• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // main entry for the decoder
11 //
12 // Authors: Vikas Arora (vikaas.arora@gmail.com)
13 //          Jyrki Alakuijala (jyrki@google.com)
14 
15 #include <stdlib.h>
16 
17 #include "./alphai_dec.h"
18 #include "./vp8li_dec.h"
19 #include "../dsp/dsp.h"
20 #include "../dsp/lossless.h"
21 #include "../dsp/lossless_common.h"
22 #include "../dsp/yuv.h"
23 #include "../utils/endian_inl_utils.h"
24 #include "../utils/huffman_utils.h"
25 #include "../utils/utils.h"
26 
27 #define NUM_ARGB_CACHE_ROWS          16
28 
29 static const int kCodeLengthLiterals = 16;
30 static const int kCodeLengthRepeatCode = 16;
31 static const int kCodeLengthExtraBits[3] = { 2, 3, 7 };
32 static const int kCodeLengthRepeatOffsets[3] = { 3, 3, 11 };
33 
34 // -----------------------------------------------------------------------------
35 //  Five Huffman codes are used at each meta code:
36 //  1. green + length prefix codes + color cache codes,
37 //  2. alpha,
38 //  3. red,
39 //  4. blue, and,
40 //  5. distance prefix codes.
41 typedef enum {
42   GREEN = 0,
43   RED   = 1,
44   BLUE  = 2,
45   ALPHA = 3,
46   DIST  = 4
47 } HuffIndex;
48 
49 static const uint16_t kAlphabetSize[HUFFMAN_CODES_PER_META_CODE] = {
50   NUM_LITERAL_CODES + NUM_LENGTH_CODES,
51   NUM_LITERAL_CODES, NUM_LITERAL_CODES, NUM_LITERAL_CODES,
52   NUM_DISTANCE_CODES
53 };
54 
55 static const uint8_t kLiteralMap[HUFFMAN_CODES_PER_META_CODE] = {
56   0, 1, 1, 1, 0
57 };
58 
59 #define NUM_CODE_LENGTH_CODES       19
60 static const uint8_t kCodeLengthCodeOrder[NUM_CODE_LENGTH_CODES] = {
61   17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
62 };
63 
64 #define CODE_TO_PLANE_CODES        120
65 static const uint8_t kCodeToPlane[CODE_TO_PLANE_CODES] = {
66   0x18, 0x07, 0x17, 0x19, 0x28, 0x06, 0x27, 0x29, 0x16, 0x1a,
67   0x26, 0x2a, 0x38, 0x05, 0x37, 0x39, 0x15, 0x1b, 0x36, 0x3a,
68   0x25, 0x2b, 0x48, 0x04, 0x47, 0x49, 0x14, 0x1c, 0x35, 0x3b,
69   0x46, 0x4a, 0x24, 0x2c, 0x58, 0x45, 0x4b, 0x34, 0x3c, 0x03,
70   0x57, 0x59, 0x13, 0x1d, 0x56, 0x5a, 0x23, 0x2d, 0x44, 0x4c,
71   0x55, 0x5b, 0x33, 0x3d, 0x68, 0x02, 0x67, 0x69, 0x12, 0x1e,
72   0x66, 0x6a, 0x22, 0x2e, 0x54, 0x5c, 0x43, 0x4d, 0x65, 0x6b,
73   0x32, 0x3e, 0x78, 0x01, 0x77, 0x79, 0x53, 0x5d, 0x11, 0x1f,
74   0x64, 0x6c, 0x42, 0x4e, 0x76, 0x7a, 0x21, 0x2f, 0x75, 0x7b,
75   0x31, 0x3f, 0x63, 0x6d, 0x52, 0x5e, 0x00, 0x74, 0x7c, 0x41,
76   0x4f, 0x10, 0x20, 0x62, 0x6e, 0x30, 0x73, 0x7d, 0x51, 0x5f,
77   0x40, 0x72, 0x7e, 0x61, 0x6f, 0x50, 0x71, 0x7f, 0x60, 0x70
78 };
79 
80 // Memory needed for lookup tables of one Huffman tree group. Red, blue, alpha
81 // and distance alphabets are constant (256 for red, blue and alpha, 40 for
82 // distance) and lookup table sizes for them in worst case are 630 and 410
83 // respectively. Size of green alphabet depends on color cache size and is equal
84 // to 256 (green component values) + 24 (length prefix values)
85 // + color_cache_size (between 0 and 2048).
86 // All values computed for 8-bit first level lookup with Mark Adler's tool:
87 // http://www.hdfgroup.org/ftp/lib-external/zlib/zlib-1.2.5/examples/enough.c
88 #define FIXED_TABLE_SIZE (630 * 3 + 410)
89 static const int kTableSize[12] = {
90   FIXED_TABLE_SIZE + 654,
91   FIXED_TABLE_SIZE + 656,
92   FIXED_TABLE_SIZE + 658,
93   FIXED_TABLE_SIZE + 662,
94   FIXED_TABLE_SIZE + 670,
95   FIXED_TABLE_SIZE + 686,
96   FIXED_TABLE_SIZE + 718,
97   FIXED_TABLE_SIZE + 782,
98   FIXED_TABLE_SIZE + 912,
99   FIXED_TABLE_SIZE + 1168,
100   FIXED_TABLE_SIZE + 1680,
101   FIXED_TABLE_SIZE + 2704
102 };
103 
104 static int DecodeImageStream(int xsize, int ysize,
105                              int is_level0,
106                              VP8LDecoder* const dec,
107                              uint32_t** const decoded_data);
108 
109 //------------------------------------------------------------------------------
110 
VP8LCheckSignature(const uint8_t * const data,size_t size)111 int VP8LCheckSignature(const uint8_t* const data, size_t size) {
112   return (size >= VP8L_FRAME_HEADER_SIZE &&
113           data[0] == VP8L_MAGIC_BYTE &&
114           (data[4] >> 5) == 0);  // version
115 }
116 
ReadImageInfo(VP8LBitReader * const br,int * const width,int * const height,int * const has_alpha)117 static int ReadImageInfo(VP8LBitReader* const br,
118                          int* const width, int* const height,
119                          int* const has_alpha) {
120   if (VP8LReadBits(br, 8) != VP8L_MAGIC_BYTE) return 0;
121   *width = VP8LReadBits(br, VP8L_IMAGE_SIZE_BITS) + 1;
122   *height = VP8LReadBits(br, VP8L_IMAGE_SIZE_BITS) + 1;
123   *has_alpha = VP8LReadBits(br, 1);
124   if (VP8LReadBits(br, VP8L_VERSION_BITS) != 0) return 0;
125   return !br->eos_;
126 }
127 
VP8LGetInfo(const uint8_t * data,size_t data_size,int * const width,int * const height,int * const has_alpha)128 int VP8LGetInfo(const uint8_t* data, size_t data_size,
129                 int* const width, int* const height, int* const has_alpha) {
130   if (data == NULL || data_size < VP8L_FRAME_HEADER_SIZE) {
131     return 0;         // not enough data
132   } else if (!VP8LCheckSignature(data, data_size)) {
133     return 0;         // bad signature
134   } else {
135     int w, h, a;
136     VP8LBitReader br;
137     VP8LInitBitReader(&br, data, data_size);
138     if (!ReadImageInfo(&br, &w, &h, &a)) {
139       return 0;
140     }
141     if (width != NULL) *width = w;
142     if (height != NULL) *height = h;
143     if (has_alpha != NULL) *has_alpha = a;
144     return 1;
145   }
146 }
147 
148 //------------------------------------------------------------------------------
149 
GetCopyDistance(int distance_symbol,VP8LBitReader * const br)150 static WEBP_INLINE int GetCopyDistance(int distance_symbol,
151                                        VP8LBitReader* const br) {
152   int extra_bits, offset;
153   if (distance_symbol < 4) {
154     return distance_symbol + 1;
155   }
156   extra_bits = (distance_symbol - 2) >> 1;
157   offset = (2 + (distance_symbol & 1)) << extra_bits;
158   return offset + VP8LReadBits(br, extra_bits) + 1;
159 }
160 
GetCopyLength(int length_symbol,VP8LBitReader * const br)161 static WEBP_INLINE int GetCopyLength(int length_symbol,
162                                      VP8LBitReader* const br) {
163   // Length and distance prefixes are encoded the same way.
164   return GetCopyDistance(length_symbol, br);
165 }
166 
PlaneCodeToDistance(int xsize,int plane_code)167 static WEBP_INLINE int PlaneCodeToDistance(int xsize, int plane_code) {
168   if (plane_code > CODE_TO_PLANE_CODES) {
169     return plane_code - CODE_TO_PLANE_CODES;
170   } else {
171     const int dist_code = kCodeToPlane[plane_code - 1];
172     const int yoffset = dist_code >> 4;
173     const int xoffset = 8 - (dist_code & 0xf);
174     const int dist = yoffset * xsize + xoffset;
175     return (dist >= 1) ? dist : 1;  // dist<1 can happen if xsize is very small
176   }
177 }
178 
179 //------------------------------------------------------------------------------
180 // Decodes the next Huffman code from bit-stream.
181 // FillBitWindow(br) needs to be called at minimum every second call
182 // to ReadSymbol, in order to pre-fetch enough bits.
