(name(), allocator_);
2183   }
2184 
2185 #ifdef DEBUG
2186   if (allocator_ != NULL) allocator_->Verify();
2187 #endif
2188 }
2189 
2190 
2191 }  // namespace internal
2192 }  // namespace v8
2193