1 // Copyright (C) 2016 and later: Unicode, Inc. and others. 2 // License & terms of use: http://www.unicode.org/copyright.html 3 /* 4 ******************************************************************************* 5 * Copyright (C) 2004 - 2008, International Business Machines Corporation and 6 * others. All Rights Reserved. 7 ******************************************************************************* 8 */ 9 10 #ifndef UTMSCALE_H 11 #define UTMSCALE_H 12 13 #include "unicode/utypes.h" 14 15 #if !UCONFIG_NO_FORMATTING 16 17 /** 18 * \file 19 * \brief C API: Universal Time Scale 20 * 21 * There are quite a few different conventions for binary datetime, depending on different 22 * platforms and protocols. Some of these have severe drawbacks. For example, people using 23 * Unix time (seconds since Jan 1, 1970) think that they are safe until near the year 2038. 24 * But cases can and do arise where arithmetic manipulations causes serious problems. Consider 25 * the computation of the average of two datetimes, for example: if one calculates them with 26 * <code>averageTime = (time1 + time2)/2</code>, there will be overflow even with dates 27 * around the present. Moreover, even if these problems don't occur, there is the issue of 28 * conversion back and forth between different systems. 29 * 30 * <p> 31 * Binary datetimes differ in a number of ways: the datatype, the unit, 32 * and the epoch (origin). We'll refer to these as time scales. For example: 33 * 34 * <table border="1" cellspacing="0" cellpadding="4"> 35 * <caption>Table 1: Binary Time Scales</caption> 36 * <tr> 37 * <th align="left">Source</th> 38 * <th align="left">Datatype</th> 39 * <th align="left">Unit</th> 40 * <th align="left">Epoch</th> 41 * </tr> 42 * 43 * <tr> 44 * <td>UDTS_JAVA_TIME</td> 45 * <td>int64_t</td> 46 * <td>milliseconds</td> 47 * <td>Jan 1, 1970</td> 48 * </tr> 49 * <tr> 50 * 51 * <td>UDTS_UNIX_TIME</td> 52 * <td>int32_t or int64_t</td> 53 * <td>seconds</td> 54 * <td>Jan 1, 1970</td> 55 * </tr> 56 * <tr> 57 * <td>UDTS_ICU4C_TIME</td> 58 * 59 * <td>double</td> 60 * <td>milliseconds</td> 61 * <td>Jan 1, 1970</td> 62 * </tr> 63 * <tr> 64 * <td>UDTS_WINDOWS_FILE_TIME</td> 65 * <td>int64_t</td> 66 * 67 * <td>ticks (100 nanoseconds)</td> 68 * <td>Jan 1, 1601</td> 69 * </tr> 70 * <tr> 71 * <td>UDTS_DOTNET_DATE_TIME</td> 72 * <td>int64_t</td> 73 * <td>ticks (100 nanoseconds)</td> 74 * 75 * <td>Jan 1, 0001</td> 76 * </tr> 77 * <tr> 78 * <td>UDTS_MAC_OLD_TIME</td> 79 * <td>int32_t or int64_t</td> 80 * <td>seconds</td> 81 * <td>Jan 1, 1904</td> 82 * 83 * </tr> 84 * <tr> 85 * <td>UDTS_MAC_TIME</td> 86 * <td>double</td> 87 * <td>seconds</td> 88 * <td>Jan 1, 2001</td> 89 * </tr> 90 * 91 * <tr> 92 * <td>UDTS_EXCEL_TIME</td> 93 * <td>?</td> 94 * <td>days</td> 95 * <td>Dec 31, 1899</td> 96 * </tr> 97 * <tr> 98 * 99 * <td>UDTS_DB2_TIME</td> 100 * <td>?</td> 101 * <td>days</td> 102 * <td>Dec 31, 1899</td> 103 * </tr> 104 * 105 * <tr> 106 * <td>UDTS_UNIX_MICROSECONDS_TIME</td> 107 * <td>int64_t</td> 108 * <td>microseconds</td> 109 * <td>Jan 1, 1970</td> 110 * </tr> 111 * </table> 112 * 113 * <p> 114 * All of the epochs start at 00:00 am (the earliest possible time on the day in question), 115 * and are assumed to be UTC. 116 * 117 * <p> 118 * The ranges for different datatypes are given in the following table (all values in years). 