ReadSymbol(const HuffmanCode * table,VP8LBitReader * const br)183 static WEBP_INLINE int ReadSymbol(const HuffmanCode* table,
184                                   VP8LBitReader* const br) {
185   int nbits;
186   uint32_t val = VP8LPrefetchBits(br);
187   table += val & HUFFMAN_TABLE_MASK;
188   nbits = table->bits - HUFFMAN_TABLE_BITS;
189   if (nbits > 0) {
190     VP8LSetBitPos(br, br->bit_pos_ + HUFFMAN_TABLE_BITS);
191     val = VP8LPrefetchBits(br);
192     table += table->value;
193     table += val & ((1 << nbits) - 1);
194   }
195   VP8LSetBitPos(br, br->bit_pos_ + table->bits);
196   return table->value;
197 }
198 
199 // Reads packed symbol depending on GREEN channel
200 #define BITS_SPECIAL_MARKER 0x100  // something large enough (and a bit-mask)
201 #define PACKED_NON_LITERAL_CODE 0  // must be < NUM_LITERAL_CODES
ReadPackedSymbols(const HTreeGroup * group,VP8LBitReader * const br,uint32_t * const dst)202 static WEBP_INLINE int ReadPackedSymbols(const HTreeGroup* group,
203                                          VP8LBitReader* const br,
204                                          uint32_t* const dst) {
205   const uint32_t val = VP8LPrefetchBits(br) & (HUFFMAN_PACKED_TABLE_SIZE - 1);
206   const HuffmanCode32 code = group->packed_table[val];
207   assert(group->use_packed_table);
208   if (code.bits < BITS_SPECIAL_MARKER) {
209     VP8LSetBitPos(br, br->bit_pos_ + code.bits);
210     *dst = code.value;
211     return PACKED_NON_LITERAL_CODE;
212   } else {
213     VP8LSetBitPos(br, br->bit_pos_ + code.bits - BITS_SPECIAL_MARKER);
214     assert(code.value >= NUM_LITERAL_CODES);
215     return code.value;
216   }
217 }
218 
AccumulateHCode(HuffmanCode hcode,int shift,HuffmanCode32 * const huff)219 static int AccumulateHCode(HuffmanCode hcode, int shift,
220                            HuffmanCode32* const huff) {
221   huff->bits += hcode.bits;
222   huff->value |= (uint32_t)hcode.value << shift;
223   assert(huff->bits <= HUFFMAN_TABLE_BITS);
224   return hcode.bits;
225 }
226 
BuildPackedTable(HTreeGroup * const htree_group)227 static void BuildPackedTable(HTreeGroup* const htree_group) {
228   uint32_t code;
229   for (code = 0; code < HUFFMAN_PACKED_TABLE_SIZE; ++code) {
230     uint32_t bits = code;
231     HuffmanCode32* const huff = &htree_group->packed_table[bits];
232     HuffmanCode hcode = htree_group->htrees[GREEN][bits];
233     if (hcode.value >= NUM_LITERAL_CODES) {
234       huff->bits = hcode.bits + BITS_SPECIAL_MARKER;
235       huff->value = hcode.value;
236     } else {
237       huff->bits = 0;
238       huff->value = 0;
239       bits >>= AccumulateHCode(hcode, 8, huff);
240       bits >>= AccumulateHCode(htree_group->htrees[RED][bits], 16, huff);
241       bits >>= AccumulateHCode(htree_group->htrees[BLUE][bits], 0, huff);
242       bits >>= AccumulateHCode(htree_group->htrees[ALPHA][bits], 24, huff);
243       (void)bits;
244     }
245   }
246 }
247 
ReadHuffmanCodeLengths(VP8LDecoder * const dec,const int * const code_length_code_lengths,int num_symbols,int * const code_lengths)248 static int ReadHuffmanCodeLengths(
249     VP8LDecoder* const dec, const int* const code_length_code_lengths,
250     int num_symbols, int* const code_lengths) {
251   int ok = 0;
252   VP8LBitReader* const br = &dec->br_;
253   int symbol;
254   int max_symbol;
255   int prev_code_len = DEFAULT_CODE_LENGTH;
256   HuffmanCode table[1 << LENGTHS_TABLE_BITS];
257 
258   if (!VP8LBuildHuffmanTable(table, LENGTHS_TABLE_BITS,
259                              code_length_code_lengths,
260                              NUM_CODE_LENGTH_CODES)) {
261     goto End;
262   }
263 
264   if (VP8LReadBits(br, 1)) {    // use length
265     const int length_nbits = 2 + 2 * VP8LReadBits(br, 3);
266     max_symbol = 2 + VP8LReadBits(br, length_nbits);
267     if (max_symbol > num_symbols) {
268       goto End;
269     }
270   } else {
271     max_symbol = num_symbols;
272   }
273 
274   symbol = 0;
275   while (symbol < num_symbols) {
276     const HuffmanCode* p;
277     int code_len;
278     if (max_symbol-- == 0) break;
279     VP8LFillBitWindow(br);
280     p = &table[VP8LPrefetchBits(br) & LENGTHS_TABLE_MASK];
281     VP8LSetBitPos(br, br->bit_pos_ + p->bits);
282     code_len = p->value;
283     if (code_len < kCodeLengthLiterals) {
284       code_lengths[symbol++] = code_len;
285       if (code_len != 0) prev_code_len = code_len;
286     } else {
287       const int use_prev = (code_len == kCodeLengthRepeatCode);
288       const int slot = code_len - kCodeLengthLiterals;
289       const int extra_bits = kCodeLengthExtraBits[slot];
290       const int repeat_offset = kCodeLengthRepeatOffsets[slot];
291       int repeat = VP8LReadBits(br, extra_bits) + repeat_offset;
292       if (symbol + repeat > num_symbols) {
293         goto End;
294       } else {
295         const int length = use_prev ? prev_code_len : 0;
296         while (repeat-- > 0) code_lengths[symbol++] = length;
297       }
298     }
299   }
300   ok = 1;
301 
302  End:
303   if (!ok) dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
304   return ok;
305 }
306 
307 // 'code_lengths' is pre-allocated temporary buffer, used for creating Huffman
308 // tree.
ReadHuffmanCode(int alphabet_size,VP8LDecoder * const dec,int * const code_lengths,HuffmanCode * const table)309 static int ReadHuffmanCode(int alphabet_size, VP8LDecoder* const dec,
310                            int* const code_lengths, HuffmanCode* const table) {
311   int ok = 0;
312   int size = 0;
313   VP8LBitReader* const br = &dec->br_;
314   const int simple_code = VP8LReadBits(br, 1);
315 
316   memset(code_lengths, 0, alphabet_size * sizeof(*code_lengths));
317 
318   if (simple_code) {  // Read symbols, codes & code lengths directly.
319     const int num_symbols = VP8LReadBits(br, 1) + 1;
320     const int first_symbol_len_code = VP8LReadBits(br, 1);
321     // The first code is either 1 bit or 8 bit code.
322     int symbol = VP8LReadBits(br, (first_symbol_len_code == 0) ? 1 : 8);
323     code_lengths[symbol] = 1;
324     // The second code (if present), is always 8 bit long.
325     if (num_symbols == 2) {
326       symbol = VP8LReadBits(br, 8);
327       code_lengths[symbol] = 1;
328     }
329     ok = 1;
330   } else {  // Decode Huffman-coded code lengths.
331     int i;
332     int code_length_code_lengths[NUM_CODE_LENGTH_CODES] = { 0 };
333     const int num_codes = VP8LReadBits(br, 4) + 4;
334     if (num_codes > NUM_CODE_LENGTH_CODES) {
335       dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
336       return 0;
337     }
338 
339     for (i = 0; i < num_codes; ++i) {
340       code_length_code_lengths[kCodeLengthCodeOrder[i]] = VP8LReadBits(br, 3);
341     }
342     ok = ReadHuffmanCodeLengths(dec, code_length_code_lengths, alphabet_size,
343                                 code_lengths);
344   }
345 
346   ok = ok && !br->eos_;
347   if (ok) {
348     size = VP8LBuildHuffmanTable(table, HUFFMAN_TABLE_BITS,
349                                  code_lengths, alphabet_size);
350   }
351   if (!ok || size == 0) {
352     dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
353     return 0;
354   }
355   return size;
356 }
357 
ReadHuffmanCodes(VP8LDecoder * const dec,int xsize,int ysize,int color_cache_bits,int allow_recursion)358 static int ReadHuffmanCodes(VP8LDecoder* const dec, int xsize, int ysize,
359                             int color_cache_bits, int allow_recursion) {
360   int i, j;
361   VP8LBitReader* const br = &dec->br_;
362   VP8LMetadata* const hdr = &dec->hdr_;
363   uint32_t* huffman_image = NULL;
364   HTreeGroup* htree_groups = NULL;
365   HuffmanCode* huffman_tables = NULL;
366   HuffmanCode* next = NULL;
367   int num_htree_groups = 1;
368   int max_alphabet_size = 0;
369   int* code_lengths = NULL;
370   const int table_size = kTableSize[color_cache_bits];
371 
372   if (allow_recursion && VP8LReadBits(br, 1)) {
373     // use meta Huffman codes.
374     const int huffman_precision = VP8LReadBits(br, 3) + 2;
375     const int huffman_xsize = VP8LSubSampleSize(xsize, huffman_precision);
376     const int huffman_ysize = VP8LSubSampleSize(ysize, huffman_precision);
377     const int huffman_pixs = huffman_xsize * huffman_ysize;
378     if (!DecodeImageStream(huffman_xsize, huffman_ysize, 0, dec,
379                            &huffman_image)) {
380       goto Error;
381     }
382     hdr->huffman_subsample_bits_ = huffman_precision;
383     for (i = 0; i < huffman_pixs; ++i) {
384       // The huffman data is stored in red and green bytes.
385       const int group = (huffman_image[i] >> 8) & 0xffff;
386       huffman_image[i] = group;
387       if (group >= num_htree_groups) {
388         num_htree_groups = group + 1;
389       }
390     }
391   }
392 
393   if (br->eos_) goto Error;
394 
395   // Find maximum alphabet size for the htree group.
