1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "register_allocator_linear_scan.h"
18
19 #include <iostream>
20 #include <sstream>
21
22 #include "base/bit_vector-inl.h"
23 #include "base/enums.h"
24 #include "code_generator.h"
25 #include "linear_order.h"
26 #include "register_allocation_resolver.h"
27 #include "ssa_liveness_analysis.h"
28
29 namespace art {
30
31 static constexpr size_t kMaxLifetimePosition = -1;
32 static constexpr size_t kDefaultNumberOfSpillSlots = 4;
33
34 // For simplicity, we implement register pairs as (reg, reg + 1).
35 // Note that this is a requirement for double registers on ARM, since we
36 // allocate SRegister.
GetHighForLowRegister(int reg)37 static int GetHighForLowRegister(int reg) { return reg + 1; }
IsLowRegister(int reg)38 static bool IsLowRegister(int reg) { return (reg & 1) == 0; }
IsLowOfUnalignedPairInterval(LiveInterval * low)39 static bool IsLowOfUnalignedPairInterval(LiveInterval* low) {
40 return GetHighForLowRegister(low->GetRegister()) != low->GetHighInterval()->GetRegister();
41 }
42
RegisterAllocatorLinearScan(ArenaAllocator * allocator,CodeGenerator * codegen,const SsaLivenessAnalysis & liveness)43 RegisterAllocatorLinearScan::RegisterAllocatorLinearScan(ArenaAllocator* allocator,
44 CodeGenerator* codegen,
45 const SsaLivenessAnalysis& liveness)
46 : RegisterAllocator(allocator, codegen, liveness),
47 unhandled_core_intervals_(allocator->Adapter(kArenaAllocRegisterAllocator)),
48 unhandled_fp_intervals_(allocator->Adapter(kArenaAllocRegisterAllocator)),
49 unhandled_(nullptr),
50 handled_(allocator->Adapter(kArenaAllocRegisterAllocator)),
51 active_(allocator->Adapter(kArenaAllocRegisterAllocator)),
52 inactive_(allocator->Adapter(kArenaAllocRegisterAllocator)),
53 physical_core_register_intervals_(allocator->Adapter(kArenaAllocRegisterAllocator)),
54 physical_fp_register_intervals_(allocator->Adapter(kArenaAllocRegisterAllocator)),
55 temp_intervals_(allocator->Adapter(kArenaAllocRegisterAllocator)),
56 int_spill_slots_(allocator->Adapter(kArenaAllocRegisterAllocator)),
57 long_spill_slots_(allocator->Adapter(kArenaAllocRegisterAllocator)),
58 float_spill_slots_(allocator->Adapter(kArenaAllocRegisterAllocator)),
59 double_spill_slots_(allocator->Adapter(kArenaAllocRegisterAllocator)),
60 catch_phi_spill_slots_(0),
61 safepoints_(allocator->Adapter(kArenaAllocRegisterAllocator)),
62 processing_core_registers_(false),
63 number_of_registers_(-1),
64 registers_array_(nullptr),
65 blocked_core_registers_(codegen->GetBlockedCoreRegisters()),
66 blocked_fp_registers_(codegen->GetBlockedFloatingPointRegisters()),
67 reserved_out_slots_(0) {
68 temp_intervals_.reserve(4);
69 int_spill_slots_.reserve(kDefaultNumberOfSpillSlots);
70 long_spill_slots_.reserve(kDefaultNumberOfSpillSlots);
71 float_spill_slots_.reserve(kDefaultNumberOfSpillSlots);
72 double_spill_slots_.reserve(kDefaultNumberOfSpillSlots);
73
74 codegen->SetupBlockedRegisters();
75 physical_core_register_intervals_.resize(codegen->GetNumberOfCoreRegisters(), nullptr);
76 physical_fp_register_intervals_.resize(codegen->GetNumberOfFloatingPointRegisters(), nullptr);
77 // Always reserve for the current method and the graph's max out registers.
78 // TODO: compute it instead.
79 // ArtMethod* takes 2 vregs for 64 bits.
80 size_t ptr_size = static_cast<size_t>(InstructionSetPointerSize(codegen->GetInstructionSet()));
81 reserved_out_slots_ = ptr_size / kVRegSize + codegen->GetGraph()->GetMaximumNumberOfOutVRegs();
82 }
83
ShouldProcess(bool processing_core_registers,LiveInterval * interval)84 static bool ShouldProcess(bool processing_core_registers, LiveInterval* interval) {
85 if (interval == nullptr) return false;
86 bool is_core_register = (interval->GetType() != Primitive::kPrimDouble)
87 && (interval->GetType() != Primitive::kPrimFloat);
88 return processing_core_registers == is_core_register;
89 }
90
AllocateRegisters()91 void RegisterAllocatorLinearScan::AllocateRegisters() {
92 AllocateRegistersInternal();
93 RegisterAllocationResolver(allocator_, codegen_, liveness_)
94 .Resolve(ArrayRef<HInstruction* const>(safepoints_),
95 reserved_out_slots_,
96 int_spill_slots_.size(),
97 long_spill_slots_.size(),
98 float_spill_slots_.size(),
99 double_spill_slots_.size(),
100 catch_phi_spill_slots_,
101 temp_intervals_);
102
103 if (kIsDebugBuild) {
104 processing_core_registers_ = true;
105 ValidateInternal(true);
106 processing_core_registers_ = false;
107 ValidateInternal(true);
108 // Check that the linear order is still correct with regards to lifetime positions.
109 // Since only parallel moves have been inserted during the register allocation,
110 // these checks are mostly for making sure these moves have been added correctly.