119 * The range of years includes the entire range expressible with positive and negative 120 * values of the datatype. The range of years for double is the range that would be allowed 121 * without losing precision to the corresponding unit. 122 * 123 * <table border="1" cellspacing="0" cellpadding="4"> 124 * <tr> 125 * <th align="left">Units</th> 126 * <th align="left">int64_t</th> 127 * <th align="left">double</th> 128 * <th align="left">int32_t</th> 129 * </tr> 130 * 131 * <tr> 132 * <td>1 sec</td> 133 * <td align="right">5.84542x10<sup>11</sup></td> 134 * <td align="right">285,420,920.94</td> 135 * <td align="right">136.10</td> 136 * </tr> 137 * <tr> 138 * 139 * <td>1 millisecond</td> 140 * <td align="right">584,542,046.09</td> 141 * <td align="right">285,420.92</td> 142 * <td align="right">0.14</td> 143 * </tr> 144 * <tr> 145 * <td>1 microsecond</td> 146 * 147 * <td align="right">584,542.05</td> 148 * <td align="right">285.42</td> 149 * <td align="right">0.00</td> 150 * </tr> 151 * <tr> 152 * <td>100 nanoseconds (tick)</td> 153 * <td align="right">58,454.20</td> 154 * <td align="right">28.54</td> 155 * <td align="right">0.00</td> 156 * </tr> 157 * <tr> 158 * <td>1 nanosecond</td> 159 * <td align="right">584.5420461</td> 160 * <td align="right">0.2854</td> 161 * <td align="right">0.00</td> 162 * </tr> 163 * </table> 164 * 165 * <p> 166 * These functions implement a universal time scale which can be used as a 'pivot', 167 * and provide conversion functions to and from all other major time scales. 168 * This datetimes to be converted to the pivot time, safely manipulated, 169 * and converted back to any other datetime time scale. 170 * 171 *<p> 172 * So what to use for this pivot? Java time has plenty of range, but cannot represent 173 * .NET <code>System.DateTime</code> values without severe loss of precision. ICU4C time addresses this by using a 174 * <code>double</code> that is otherwise equivalent to the Java time. However, there are disadvantages 175 * with <code>doubles</code>. They provide for much more graceful degradation in arithmetic operations. 176 * But they only have 53 bits of accuracy, which means that they will lose precision when 177 * converting back and forth to ticks. What would really be nice would be a 178 * <code>long double</code> (80 bits -- 64 bit mantissa), but that is not supported on most systems. 179 * 180 *<p> 181 * The Unix extended time uses a structure with two components: time in seconds and a 182 * fractional field (microseconds). However, this is clumsy, slow, and 183 * prone to error (you always have to keep track of overflow and underflow in the 184 * fractional field). <code>BigDecimal</code> would allow for arbitrary precision and arbitrary range, 185 * but we do not want to use this as the normal type, because it is slow and does not 186 * have a fixed size. 187 * 188 *<p> 189 * Because of these issues, we ended up concluding that the .NET framework's 190 * <code>System.DateTime</code> would be the best pivot. However, we use the full range 191 * allowed by the datatype, allowing for datetimes back to 29,000 BC and up to 29,000 AD. 192 * This time scale is very fine grained, does not lose precision, and covers a range that 193 * will meet almost all requirements. It will not handle the range that Java times do, 194 * but frankly, being able to handle dates before 29,000 BC or after 29,000 AD is of very limited interest. 195 * 196 */ 197 198 /** 199 * <code>UDateTimeScale</code> values are used to specify the time scale used for 200 * conversion into or out if the universal time scale. 201 * 202 * @stable ICU 3.2 203 */ 204 typedef enum UDateTimeScale { 205 /** 206 * Used in the JDK. Data is a Java <code>long</code> (<code>int64_t</code>). Value 207 * is milliseconds since January 1, 1970. 