396   for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) {
397     int alphabet_size = kAlphabetSize[j];
398     if (j == 0 && color_cache_bits > 0) {
399       alphabet_size += 1 << color_cache_bits;
400     }
401     if (max_alphabet_size < alphabet_size) {
402       max_alphabet_size = alphabet_size;
403     }
404   }
405 
406   huffman_tables = (HuffmanCode*)WebPSafeMalloc(num_htree_groups * table_size,
407                                                 sizeof(*huffman_tables));
408   htree_groups = VP8LHtreeGroupsNew(num_htree_groups);
409   code_lengths = (int*)WebPSafeCalloc((uint64_t)max_alphabet_size,
410                                       sizeof(*code_lengths));
411 
412   if (htree_groups == NULL || code_lengths == NULL || huffman_tables == NULL) {
413     dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
414     goto Error;
415   }
416 
417   next = huffman_tables;
418   for (i = 0; i < num_htree_groups; ++i) {
419     HTreeGroup* const htree_group = &htree_groups[i];
420     HuffmanCode** const htrees = htree_group->htrees;
421     int size;
422     int total_size = 0;
423     int is_trivial_literal = 1;
424     int max_bits = 0;
425     for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) {
426       int alphabet_size = kAlphabetSize[j];
427       htrees[j] = next;
428       if (j == 0 && color_cache_bits > 0) {
429         alphabet_size += 1 << color_cache_bits;
430       }
431       size = ReadHuffmanCode(alphabet_size, dec, code_lengths, next);
432       if (size == 0) {
433         goto Error;
434       }
435       if (is_trivial_literal && kLiteralMap[j] == 1) {
436         is_trivial_literal = (next->bits == 0);
437       }
438       total_size += next->bits;
439       next += size;
440       if (j <= ALPHA) {
441         int local_max_bits = code_lengths[0];
442         int k;
443         for (k = 1; k < alphabet_size; ++k) {
444           if (code_lengths[k] > local_max_bits) {
445             local_max_bits = code_lengths[k];
446           }
447         }
448         max_bits += local_max_bits;
449       }
450     }
451     htree_group->is_trivial_literal = is_trivial_literal;
452     htree_group->is_trivial_code = 0;
453     if (is_trivial_literal) {
454       const int red = htrees[RED][0].value;
455       const int blue = htrees[BLUE][0].value;
456       const int alpha = htrees[ALPHA][0].value;
457       htree_group->literal_arb =
458           ((uint32_t)alpha << 24) | (red << 16) | blue;
459       if (total_size == 0 && htrees[GREEN][0].value < NUM_LITERAL_CODES) {
460         htree_group->is_trivial_code = 1;
461         htree_group->literal_arb |= htrees[GREEN][0].value << 8;
462       }
463     }
464     htree_group->use_packed_table = !htree_group->is_trivial_code &&
465                                     (max_bits < HUFFMAN_PACKED_BITS);
466     if (htree_group->use_packed_table) BuildPackedTable(htree_group);
467   }
468   WebPSafeFree(code_lengths);
469 
470   // All OK. Finalize pointers and return.
471   hdr->huffman_image_ = huffman_image;
472   hdr->num_htree_groups_ = num_htree_groups;
473   hdr->htree_groups_ = htree_groups;
474   hdr->huffman_tables_ = huffman_tables;
475   return 1;
476 
477  Error:
478   WebPSafeFree(code_lengths);
479   WebPSafeFree(huffman_image);
480   WebPSafeFree(huffman_tables);
481   VP8LHtreeGroupsFree(htree_groups);
482   return 0;
483 }
484 
485 //------------------------------------------------------------------------------
486 // Scaling.
487 
AllocateAndInitRescaler(VP8LDecoder * const dec,VP8Io * const io)488 static int AllocateAndInitRescaler(VP8LDecoder* const dec, VP8Io* const io) {
489   const int num_channels = 4;
490   const int in_width = io->mb_w;
491   const int out_width = io->scaled_width;
492   const int in_height = io->mb_h;
493   const int out_height = io->scaled_height;
494   const uint64_t work_size = 2 * num_channels * (uint64_t)out_width;
495   rescaler_t* work;        // Rescaler work area.
496   const uint64_t scaled_data_size = (uint64_t)out_width;
497   uint32_t* scaled_data;  // Temporary storage for scaled BGRA data.
498   const uint64_t memory_size = sizeof(*dec->rescaler) +
499                                work_size * sizeof(*work) +
500                                scaled_data_size * sizeof(*scaled_data);
501   uint8_t* memory = (uint8_t*)WebPSafeMalloc(memory_size, sizeof(*memory));
502   if (memory == NULL) {
503     dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
504     return 0;
505   }
506   assert(dec->rescaler_memory == NULL);
507   dec->rescaler_memory = memory;
508 
509   dec->rescaler = (WebPRescaler*)memory;
510   memory += sizeof(*dec->rescaler);
511   work = (rescaler_t*)memory;
512   memory += work_size * sizeof(*work);
513   scaled_data = (uint32_t*)memory;
514 
515   WebPRescalerInit(dec->rescaler, in_width, in_height, (uint8_t*)scaled_data,
516                    out_width, out_height, 0, num_channels, work);
517   return 1;
518 }
519 
520 //------------------------------------------------------------------------------
521 // Export to ARGB
522 
523 // We have special "export" function since we need to convert from BGRA
Export(WebPRescaler * const rescaler,WEBP_CSP_MODE colorspace,int rgba_stride,uint8_t * const rgba)524 static int Export(WebPRescaler* const rescaler, WEBP_CSP_MODE colorspace,
525                   int rgba_stride, uint8_t* const rgba) {
526   uint32_t* const src = (uint32_t*)rescaler->dst;
527   const int dst_width = rescaler->dst_width;
528   int num_lines_out = 0;
529   while (WebPRescalerHasPendingOutput(rescaler)) {
530     uint8_t* const dst = rgba + num_lines_out * rgba_stride;
531     WebPRescalerExportRow(rescaler);
532     WebPMultARGBRow(src, dst_width, 1);
533     VP8LConvertFromBGRA(src, dst_width, colorspace, dst);
534     ++num_lines_out;
535   }
536   return num_lines_out;
537 }
538 
539 // Emit scaled rows.
EmitRescaledRowsRGBA(const VP8LDecoder * const dec,uint8_t * in,int in_stride,int mb_h,uint8_t * const out,int out_stride)540 static int EmitRescaledRowsRGBA(const VP8LDecoder* const dec,
541                                 uint8_t* in, int in_stride, int mb_h,
542                                 uint8_t* const out, int out_stride) {
543   const WEBP_CSP_MODE colorspace = dec->output_->colorspace;
544   int num_lines_in = 0;
545   int num_lines_out = 0;
546   while (num_lines_in < mb_h) {
547     uint8_t* const row_in = in + num_lines_in * in_stride;
548     uint8_t* const row_out = out + num_lines_out * out_stride;
549     const int lines_left = mb_h - num_lines_in;
550     const int needed_lines = WebPRescaleNeededLines(dec->rescaler, lines_left);
551     int lines_imported;
552     assert(needed_lines > 0 && needed_lines <= lines_left);
553     WebPMultARGBRows(row_in, in_stride,
554                      dec->rescaler->src_width, needed_lines, 0);
555     lines_imported =
556         WebPRescalerImport(dec->rescaler, lines_left, row_in, in_stride);
557     assert(lines_imported == needed_lines);
558     num_lines_in += lines_imported;
559     num_lines_out += Export(dec->rescaler, colorspace, out_stride, row_out);
560   }
561   return num_lines_out;
562 }
563 
564 // Emit rows without any scaling.
EmitRows(WEBP_CSP_MODE colorspace,const uint8_t * row_in,int in_stride,int mb_w,int mb_h,uint8_t * const out,int out_stride)565 static int EmitRows(WEBP_CSP_MODE colorspace,
566                     const uint8_t* row_in, int in_stride,
567                     int mb_w, int mb_h,
568                     uint8_t* const out, int out_stride) {
569   int lines = mb_h;
570   uint8_t* row_out = out;
571   while (lines-- > 0) {
572     VP8LConvertFromBGRA((const uint32_t*)row_in, mb_w, colorspace, row_out);
573     row_in += in_stride;
574     row_out += out_stride;
575   }
576   return mb_h;  // Num rows out == num rows in.
577 }
578 
579 //------------------------------------------------------------------------------
580 // Export to YUVA
581 
ConvertToYUVA(const uint32_t * const src,int width,int y_pos,const WebPDecBuffer * const output)582 static void ConvertToYUVA(const uint32_t* const src, int width, int y_pos,
583                           const WebPDecBuffer* const output) {
584   const WebPYUVABuffer* const buf = &output->u.YUVA;
585 
586   // first, the luma plane
587   WebPConvertARGBToY(src, buf->y + y_pos * buf->y_stride, width);
588 
589   // then U/V planes
590   {
591     uint8_t* const u = buf->u + (y_pos >> 1) * buf->u_stride;
592     uint8_t* const v = buf->v + (y_pos >> 1) * buf->v_stride;
593     // even lines: store values
594     // odd lines: average with previous values
595     WebPConvertARGBToUV(src, u, v, width, !(y_pos & 1));
596   }
597   // Lastly, store alpha if needed.
