1 //===-- AArch64ISelDAGToDAG.cpp - A dag to dag inst selector for AArch64 --===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines an instruction selector for the AArch64 target.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "AArch64TargetMachine.h"
15 #include "MCTargetDesc/AArch64AddressingModes.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/CodeGen/SelectionDAGISel.h"
18 #include "llvm/IR/Function.h" // To access function attributes.
19 #include "llvm/IR/GlobalValue.h"
20 #include "llvm/IR/Intrinsics.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/ErrorHandling.h"
23 #include "llvm/Support/MathExtras.h"
24 #include "llvm/Support/raw_ostream.h"
25
26 using namespace llvm;
27
28 #define DEBUG_TYPE "aarch64-isel"
29
30 //===--------------------------------------------------------------------===//
31 /// AArch64DAGToDAGISel - AArch64 specific code to select AArch64 machine
32 /// instructions for SelectionDAG operations.
33 ///
34 namespace {
35
36 class AArch64DAGToDAGISel : public SelectionDAGISel {
37
38 /// Subtarget - Keep a pointer to the AArch64Subtarget around so that we can
39 /// make the right decision when generating code for different targets.
40 const AArch64Subtarget *Subtarget;
41
42 bool ForCodeSize;
43
44 public:
AArch64DAGToDAGISel(AArch64TargetMachine & tm,CodeGenOpt::Level OptLevel)45 explicit AArch64DAGToDAGISel(AArch64TargetMachine &tm,
46 CodeGenOpt::Level OptLevel)
47 : SelectionDAGISel(tm, OptLevel), Subtarget(nullptr),
48 ForCodeSize(false) {}
49
getPassName() const50 const char *getPassName() const override {
51 return "AArch64 Instruction Selection";
52 }
53
runOnMachineFunction(MachineFunction & MF)54 bool runOnMachineFunction(MachineFunction &MF) override {
55 ForCodeSize = MF.getFunction()->optForSize();
56 Subtarget = &MF.getSubtarget<AArch64Subtarget>();
57 return SelectionDAGISel::runOnMachineFunction(MF);
58 }
59
60 void Select(SDNode *Node) override;
61
62 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
63 /// inline asm expressions.
64 bool SelectInlineAsmMemoryOperand(const SDValue &Op,
65 unsigned ConstraintID,
66 std::vector<SDValue> &OutOps) override;
67
68 bool tryMLAV64LaneV128(SDNode *N);
69 bool tryMULLV64LaneV128(unsigned IntNo, SDNode *N);
70 bool SelectArithExtendedRegister(SDValue N, SDValue &Reg, SDValue &Shift);
71 bool SelectArithImmed(SDValue N, SDValue &Val, SDValue &Shift);
72 bool SelectNegArithImmed(SDValue N, SDValue &Val, SDValue &Shift);
SelectArithShiftedRegister(SDValue N,SDValue & Reg,SDValue & Shift)73 bool SelectArithShiftedRegister(SDValue N, SDValue &Reg, SDValue &Shift) {
74 return SelectShiftedRegister(N, false, Reg, Shift);
75 }
SelectLogicalShiftedRegister(SDValue N,SDValue & Reg,SDValue & Shift)76 bool SelectLogicalShiftedRegister(SDValue N, SDValue &Reg, SDValue &Shift) {
77 return SelectShiftedRegister(N, true, Reg, Shift);
78 }
SelectAddrModeIndexed7S8(SDValue N,SDValue & Base,SDValue & OffImm)79 bool SelectAddrModeIndexed7S8(SDValue N, SDValue &Base, SDValue &OffImm) {
80 return SelectAddrModeIndexed7S(N, 1, Base, OffImm);
81 }
SelectAddrModeIndexed7S16(SDValue N,SDValue & Base,SDValue & OffImm)82 bool SelectAddrModeIndexed7S16(SDValue N, SDValue &Base, SDValue &OffImm) {
83 return SelectAddrModeIndexed7S(N, 2, Base, OffImm);
84 }
SelectAddrModeIndexed7S32(SDValue N,SDValue & Base,SDValue & OffImm)85 bool SelectAddrModeIndexed7S32(SDValue N, SDValue &Base, SDValue &OffImm) {
86 return SelectAddrModeIndexed7S(N, 4, Base, OffImm);
87 }
SelectAddrModeIndexed7S64(SDValue N,SDValue & Base,SDValue & OffImm)88 bool SelectAddrModeIndexed7S64(SDValue N, SDValue &Base, SDValue &OffImm) {
89 return SelectAddrModeIndexed7S(N, 8, Base, OffImm);
90 }
SelectAddrModeIndexed7S128(SDValue N,SDValue & Base,SDValue & OffImm)91 bool SelectAddrModeIndexed7S128(SDValue N, SDValue &Base, SDValue &OffImm) {
92 return SelectAddrModeIndexed7S(N, 16, Base, OffImm);
93 }
SelectAddrModeIndexed8(SDValue N,SDValue & Base,SDValue & OffImm)94 bool SelectAddrModeIndexed8(SDValue N, SDValue &Base, SDValue &OffImm) {
95 return SelectAddrModeIndexed(N, 1, Base, OffImm);
96 }