111 size_t current_liveness = 0;
112 for (HBasicBlock* block : codegen_->GetGraph()->GetLinearOrder()) {
113 for (HInstructionIterator inst_it(block->GetPhis()); !inst_it.Done(); inst_it.Advance()) {
114 HInstruction* instruction = inst_it.Current();
115 DCHECK_LE(current_liveness, instruction->GetLifetimePosition());
116 current_liveness = instruction->GetLifetimePosition();
117 }
118 for (HInstructionIterator inst_it(block->GetInstructions());
119 !inst_it.Done();
120 inst_it.Advance()) {
121 HInstruction* instruction = inst_it.Current();
122 DCHECK_LE(current_liveness, instruction->GetLifetimePosition()) << instruction->DebugName();
123 current_liveness = instruction->GetLifetimePosition();
124 }
125 }
126 }
127 }
128
BlockRegister(Location location,size_t start,size_t end)129 void RegisterAllocatorLinearScan::BlockRegister(Location location, size_t start, size_t end) {
130 int reg = location.reg();
131 DCHECK(location.IsRegister() || location.IsFpuRegister());
132 LiveInterval* interval = location.IsRegister()
133 ? physical_core_register_intervals_[reg]
134 : physical_fp_register_intervals_[reg];
135 Primitive::Type type = location.IsRegister()
136 ? Primitive::kPrimInt
137 : Primitive::kPrimFloat;
138 if (interval == nullptr) {
139 interval = LiveInterval::MakeFixedInterval(allocator_, reg, type);
140 if (location.IsRegister()) {
141 physical_core_register_intervals_[reg] = interval;
142 } else {
143 physical_fp_register_intervals_[reg] = interval;
144 }
145 }
146 DCHECK(interval->GetRegister() == reg);
147 interval->AddRange(start, end);
148 }
149
BlockRegisters(size_t start,size_t end,bool caller_save_only)150 void RegisterAllocatorLinearScan::BlockRegisters(size_t start, size_t end, bool caller_save_only) {
151 for (size_t i = 0; i < codegen_->GetNumberOfCoreRegisters(); ++i) {
152 if (!caller_save_only || !codegen_->IsCoreCalleeSaveRegister(i)) {
153 BlockRegister(Location::RegisterLocation(i), start, end);
154 }
155 }
156 for (size_t i = 0; i < codegen_->GetNumberOfFloatingPointRegisters(); ++i) {
157 if (!caller_save_only || !codegen_->IsFloatingPointCalleeSaveRegister(i)) {
158 BlockRegister(Location::FpuRegisterLocation(i), start, end);
159 }
160 }
161 }
162
AllocateRegistersInternal()163 void RegisterAllocatorLinearScan::AllocateRegistersInternal() {
164 // Iterate post-order, to ensure the list is sorted, and the last added interval
165 // is the one with the lowest start position.
166 for (HBasicBlock* block : codegen_->GetGraph()->GetLinearPostOrder()) {
167 for (HBackwardInstructionIterator back_it(block->GetInstructions()); !back_it.Done();
168 back_it.Advance()) {
169 ProcessInstruction(back_it.Current());
170 }
171 for (HInstructionIterator inst_it(block->GetPhis()); !inst_it.Done(); inst_it.Advance()) {
172 ProcessInstruction(inst_it.Current());
173 }
174
175 if (block->IsCatchBlock() ||
176 (block->IsLoopHeader() && block->GetLoopInformation()->IsIrreducible())) {
177 // By blocking all registers at the top of each catch block or irreducible loop, we force
178 // intervals belonging to the live-in set of the catch/header block to be spilled.
179 // TODO(ngeoffray): Phis in this block could be allocated in register.
180 size_t position = block->GetLifetimeStart();
181 BlockRegisters(position, position + 1);
182 }
183 }
184
185 number_of_registers_ = codegen_->GetNumberOfCoreRegisters();
186 registers_array_ = allocator_->AllocArray<size_t>(number_of_registers_,
187 kArenaAllocRegisterAllocator);
188 processing_core_registers_ = true;
189 unhandled_ = &unhandled_core_intervals_;
190 for (LiveInterval* fixed : physical_core_register_intervals_) {
191 if (fixed != nullptr) {
192 // Fixed interval is added to inactive_ instead of unhandled_.
193 // It's also the only type of inactive interval whose start position
194 // can be after the current interval during linear scan.
195 // Fixed interval is never split and never moves to unhandled_.
196 inactive_.push_back(fixed);
197 }
198 }
199 LinearScan();
200
201 inactive_.clear();
202 active_.clear();
203 handled_.clear();
204
205 number_of_registers_ = codegen_->GetNumberOfFloatingPointRegisters();
206 registers_array_ = allocator_->AllocArray<size_t>(number_of_registers_,
207 kArenaAllocRegisterAllocator);
208 processing_core_registers_ = false;
209 unhandled_ = &unhandled_fp_intervals_;
210 for (LiveInterval* fixed : physical_fp_register_intervals_) {
211 if (fixed != nullptr) {
212 // Fixed interval is added to inactive_ instead of unhandled_.
213 // It's also the only type of inactive interval whose start position
214 // can be after the current interval during linear scan.
215 // Fixed interval is never split and never moves to unhandled_.
216 inactive_.push_back(fixed);
217 }
218 }
219 LinearScan();
220 }
221
ProcessInstruction(HInstruction * instruction)222 void RegisterAllocatorLinearScan::ProcessInstruction(HInstruction* instruction) {
223 LocationSummary* locations = instruction->GetLocations();
224 size_t position = instruction->GetLifetimePosition();
225
226 if (locations == nullptr) return;
227
228 // Create synthesized intervals for temporaries.
229 for (size_t i = 0; i < locations->GetTempCount(); ++i) {
230 Location temp = locations->GetTemp(i);
231 if (temp.IsRegister() || temp.IsFpuRegister()) {
232 BlockRegister(temp, position, position + 1);
233 // Ensure that an explicit temporary register is marked as being allocated.
234 codegen_->AddAllocatedRegister(temp);
235 } else {
236 DCHECK(temp.IsUnallocated());
237 switch (temp.GetPolicy()) {
238 case Location::kRequiresRegister: {
239 LiveInterval* interval =
240 LiveInterval::MakeTempInterval(allocator_, Primitive::kPrimInt);
241 temp_intervals_.push_back(interval);
242 interval->AddTempUse(instruction, i);
243 unhandled_core_intervals_.push_back(interval);
244 break;
245 }
246
247 case Location::kRequiresFpuRegister: {
248 LiveInterval* interval =
249 LiveInterval::MakeTempInterval(allocator_, Primitive::kPrimDouble);
250 temp_intervals_.push_back(interval);
251 interval->AddTempUse(instruction, i);
252 if (codegen_->NeedsTwoRegisters(Primitive::kPrimDouble)) {
253 interval->AddHighInterval(/* is_temp */ true);
254 LiveInterval* high = interval->GetHighInterval();
255 temp_intervals_.push_back(high);
256 unhandled_fp_intervals_.push_back(high);
257 }
258 unhandled_fp_intervals_.push_back(interval);
259 break;
260 }
261
262 default:
263 LOG(FATAL) << "Unexpected policy for temporary location "
264 << temp.GetPolicy();
265 }
266 }
267 }
268
269 bool core_register = (instruction->GetType() != Primitive::kPrimDouble)
270 && (instruction->GetType() != Primitive::kPrimFloat);
271
272 if (locations->NeedsSafepoint()) {
273 if (codegen_->IsLeafMethod()) {
274 // TODO: We do this here because we do not want the suspend check to artificially
275 // create live registers. We should find another place, but this is currently the
276 // simplest.