598   if (buf->a != NULL) {
599     uint8_t* const a = buf->a + y_pos * buf->a_stride;
600 #if defined(WORDS_BIGENDIAN)
601     WebPExtractAlpha((uint8_t*)src + 0, 0, width, 1, a, 0);
602 #else
603     WebPExtractAlpha((uint8_t*)src + 3, 0, width, 1, a, 0);
604 #endif
605   }
606 }
607 
ExportYUVA(const VP8LDecoder * const dec,int y_pos)608 static int ExportYUVA(const VP8LDecoder* const dec, int y_pos) {
609   WebPRescaler* const rescaler = dec->rescaler;
610   uint32_t* const src = (uint32_t*)rescaler->dst;
611   const int dst_width = rescaler->dst_width;
612   int num_lines_out = 0;
613   while (WebPRescalerHasPendingOutput(rescaler)) {
614     WebPRescalerExportRow(rescaler);
615     WebPMultARGBRow(src, dst_width, 1);
616     ConvertToYUVA(src, dst_width, y_pos, dec->output_);
617     ++y_pos;
618     ++num_lines_out;
619   }
620   return num_lines_out;
621 }
622 
EmitRescaledRowsYUVA(const VP8LDecoder * const dec,uint8_t * in,int in_stride,int mb_h)623 static int EmitRescaledRowsYUVA(const VP8LDecoder* const dec,
624                                 uint8_t* in, int in_stride, int mb_h) {
625   int num_lines_in = 0;
626   int y_pos = dec->last_out_row_;
627   while (num_lines_in < mb_h) {
628     const int lines_left = mb_h - num_lines_in;
629     const int needed_lines = WebPRescaleNeededLines(dec->rescaler, lines_left);
630     int lines_imported;
631     WebPMultARGBRows(in, in_stride, dec->rescaler->src_width, needed_lines, 0);
632     lines_imported =
633         WebPRescalerImport(dec->rescaler, lines_left, in, in_stride);
634     assert(lines_imported == needed_lines);
635     num_lines_in += lines_imported;
636     in += needed_lines * in_stride;
637     y_pos += ExportYUVA(dec, y_pos);
638   }
639   return y_pos;
640 }
641 
EmitRowsYUVA(const VP8LDecoder * const dec,const uint8_t * in,int in_stride,int mb_w,int num_rows)642 static int EmitRowsYUVA(const VP8LDecoder* const dec,
643                         const uint8_t* in, int in_stride,
644                         int mb_w, int num_rows) {
645   int y_pos = dec->last_out_row_;
646   while (num_rows-- > 0) {
647     ConvertToYUVA((const uint32_t*)in, mb_w, y_pos, dec->output_);
648     in += in_stride;
649     ++y_pos;
650   }
651   return y_pos;
652 }
653 
654 //------------------------------------------------------------------------------
655 // Cropping.
656 
657 // Sets io->mb_y, io->mb_h & io->mb_w according to start row, end row and
658 // crop options. Also updates the input data pointer, so that it points to the
659 // start of the cropped window. Note that pixels are in ARGB format even if
660 // 'in_data' is uint8_t*.
661 // Returns true if the crop window is not empty.
SetCropWindow(VP8Io * const io,int y_start,int y_end,uint8_t ** const in_data,int pixel_stride)662 static int SetCropWindow(VP8Io* const io, int y_start, int y_end,
663                          uint8_t** const in_data, int pixel_stride) {
664   assert(y_start < y_end);
665   assert(io->crop_left < io->crop_right);
666   if (y_end > io->crop_bottom) {
667     y_end = io->crop_bottom;  // make sure we don't overflow on last row.
668   }
669   if (y_start < io->crop_top) {
670     const int delta = io->crop_top - y_start;
671     y_start = io->crop_top;
672     *in_data += delta * pixel_stride;
673   }
674   if (y_start >= y_end) return 0;  // Crop window is empty.
675 
676   *in_data += io->crop_left * sizeof(uint32_t);
677 
678   io->mb_y = y_start - io->crop_top;
679   io->mb_w = io->crop_right - io->crop_left;
680   io->mb_h = y_end - y_start;
681   return 1;  // Non-empty crop window.
682 }
683 
684 //------------------------------------------------------------------------------
685 
GetMetaIndex(const uint32_t * const image,int xsize,int bits,int x,int y)686 static WEBP_INLINE int GetMetaIndex(
687     const uint32_t* const image, int xsize, int bits, int x, int y) {
688   if (bits == 0) return 0;
689   return image[xsize * (y >> bits) + (x >> bits)];
690 }
691 
GetHtreeGroupForPos(VP8LMetadata * const hdr,int x,int y)692 static WEBP_INLINE HTreeGroup* GetHtreeGroupForPos(VP8LMetadata* const hdr,
693                                                    int x, int y) {
694   const int meta_index = GetMetaIndex(hdr->huffman_image_, hdr->huffman_xsize_,
695                                       hdr->huffman_subsample_bits_, x, y);
696   assert(meta_index < hdr->num_htree_groups_);
697   return hdr->htree_groups_ + meta_index;
698 }
699 
700 //------------------------------------------------------------------------------
701 // Main loop, with custom row-processing function
702 
703 typedef void (*ProcessRowsFunc)(VP8LDecoder* const dec, int row);
704 
ApplyInverseTransforms(VP8LDecoder * const dec,int num_rows,const uint32_t * const rows)705 static void ApplyInverseTransforms(VP8LDecoder* const dec, int num_rows,
706                                    const uint32_t* const rows) {
707   int n = dec->next_transform_;
708   const int cache_pixs = dec->width_ * num_rows;
709   const int start_row = dec->last_row_;
710   const int end_row = start_row + num_rows;
711   const uint32_t* rows_in = rows;
712   uint32_t* const rows_out = dec->argb_cache_;
713 
714   // Inverse transforms.
715   while (n-- > 0) {
716     VP8LTransform* const transform = &dec->transforms_[n];
717     VP8LInverseTransform(transform, start_row, end_row, rows_in, rows_out);
718     rows_in = rows_out;
719   }
720   if (rows_in != rows_out) {
721     // No transform called, hence just copy.
722     memcpy(rows_out, rows_in, cache_pixs * sizeof(*rows_out));
723   }
724 }
725 
726 // Processes (transforms, scales & color-converts) the rows decoded after the
727 // last call.
ProcessRows(VP8LDecoder * const dec,int row)728 static void ProcessRows(VP8LDecoder* const dec, int row) {
729   const uint32_t* const rows = dec->pixels_ + dec->width_ * dec->last_row_;
730   const int num_rows = row - dec->last_row_;
731 
732   assert(row <= dec->io_->crop_bottom);
733   // We can't process more than NUM_ARGB_CACHE_ROWS at a time (that's the size
734   // of argb_cache_), but we currently don't need more than that.
735   assert(num_rows <= NUM_ARGB_CACHE_ROWS);
736   if (num_rows > 0) {    // Emit output.
737     VP8Io* const io = dec->io_;
738     uint8_t* rows_data = (uint8_t*)dec->argb_cache_;
739     const int in_stride = io->width * sizeof(uint32_t);  // in unit of RGBA
740 
741     ApplyInverseTransforms(dec, num_rows, rows);
742     if (!SetCropWindow(io, dec->last_row_, row, &rows_data, in_stride)) {
743       // Nothing to output (this time).
744     } else {
745       const WebPDecBuffer* const output = dec->output_;
746       if (WebPIsRGBMode(output->colorspace)) {  // convert to RGBA
747         const WebPRGBABuffer* const buf = &output->u.RGBA;
748         uint8_t* const rgba = buf->rgba + dec->last_out_row_ * buf->stride;
749         const int num_rows_out = io->use_scaling ?
750             EmitRescaledRowsRGBA(dec, rows_data, in_stride, io->mb_h,
751                                  rgba, buf->stride) :
752             EmitRows(output->colorspace, rows_data, in_stride,
753                      io->mb_w, io->mb_h, rgba, buf->stride);
754         // Update 'last_out_row_'.
755         dec->last_out_row_ += num_rows_out;
756       } else {                              // convert to YUVA
757         dec->last_out_row_ = io->use_scaling ?
758             EmitRescaledRowsYUVA(dec, rows_data, in_stride, io->mb_h) :
759             EmitRowsYUVA(dec, rows_data, in_stride, io->mb_w, io->mb_h);
760       }
761       assert(dec->last_out_row_ <= output->height);
762     }
763   }
764 
765   // Update 'last_row_'.
766   dec->last_row_ = row;
767   assert(dec->last_row_ <= dec->height_);
768 }
769 
770 // Row-processing for the special case when alpha data contains only one
771 // transform (color indexing), and trivial non-green literals.
Is8bOptimizable(const VP8LMetadata * const hdr)772 static int Is8bOptimizable(const VP8LMetadata* const hdr) {
773   int i;
774   if (hdr->color_cache_size_ > 0) return 0;
775   // When the Huffman tree contains only one symbol, we can skip the
776   // call to ReadSymbol() for red/blue/alpha channels.
777   for (i = 0; i < hdr->num_htree_groups_; ++i) {
778     HuffmanCode** const htrees = hdr->htree_groups_[i].htrees;
779     if (htrees[RED][0].bits > 0) return 0;
780     if (htrees[BLUE][0].bits > 0) return 0;
781     if (htrees[ALPHA][0].bits > 0) return 0;
782   }
783   return 1;
784 }
785 
AlphaApplyFilter(ALPHDecoder * const alph_dec,int first_row,int last_row,uint8_t * out,int stride)786 static void AlphaApplyFilter(ALPHDecoder* const alph_dec,
787                              int first_row, int last_row,
788                              uint8_t* out, int stride) {
789   if (alph_dec->filter_ != WEBP_FILTER_NONE) {
790     int y;
791     const uint8_t* prev_line = alph_dec->prev_line_;
792     assert(WebPUnfilters[alph_dec->filter_] != NULL);
793     for (y = first_row; y < last_row; ++y) {
794       WebPUnfilters[alph_dec->filter_](prev_line, out, out, stride);
795       prev_line = out;
796       out += stride;
797     }
798     alph_dec->prev_line_ = prev_line;
799   }
800 }
801 
ExtractPalettedAlphaRows(VP8LDecoder * const dec,int last_row)802 static void ExtractPalettedAlphaRows(VP8LDecoder* const dec, int last_row) {
803   // For vertical and gradient filtering, we need to decode the part above the
804   // crop_top row, in order to have the correct spatial predictors.