SelectAddrModeIndexed16(SDValue N,SDValue & Base,SDValue & OffImm)97 bool SelectAddrModeIndexed16(SDValue N, SDValue &Base, SDValue &OffImm) {
98 return SelectAddrModeIndexed(N, 2, Base, OffImm);
99 }
SelectAddrModeIndexed32(SDValue N,SDValue & Base,SDValue & OffImm)100 bool SelectAddrModeIndexed32(SDValue N, SDValue &Base, SDValue &OffImm) {
101 return SelectAddrModeIndexed(N, 4, Base, OffImm);
102 }
SelectAddrModeIndexed64(SDValue N,SDValue & Base,SDValue & OffImm)103 bool SelectAddrModeIndexed64(SDValue N, SDValue &Base, SDValue &OffImm) {
104 return SelectAddrModeIndexed(N, 8, Base, OffImm);
105 }
SelectAddrModeIndexed128(SDValue N,SDValue & Base,SDValue & OffImm)106 bool SelectAddrModeIndexed128(SDValue N, SDValue &Base, SDValue &OffImm) {
107 return SelectAddrModeIndexed(N, 16, Base, OffImm);
108 }
SelectAddrModeUnscaled8(SDValue N,SDValue & Base,SDValue & OffImm)109 bool SelectAddrModeUnscaled8(SDValue N, SDValue &Base, SDValue &OffImm) {
110 return SelectAddrModeUnscaled(N, 1, Base, OffImm);
111 }
SelectAddrModeUnscaled16(SDValue N,SDValue & Base,SDValue & OffImm)112 bool SelectAddrModeUnscaled16(SDValue N, SDValue &Base, SDValue &OffImm) {
113 return SelectAddrModeUnscaled(N, 2, Base, OffImm);
114 }
SelectAddrModeUnscaled32(SDValue N,SDValue & Base,SDValue & OffImm)115 bool SelectAddrModeUnscaled32(SDValue N, SDValue &Base, SDValue &OffImm) {
116 return SelectAddrModeUnscaled(N, 4, Base, OffImm);
117 }
SelectAddrModeUnscaled64(SDValue N,SDValue & Base,SDValue & OffImm)118 bool SelectAddrModeUnscaled64(SDValue N, SDValue &Base, SDValue &OffImm) {
119 return SelectAddrModeUnscaled(N, 8, Base, OffImm);
120 }
SelectAddrModeUnscaled128(SDValue N,SDValue & Base,SDValue & OffImm)121 bool SelectAddrModeUnscaled128(SDValue N, SDValue &Base, SDValue &OffImm) {
122 return SelectAddrModeUnscaled(N, 16, Base, OffImm);
123 }
124
125 template<int Width>
SelectAddrModeWRO(SDValue N,SDValue & Base,SDValue & Offset,SDValue & SignExtend,SDValue & DoShift)126 bool SelectAddrModeWRO(SDValue N, SDValue &Base, SDValue &Offset,
127 SDValue &SignExtend, SDValue &DoShift) {
128 return SelectAddrModeWRO(N, Width / 8, Base, Offset, SignExtend, DoShift);
129 }
130
131 template<int Width>
SelectAddrModeXRO(SDValue N,SDValue & Base,SDValue & Offset,SDValue & SignExtend,SDValue & DoShift)132 bool SelectAddrModeXRO(SDValue N, SDValue &Base, SDValue &Offset,
133 SDValue &SignExtend, SDValue &DoShift) {
134 return SelectAddrModeXRO(N, Width / 8, Base, Offset, SignExtend, DoShift);
135 }
136
137
138 /// Form sequences of consecutive 64/128-bit registers for use in NEON
139 /// instructions making use of a vector-list (e.g. ldN, tbl). Vecs must have
140 /// between 1 and 4 elements. If it contains a single element that is returned
141 /// unchanged; otherwise a REG_SEQUENCE value is returned.
142 SDValue createDTuple(ArrayRef<SDValue> Vecs);
143 SDValue createQTuple(ArrayRef<SDValue> Vecs);
144
145 /// Generic helper for the createDTuple/createQTuple
146 /// functions. Those should almost always be called instead.
147 SDValue createTuple(ArrayRef<SDValue> Vecs, const unsigned RegClassIDs[],
148 const unsigned SubRegs[]);
149
150 void SelectTable(SDNode *N, unsigned NumVecs, unsigned Opc, bool isExt);
151
152 bool tryIndexedLoad(SDNode *N);
153
154 void SelectLoad(SDNode *N, unsigned NumVecs, unsigned Opc,
155 unsigned SubRegIdx);
156 void SelectPostLoad(SDNode *N, unsigned NumVecs, unsigned Opc,
157 unsigned SubRegIdx);
158 void SelectLoadLane(SDNode *N, unsigned NumVecs, unsigned Opc);
159 void SelectPostLoadLane(SDNode *N, unsigned NumVecs, unsigned Opc);
160
161 void SelectStore(SDNode *N, unsigned NumVecs, unsigned Opc);
162 void SelectPostStore(SDNode *N, unsigned NumVecs, unsigned Opc);
163 void SelectStoreLane(SDNode *N, unsigned NumVecs, unsigned Opc);
164 void SelectPostStoreLane(SDNode *N, unsigned NumVecs, unsigned Opc);
165
166 bool tryBitfieldExtractOp(SDNode *N);
167 bool tryBitfieldExtractOpFromSExt(SDNode *N);
168 bool tryBitfieldInsertOp(SDNode *N);
169 bool tryBitfieldInsertInZeroOp(SDNode *N);
170
171 bool tryReadRegister(SDNode *N);
172 bool tryWriteRegister(SDNode *N);
173
174 // Include the pieces autogenerated from the target description.