208 * 209 * @stable ICU 3.2 210 */ 211 UDTS_JAVA_TIME = 0, 212 213 /** 214 * Used on Unix systems. Data is <code>int32_t</code> or <code>int64_t</code>. Value 215 * is seconds since January 1, 1970. 216 * 217 * @stable ICU 3.2 218 */ 219 UDTS_UNIX_TIME, 220 221 /** 222 * Used in IUC4C. Data is a <code>double</code>. Value 223 * is milliseconds since January 1, 1970. 224 * 225 * @stable ICU 3.2 226 */ 227 UDTS_ICU4C_TIME, 228 229 /** 230 * Used in Windows for file times. Data is an <code>int64_t</code>. Value 231 * is ticks (1 tick == 100 nanoseconds) since January 1, 1601. 232 * 233 * @stable ICU 3.2 234 */ 235 UDTS_WINDOWS_FILE_TIME, 236 237 /** 238 * Used in the .NET framework's <code>System.DateTime</code> structure. Data is an <code>int64_t</code>. Value 239 * is ticks (1 tick == 100 nanoseconds) since January 1, 0001. 240 * 241 * @stable ICU 3.2 242 */ 243 UDTS_DOTNET_DATE_TIME, 244 245 /** 246 * Used in older Macintosh systems. Data is <code>int32_t</code> or <code>int64_t</code>. Value 247 * is seconds since January 1, 1904. 248 * 249 * @stable ICU 3.2 250 */ 251 UDTS_MAC_OLD_TIME, 252 253 /** 254 * Used in newer Macintosh systems. Data is a <code>double</code>. Value 255 * is seconds since January 1, 2001. 256 * 257 * @stable ICU 3.2 258 */ 259 UDTS_MAC_TIME, 260 261 /** 262 * Used in Excel. Data is an <code>?unknown?</code>. Value 263 * is days since December 31, 1899. 264 * 265 * @stable ICU 3.2 266 */ 267 UDTS_EXCEL_TIME, 268 269 /** 270 * Used in DB2. Data is an <code>?unknown?</code>. Value 271 * is days since December 31, 1899. 272 * 273 * @stable ICU 3.2 274 */ 275 UDTS_DB2_TIME, 276 277 /** 278 * Data is a <code>long</code>. Value is microseconds since January 1, 1970. 279 * Similar to Unix time (linear value from 1970) and struct timeval 280 * (microseconds resolution). 281 * 282 * @stable ICU 3.8 283 */ 284 UDTS_UNIX_MICROSECONDS_TIME, 285 286 /** 287 * The first unused time scale value. The limit of this enum 288 */ 289 UDTS_MAX_SCALE 290 } UDateTimeScale; 291 292 /** 293 * <code>UTimeScaleValue</code> values are used to specify the time scale values 294 * to <code>utmscale_getTimeScaleValue</code>. 295 * 296 * @see utmscale_getTimeScaleValue 297 * 298 * @stable ICU 3.2 299 */ 300 typedef enum UTimeScaleValue { 301 /** 302 * The constant used to select the units vale 303 * for a time scale. 304 * 305 * @see utmscale_getTimeScaleValue 306 * 307 * @stable ICU 3.2 308 */ 309 UTSV_UNITS_VALUE = 0, 310 311 /** 312 * The constant used to select the epoch offset value 313 * for a time scale. 314 * 315 * @see utmscale_getTimeScaleValue 316 * 317 * @stable ICU 3.2 318 */ 319 UTSV_EPOCH_OFFSET_VALUE=1, 320 321 /** 322 * The constant used to select the minimum from value 323 * for a time scale. 324 * 325 * @see utmscale_getTimeScaleValue 326 * 327 * @stable ICU 3.2 328 */ 329 UTSV_FROM_MIN_VALUE=2, 330 331 /** 332 * The constant used to select the maximum from value 333 * for a time scale. 334 * 335 * @see utmscale_getTimeScaleValue 336 * 337 * @stable ICU 3.2 338 */ 339 UTSV_FROM_MAX_VALUE=3, 340 341 /** 342 * The constant used to select the minimum to value 343 * for a time scale. 344 * 345 * @see utmscale_getTimeScaleValue 346 * 347 * @stable ICU 3.2 348 */ 349 UTSV_TO_MIN_VALUE=4, 350 351 /** 352 * The constant used to select the maximum to value 353 * for a time scale. 354 * 355 * @see utmscale_getTimeScaleValue 356 * 357 * @stable ICU 3.2 358 */ 359 UTSV_TO_MAX_VALUE=5, 360 361 #ifndef U_HIDE_INTERNAL_API 362 /** 363 * The constant used to select the epoch plus one value 364 * for a time scale. 