805   ALPHDecoder* const alph_dec = (ALPHDecoder*)dec->io_->opaque;
806   const int top_row =
807       (alph_dec->filter_ == WEBP_FILTER_NONE ||
808        alph_dec->filter_ == WEBP_FILTER_HORIZONTAL) ? dec->io_->crop_top
809                                                     : dec->last_row_;
810   const int first_row = (dec->last_row_ < top_row) ? top_row : dec->last_row_;
811   assert(last_row <= dec->io_->crop_bottom);
812   if (last_row > first_row) {
813     // Special method for paletted alpha data. We only process the cropped area.
814     const int width = dec->io_->width;
815     uint8_t* out = alph_dec->output_ + width * first_row;
816     const uint8_t* const in =
817       (uint8_t*)dec->pixels_ + dec->width_ * first_row;
818     VP8LTransform* const transform = &dec->transforms_[0];
819     assert(dec->next_transform_ == 1);
820     assert(transform->type_ == COLOR_INDEXING_TRANSFORM);
821     VP8LColorIndexInverseTransformAlpha(transform, first_row, last_row,
822                                         in, out);
823     AlphaApplyFilter(alph_dec, first_row, last_row, out, width);
824   }
825   dec->last_row_ = dec->last_out_row_ = last_row;
826 }
827 
828 //------------------------------------------------------------------------------
829 // Helper functions for fast pattern copy (8b and 32b)
830 
831 // cyclic rotation of pattern word
Rotate8b(uint32_t V)832 static WEBP_INLINE uint32_t Rotate8b(uint32_t V) {
833 #if defined(WORDS_BIGENDIAN)
834   return ((V & 0xff000000u) >> 24) | (V << 8);
835 #else
836   return ((V & 0xffu) << 24) | (V >> 8);
837 #endif
838 }
839 
840 // copy 1, 2 or 4-bytes pattern
CopySmallPattern8b(const uint8_t * src,uint8_t * dst,int length,uint32_t pattern)841 static WEBP_INLINE void CopySmallPattern8b(const uint8_t* src, uint8_t* dst,
842                                            int length, uint32_t pattern) {
843   int i;
844   // align 'dst' to 4-bytes boundary. Adjust the pattern along the way.
845   while ((uintptr_t)dst & 3) {
846     *dst++ = *src++;
847     pattern = Rotate8b(pattern);
848     --length;
849   }
850   // Copy the pattern 4 bytes at a time.
851   for (i = 0; i < (length >> 2); ++i) {
852     ((uint32_t*)dst)[i] = pattern;
853   }
854   // Finish with left-overs. 'pattern' is still correctly positioned,
855   // so no Rotate8b() call is needed.
856   for (i <<= 2; i < length; ++i) {
857     dst[i] = src[i];
858   }
859 }
860 
CopyBlock8b(uint8_t * const dst,int dist,int length)861 static WEBP_INLINE void CopyBlock8b(uint8_t* const dst, int dist, int length) {
862   const uint8_t* src = dst - dist;
863   if (length >= 8) {
864     uint32_t pattern = 0;
865     switch (dist) {
866       case 1:
867         pattern = src[0];
868 #if defined(__arm__) || defined(_M_ARM)   // arm doesn't like multiply that much
869         pattern |= pattern << 8;
870         pattern |= pattern << 16;
871 #elif defined(WEBP_USE_MIPS_DSP_R2)
872         __asm__ volatile ("replv.qb %0, %0" : "+r"(pattern));
873 #else
874         pattern = 0x01010101u * pattern;
875 #endif
876         break;
877       case 2:
878         memcpy(&pattern, src, sizeof(uint16_t));
879 #if defined(__arm__) || defined(_M_ARM)
880         pattern |= pattern << 16;
881 #elif defined(WEBP_USE_MIPS_DSP_R2)
882         __asm__ volatile ("replv.ph %0, %0" : "+r"(pattern));
883 #else
884         pattern = 0x00010001u * pattern;
885 #endif
886         break;
887       case 4:
888         memcpy(&pattern, src, sizeof(uint32_t));
889         break;
890       default:
891         goto Copy;
892         break;
893     }
894     CopySmallPattern8b(src, dst, length, pattern);
895     return;
896   }
897  Copy:
898   if (dist >= length) {  // no overlap -> use memcpy()
899     memcpy(dst, src, length * sizeof(*dst));
900   } else {
901     int i;
902     for (i = 0; i < length; ++i) dst[i] = src[i];
903   }
904 }
905 
906 // copy pattern of 1 or 2 uint32_t's
CopySmallPattern32b(const uint32_t * src,uint32_t * dst,int length,uint64_t pattern)907 static WEBP_INLINE void CopySmallPattern32b(const uint32_t* src,
908                                             uint32_t* dst,
909                                             int length, uint64_t pattern) {
910   int i;
911   if ((uintptr_t)dst & 4) {           // Align 'dst' to 8-bytes boundary.
912     *dst++ = *src++;
913     pattern = (pattern >> 32) | (pattern << 32);
914     --length;
915   }
916   assert(0 == ((uintptr_t)dst & 7));
917   for (i = 0; i < (length >> 1); ++i) {
918     ((uint64_t*)dst)[i] = pattern;    // Copy the pattern 8 bytes at a time.
919   }
920   if (length & 1) {                   // Finish with left-over.
921     dst[i << 1] = src[i << 1];
922   }
923 }
924 
CopyBlock32b(uint32_t * const dst,int dist,int length)925 static WEBP_INLINE void CopyBlock32b(uint32_t* const dst,
926                                      int dist, int length) {
927   const uint32_t* const src = dst - dist;
928   if (dist <= 2 && length >= 4 && ((uintptr_t)dst & 3) == 0) {
929     uint64_t pattern;
930     if (dist == 1) {
931       pattern = (uint64_t)src[0];
932       pattern |= pattern << 32;
933     } else {
934       memcpy(&pattern, src, sizeof(pattern));
935     }
936     CopySmallPattern32b(src, dst, length, pattern);
937   } else if (dist >= length) {  // no overlap
938     memcpy(dst, src, length * sizeof(*dst));
939   } else {
940     int i;
941     for (i = 0; i < length; ++i) dst[i] = src[i];
942   }
943 }
944 
945 //------------------------------------------------------------------------------
946 
DecodeAlphaData(VP8LDecoder * const dec,uint8_t * const data,int width,int height,int last_row)947 static int DecodeAlphaData(VP8LDecoder* const dec, uint8_t* const data,
948                            int width, int height, int last_row) {
949   int ok = 1;
950   int row = dec->last_pixel_ / width;
951   int col = dec->last_pixel_ % width;
952   VP8LBitReader* const br = &dec->br_;
953   VP8LMetadata* const hdr = &dec->hdr_;
954   int pos = dec->last_pixel_;         // current position
955   const int end = width * height;     // End of data
956   const int last = width * last_row;  // Last pixel to decode
957   const int len_code_limit = NUM_LITERAL_CODES + NUM_LENGTH_CODES;
958   const int mask = hdr->huffman_mask_;
959   const HTreeGroup* htree_group =
960       (pos < last) ? GetHtreeGroupForPos(hdr, col, row) : NULL;
961   assert(pos <= end);
962   assert(last_row <= height);
963   assert(Is8bOptimizable(hdr));
964 
965   while (!br->eos_ && pos < last) {
966     int code;
967     // Only update when changing tile.
968     if ((col & mask) == 0) {
969       htree_group = GetHtreeGroupForPos(hdr, col, row);
970     }
971     assert(htree_group != NULL);
972     VP8LFillBitWindow(br);
973     code = ReadSymbol(htree_group->htrees[GREEN], br);
974     if (code < NUM_LITERAL_CODES) {  // Literal
975       data[pos] = code;
976       ++pos;
977       ++col;
978       if (col >= width) {
979         col = 0;
980         ++row;
981         if (row <= last_row && (row % NUM_ARGB_CACHE_ROWS == 0)) {
982           ExtractPalettedAlphaRows(dec, row);
983         }
984       }
985     } else if (code < len_code_limit) {  // Backward reference
986       int dist_code, dist;
987       const int length_sym = code - NUM_LITERAL_CODES;
988       const int length = GetCopyLength(length_sym, br);
989       const int dist_symbol = ReadSymbol(htree_group->htrees[DIST], br);
990       VP8LFillBitWindow(br);
991       dist_code = GetCopyDistance(dist_symbol, br);
992       dist = PlaneCodeToDistance(width, dist_code);
993       if (pos >= dist && end - pos >= length) {
994         CopyBlock8b(data + pos, dist, length);
995       } else {
996         ok = 0;
997         goto End;
998       }
999       pos += length;
1000       col += length;
1001       while (col >= width) {
1002         col -= width;
1003         ++row;
1004         if (row <= last_row && (row % NUM_ARGB_CACHE_ROWS == 0)) {
1005           ExtractPalettedAlphaRows(dec, row);
1006         }
1007       }
1008       if (pos < last && (col & mask)) {
1009         htree_group = GetHtreeGroupForPos(hdr, col, row);
1010       }
1011     } else {  // Not reached
1012       ok = 0;
1013       goto End;
1014     }
1015     assert(br->eos_ == VP8LIsEndOfStream(br));
1016   }
1017   // Process the remaining rows corresponding to last row-block.