175 #include "AArch64GenDAGISel.inc"
176
177 private:
178 bool SelectShiftedRegister(SDValue N, bool AllowROR, SDValue &Reg,
179 SDValue &Shift);
180 bool SelectAddrModeIndexed7S(SDValue N, unsigned Size, SDValue &Base,
181 SDValue &OffImm);
182 bool SelectAddrModeIndexed(SDValue N, unsigned Size, SDValue &Base,
183 SDValue &OffImm);
184 bool SelectAddrModeUnscaled(SDValue N, unsigned Size, SDValue &Base,
185 SDValue &OffImm);
186 bool SelectAddrModeWRO(SDValue N, unsigned Size, SDValue &Base,
187 SDValue &Offset, SDValue &SignExtend,
188 SDValue &DoShift);
189 bool SelectAddrModeXRO(SDValue N, unsigned Size, SDValue &Base,
190 SDValue &Offset, SDValue &SignExtend,
191 SDValue &DoShift);
192 bool isWorthFolding(SDValue V) const;
193 bool SelectExtendedSHL(SDValue N, unsigned Size, bool WantExtend,
194 SDValue &Offset, SDValue &SignExtend);
195
196 template<unsigned RegWidth>
SelectCVTFixedPosOperand(SDValue N,SDValue & FixedPos)197 bool SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos) {
198 return SelectCVTFixedPosOperand(N, FixedPos, RegWidth);
199 }
200
201 bool SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos, unsigned Width);
202
203 void SelectCMP_SWAP(SDNode *N);
204
205 };
206 } // end anonymous namespace
207
208 /// isIntImmediate - This method tests to see if the node is a constant
209 /// operand. If so Imm will receive the 32-bit value.
isIntImmediate(const SDNode * N,uint64_t & Imm)210 static bool isIntImmediate(const SDNode *N, uint64_t &Imm) {
211 if (const ConstantSDNode *C = dyn_cast<const ConstantSDNode>(N)) {
212 Imm = C->getZExtValue();
213 return true;
214 }
215 return false;
216 }
217
218 // isIntImmediate - This method tests to see if a constant operand.
219 // If so Imm will receive the value.
isIntImmediate(SDValue N,uint64_t & Imm)220 static bool isIntImmediate(SDValue N, uint64_t &Imm) {
221 return isIntImmediate(N.getNode(), Imm);
222 }
223
224 // isOpcWithIntImmediate - This method tests to see if the node is a specific
225 // opcode and that it has a immediate integer right operand.
226 // If so Imm will receive the 32 bit value.
isOpcWithIntImmediate(const SDNode * N,unsigned Opc,uint64_t & Imm)227 static bool isOpcWithIntImmediate(const SDNode *N, unsigned Opc,
228 uint64_t &Imm) {
229 return N->getOpcode() == Opc &&
230 isIntImmediate(N->getOperand(1).getNode(), Imm);
231 }
232
SelectInlineAsmMemoryOperand(const SDValue & Op,unsigned ConstraintID,std::vector<SDValue> & OutOps)233 bool AArch64DAGToDAGISel::SelectInlineAsmMemoryOperand(
234 const SDValue &Op, unsigned ConstraintID, std::vector<SDValue> &OutOps) {
235 switch(ConstraintID) {
236 default:
237 llvm_unreachable("Unexpected asm memory constraint");
238 case InlineAsm::Constraint_i:
239 case InlineAsm::Constraint_m:
240 case InlineAsm::Constraint_Q:
241 // Require the address to be in a register. That is safe for all AArch64
242 // variants and it is hard to do anything much smarter without knowing
243 // how the operand is used.
244 OutOps.push_back(Op);
245 return false;
246 }
247 return true;
248 }
249
250 /// SelectArithImmed - Select an immediate value that can be represented as
251 /// a 12-bit value shifted left by either 0 or 12. If so, return true with
252 /// Val set to the 12-bit value and Shift set to the shifter operand.
SelectArithImmed(SDValue N,SDValue & Val,SDValue & Shift)253 bool AArch64DAGToDAGISel::SelectArithImmed(SDValue N, SDValue &Val,
254 SDValue &Shift) {
255 // This function is called from the addsub_shifted_imm ComplexPattern,
256 // which lists [imm] as the list of opcode it's interested in, however
257 // we still need to check whether the operand is actually an immediate
258 // here because the ComplexPattern opcode list is only used in
259 // root-level opcode matching.
260 if (!isa<ConstantSDNode>(N.getNode()))
261 return false;
262
263 uint64_t Immed = cast<ConstantSDNode>(N.getNode())->getZExtValue();
264 unsigned ShiftAmt;
265
266 if (Immed >> 12 == 0) {
267 ShiftAmt = 0;
268 } else if ((Immed & 0xfff) == 0 && Immed >> 24 == 0) {
269 ShiftAmt = 12;
270 Immed = Immed >> 12;
271 } else
272 return false;
273
274 unsigned ShVal = AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt);
275 SDLoc dl(N);
276 Val = CurDAG->getTargetConstant(Immed, dl, MVT::i32);
277 Shift = CurDAG->getTargetConstant(ShVal, dl, MVT::i32);
278 return true;
279 }
280
281 /// SelectNegArithImmed - As above, but negates the value before trying to
282 /// select it.