277 DCHECK(instruction->IsSuspendCheckEntry());
278 instruction->GetBlock()->RemoveInstruction(instruction);
279 return;
280 }
281 safepoints_.push_back(instruction);
282 }
283
284 if (locations->WillCall()) {
285 BlockRegisters(position, position + 1, /* caller_save_only */ true);
286 }
287
288 for (size_t i = 0; i < locations->GetInputCount(); ++i) {
289 Location input = locations->InAt(i);
290 if (input.IsRegister() || input.IsFpuRegister()) {
291 BlockRegister(input, position, position + 1);
292 } else if (input.IsPair()) {
293 BlockRegister(input.ToLow(), position, position + 1);
294 BlockRegister(input.ToHigh(), position, position + 1);
295 }
296 }
297
298 LiveInterval* current = instruction->GetLiveInterval();
299 if (current == nullptr) return;
300
301 ArenaVector<LiveInterval*>& unhandled = core_register
302 ? unhandled_core_intervals_
303 : unhandled_fp_intervals_;
304
305 DCHECK(unhandled.empty() || current->StartsBeforeOrAt(unhandled.back()));
306
307 if (codegen_->NeedsTwoRegisters(current->GetType())) {
308 current->AddHighInterval();
309 }
310
311 for (size_t safepoint_index = safepoints_.size(); safepoint_index > 0; --safepoint_index) {
312 HInstruction* safepoint = safepoints_[safepoint_index - 1u];
313 size_t safepoint_position = safepoint->GetLifetimePosition();
314
315 // Test that safepoints are ordered in the optimal way.
316 DCHECK(safepoint_index == safepoints_.size() ||
317 safepoints_[safepoint_index]->GetLifetimePosition() < safepoint_position);
318
319 if (safepoint_position == current->GetStart()) {
320 // The safepoint is for this instruction, so the location of the instruction
321 // does not need to be saved.
322 DCHECK_EQ(safepoint_index, safepoints_.size());
323 DCHECK_EQ(safepoint, instruction);
324 continue;
325 } else if (current->IsDeadAt(safepoint_position)) {
326 break;
327 } else if (!current->Covers(safepoint_position)) {
328 // Hole in the interval.
329 continue;
330 }
331 current->AddSafepoint(safepoint);
332 }
333 current->ResetSearchCache();
334
335 // Some instructions define their output in fixed register/stack slot. We need
336 // to ensure we know these locations before doing register allocation. For a
337 // given register, we create an interval that covers these locations. The register
338 // will be unavailable at these locations when trying to allocate one for an
339 // interval.
340 //
341 // The backwards walking ensures the ranges are ordered on increasing start positions.
342 Location output = locations->Out();
343 if (output.IsUnallocated() && output.GetPolicy() == Location::kSameAsFirstInput) {
344 Location first = locations->InAt(0);
345 if (first.IsRegister() || first.IsFpuRegister()) {
346 current->SetFrom(position + 1);
347 current->SetRegister(first.reg());
348 } else if (first.IsPair()) {
349 current->SetFrom(position + 1);
350 current->SetRegister(first.low());
351 LiveInterval* high = current->GetHighInterval();
352 high->SetRegister(first.high());
353 high->SetFrom(position + 1);
354 }
355 } else if (output.IsRegister() || output.IsFpuRegister()) {
356 // Shift the interval's start by one to account for the blocked register.
357 current->SetFrom(position + 1);
358 current->SetRegister(output.reg());
359 BlockRegister(output, position, position + 1);
360 } else if (output.IsPair()) {
361 current->SetFrom(position + 1);
362 current->SetRegister(output.low());
363 LiveInterval* high = current->GetHighInterval();
364 high->SetRegister(output.high());
365 high->SetFrom(position + 1);
366 BlockRegister(output.ToLow(), position, position + 1);
367 BlockRegister(output.ToHigh(), position, position + 1);
368 } else if (output.IsStackSlot() || output.IsDoubleStackSlot()) {
369 current->SetSpillSlot(output.GetStackIndex());
370 } else {
371 DCHECK(output.IsUnallocated() || output.IsConstant());
372 }
373
374 if (instruction->IsPhi() && instruction->AsPhi()->IsCatchPhi()) {
375 AllocateSpillSlotForCatchPhi(instruction->AsPhi());
376 }
377
378 // If needed, add interval to the list of unhandled intervals.
379 if (current->HasSpillSlot() || instruction->IsConstant()) {
380 // Split just before first register use.
381 size_t first_register_use = current->FirstRegisterUse();
382 if (first_register_use != kNoLifetime) {
383 LiveInterval* split = SplitBetween(current, current->GetStart(), first_register_use - 1);
384 // Don't add directly to `unhandled`, it needs to be sorted and the start
385 // of this new interval might be after intervals already in the list.
386 AddSorted(&unhandled, split);
387 } else {
388 // Nothing to do, we won't allocate a register for this value.
389 }
390 } else {
391 // Don't add directly to `unhandled`, temp or safepoint intervals
392 // for this instruction may have been added, and those can be
393 // processed first.
394 AddSorted(&unhandled, current);
395 }
396 }
397
398 class AllRangesIterator : public ValueObject {
399 public:
AllRangesIterator(LiveInterval * interval)400 explicit AllRangesIterator(LiveInterval* interval)
401 : current_interval_(interval),
402 current_range_(interval->GetFirstRange()) {}
403
Done() const404 bool Done() const { return current_interval_ == nullptr; }
CurrentRange() const405 LiveRange* CurrentRange() const { return current_range_; }
CurrentInterval() const406 LiveInterval* CurrentInterval() const { return current_interval_; }
407
Advance()408 void Advance() {
409 current_range_ = current_range_->GetNext();
410 if (current_range_ == nullptr) {
411 current_interval_ = current_interval_->GetNextSibling();
412 if (current_interval_ != nullptr) {
413 current_range_ = current_interval_->GetFirstRange();
414 }
415 }
416 }
417
418 private:
419 LiveInterval* current_interval_;
420 LiveRange* current_range_;
421
422 DISALLOW_COPY_AND_ASSIGN(AllRangesIterator);
423 };
424
ValidateInternal(bool log_fatal_on_failure) const425 bool RegisterAllocatorLinearScan::ValidateInternal(bool log_fatal_on_failure) const {
426 // To simplify unit testing, we eagerly create the array of intervals, and
427 // call the helper method.