365 * 366 * NOTE: This is an internal value. DO NOT USE IT. May not 367 * actually be equal to the epoch offset value plus one. 368 * 369 * @see utmscale_getTimeScaleValue 370 * 371 * @internal ICU 3.2 372 */ 373 UTSV_EPOCH_OFFSET_PLUS_1_VALUE=6, 374 375 /** 376 * The constant used to select the epoch plus one value 377 * for a time scale. 378 * 379 * NOTE: This is an internal value. DO NOT USE IT. May not 380 * actually be equal to the epoch offset value plus one. 381 * 382 * @see utmscale_getTimeScaleValue 383 * 384 * @internal ICU 3.2 385 */ 386 UTSV_EPOCH_OFFSET_MINUS_1_VALUE=7, 387 388 /** 389 * The constant used to select the units round value 390 * for a time scale. 391 * 392 * NOTE: This is an internal value. DO NOT USE IT. 393 * 394 * @see utmscale_getTimeScaleValue 395 * 396 * @internal ICU 3.2 397 */ 398 UTSV_UNITS_ROUND_VALUE=8, 399 400 /** 401 * The constant used to select the minimum safe rounding value 402 * for a time scale. 403 * 404 * NOTE: This is an internal value. DO NOT USE IT. 405 * 406 * @see utmscale_getTimeScaleValue 407 * 408 * @internal ICU 3.2 409 */ 410 UTSV_MIN_ROUND_VALUE=9, 411 412 /** 413 * The constant used to select the maximum safe rounding value 414 * for a time scale. 415 * 416 * NOTE: This is an internal value. DO NOT USE IT. 417 * 418 * @see utmscale_getTimeScaleValue 419 * 420 * @internal ICU 3.2 421 */ 422 UTSV_MAX_ROUND_VALUE=10, 423 424 #endif /* U_HIDE_INTERNAL_API */ 425 426 /** 427 * The number of time scale values, in other words limit of this enum. 428 * 429 * @see utmscale_getTimeScaleValue 430 */ 431 UTSV_MAX_SCALE_VALUE=11 432 433 } UTimeScaleValue; 434 435 /** 436 * Get a value associated with a particular time scale. 437 * 438 * @param timeScale The time scale 439 * @param value A constant representing the value to get 440 * @param status The status code. Set to <code>U_ILLEGAL_ARGUMENT_ERROR</code> if arguments are invalid. 441 * @return - the value. 442 * 443 * @stable ICU 3.2 444 */ 445 U_STABLE int64_t U_EXPORT2 446 utmscale_getTimeScaleValue(UDateTimeScale timeScale, UTimeScaleValue value, UErrorCode *status); 447 448 /* Conversion to 'universal time scale' */ 449 450 /** 451 * Convert a <code>int64_t</code> datetime from the given time scale to the universal time scale. 452 * 453 * @param otherTime The <code>int64_t</code> datetime 454 * @param timeScale The time scale to convert from 455 * @param status The status code. Set to <code>U_ILLEGAL_ARGUMENT_ERROR</code> if the conversion is out of range. 456 * 457 * @return The datetime converted to the universal time scale 458 * 459 * @stable ICU 3.2 460 */ 461 U_STABLE int64_t U_EXPORT2 462 utmscale_fromInt64(int64_t otherTime, UDateTimeScale timeScale, UErrorCode *status); 463 464 /* Conversion from 'universal time scale' */ 465 466 /** 467 * Convert a datetime from the universal time scale to a <code>int64_t</code> in the given time scale. 468 * 469 * @param universalTime The datetime in the universal time scale 470 * @param timeScale The time scale to convert to 471 * @param status The status code. Set to <code>U_ILLEGAL_ARGUMENT_ERROR</code> if the conversion is out of range. 472 * 473 * @return The datetime converted to the given time scale 474 * 475 * @stable ICU 3.2 476 */ 477 U_STABLE int64_t U_EXPORT2 478 utmscale_toInt64(int64_t universalTime, UDateTimeScale timeScale, UErrorCode *status); 479 480 #endif /* #if !UCONFIG_NO_FORMATTING */ 481 482 #endif 483 484