SelectNegArithImmed(SDValue N,SDValue & Val,SDValue & Shift)283 bool AArch64DAGToDAGISel::SelectNegArithImmed(SDValue N, SDValue &Val,
284 SDValue &Shift) {
285 // This function is called from the addsub_shifted_imm ComplexPattern,
286 // which lists [imm] as the list of opcode it's interested in, however
287 // we still need to check whether the operand is actually an immediate
288 // here because the ComplexPattern opcode list is only used in
289 // root-level opcode matching.
290 if (!isa<ConstantSDNode>(N.getNode()))
291 return false;
292
293 // The immediate operand must be a 24-bit zero-extended immediate.
294 uint64_t Immed = cast<ConstantSDNode>(N.getNode())->getZExtValue();
295
296 // This negation is almost always valid, but "cmp wN, #0" and "cmn wN, #0"
297 // have the opposite effect on the C flag, so this pattern mustn't match under
298 // those circumstances.
299 if (Immed == 0)
300 return false;
301
302 if (N.getValueType() == MVT::i32)
303 Immed = ~((uint32_t)Immed) + 1;
304 else
305 Immed = ~Immed + 1ULL;
306 if (Immed & 0xFFFFFFFFFF000000ULL)
307 return false;
308
309 Immed &= 0xFFFFFFULL;
310 return SelectArithImmed(CurDAG->getConstant(Immed, SDLoc(N), MVT::i32), Val,
311 Shift);
312 }
313
314 /// getShiftTypeForNode - Translate a shift node to the corresponding
315 /// ShiftType value.
getShiftTypeForNode(SDValue N)316 static AArch64_AM::ShiftExtendType getShiftTypeForNode(SDValue N) {
317 switch (N.getOpcode()) {
318 default:
319 return AArch64_AM::InvalidShiftExtend;
320 case ISD::SHL:
321 return AArch64_AM::LSL;
322 case ISD::SRL:
323 return AArch64_AM::LSR;
324 case ISD::SRA:
325 return AArch64_AM::ASR;
326 case ISD::ROTR:
327 return AArch64_AM::ROR;
328 }
329 }
330
331 /// \brief Determine whether it is worth to fold V into an extended register.
isWorthFolding(SDValue V) const332 bool AArch64DAGToDAGISel::isWorthFolding(SDValue V) const {
333 // it hurts if the value is used at least twice, unless we are optimizing
334 // for code size.
335 return ForCodeSize || V.hasOneUse();
336 }
337
338 /// SelectShiftedRegister - Select a "shifted register" operand. If the value
339 /// is not shifted, set the Shift operand to default of "LSL 0". The logical
340 /// instructions allow the shifted register to be rotated, but the arithmetic
341 /// instructions do not. The AllowROR parameter specifies whether ROR is
342 /// supported.
SelectShiftedRegister(SDValue N,bool AllowROR,SDValue & Reg,SDValue & Shift)343 bool AArch64DAGToDAGISel::SelectShiftedRegister(SDValue N, bool AllowROR,
344 SDValue &Reg, SDValue &Shift) {
345 AArch64_AM::ShiftExtendType ShType = getShiftTypeForNode(N);
346 if (ShType == AArch64_AM::InvalidShiftExtend)
347 return false;
348 if (!AllowROR && ShType == AArch64_AM::ROR)
349 return false;
350
351 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
352 unsigned BitSize = N.getValueType().getSizeInBits();
353 unsigned Val = RHS->getZExtValue() & (BitSize - 1);
354 unsigned ShVal = AArch64_AM::getShifterImm(ShType, Val);
355
356 Reg = N.getOperand(0);
357 Shift = CurDAG->getTargetConstant(ShVal, SDLoc(N), MVT::i32);
358 return isWorthFolding(N);
359 }
360
361 return false;
362 }
363
364 /// getExtendTypeForNode - Translate an extend node to the corresponding
365 /// ExtendType value.
366 static AArch64_AM::ShiftExtendType
getExtendTypeForNode(SDValue N,bool IsLoadStore=false)367 getExtendTypeForNode(SDValue N, bool IsLoadStore = false) {
368 if (N.getOpcode() == ISD::SIGN_EXTEND ||
369 N.getOpcode() == ISD::SIGN_EXTEND_INREG) {
370 EVT SrcVT;
371 if (N.getOpcode() == ISD::SIGN_EXTEND_INREG)
372 SrcVT = cast<VTSDNode>(N.getOperand(1))->getVT();
373 else
374 SrcVT = N.getOperand(0).getValueType();
375
376 if (!IsLoadStore && SrcVT == MVT::i8)
377 return AArch64_AM::SXTB;
378 else if (!IsLoadStore && SrcVT == MVT::i16)
379 return AArch64_AM::SXTH;
380 else if (SrcVT == MVT::i32)
381 return AArch64_AM::SXTW;
382 assert(SrcVT != MVT::i64 && "extend from 64-bits?");
383
384 return AArch64_AM::InvalidShiftExtend;
385 } else if (N.getOpcode() == ISD::ZERO_EXTEND ||
386 N.getOpcode() == ISD::ANY_EXTEND) {
387 EVT SrcVT = N.getOperand(0).getValueType();
388 if (!IsLoadStore && SrcVT == MVT::i8)
389 return AArch64_AM::UXTB;
390 else if (!IsLoadStore && SrcVT == MVT::i16)
391 return AArch64_AM::UXTH;
392 else if (SrcVT == MVT::i32)
393 return AArch64_AM::UXTW;
394 assert(SrcVT != MVT::i64 && "extend from 64-bits?");
395
396 return AArch64_AM::InvalidShiftExtend;
397 } else if (N.getOpcode() == ISD::AND) {
398 ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1));
399 if (!CSD)
400 return AArch64_AM::InvalidShiftExtend;
401 uint64_t AndMask = CSD->getZExtValue();
402
403 switch (AndMask) {
404 default:
405 return AArch64_AM::InvalidShiftExtend;
406 case 0xFF:
407 return !IsLoadStore ? AArch64_AM::UXTB : AArch64_AM::InvalidShiftExtend;
408 case 0xFFFF:
409 return !IsLoadStore ? AArch64_AM::UXTH : AArch64_AM::InvalidShiftExtend;
410 case 0xFFFFFFFF:
411 return AArch64_AM::UXTW;
412 }
413 }
414
415 return AArch64_AM::InvalidShiftExtend;
416 }
417
418 // Helper for SelectMLAV64LaneV128 - Recognize high lane extracts.