428 ArenaVector<LiveInterval*> intervals(allocator_->Adapter(kArenaAllocRegisterAllocatorValidate));
429 for (size_t i = 0; i < liveness_.GetNumberOfSsaValues(); ++i) {
430 HInstruction* instruction = liveness_.GetInstructionFromSsaIndex(i);
431 if (ShouldProcess(processing_core_registers_, instruction->GetLiveInterval())) {
432 intervals.push_back(instruction->GetLiveInterval());
433 }
434 }
435
436 const ArenaVector<LiveInterval*>* physical_register_intervals = processing_core_registers_
437 ? &physical_core_register_intervals_
438 : &physical_fp_register_intervals_;
439 for (LiveInterval* fixed : *physical_register_intervals) {
440 if (fixed != nullptr) {
441 intervals.push_back(fixed);
442 }
443 }
444
445 for (LiveInterval* temp : temp_intervals_) {
446 if (ShouldProcess(processing_core_registers_, temp)) {
447 intervals.push_back(temp);
448 }
449 }
450
451 return ValidateIntervals(intervals, GetNumberOfSpillSlots(), reserved_out_slots_, *codegen_,
452 allocator_, processing_core_registers_, log_fatal_on_failure);
453 }
454
DumpInterval(std::ostream & stream,LiveInterval * interval) const455 void RegisterAllocatorLinearScan::DumpInterval(std::ostream& stream, LiveInterval* interval) const {
456 interval->Dump(stream);
457 stream << ": ";
458 if (interval->HasRegister()) {
459 if (interval->IsFloatingPoint()) {
460 codegen_->DumpFloatingPointRegister(stream, interval->GetRegister());
461 } else {
462 codegen_->DumpCoreRegister(stream, interval->GetRegister());
463 }
464 } else {
465 stream << "spilled";
466 }
467 stream << std::endl;
468 }
469
DumpAllIntervals(std::ostream & stream) const470 void RegisterAllocatorLinearScan::DumpAllIntervals(std::ostream& stream) const {
471 stream << "inactive: " << std::endl;
472 for (LiveInterval* inactive_interval : inactive_) {
473 DumpInterval(stream, inactive_interval);
474 }
475 stream << "active: " << std::endl;
476 for (LiveInterval* active_interval : active_) {
477 DumpInterval(stream, active_interval);
478 }
479 stream << "unhandled: " << std::endl;
480 auto unhandled = (unhandled_ != nullptr) ?
481 unhandled_ : &unhandled_core_intervals_;
482 for (LiveInterval* unhandled_interval : *unhandled) {
483 DumpInterval(stream, unhandled_interval);
484 }
485 stream << "handled: " << std::endl;
486 for (LiveInterval* handled_interval : handled_) {
487 DumpInterval(stream, handled_interval);
488 }
489 }
490
491 // By the book implementation of a linear scan register allocator.
LinearScan()492 void RegisterAllocatorLinearScan::LinearScan() {
493 while (!unhandled_->empty()) {
494 // (1) Remove interval with the lowest start position from unhandled.
495 LiveInterval* current = unhandled_->back();
496 unhandled_->pop_back();
497
498 // Make sure the interval is an expected state.
499 DCHECK(!current->IsFixed() && !current->HasSpillSlot());
500 // Make sure we are going in the right order.
501 DCHECK(unhandled_->empty() || unhandled_->back()->GetStart() >= current->GetStart());
502 // Make sure a low interval is always with a high.
503 DCHECK(!current->IsLowInterval() || unhandled_->back()->IsHighInterval());
504 // Make sure a high interval is always with a low.
505 DCHECK(current->IsLowInterval() ||
506 unhandled_->empty() ||
507 !unhandled_->back()->IsHighInterval());
508
509 size_t position = current->GetStart();
510
511 // Remember the inactive_ size here since the ones moved to inactive_ from
512 // active_ below shouldn't need to be re-checked.
513 size_t inactive_intervals_to_handle = inactive_.size();
514
515 // (2) Remove currently active intervals that are dead at this position.
516 // Move active intervals that have a lifetime hole at this position
517 // to inactive.
518 auto active_kept_end = std::remove_if(
519 active_.begin(),
520 active_.end(),
521 [this, position](LiveInterval* interval) {
522 if (interval->IsDeadAt(position)) {
523 handled_.push_back(interval);
524 return true;
525 } else if (!interval->Covers(position)) {
526 inactive_.push_back(interval);
527 return true;
528 } else {
529 return false; // Keep this interval.
530 }
531 });
532 active_.erase(active_kept_end, active_.end());
533
534 // (3) Remove currently inactive intervals that are dead at this position.
535 // Move inactive intervals that cover this position to active.
536 auto inactive_to_handle_end = inactive_.begin() + inactive_intervals_to_handle;
537 auto inactive_kept_end = std::remove_if(
538 inactive_.begin(),
539 inactive_to_handle_end,
540 [this, position](LiveInterval* interval) {
541 DCHECK(interval->GetStart() < position || interval->IsFixed());
542 if (interval->IsDeadAt(position)) {
543 handled_.push_back(interval);
544 return true;
545 } else if (interval->Covers(position)) {
546 active_.push_back(interval);
547 return true;
548 } else {
549 return false; // Keep this interval.
550 }
551 });
552 inactive_.erase(inactive_kept_end, inactive_to_handle_end);
553
554 if (current->IsHighInterval() && !current->GetLowInterval()->HasRegister()) {
555 DCHECK(!current->HasRegister());
556 // Allocating the low part was unsucessful. The splitted interval for the high part
557 // will be handled next (it is in the `unhandled_` list).
558 continue;
559 }
560
561 // (4) Try to find an available register.
562 bool success = TryAllocateFreeReg(current);
563
564 // (5) If no register could be found, we need to spill.
565 if (!success) {
566 success = AllocateBlockedReg(current);
567 }
568
569 // (6) If the interval had a register allocated, add it to the list of active
570 // intervals.
571 if (success) {
572 codegen_->AddAllocatedRegister(processing_core_registers_
573 ? Location::RegisterLocation(current->GetRegister())
574 : Location::FpuRegisterLocation(current->GetRegister()));
575 active_.push_back(current);
576 if (current->HasHighInterval() && !current->GetHighInterval()->HasRegister()) {
577 current->GetHighInterval()->SetRegister(GetHighForLowRegister(current->GetRegister()));
578 }
579 }
580 }
581 }
582
FreeIfNotCoverAt(LiveInterval * interval,size_t position,size_t * free_until)583 static void FreeIfNotCoverAt(LiveInterval* interval, size_t position, size_t* free_until) {
584 DCHECK(!interval->IsHighInterval());
585 // Note that the same instruction may occur multiple times in the input list,
586 // so `free_until` may have changed already.