1018   ExtractPalettedAlphaRows(dec, row > last_row ? last_row : row);
1019 
1020  End:
1021   if (!ok || (br->eos_ && pos < end)) {
1022     ok = 0;
1023     dec->status_ = br->eos_ ? VP8_STATUS_SUSPENDED
1024                             : VP8_STATUS_BITSTREAM_ERROR;
1025   } else {
1026     dec->last_pixel_ = pos;
1027   }
1028   return ok;
1029 }
1030 
SaveState(VP8LDecoder * const dec,int last_pixel)1031 static void SaveState(VP8LDecoder* const dec, int last_pixel) {
1032   assert(dec->incremental_);
1033   dec->saved_br_ = dec->br_;
1034   dec->saved_last_pixel_ = last_pixel;
1035   if (dec->hdr_.color_cache_size_ > 0) {
1036     VP8LColorCacheCopy(&dec->hdr_.color_cache_, &dec->hdr_.saved_color_cache_);
1037   }
1038 }
1039 
RestoreState(VP8LDecoder * const dec)1040 static void RestoreState(VP8LDecoder* const dec) {
1041   assert(dec->br_.eos_);
1042   dec->status_ = VP8_STATUS_SUSPENDED;
1043   dec->br_ = dec->saved_br_;
1044   dec->last_pixel_ = dec->saved_last_pixel_;
1045   if (dec->hdr_.color_cache_size_ > 0) {
1046     VP8LColorCacheCopy(&dec->hdr_.saved_color_cache_, &dec->hdr_.color_cache_);
1047   }
1048 }
1049 
1050 #define SYNC_EVERY_N_ROWS 8  // minimum number of rows between check-points
DecodeImageData(VP8LDecoder * const dec,uint32_t * const data,int width,int height,int last_row,ProcessRowsFunc process_func)1051 static int DecodeImageData(VP8LDecoder* const dec, uint32_t* const data,
1052                            int width, int height, int last_row,
1053                            ProcessRowsFunc process_func) {
1054   int row = dec->last_pixel_ / width;
1055   int col = dec->last_pixel_ % width;
1056   VP8LBitReader* const br = &dec->br_;
1057   VP8LMetadata* const hdr = &dec->hdr_;
1058   uint32_t* src = data + dec->last_pixel_;
1059   uint32_t* last_cached = src;
1060   uint32_t* const src_end = data + width * height;     // End of data
1061   uint32_t* const src_last = data + width * last_row;  // Last pixel to decode
1062   const int len_code_limit = NUM_LITERAL_CODES + NUM_LENGTH_CODES;
1063   const int color_cache_limit = len_code_limit + hdr->color_cache_size_;
1064   int next_sync_row = dec->incremental_ ? row : 1 << 24;
1065   VP8LColorCache* const color_cache =
1066       (hdr->color_cache_size_ > 0) ? &hdr->color_cache_ : NULL;
1067   const int mask = hdr->huffman_mask_;
1068   const HTreeGroup* htree_group =
1069       (src < src_last) ? GetHtreeGroupForPos(hdr, col, row) : NULL;
1070   assert(dec->last_row_ < last_row);
1071   assert(src_last <= src_end);
1072 
1073   while (src < src_last) {
1074     int code;
1075     if (row >= next_sync_row) {
1076       SaveState(dec, (int)(src - data));
1077       next_sync_row = row + SYNC_EVERY_N_ROWS;
1078     }
1079     // Only update when changing tile. Note we could use this test:
1080     // if "((((prev_col ^ col) | prev_row ^ row)) > mask)" -> tile changed
1081     // but that's actually slower and needs storing the previous col/row.
1082     if ((col & mask) == 0) {
1083       htree_group = GetHtreeGroupForPos(hdr, col, row);
1084     }
1085     assert(htree_group != NULL);
1086     if (htree_group->is_trivial_code) {
1087       *src = htree_group->literal_arb;
1088       goto AdvanceByOne;
1089     }
1090     VP8LFillBitWindow(br);
1091     if (htree_group->use_packed_table) {
1092       code = ReadPackedSymbols(htree_group, br, src);
1093       if (code == PACKED_NON_LITERAL_CODE) goto AdvanceByOne;
1094     } else {
1095       code = ReadSymbol(htree_group->htrees[GREEN], br);
1096     }
1097     if (br->eos_) break;  // early out
1098     if (code < NUM_LITERAL_CODES) {  // Literal
1099       if (htree_group->is_trivial_literal) {
1100         *src = htree_group->literal_arb | (code << 8);
1101       } else {
1102         int red, blue, alpha;
1103         red = ReadSymbol(htree_group->htrees[RED], br);
1104         VP8LFillBitWindow(br);
1105         blue = ReadSymbol(htree_group->htrees[BLUE], br);
1106         alpha = ReadSymbol(htree_group->htrees[ALPHA], br);
1107         if (br->eos_) break;
1108         *src = ((uint32_t)alpha << 24) | (red << 16) | (code << 8) | blue;
1109       }
1110     AdvanceByOne:
1111       ++src;
1112       ++col;
1113       if (col >= width) {
1114         col = 0;
1115         ++row;
1116         if (process_func != NULL) {
1117           if (row <= last_row && (row % NUM_ARGB_CACHE_ROWS == 0)) {
1118             process_func(dec, row);
1119           }
1120         }
1121         if (color_cache != NULL) {
1122           while (last_cached < src) {
1123             VP8LColorCacheInsert(color_cache, *last_cached++);
1124           }
1125         }
1126       }
1127     } else if (code < len_code_limit) {  // Backward reference
1128       int dist_code, dist;
1129       const int length_sym = code - NUM_LITERAL_CODES;
1130       const int length = GetCopyLength(length_sym, br);
1131       const int dist_symbol = ReadSymbol(htree_group->htrees[DIST], br);
1132       VP8LFillBitWindow(br);
1133       dist_code = GetCopyDistance(dist_symbol, br);
1134       dist = PlaneCodeToDistance(width, dist_code);
1135       if (br->eos_) break;
1136       if (src - data < (ptrdiff_t)dist || src_end - src < (ptrdiff_t)length) {
1137         goto Error;
1138       } else {
1139         CopyBlock32b(src, dist, length);
1140       }
1141       src += length;
1142       col += length;
1143       while (col >= width) {
1144         col -= width;
1145         ++row;
1146         if (process_func != NULL) {
1147           if (row <= last_row && (row % NUM_ARGB_CACHE_ROWS == 0)) {
1148             process_func(dec, row);
1149           }
1150         }
1151       }
1152       // Because of the check done above (before 'src' was incremented by
1153       // 'length'), the following holds true.
1154       assert(src <= src_end);
1155       if (col & mask) htree_group = GetHtreeGroupForPos(hdr, col, row);
1156       if (color_cache != NULL) {
1157         while (last_cached < src) {
1158           VP8LColorCacheInsert(color_cache, *last_cached++);
1159         }
1160       }
1161     } else if (code < color_cache_limit) {  // Color cache
1162       const int key = code - len_code_limit;
1163       assert(color_cache != NULL);
1164       while (last_cached < src) {
1165         VP8LColorCacheInsert(color_cache, *last_cached++);
1166       }
1167       *src = VP8LColorCacheLookup(color_cache, key);
1168       goto AdvanceByOne;
1169     } else {  // Not reached
1170       goto Error;
1171     }
1172     assert(br->eos_ == VP8LIsEndOfStream(br));
1173   }
1174 
1175   if (dec->incremental_ && br->eos_ && src < src_end) {
1176     RestoreState(dec);
1177   } else if (!br->eos_) {
1178     // Process the remaining rows corresponding to last row-block.
1179     if (process_func != NULL) {
1180       process_func(dec, row > last_row ? last_row : row);
1181     }
1182     dec->status_ = VP8_STATUS_OK;
1183     dec->last_pixel_ = (int)(src - data);  // end-of-scan marker
1184   } else {
1185     // if not incremental, and we are past the end of buffer (eos_=1), then this
1186     // is a real bitstream error.
1187     goto Error;
1188   }
1189   return 1;
1190 
1191  Error:
1192   dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
1193   return 0;
1194 }
1195 
1196 // -----------------------------------------------------------------------------
1197 // VP8LTransform
1198 
ClearTransform(VP8LTransform * const transform)1199 static void ClearTransform(VP8LTransform* const transform) {
1200   WebPSafeFree(transform->data_);
1201   transform->data_ = NULL;
1202 }
1203 
1204 // For security reason, we need to remap the color map to span
1205 // the total possible bundled values, and not just the num_colors.
ExpandColorMap(int num_colors,VP8LTransform * const transform)1206 static int ExpandColorMap(int num_colors, VP8LTransform* const transform) {
1207   int i;
1208   const int final_num_colors = 1 << (8 >> transform->bits_);
1209   uint32_t* const new_color_map =
1210       (uint32_t*)WebPSafeMalloc((uint64_t)final_num_colors,
1211                                 sizeof(*new_color_map));
1212   if (new_color_map == NULL) {
1213     return 0;
1214   } else {
1215     uint8_t* const data = (uint8_t*)transform->data_;
1216     uint8_t* const new_data = (uint8_t*)new_color_map;
1217     new_color_map[0] = transform->data_[0];
1218     for (i = 4; i < 4 * num_colors; ++i) {
1219       // Equivalent to AddPixelEq(), on a byte-basis.
1220       new_data[i] = (data[i] + new_data[i - 4]) & 0xff;
1221     }
1222     for (; i < 4 * final_num_colors; ++i) {
1223       new_data[i] = 0;  // black tail.