checkHighLaneIndex(SDNode * DL,SDValue & LaneOp,int & LaneIdx)419 static bool checkHighLaneIndex(SDNode *DL, SDValue &LaneOp, int &LaneIdx) {
420 if (DL->getOpcode() != AArch64ISD::DUPLANE16 &&
421 DL->getOpcode() != AArch64ISD::DUPLANE32)
422 return false;
423
424 SDValue SV = DL->getOperand(0);
425 if (SV.getOpcode() != ISD::INSERT_SUBVECTOR)
426 return false;
427
428 SDValue EV = SV.getOperand(1);
429 if (EV.getOpcode() != ISD::EXTRACT_SUBVECTOR)
430 return false;
431
432 ConstantSDNode *DLidx = cast<ConstantSDNode>(DL->getOperand(1).getNode());
433 ConstantSDNode *EVidx = cast<ConstantSDNode>(EV.getOperand(1).getNode());
434 LaneIdx = DLidx->getSExtValue() + EVidx->getSExtValue();
435 LaneOp = EV.getOperand(0);
436
437 return true;
438 }
439
440 // Helper for SelectOpcV64LaneV128 - Recognize operations where one operand is a
441 // high lane extract.
checkV64LaneV128(SDValue Op0,SDValue Op1,SDValue & StdOp,SDValue & LaneOp,int & LaneIdx)442 static bool checkV64LaneV128(SDValue Op0, SDValue Op1, SDValue &StdOp,
443 SDValue &LaneOp, int &LaneIdx) {
444
445 if (!checkHighLaneIndex(Op0.getNode(), LaneOp, LaneIdx)) {
446 std::swap(Op0, Op1);
447 if (!checkHighLaneIndex(Op0.getNode(), LaneOp, LaneIdx))
448 return false;
449 }
450 StdOp = Op1;
451 return true;
452 }
453
454 /// SelectMLAV64LaneV128 - AArch64 supports vector MLAs where one multiplicand
455 /// is a lane in the upper half of a 128-bit vector. Recognize and select this
456 /// so that we don't emit unnecessary lane extracts.
tryMLAV64LaneV128(SDNode * N)457 bool AArch64DAGToDAGISel::tryMLAV64LaneV128(SDNode *N) {
458 SDLoc dl(N);
459 SDValue Op0 = N->getOperand(0);
460 SDValue Op1 = N->getOperand(1);
461 SDValue MLAOp1; // Will hold ordinary multiplicand for MLA.
462 SDValue MLAOp2; // Will hold lane-accessed multiplicand for MLA.
463 int LaneIdx = -1; // Will hold the lane index.
464
465 if (Op1.getOpcode() != ISD::MUL ||
466 !checkV64LaneV128(Op1.getOperand(0), Op1.getOperand(1), MLAOp1, MLAOp2,
467 LaneIdx)) {
468 std::swap(Op0, Op1);
469 if (Op1.getOpcode() != ISD::MUL ||
470 !checkV64LaneV128(Op1.getOperand(0), Op1.getOperand(1), MLAOp1, MLAOp2,
471 LaneIdx))
472 return false;
473 }
474
475 SDValue LaneIdxVal = CurDAG->getTargetConstant(LaneIdx, dl, MVT::i64);
476
477 SDValue Ops[] = { Op0, MLAOp1, MLAOp2, LaneIdxVal };
478
479 unsigned MLAOpc = ~0U;
480
481 switch (N->getSimpleValueType(0).SimpleTy) {
482 default:
483 llvm_unreachable("Unrecognized MLA.");
484 case MVT::v4i16:
485 MLAOpc = AArch64::MLAv4i16_indexed;
486 break;
487 case MVT::v8i16:
488 MLAOpc = AArch64::MLAv8i16_indexed;
489 break;
490 case MVT::v2i32:
491 MLAOpc = AArch64::MLAv2i32_indexed;
492 break;
493 case MVT::v4i32:
494 MLAOpc = AArch64::MLAv4i32_indexed;
495 break;
496 }
497
498 ReplaceNode(N, CurDAG->getMachineNode(MLAOpc, dl, N->getValueType(0), Ops));
499 return true;
500 }
501
tryMULLV64LaneV128(unsigned IntNo,SDNode * N)502 bool AArch64DAGToDAGISel::tryMULLV64LaneV128(unsigned IntNo, SDNode *N) {
503 SDLoc dl(N);
504 SDValue SMULLOp0;
505 SDValue SMULLOp1;
506 int LaneIdx;
507
508 if (!checkV64LaneV128(N->getOperand(1), N->getOperand(2), SMULLOp0, SMULLOp1,
509 LaneIdx))
510 return false;
511
512 SDValue LaneIdxVal = CurDAG->getTargetConstant(LaneIdx, dl, MVT::i64);
513
514 SDValue Ops[] = { SMULLOp0, SMULLOp1, LaneIdxVal };
515
516 unsigned SMULLOpc = ~0U;
517
518 if (IntNo == Intrinsic::aarch64_neon_smull) {
519 switch (N->getSimpleValueType(0).SimpleTy) {
520 default:
521 llvm_unreachable("Unrecognized SMULL.");
522 case MVT::v4i32:
523 SMULLOpc = AArch64::SMULLv4i16_indexed;
524 break;
525 case MVT::v2i64:
526 SMULLOpc = AArch64::SMULLv2i32_indexed;
527 break;
528 }
529 } else if (IntNo == Intrinsic::aarch64_neon_umull) {