587 // Since `position` is not the current scan position, we need to use CoversSlow.
588 if (interval->IsDeadAt(position)) {
589 // Set the register to be free. Note that inactive intervals might later
590 // update this.
591 free_until[interval->GetRegister()] = kMaxLifetimePosition;
592 if (interval->HasHighInterval()) {
593 DCHECK(interval->GetHighInterval()->IsDeadAt(position));
594 free_until[interval->GetHighInterval()->GetRegister()] = kMaxLifetimePosition;
595 }
596 } else if (!interval->CoversSlow(position)) {
597 // The interval becomes inactive at `defined_by`. We make its register
598 // available only until the next use strictly after `defined_by`.
599 free_until[interval->GetRegister()] = interval->FirstUseAfter(position);
600 if (interval->HasHighInterval()) {
601 DCHECK(!interval->GetHighInterval()->CoversSlow(position));
602 free_until[interval->GetHighInterval()->GetRegister()] = free_until[interval->GetRegister()];
603 }
604 }
605 }
606
607 // Find a free register. If multiple are found, pick the register that
608 // is free the longest.
TryAllocateFreeReg(LiveInterval * current)609 bool RegisterAllocatorLinearScan::TryAllocateFreeReg(LiveInterval* current) {
610 size_t* free_until = registers_array_;
611
612 // First set all registers to be free.
613 for (size_t i = 0; i < number_of_registers_; ++i) {
614 free_until[i] = kMaxLifetimePosition;
615 }
616
617 // For each active interval, set its register to not free.
618 for (LiveInterval* interval : active_) {
619 DCHECK(interval->HasRegister());
620 free_until[interval->GetRegister()] = 0;
621 }
622
623 // An interval that starts an instruction (that is, it is not split), may
624 // re-use the registers used by the inputs of that instruciton, based on the
625 // location summary.
626 HInstruction* defined_by = current->GetDefinedBy();
627 if (defined_by != nullptr && !current->IsSplit()) {
628 LocationSummary* locations = defined_by->GetLocations();
629 if (!locations->OutputCanOverlapWithInputs() && locations->Out().IsUnallocated()) {
630 HInputsRef inputs = defined_by->GetInputs();
631 for (size_t i = 0; i < inputs.size(); ++i) {
632 if (locations->InAt(i).IsValid()) {
633 // Take the last interval of the input. It is the location of that interval
634 // that will be used at `defined_by`.
635 LiveInterval* interval = inputs[i]->GetLiveInterval()->GetLastSibling();
636 // Note that interval may have not been processed yet.
637 // TODO: Handle non-split intervals last in the work list.
638 if (interval->HasRegister() && interval->SameRegisterKind(*current)) {
639 // The input must be live until the end of `defined_by`, to comply to
640 // the linear scan algorithm. So we use `defined_by`'s end lifetime
641 // position to check whether the input is dead or is inactive after
642 // `defined_by`.
643 DCHECK(interval->CoversSlow(defined_by->GetLifetimePosition()));
644 size_t position = defined_by->GetLifetimePosition() + 1;
645 FreeIfNotCoverAt(interval, position, free_until);
646 }
647 }
648 }
649 }
650 }
651
652 // For each inactive interval, set its register to be free until
653 // the next intersection with `current`.
654 for (LiveInterval* inactive : inactive_) {
655 // Temp/Slow-path-safepoint interval has no holes.
656 DCHECK(!inactive->IsTemp());
657 if (!current->IsSplit() && !inactive->IsFixed()) {
658 // Neither current nor inactive are fixed.
659 // Thanks to SSA, a non-split interval starting in a hole of an
660 // inactive interval should never intersect with that inactive interval.
661 // Only if it's not fixed though, because fixed intervals don't come from SSA.
662 DCHECK_EQ(inactive->FirstIntersectionWith(current), kNoLifetime);
663 continue;
664 }
665
666 DCHECK(inactive->HasRegister());
667 if (free_until[inactive->GetRegister()] == 0) {
668 // Already used by some active interval. No need to intersect.
669 continue;
670 }
671 size_t next_intersection = inactive->FirstIntersectionWith(current);
672 if (next_intersection != kNoLifetime) {
673 free_until[inactive->GetRegister()] =
674 std::min(free_until[inactive->GetRegister()], next_intersection);
675 }
676 }
677
678 int reg = kNoRegister;
679 if (current->HasRegister()) {
680 // Some instructions have a fixed register output.
681 reg = current->GetRegister();
682 if (free_until[reg] == 0) {
683 DCHECK(current->IsHighInterval());
684 // AllocateBlockedReg will spill the holder of the register.
685 return false;
686 }
687 } else {
688 DCHECK(!current->IsHighInterval());
689 int hint = current->FindFirstRegisterHint(free_until, liveness_);
690 if ((hint != kNoRegister)
691 // For simplicity, if the hint we are getting for a pair cannot be used,
692 // we are just going to allocate a new pair.
693 && !(current->IsLowInterval() && IsBlocked(GetHighForLowRegister(hint)))) {
694 DCHECK(!IsBlocked(hint));
695 reg = hint;
696 } else if (current->IsLowInterval()) {
697 reg = FindAvailableRegisterPair(free_until, current->GetStart());
698 } else {
699 reg = FindAvailableRegister(free_until, current);
700 }
701 }
702
703 DCHECK_NE(reg, kNoRegister);
704 // If we could not find a register, we need to spill.
705 if (free_until[reg] == 0) {
706 return false;
707 }
708
709 if (current->IsLowInterval()) {
710 // If the high register of this interval is not available, we need to spill.
711 int high_reg = current->GetHighInterval()->GetRegister();
712 if (high_reg == kNoRegister) {
713 high_reg = GetHighForLowRegister(reg);
714 }
715 if (free_until[high_reg] == 0) {
716 return false;
717 }
718 }
719
720 current->SetRegister(reg);
721 if (!current->IsDeadAt(free_until[reg])) {
722 // If the register is only available for a subset of live ranges
723 // covered by `current`, split `current` before the position where
724 // the register is not available anymore.