1224     }
1225     WebPSafeFree(transform->data_);
1226     transform->data_ = new_color_map;
1227   }
1228   return 1;
1229 }
1230 
ReadTransform(int * const xsize,int const * ysize,VP8LDecoder * const dec)1231 static int ReadTransform(int* const xsize, int const* ysize,
1232                          VP8LDecoder* const dec) {
1233   int ok = 1;
1234   VP8LBitReader* const br = &dec->br_;
1235   VP8LTransform* transform = &dec->transforms_[dec->next_transform_];
1236   const VP8LImageTransformType type =
1237       (VP8LImageTransformType)VP8LReadBits(br, 2);
1238 
1239   // Each transform type can only be present once in the stream.
1240   if (dec->transforms_seen_ & (1U << type)) {
1241     return 0;  // Already there, let's not accept the second same transform.
1242   }
1243   dec->transforms_seen_ |= (1U << type);
1244 
1245   transform->type_ = type;
1246   transform->xsize_ = *xsize;
1247   transform->ysize_ = *ysize;
1248   transform->data_ = NULL;
1249   ++dec->next_transform_;
1250   assert(dec->next_transform_ <= NUM_TRANSFORMS);
1251 
1252   switch (type) {
1253     case PREDICTOR_TRANSFORM:
1254     case CROSS_COLOR_TRANSFORM:
1255       transform->bits_ = VP8LReadBits(br, 3) + 2;
1256       ok = DecodeImageStream(VP8LSubSampleSize(transform->xsize_,
1257                                                transform->bits_),
1258                              VP8LSubSampleSize(transform->ysize_,
1259                                                transform->bits_),
1260                              0, dec, &transform->data_);
1261       break;
1262     case COLOR_INDEXING_TRANSFORM: {
1263        const int num_colors = VP8LReadBits(br, 8) + 1;
1264        const int bits = (num_colors > 16) ? 0
1265                       : (num_colors > 4) ? 1
1266                       : (num_colors > 2) ? 2
1267                       : 3;
1268        *xsize = VP8LSubSampleSize(transform->xsize_, bits);
1269        transform->bits_ = bits;
1270        ok = DecodeImageStream(num_colors, 1, 0, dec, &transform->data_);
1271        ok = ok && ExpandColorMap(num_colors, transform);
1272       break;
1273     }
1274     case SUBTRACT_GREEN:
1275       break;
1276     default:
1277       assert(0);    // can't happen
1278       break;
1279   }
1280 
1281   return ok;
1282 }
1283 
1284 // -----------------------------------------------------------------------------
1285 // VP8LMetadata
1286 
InitMetadata(VP8LMetadata * const hdr)1287 static void InitMetadata(VP8LMetadata* const hdr) {
1288   assert(hdr != NULL);
1289   memset(hdr, 0, sizeof(*hdr));
1290 }
1291 
ClearMetadata(VP8LMetadata * const hdr)1292 static void ClearMetadata(VP8LMetadata* const hdr) {
1293   assert(hdr != NULL);
1294 
1295   WebPSafeFree(hdr->huffman_image_);
1296   WebPSafeFree(hdr->huffman_tables_);
1297   VP8LHtreeGroupsFree(hdr->htree_groups_);
1298   VP8LColorCacheClear(&hdr->color_cache_);
1299   VP8LColorCacheClear(&hdr->saved_color_cache_);
1300   InitMetadata(hdr);
1301 }
1302 
1303 // -----------------------------------------------------------------------------
1304 // VP8LDecoder
1305 
VP8LNew(void)1306 VP8LDecoder* VP8LNew(void) {
1307   VP8LDecoder* const dec = (VP8LDecoder*)WebPSafeCalloc(1ULL, sizeof(*dec));
1308   if (dec == NULL) return NULL;
1309   dec->status_ = VP8_STATUS_OK;
1310   dec->state_ = READ_DIM;
1311 
1312   VP8LDspInit();  // Init critical function pointers.
1313 
1314   return dec;
1315 }
1316 
VP8LClear(VP8LDecoder * const dec)1317 void VP8LClear(VP8LDecoder* const dec) {
1318   int i;
1319   if (dec == NULL) return;
1320   ClearMetadata(&dec->hdr_);
1321 
1322   WebPSafeFree(dec->pixels_);
1323   dec->pixels_ = NULL;
1324   for (i = 0; i < dec->next_transform_; ++i) {
1325     ClearTransform(&dec->transforms_[i]);
1326   }
1327   dec->next_transform_ = 0;
1328   dec->transforms_seen_ = 0;
1329 
1330   WebPSafeFree(dec->rescaler_memory);
1331   dec->rescaler_memory = NULL;
1332 
1333   dec->output_ = NULL;   // leave no trace behind
1334 }
1335 
VP8LDelete(VP8LDecoder * const dec)1336 void VP8LDelete(VP8LDecoder* const dec) {
1337   if (dec != NULL) {
1338     VP8LClear(dec);
1339     WebPSafeFree(dec);
1340   }
1341 }
1342 
UpdateDecoder(VP8LDecoder * const dec,int width,int height)1343 static void UpdateDecoder(VP8LDecoder* const dec, int width, int height) {
1344   VP8LMetadata* const hdr = &dec->hdr_;
1345   const int num_bits = hdr->huffman_subsample_bits_;
1346   dec->width_ = width;
1347   dec->height_ = height;
1348 
1349   hdr->huffman_xsize_ = VP8LSubSampleSize(width, num_bits);
1350   hdr->huffman_mask_ = (num_bits == 0) ? ~0 : (1 << num_bits) - 1;
1351 }
1352 
DecodeImageStream(int xsize,int ysize,int is_level0,VP8LDecoder * const dec,uint32_t ** const decoded_data)1353 static int DecodeImageStream(int xsize, int ysize,
1354                              int is_level0,
1355                              VP8LDecoder* const dec,
1356                              uint32_t** const decoded_data) {
1357   int ok = 1;
1358   int transform_xsize = xsize;
1359   int transform_ysize = ysize;
1360   VP8LBitReader* const br = &dec->br_;
1361   VP8LMetadata* const hdr = &dec->hdr_;
1362   uint32_t* data = NULL;
1363   int color_cache_bits = 0;
1364 
1365   // Read the transforms (may recurse).
1366   if (is_level0) {
1367     while (ok && VP8LReadBits(br, 1)) {
1368       ok = ReadTransform(&transform_xsize, &transform_ysize, dec);
1369     }
1370   }
1371 
1372   // Color cache
1373   if (ok && VP8LReadBits(br, 1)) {
1374     color_cache_bits = VP8LReadBits(br, 4);
1375     ok = (color_cache_bits >= 1 && color_cache_bits <= MAX_CACHE_BITS);
1376     if (!ok) {
1377       dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
1378       goto End;
1379     }
1380   }
1381 
1382   // Read the Huffman codes (may recurse).
1383   ok = ok && ReadHuffmanCodes(dec, transform_xsize, transform_ysize,
1384                               color_cache_bits, is_level0);
1385   if (!ok) {
1386     dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
1387     goto End;
1388   }
1389 
1390   // Finish setting up the color-cache
1391   if (color_cache_bits > 0) {
1392     hdr->color_cache_size_ = 1 << color_cache_bits;
1393     if (!VP8LColorCacheInit(&hdr->color_cache_, color_cache_bits)) {
1394       dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
1395       ok = 0;
1396       goto End;
1397     }
1398   } else {
1399     hdr->color_cache_size_ = 0;
1400   }
1401   UpdateDecoder(dec, transform_xsize, transform_ysize);
1402 
1403   if (is_level0) {   // level 0 complete
1404     dec->state_ = READ_HDR;
1405     goto End;
1406   }
1407 
1408   {
1409     const uint64_t total_size = (uint64_t)transform_xsize * transform_ysize;
1410     data = (uint32_t*)WebPSafeMalloc(total_size, sizeof(*data));
1411     if (data == NULL) {
1412       dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
1413       ok = 0;
1414       goto End;
1415     }
1416   }
1417 
1418   // Use the Huffman trees to decode the LZ77 encoded data.
1419   ok = DecodeImageData(dec, data, transform_xsize, transform_ysize,
1420                        transform_ysize, NULL);
1421   ok = ok && !br->eos_;
1422 
1423  End:
1424   if (!ok) {
1425     WebPSafeFree(data);
1426     ClearMetadata(hdr);
1427   } else {
1428     if (decoded_data != NULL) {
1429       *decoded_data = data;
1430     } else {
1431       // We allocate image data in this function only for transforms. At level 0
1432       // (that is: not the transforms), we shouldn't have allocated anything.
1433       assert(data == NULL);
1434       assert(is_level0);
1435     }
1436     dec->last_pixel_ = 0;  // Reset for future DECODE_DATA_FUNC() calls.
1437     if (!is_level0) ClearMetadata(hdr);  // Clean up temporary data behind.
1438   }
1439   return ok;
1440 }
1441 
1442 //------------------------------------------------------------------------------
1443 // Allocate internal buffers dec->pixels_ and dec->argb_cache_.
AllocateInternalBuffers32b(VP8LDecoder * const dec,int final_width)1444 static int AllocateInternalBuffers32b(VP8LDecoder* const dec, int final_width) {
1445   const uint64_t num_pixels = (uint64_t)dec->width_ * dec->height_;
1446   // Scratch buffer corresponding to top-prediction row for transforming the
1447   // first row in the row-blocks. Not needed for paletted alpha.
1448   const uint64_t cache_top_pixels = (uint16_t)final_width;
1449   // Scratch buffer for temporary BGRA storage. Not needed for paletted alpha.