530 switch (N->getSimpleValueType(0).SimpleTy) {
531 default:
532 llvm_unreachable("Unrecognized SMULL.");
533 case MVT::v4i32:
534 SMULLOpc = AArch64::UMULLv4i16_indexed;
535 break;
536 case MVT::v2i64:
537 SMULLOpc = AArch64::UMULLv2i32_indexed;
538 break;
539 }
540 } else
541 llvm_unreachable("Unrecognized intrinsic.");
542
543 ReplaceNode(N, CurDAG->getMachineNode(SMULLOpc, dl, N->getValueType(0), Ops));
544 return true;
545 }
546
547 /// Instructions that accept extend modifiers like UXTW expect the register
548 /// being extended to be a GPR32, but the incoming DAG might be acting on a
549 /// GPR64 (either via SEXT_INREG or AND). Extract the appropriate low bits if
550 /// this is the case.
narrowIfNeeded(SelectionDAG * CurDAG,SDValue N)551 static SDValue narrowIfNeeded(SelectionDAG *CurDAG, SDValue N) {
552 if (N.getValueType() == MVT::i32)
553 return N;
554
555 SDLoc dl(N);
556 SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, dl, MVT::i32);
557 MachineSDNode *Node = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
558 dl, MVT::i32, N, SubReg);
559 return SDValue(Node, 0);
560 }
561
562
563 /// SelectArithExtendedRegister - Select a "extended register" operand. This
564 /// operand folds in an extend followed by an optional left shift.
SelectArithExtendedRegister(SDValue N,SDValue & Reg,SDValue & Shift)565 bool AArch64DAGToDAGISel::SelectArithExtendedRegister(SDValue N, SDValue &Reg,
566 SDValue &Shift) {
567 unsigned ShiftVal = 0;
568 AArch64_AM::ShiftExtendType Ext;
569
570 if (N.getOpcode() == ISD::SHL) {
571 ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1));
572 if (!CSD)
573 return false;
574 ShiftVal = CSD->getZExtValue();
575 if (ShiftVal > 4)
576 return false;
577
578 Ext = getExtendTypeForNode(N.getOperand(0));
579 if (Ext == AArch64_AM::InvalidShiftExtend)
580 return false;
581
582 Reg = N.getOperand(0).getOperand(0);
583 } else {
584 Ext = getExtendTypeForNode(N);
585 if (Ext == AArch64_AM::InvalidShiftExtend)
586 return false;
587
588 Reg = N.getOperand(0);
589 }
590
591 // AArch64 mandates that the RHS of the operation must use the smallest
592 // register class that could contain the size being extended from. Thus,
593 // if we're folding a (sext i8), we need the RHS to be a GPR32, even though
594 // there might not be an actual 32-bit value in the program. We can
595 // (harmlessly) synthesize one by injected an EXTRACT_SUBREG here.
596 assert(Ext != AArch64_AM::UXTX && Ext != AArch64_AM::SXTX);
597 Reg = narrowIfNeeded(CurDAG, Reg);
598 Shift = CurDAG->getTargetConstant(getArithExtendImm(Ext, ShiftVal), SDLoc(N),
599 MVT::i32);
600 return isWorthFolding(N);
601 }
602
603 /// If there's a use of this ADDlow that's not itself a load/store then we'll
604 /// need to create a real ADD instruction from it anyway and there's no point in
605 /// folding it into the mem op. Theoretically, it shouldn't matter, but there's
606 /// a single pseudo-instruction for an ADRP/ADD pair so over-aggressive folding
607 /// leads to duplicated ADRP instructions.
isWorthFoldingADDlow(SDValue N)608 static bool isWorthFoldingADDlow(SDValue N) {
609 for (auto Use : N->uses()) {
610 if (Use->getOpcode() != ISD::LOAD && Use->getOpcode() != ISD::STORE &&
611 Use->getOpcode() != ISD::ATOMIC_LOAD &&
612 Use->getOpcode() != ISD::ATOMIC_STORE)
613 return false;
614
615 // ldar and stlr have much more restrictive addressing modes (just a
616 // register).
617 if (isStrongerThanMonotonic(cast<MemSDNode>(Use)->getOrdering()))
618 return false;
619 }
620
621 return true;
622 }
623
624 /// SelectAddrModeIndexed7S - Select a "register plus scaled signed 7-bit
625 /// immediate" address. The "Size" argument is the size in bytes of the memory
626 /// reference, which determines the scale.