725 LiveInterval* split = SplitBetween(current, current->GetStart(), free_until[reg]);
726 DCHECK(split != nullptr);
727 AddSorted(unhandled_, split);
728 }
729 return true;
730 }
731
IsBlocked(int reg) const732 bool RegisterAllocatorLinearScan::IsBlocked(int reg) const {
733 return processing_core_registers_
734 ? blocked_core_registers_[reg]
735 : blocked_fp_registers_[reg];
736 }
737
FindAvailableRegisterPair(size_t * next_use,size_t starting_at) const738 int RegisterAllocatorLinearScan::FindAvailableRegisterPair(size_t* next_use, size_t starting_at) const {
739 int reg = kNoRegister;
740 // Pick the register pair that is used the last.
741 for (size_t i = 0; i < number_of_registers_; ++i) {
742 if (IsBlocked(i)) continue;
743 if (!IsLowRegister(i)) continue;
744 int high_register = GetHighForLowRegister(i);
745 if (IsBlocked(high_register)) continue;
746 int existing_high_register = GetHighForLowRegister(reg);
747 if ((reg == kNoRegister) || (next_use[i] >= next_use[reg]
748 && next_use[high_register] >= next_use[existing_high_register])) {
749 reg = i;
750 if (next_use[i] == kMaxLifetimePosition
751 && next_use[high_register] == kMaxLifetimePosition) {
752 break;
753 }
754 } else if (next_use[reg] <= starting_at || next_use[existing_high_register] <= starting_at) {
755 // If one of the current register is known to be unavailable, just unconditionally
756 // try a new one.
757 reg = i;
758 }
759 }
760 return reg;
761 }
762
IsCallerSaveRegister(int reg) const763 bool RegisterAllocatorLinearScan::IsCallerSaveRegister(int reg) const {
764 return processing_core_registers_
765 ? !codegen_->IsCoreCalleeSaveRegister(reg)
766 : !codegen_->IsFloatingPointCalleeSaveRegister(reg);
767 }
768
FindAvailableRegister(size_t * next_use,LiveInterval * current) const769 int RegisterAllocatorLinearScan::FindAvailableRegister(size_t* next_use, LiveInterval* current) const {
770 // We special case intervals that do not span a safepoint to try to find a caller-save
771 // register if one is available. We iterate from 0 to the number of registers,
772 // so if there are caller-save registers available at the end, we continue the iteration.
773 bool prefers_caller_save = !current->HasWillCallSafepoint();
774 int reg = kNoRegister;
775 for (size_t i = 0; i < number_of_registers_; ++i) {
776 if (IsBlocked(i)) {
777 // Register cannot be used. Continue.
778 continue;
779 }
780
781 // Best case: we found a register fully available.
782 if (next_use[i] == kMaxLifetimePosition) {
783 if (prefers_caller_save && !IsCallerSaveRegister(i)) {
784 // We can get shorter encodings on some platforms by using
785 // small register numbers. So only update the candidate if the previous
786 // one was not available for the whole method.
787 if (reg == kNoRegister || next_use[reg] != kMaxLifetimePosition) {
788 reg = i;
789 }
790 // Continue the iteration in the hope of finding a caller save register.
791 continue;
792 } else {
793 reg = i;
794 // We know the register is good enough. Return it.
795 break;
796 }
797 }
798
799 // If we had no register before, take this one as a reference.
800 if (reg == kNoRegister) {
801 reg = i;
802 continue;
803 }
804
805 // Pick the register that is used the last.
806 if (next_use[i] > next_use[reg]) {
807 reg = i;
808 continue;
809 }
810 }
811 return reg;
812 }
813
814 // Remove interval and its other half if any. Return iterator to the following element.
RemoveIntervalAndPotentialOtherHalf(ArenaVector<LiveInterval * > * intervals,ArenaVector<LiveInterval * >::iterator pos)815 static ArenaVector<LiveInterval*>::iterator RemoveIntervalAndPotentialOtherHalf(
816 ArenaVector<LiveInterval*>* intervals, ArenaVector<LiveInterval*>::iterator pos) {
817 DCHECK(intervals->begin() <= pos && pos < intervals->end());
818 LiveInterval* interval = *pos;
819 if (interval->IsLowInterval()) {
820 DCHECK(pos + 1 < intervals->end());
821 DCHECK_EQ(*(pos + 1), interval->GetHighInterval());
822 return intervals->erase(pos, pos + 2);
823 } else if (interval->IsHighInterval()) {
824 DCHECK(intervals->begin() < pos);
825 DCHECK_EQ(*(pos - 1), interval->GetLowInterval());
826 return intervals->erase(pos - 1, pos + 1);
827 } else {
828 return intervals->erase(pos);
829 }
830 }
831
TrySplitNonPairOrUnalignedPairIntervalAt(size_t position,size_t first_register_use,size_t * next_use)832 bool RegisterAllocatorLinearScan::TrySplitNonPairOrUnalignedPairIntervalAt(size_t position,
833 size_t first_register_use,
834 size_t* next_use) {
835 for (auto it = active_.begin(), end = active_.end(); it != end; ++it) {
836 LiveInterval* active = *it;
837 DCHECK(active->HasRegister());
838 if (active->IsFixed()) continue;
839 if (active->IsHighInterval()) continue;
840 if (first_register_use > next_use[active->GetRegister()]) continue;
841
842 // Split the first interval found that is either:
843 // 1) A non-pair interval.
844 // 2) A pair interval whose high is not low + 1.
845 // 3) A pair interval whose low is not even.
846 if (!active->IsLowInterval() ||
847 IsLowOfUnalignedPairInterval(active) ||
848 !IsLowRegister(active->GetRegister())) {
849 LiveInterval* split = Split(active, position);
850 if (split != active) {
851 handled_.push_back(active);
852 }
853 RemoveIntervalAndPotentialOtherHalf(&active_, it);
854 AddSorted(unhandled_, split);
855 return true;
856 }
857 }
858 return false;
859 }
860
861 // Find the register that is used the last, and spill the interval
862 // that holds it. If the first use of `current` is after that register
863 // we spill `current` instead.
AllocateBlockedReg(LiveInterval * current)864 bool RegisterAllocatorLinearScan::AllocateBlockedReg(LiveInterval* current) {
865 size_t first_register_use = current->FirstRegisterUse();
866 if (current->HasRegister()) {
867 DCHECK(current->IsHighInterval());
868 // The low interval has allocated the register for the high interval. In
869 // case the low interval had to split both intervals, we may end up in a
870 // situation where the high interval does not have a register use anymore.
871 // We must still proceed in order to split currently active and inactive
872 // uses of the high interval's register, and put the high interval in the
873 // active set.
874 DCHECK(first_register_use != kNoLifetime || (current->GetNextSibling() != nullptr));
875 } else if (first_register_use == kNoLifetime) {
876 AllocateSpillSlotFor(current);
877 return false;
878 }
879
880 // First set all registers as not being used.