1450   const uint64_t cache_pixels = (uint64_t)final_width * NUM_ARGB_CACHE_ROWS;
1451   const uint64_t total_num_pixels =
1452       num_pixels + cache_top_pixels + cache_pixels;
1453 
1454   assert(dec->width_ <= final_width);
1455   dec->pixels_ = (uint32_t*)WebPSafeMalloc(total_num_pixels, sizeof(uint32_t));
1456   if (dec->pixels_ == NULL) {
1457     dec->argb_cache_ = NULL;    // for sanity check
1458     dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
1459     return 0;
1460   }
1461   dec->argb_cache_ = dec->pixels_ + num_pixels + cache_top_pixels;
1462   return 1;
1463 }
1464 
AllocateInternalBuffers8b(VP8LDecoder * const dec)1465 static int AllocateInternalBuffers8b(VP8LDecoder* const dec) {
1466   const uint64_t total_num_pixels = (uint64_t)dec->width_ * dec->height_;
1467   dec->argb_cache_ = NULL;    // for sanity check
1468   dec->pixels_ = (uint32_t*)WebPSafeMalloc(total_num_pixels, sizeof(uint8_t));
1469   if (dec->pixels_ == NULL) {
1470     dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
1471     return 0;
1472   }
1473   return 1;
1474 }
1475 
1476 //------------------------------------------------------------------------------
1477 
1478 // Special row-processing that only stores the alpha data.
ExtractAlphaRows(VP8LDecoder * const dec,int last_row)1479 static void ExtractAlphaRows(VP8LDecoder* const dec, int last_row) {
1480   int cur_row = dec->last_row_;
1481   int num_rows = last_row - cur_row;
1482   const uint32_t* in = dec->pixels_ + dec->width_ * cur_row;
1483 
1484   assert(last_row <= dec->io_->crop_bottom);
1485   while (num_rows > 0) {
1486     const int num_rows_to_process =
1487         (num_rows > NUM_ARGB_CACHE_ROWS) ? NUM_ARGB_CACHE_ROWS : num_rows;
1488     // Extract alpha (which is stored in the green plane).
1489     ALPHDecoder* const alph_dec = (ALPHDecoder*)dec->io_->opaque;
1490     uint8_t* const output = alph_dec->output_;
1491     const int width = dec->io_->width;      // the final width (!= dec->width_)
1492     const int cache_pixs = width * num_rows_to_process;
1493     uint8_t* const dst = output + width * cur_row;
1494     const uint32_t* const src = dec->argb_cache_;
1495     ApplyInverseTransforms(dec, num_rows_to_process, in);
1496     WebPExtractGreen(src, dst, cache_pixs);
1497     AlphaApplyFilter(alph_dec,
1498                      cur_row, cur_row + num_rows_to_process, dst, width);
1499     num_rows -= num_rows_to_process;
1500     in += num_rows_to_process * dec->width_;
1501     cur_row += num_rows_to_process;
1502   }
1503   assert(cur_row == last_row);
1504   dec->last_row_ = dec->last_out_row_ = last_row;
1505 }
1506 
VP8LDecodeAlphaHeader(ALPHDecoder * const alph_dec,const uint8_t * const data,size_t data_size)1507 int VP8LDecodeAlphaHeader(ALPHDecoder* const alph_dec,
1508                           const uint8_t* const data, size_t data_size) {
1509   int ok = 0;
1510   VP8LDecoder* dec = VP8LNew();
1511 
1512   if (dec == NULL) return 0;
1513 
1514   assert(alph_dec != NULL);
1515   alph_dec->vp8l_dec_ = dec;
1516 
1517   dec->width_ = alph_dec->width_;
1518   dec->height_ = alph_dec->height_;
1519   dec->io_ = &alph_dec->io_;
1520   dec->io_->opaque = alph_dec;
1521   dec->io_->width = alph_dec->width_;
1522   dec->io_->height = alph_dec->height_;
1523 
1524   dec->status_ = VP8_STATUS_OK;
1525   VP8LInitBitReader(&dec->br_, data, data_size);
1526 
1527   if (!DecodeImageStream(alph_dec->width_, alph_dec->height_, 1, dec, NULL)) {
1528     goto Err;
1529   }
1530 
1531   // Special case: if alpha data uses only the color indexing transform and
1532   // doesn't use color cache (a frequent case), we will use DecodeAlphaData()
1533   // method that only needs allocation of 1 byte per pixel (alpha channel).
1534   if (dec->next_transform_ == 1 &&
1535       dec->transforms_[0].type_ == COLOR_INDEXING_TRANSFORM &&
1536       Is8bOptimizable(&dec->hdr_)) {
1537     alph_dec->use_8b_decode_ = 1;
1538     ok = AllocateInternalBuffers8b(dec);
1539   } else {
1540     // Allocate internal buffers (note that dec->width_ may have changed here).
1541     alph_dec->use_8b_decode_ = 0;
1542     ok = AllocateInternalBuffers32b(dec, alph_dec->width_);
1543   }
1544 
1545   if (!ok) goto Err;
1546 
1547   return 1;
1548 
1549  Err:
1550   VP8LDelete(alph_dec->vp8l_dec_);
1551   alph_dec->vp8l_dec_ = NULL;
1552   return 0;
1553 }
1554 
VP8LDecodeAlphaImageStream(ALPHDecoder * const alph_dec,int last_row)1555 int VP8LDecodeAlphaImageStream(ALPHDecoder* const alph_dec, int last_row) {
1556   VP8LDecoder* const dec = alph_dec->vp8l_dec_;
1557   assert(dec != NULL);
1558   assert(last_row <= dec->height_);
1559 
1560   if (dec->last_row_ >= last_row) {
1561     return 1;  // done
1562   }
1563 
1564   if (!alph_dec->use_8b_decode_) WebPInitAlphaProcessing();
1565 
1566   // Decode (with special row processing).
1567   return alph_dec->use_8b_decode_ ?
1568       DecodeAlphaData(dec, (uint8_t*)dec->pixels_, dec->width_, dec->height_,
1569                       last_row) :
1570       DecodeImageData(dec, dec->pixels_, dec->width_, dec->height_,
1571                       last_row, ExtractAlphaRows);
1572 }
1573 
1574 //------------------------------------------------------------------------------
1575 
VP8LDecodeHeader(VP8LDecoder * const dec,VP8Io * const io)1576 int VP8LDecodeHeader(VP8LDecoder* const dec, VP8Io* const io) {
1577   int width, height, has_alpha;
1578 
1579   if (dec == NULL) return 0;
1580   if (io == NULL) {
1581     dec->status_ = VP8_STATUS_INVALID_PARAM;
1582     return 0;
1583   }
1584 
1585   dec->io_ = io;
1586   dec->status_ = VP8_STATUS_OK;
1587   VP8LInitBitReader(&dec->br_, io->data, io->data_size);
1588   if (!ReadImageInfo(&dec->br_, &width, &height, &has_alpha)) {
1589     dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
1590     goto Error;
1591   }
1592   dec->state_ = READ_DIM;
1593   io->width = width;
1594   io->height = height;
1595 
1596   if (!DecodeImageStream(width, height, 1, dec, NULL)) goto Error;
1597   return 1;
1598 
1599  Error:
1600   VP8LClear(dec);
1601   assert(dec->status_ != VP8_STATUS_OK);
1602   return 0;
1603 }
1604 
VP8LDecodeImage(VP8LDecoder * const dec)1605 int VP8LDecodeImage(VP8LDecoder* const dec) {
1606   VP8Io* io = NULL;
1607   WebPDecParams* params = NULL;
1608 
1609   // Sanity checks.
1610   if (dec == NULL) return 0;
1611 
1612   assert(dec->hdr_.huffman_tables_ != NULL);
1613   assert(dec->hdr_.htree_groups_ != NULL);
1614   assert(dec->hdr_.num_htree_groups_ > 0);
1615 
1616   io = dec->io_;
1617   assert(io != NULL);
1618   params = (WebPDecParams*)io->opaque;
1619   assert(params != NULL);
1620 
1621   // Initialization.
1622   if (dec->state_ != READ_DATA) {
1623     dec->output_ = params->output;
1624     assert(dec->output_ != NULL);
1625 
1626     if (!WebPIoInitFromOptions(params->options, io, MODE_BGRA)) {
1627       dec->status_ = VP8_STATUS_INVALID_PARAM;
1628       goto Err;
1629     }
1630 
1631     if (!AllocateInternalBuffers32b(dec, io->width)) goto Err;
1632 
1633     if (io->use_scaling && !AllocateAndInitRescaler(dec, io)) goto Err;
1634 
1635     if (io->use_scaling || WebPIsPremultipliedMode(dec->output_->colorspace)) {
1636       // need the alpha-multiply functions for premultiplied output or rescaling
1637       WebPInitAlphaProcessing();
1638     }
1639     if (!WebPIsRGBMode(dec->output_->colorspace)) {
1640       WebPInitConvertARGBToYUV();
1641       if (dec->output_->u.YUVA.a != NULL) WebPInitAlphaProcessing();
1642     }
1643     if (dec->incremental_) {
1644       if (dec->hdr_.color_cache_size_ > 0 &&
1645           dec->hdr_.saved_color_cache_.colors_ == NULL) {
1646         if (!VP8LColorCacheInit(&dec->hdr_.saved_color_cache_,
1647                                 dec->hdr_.color_cache_.hash_bits_)) {
1648           dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
1649           goto Err;
1650         }
1651       }
1652     }
1653     dec->state_ = READ_DATA;
1654   }
1655 
1656   // Decode.
1657   if (!DecodeImageData(dec, dec->pixels_, dec->width_, dec->height_,
1658                        io->crop_bottom, ProcessRows)) {
1659     goto Err;
1660   }
1661 
1662   params->last_y = dec->last_out_row_;
1663   return 1;
1664 
1665  Err:
1666   VP8LClear(dec);
1667   assert(dec->status_ != VP8_STATUS_OK);
1668   return 0;
1669 }
1670 
1671 //------------------------------------------------------------------------------
1672