SelectAddrModeIndexed7S(SDValue N,unsigned Size,SDValue & Base,SDValue & OffImm)627 bool AArch64DAGToDAGISel::SelectAddrModeIndexed7S(SDValue N, unsigned Size,
628 SDValue &Base,
629 SDValue &OffImm) {
630 SDLoc dl(N);
631 const DataLayout &DL = CurDAG->getDataLayout();
632 const TargetLowering *TLI = getTargetLowering();
633 if (N.getOpcode() == ISD::FrameIndex) {
634 int FI = cast<FrameIndexSDNode>(N)->getIndex();
635 Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
636 OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64);
637 return true;
638 }
639
640 // As opposed to the (12-bit) Indexed addressing mode below, the 7-bit signed
641 // selected here doesn't support labels/immediates, only base+offset.
642
643 if (CurDAG->isBaseWithConstantOffset(N)) {
644 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
645 int64_t RHSC = RHS->getSExtValue();
646 unsigned Scale = Log2_32(Size);
647 if ((RHSC & (Size - 1)) == 0 && RHSC >= -(0x40 << Scale) &&
648 RHSC < (0x40 << Scale)) {
649 Base = N.getOperand(0);
650 if (Base.getOpcode() == ISD::FrameIndex) {
651 int FI = cast<FrameIndexSDNode>(Base)->getIndex();
652 Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
653 }
654 OffImm = CurDAG->getTargetConstant(RHSC >> Scale, dl, MVT::i64);
655 return true;
656 }
657 }
658 }
659
660 // Base only. The address will be materialized into a register before
661 // the memory is accessed.
662 // add x0, Xbase, #offset
663 // stp x1, x2, [x0]
664 Base = N;
665 OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64);
666 return true;
667 }
668
669 /// SelectAddrModeIndexed - Select a "register plus scaled unsigned 12-bit
670 /// immediate" address. The "Size" argument is the size in bytes of the memory
671 /// reference, which determines the scale.
SelectAddrModeIndexed(SDValue N,unsigned Size,SDValue & Base,SDValue & OffImm)672 bool AArch64DAGToDAGISel::SelectAddrModeIndexed(SDValue N, unsigned Size,
673 SDValue &Base, SDValue &OffImm) {
674 SDLoc dl(N);
675 const DataLayout &DL = CurDAG->getDataLayout();
676 const TargetLowering *TLI = getTargetLowering();
677 if (N.getOpcode() == ISD::FrameIndex) {
678 int FI = cast<FrameIndexSDNode>(N)->getIndex();
679 Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
680 OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64);
681 return true;
682 }
683
684 if (N.getOpcode() == AArch64ISD::ADDlow && isWorthFoldingADDlow(N)) {
685 GlobalAddressSDNode *GAN =
686 dyn_cast<GlobalAddressSDNode>(N.getOperand(1).getNode());
687 Base = N.getOperand(0);
688 OffImm = N.getOperand(1);
689 if (!GAN)
690 return true;
691
692 const GlobalValue *GV = GAN->getGlobal();
693 unsigned Alignment = GV->getAlignment();
694 Type *Ty = GV->getValueType();
695 if (Alignment == 0 && Ty->isSized())
696 Alignment = DL.getABITypeAlignment(Ty);
697
698 if (Alignment >= Size)
699 return true;
700 }
701
702 if (CurDAG->isBaseWithConstantOffset(N)) {
703 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
704 int64_t RHSC = (int64_t)RHS->getZExtValue();
705 unsigned Scale = Log2_32(Size);
706 if ((RHSC & (Size - 1)) == 0 && RHSC >= 0 && RHSC < (0x1000 << Scale)) {
707 Base = N.getOperand(0);
708 if (Base.getOpcode() == ISD::FrameIndex) {
709 int FI = cast<FrameIndexSDNode>(Base)->getIndex();
710 Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
711 }
712 OffImm = CurDAG->getTargetConstant(RHSC >> Scale, dl, MVT::i64);
713 return true;
714 }
715 }
716 }
717
718 // Before falling back to our general case, check if the unscaled
719 // instructions can handle this. If so, that's preferable.
720 if (SelectAddrModeUnscaled(N, Size, Base, OffImm))
721 return false;
722
723 // Base only. The address will be materialized into a register before
724 // the memory is accessed.
725 // add x0, Xbase, #offset
726 // ldr x0, [x0]
727 Base = N;
728 OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64);
729 return true;
730 }
731
732 /// SelectAddrModeUnscaled - Select a "register plus unscaled signed 9-bit
733 /// immediate" address. This should only match when there is an offset that
734 /// is not valid for a scaled immediate addressing mode. The "Size" argument
735 /// is the size in bytes of the memory reference, which is needed here to know
736 /// what is valid for a scaled immediate.
SelectAddrModeUnscaled(SDValue N,unsigned Size,SDValue & Base,SDValue & OffImm)737 bool AArch64DAGToDAGISel::SelectAddrModeUnscaled(SDValue N, unsigned Size,
738 SDValue &Base,
739 SDValue &OffImm) {
740 if (!CurDAG->isBaseWithConstantOffset(N))
741 return false;
742 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
743 int64_t RHSC = RHS->getSExtValue();
744 // If the offset is valid as a scaled immediate, don't match here.