881 size_t* next_use = registers_array_;
882 for (size_t i = 0; i < number_of_registers_; ++i) {
883 next_use[i] = kMaxLifetimePosition;
884 }
885
886 // For each active interval, find the next use of its register after the
887 // start of current.
888 for (LiveInterval* active : active_) {
889 DCHECK(active->HasRegister());
890 if (active->IsFixed()) {
891 next_use[active->GetRegister()] = current->GetStart();
892 } else {
893 size_t use = active->FirstRegisterUseAfter(current->GetStart());
894 if (use != kNoLifetime) {
895 next_use[active->GetRegister()] = use;
896 }
897 }
898 }
899
900 // For each inactive interval, find the next use of its register after the
901 // start of current.
902 for (LiveInterval* inactive : inactive_) {
903 // Temp/Slow-path-safepoint interval has no holes.
904 DCHECK(!inactive->IsTemp());
905 if (!current->IsSplit() && !inactive->IsFixed()) {
906 // Neither current nor inactive are fixed.
907 // Thanks to SSA, a non-split interval starting in a hole of an
908 // inactive interval should never intersect with that inactive interval.
909 // Only if it's not fixed though, because fixed intervals don't come from SSA.
910 DCHECK_EQ(inactive->FirstIntersectionWith(current), kNoLifetime);
911 continue;
912 }
913 DCHECK(inactive->HasRegister());
914 size_t next_intersection = inactive->FirstIntersectionWith(current);
915 if (next_intersection != kNoLifetime) {
916 if (inactive->IsFixed()) {
917 next_use[inactive->GetRegister()] =
918 std::min(next_intersection, next_use[inactive->GetRegister()]);
919 } else {
920 size_t use = inactive->FirstUseAfter(current->GetStart());
921 if (use != kNoLifetime) {
922 next_use[inactive->GetRegister()] = std::min(use, next_use[inactive->GetRegister()]);
923 }
924 }
925 }
926 }
927
928 int reg = kNoRegister;
929 bool should_spill = false;
930 if (current->HasRegister()) {
931 DCHECK(current->IsHighInterval());
932 reg = current->GetRegister();
933 // When allocating the low part, we made sure the high register was available.
934 DCHECK_LT(first_register_use, next_use[reg]);
935 } else if (current->IsLowInterval()) {
936 reg = FindAvailableRegisterPair(next_use, first_register_use);
937 // We should spill if both registers are not available.
938 should_spill = (first_register_use >= next_use[reg])
939 || (first_register_use >= next_use[GetHighForLowRegister(reg)]);
940 } else {
941 DCHECK(!current->IsHighInterval());
942 reg = FindAvailableRegister(next_use, current);
943 should_spill = (first_register_use >= next_use[reg]);
944 }
945
946 DCHECK_NE(reg, kNoRegister);
947 if (should_spill) {
948 DCHECK(!current->IsHighInterval());
949 bool is_allocation_at_use_site = (current->GetStart() >= (first_register_use - 1));
950 if (is_allocation_at_use_site) {
951 if (!current->IsLowInterval()) {
952 DumpInterval(std::cerr, current);
953 DumpAllIntervals(std::cerr);
954 // This situation has the potential to infinite loop, so we make it a non-debug CHECK.
955 HInstruction* at = liveness_.GetInstructionFromPosition(first_register_use / 2);
956 CHECK(false) << "There is not enough registers available for "
957 << current->GetParent()->GetDefinedBy()->DebugName() << " "
958 << current->GetParent()->GetDefinedBy()->GetId()
959 << " at " << first_register_use - 1 << " "
960 << (at == nullptr ? "" : at->DebugName());
961 }
962
963 // If we're allocating a register for `current` because the instruction at
964 // that position requires it, but we think we should spill, then there are
965 // non-pair intervals or unaligned pair intervals blocking the allocation.
966 // We split the first interval found, and put ourselves first in the
967 // `unhandled_` list.
968 bool success = TrySplitNonPairOrUnalignedPairIntervalAt(current->GetStart(),
969 first_register_use,
970 next_use);
971 DCHECK(success);
972 LiveInterval* existing = unhandled_->back();
973 DCHECK(existing->IsHighInterval());
974 DCHECK_EQ(existing->GetLowInterval(), current);
975 unhandled_->push_back(current);
976 } else {
977 // If the first use of that instruction is after the last use of the found
978 // register, we split this interval just before its first register use.
979 AllocateSpillSlotFor(current);
980 LiveInterval* split = SplitBetween(current, current->GetStart(), first_register_use - 1);
981 DCHECK(current != split);
982 AddSorted(unhandled_, split);
983 }
984 return false;
985 } else {
986 // Use this register and spill the active and inactives interval that
987 // have that register.
988 current->SetRegister(reg);
989
990 for (auto it = active_.begin(), end = active_.end(); it != end; ++it) {
991 LiveInterval* active = *it;
992 if (active->GetRegister() == reg) {
993 DCHECK(!active->IsFixed());
994 LiveInterval* split = Split(active, current->GetStart());
995 if (split != active) {
996 handled_.push_back(active);
997 }
998 RemoveIntervalAndPotentialOtherHalf(&active_, it);
999 AddSorted(unhandled_, split);
1000 break;
1001 }
1002 }
1003
1004 // NOTE: Retrieve end() on each iteration because we're removing elements in the loop body.
1005 for (auto it = inactive_.begin(); it != inactive_.end(); ) {
1006 LiveInterval* inactive = *it;
1007 bool erased = false;
1008 if (inactive->GetRegister() == reg) {
1009 if (!current->IsSplit() && !inactive->IsFixed()) {
1010 // Neither current nor inactive are fixed.
1011 // Thanks to SSA, a non-split interval starting in a hole of an
1012 // inactive interval should never intersect with that inactive interval.
1013 // Only if it's not fixed though, because fixed intervals don't come from SSA.
1014 DCHECK_EQ(inactive->FirstIntersectionWith(current), kNoLifetime);
1015 } else {
1016 size_t next_intersection = inactive->FirstIntersectionWith(current);
1017 if (next_intersection != kNoLifetime) {
1018 if (inactive->IsFixed()) {
1019 LiveInterval* split = Split(current, next_intersection);
1020 DCHECK_NE(split, current);
1021 AddSorted(unhandled_, split);
1022 } else {
1023 // Split at the start of `current`, which will lead to splitting
1024 // at the end of the lifetime hole of `inactive`.
1025 LiveInterval* split = Split(inactive, current->GetStart());
1026 // If it's inactive, it must start before the current interval.
1027 DCHECK_NE(split, inactive);
1028 it = RemoveIntervalAndPotentialOtherHalf(&inactive_, it);
1029 erased = true;
1030 handled_.push_back(inactive);
1031 AddSorted(unhandled_, split);
1032 }
1033 }
1034 }
1035 }
1036 // If we have erased the element, `it` already points to the next element.
1037 // Otherwise we need to move to the next element.
1038 if (!erased) {
1039 ++it;
1040 }
1041 }
1042
1043 return true;
1044 }
1045 }
1046
AddSorted(ArenaVector<LiveInterval * > * array,LiveInterval * interval)1047 void RegisterAllocatorLinearScan::AddSorted(ArenaVector<LiveInterval*>* array, LiveInterval* interval) {
1048 DCHECK(!interval->IsFixed() && !interval->HasSpillSlot());
1049 size_t insert_at = 0;
1050 for (size_t i = array->size(); i > 0; --i) {
1051 LiveInterval* current = (*array)[i - 1u];
1052 // High intervals must be processed right after their low equivalent.
1053 if (current->StartsAfter(interval) && !current->IsHighInterval()) {
1054 insert_at = i;
1055 break;
1056 }
1057 }
1058
1059 // Insert the high interval before the low, to ensure the low is processed before.
1060 auto insert_pos = array->begin() + insert_at;
1061 if (interval->HasHighInterval()) {
1062 array->insert(insert_pos, { interval->GetHighInterval(), interval });
1063 } else if (interval->HasLowInterval()) {
1064 array->insert(insert_pos, { interval, interval->GetLowInterval() });
1065 } else {
1066 array->insert(insert_pos, interval);
1067 }
1068 }
1069
AllocateSpillSlotFor(LiveInterval * interval)1070 void RegisterAllocatorLinearScan::AllocateSpillSlotFor(LiveInterval* interval) {
1071 if (interval->IsHighInterval()) {
1072 // The low interval already took care of allocating the spill slot.
1073 DCHECK(!interval->GetLowInterval()->HasRegister());
1074 DCHECK(interval->GetLowInterval()->GetParent()->HasSpillSlot());
1075 return;
1076 }
1077
1078 LiveInterval* parent = interval->GetParent();
1079
1080 // An instruction gets a spill slot for its entire lifetime. If the parent
1081 // of this interval already has a spill slot, there is nothing to do.
1082 if (parent->HasSpillSlot()) {
1083 return;
1084 }
1085
1086 HInstruction* defined_by = parent->GetDefinedBy();
1087 DCHECK(!defined_by->IsPhi() || !defined_by->AsPhi()->IsCatchPhi());
1088
1089 if (defined_by->IsParameterValue()) {
1090 // Parameters have their own stack slot.
1091 parent->SetSpillSlot(codegen_->GetStackSlotOfParameter(defined_by->AsParameterValue()));
1092 return;
1093 }
1094
1095 if (defined_by->IsCurrentMethod()) {
1096 parent->SetSpillSlot(0);
1097 return;
1098 }
1099
1100 if (defined_by->IsConstant()) {
1101 // Constants don't need a spill slot.
1102 return;
1103 }
1104
1105 ArenaVector<size_t>* spill_slots = nullptr;
1106 switch (interval->GetType()) {
1107 case Primitive::kPrimDouble:
1108 spill_slots = &double_spill_slots_;
1109 break;
1110 case Primitive::kPrimLong:
1111 spill_slots = &long_spill_slots_;
1112 break;
1113 case Primitive::kPrimFloat:
1114 spill_slots = &float_spill_slots_;
1115 break;
1116 case Primitive::kPrimNot:
1117 case Primitive::kPrimInt:
1118 case Primitive::kPrimChar:
1119 case Primitive::kPrimByte:
1120 case Primitive::kPrimBoolean:
1121 case Primitive::kPrimShort:
1122 spill_slots = &int_spill_slots_;
1123 break;
1124 case Primitive::kPrimVoid:
1125 LOG(FATAL) << "Unexpected type for interval " << interval->GetType();
1126 }
1127
1128 // Find first available spill slots.
1129 size_t number_of_spill_slots_needed = parent->NumberOfSpillSlotsNeeded();
1130 size_t slot = 0;
1131 for (size_t e = spill_slots->size(); slot < e; ++slot) {
1132 bool found = true;
1133 for (size_t s = slot, u = std::min(slot + number_of_spill_slots_needed, e); s < u; s++) {
1134 if ((*spill_slots)[s] > parent->GetStart()) {
1135 found = false; // failure
1136 break;
1137 }
1138 }
1139 if (found) {
1140 break; // success
1141 }
1142 }
1143
1144 // Need new spill slots?
1145 size_t upper = slot + number_of_spill_slots_needed;
1146 if (upper > spill_slots->size()) {
1147 spill_slots->resize(upper);
1148 }
1149 // Set slots to end.
1150 size_t end = interval->GetLastSibling()->GetEnd();
1151 for (size_t s = slot; s < upper; s++) {
1152 (*spill_slots)[s] = end;
1153 }
1154
1155 // Note that the exact spill slot location will be computed when we resolve,
1156 // that is when we know the number of spill slots for each type.
1157 parent->SetSpillSlot(slot);
1158 }
1159
AllocateSpillSlotForCatchPhi(HPhi * phi)1160 void RegisterAllocatorLinearScan::AllocateSpillSlotForCatchPhi(HPhi* phi) {
1161 LiveInterval* interval = phi->GetLiveInterval();
1162
1163 HInstruction* previous_phi = phi->GetPrevious();
1164 DCHECK(previous_phi == nullptr ||
1165 previous_phi->AsPhi()->GetRegNumber() <= phi->GetRegNumber())
1166 << "Phis expected to be sorted by vreg number, so that equivalent phis are adjacent.";
1167
1168 if (phi->IsVRegEquivalentOf(previous_phi)) {
1169 // This is an equivalent of the previous phi. We need to assign the same
1170 // catch phi slot.
1171 DCHECK(previous_phi->GetLiveInterval()->HasSpillSlot());
1172 interval->SetSpillSlot(previous_phi->GetLiveInterval()->GetSpillSlot());
1173 } else {
1174 // Allocate a new spill slot for this catch phi.
1175 // TODO: Reuse spill slots when intervals of phis from different catch
1176 // blocks do not overlap.
1177 interval->SetSpillSlot(catch_phi_spill_slots_);
1178 catch_phi_spill_slots_ += interval->NumberOfSpillSlotsNeeded();
1179 }
1180 }
1181
1182 } // namespace art
1183