745 if ((RHSC & (Size - 1)) == 0 && RHSC >= 0 &&
746 RHSC < (0x1000 << Log2_32(Size)))
747 return false;
748 if (RHSC >= -256 && RHSC < 256) {
749 Base = N.getOperand(0);
750 if (Base.getOpcode() == ISD::FrameIndex) {
751 int FI = cast<FrameIndexSDNode>(Base)->getIndex();
752 const TargetLowering *TLI = getTargetLowering();
753 Base = CurDAG->getTargetFrameIndex(
754 FI, TLI->getPointerTy(CurDAG->getDataLayout()));
755 }
756 OffImm = CurDAG->getTargetConstant(RHSC, SDLoc(N), MVT::i64);
757 return true;
758 }
759 }
760 return false;
761 }
762
Widen(SelectionDAG * CurDAG,SDValue N)763 static SDValue Widen(SelectionDAG *CurDAG, SDValue N) {
764 SDLoc dl(N);
765 SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, dl, MVT::i32);
766 SDValue ImpDef = SDValue(
767 CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, MVT::i64), 0);
768 MachineSDNode *Node = CurDAG->getMachineNode(
769 TargetOpcode::INSERT_SUBREG, dl, MVT::i64, ImpDef, N, SubReg);
770 return SDValue(Node, 0);
771 }
772
773 /// \brief Check if the given SHL node (\p N), can be used to form an
774 /// extended register for an addressing mode.
SelectExtendedSHL(SDValue N,unsigned Size,bool WantExtend,SDValue & Offset,SDValue & SignExtend)775 bool AArch64DAGToDAGISel::SelectExtendedSHL(SDValue N, unsigned Size,
776 bool WantExtend, SDValue &Offset,
777 SDValue &SignExtend) {
778 assert(N.getOpcode() == ISD::SHL && "Invalid opcode.");
779 ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1));
780 if (!CSD || (CSD->getZExtValue() & 0x7) != CSD->getZExtValue())
781 return false;
782
783 SDLoc dl(N);
784 if (WantExtend) {
785 AArch64_AM::ShiftExtendType Ext =
786 getExtendTypeForNode(N.getOperand(0), true);
787 if (Ext == AArch64_AM::InvalidShiftExtend)
788 return false;
789
790 Offset = narrowIfNeeded(CurDAG, N.getOperand(0).getOperand(0));
791 SignExtend = CurDAG->getTargetConstant(Ext == AArch64_AM::SXTW, dl,
792 MVT::i32);
793 } else {
794 Offset = N.getOperand(0);
795 SignExtend = CurDAG->getTargetConstant(0, dl, MVT::i32);
796 }
797
798 unsigned LegalShiftVal = Log2_32(Size);
799 unsigned ShiftVal = CSD->getZExtValue();
800
801 if (ShiftVal != 0 && ShiftVal != LegalShiftVal)
802 return false;
803
804 return isWorthFolding(N);
805 }
806
SelectAddrModeWRO(SDValue N,unsigned Size,SDValue & Base,SDValue & Offset,SDValue & SignExtend,SDValue & DoShift)807 bool AArch64DAGToDAGISel::SelectAddrModeWRO(SDValue N, unsigned Size,
808 SDValue &Base, SDValue &Offset,
809 SDValue &SignExtend,
810 SDValue &DoShift) {
811 if (N.getOpcode() != ISD::ADD)
812 return false;
813 SDValue LHS = N.getOperand(0);
814 SDValue RHS = N.getOperand(1);
815 SDLoc dl(N);
816
817 // We don't want to match immediate adds here, because they are better lowered
818 // to the register-immediate addressing modes.
819 if (isa<ConstantSDNode>(LHS) || isa<ConstantSDNode>(RHS))
820 return false;
821
822 // Check if this particular node is reused in any non-memory related
823 // operation. If yes, do not try to fold this node into the address
824 // computation, since the computation will be kept.
825 const SDNode *Node = N.getNode();
826 for (SDNode *UI : Node->uses()) {
827 if (!isa<MemSDNode>(*UI))
828 return false;
829 }
830
831 // Remember if it is worth folding N when it produces extended register.
832 bool IsExtendedRegisterWorthFolding = isWorthFolding(N);
833
834 // Try to match a shifted extend on the RHS.
835 if (IsExtendedRegisterWorthFolding && RHS.getOpcode() == ISD::SHL &&
836 SelectExtendedSHL(RHS, Size, true, Offset, SignExtend)) {
837 Base = LHS;
838 DoShift = CurDAG->getTargetConstant(true, dl, MVT::i32);
839 return true;
840 }
841
842 // Try to match a shifted extend on the LHS.
843 if (IsExtendedRegisterWorthFolding && LHS.getOpcode() == ISD::SHL &&
844 SelectExtendedSHL(LHS, Size, true, Offset, SignExtend)) {
845 Base = RHS;
846 DoShift = CurDAG->getTargetConstant(true, dl, MVT::i32);
847 return true;
848 }
849
850 // There was no shift, whatever else we find.
851 DoShift = CurDAG->getTargetConstant(false, dl, MVT::i32);
852
853 AArch64_AM::ShiftExtendType Ext = AArch64_AM::InvalidShiftExtend;
854 // Try to match an unshifted extend on the LHS.
855 if (IsExtendedRegisterWorthFolding &&
856 (Ext = getExtendTypeForNode(LHS, true)) !=
857 AArch64_AM::InvalidShiftExtend) {
858 Base = RHS;
859 Offset = narrowIfNeeded(CurDAG, LHS.getOperand(0));
860 SignExtend = CurDAG->getTargetConstant(Ext == AArch64_AM::SXTW, dl,
861 MVT::i32);
862 if (isWorthFolding(LHS))
863 return true;
864 }
865
866 // Try to match an unshifted extend on the RHS.
867 if (IsExtendedRegisterWorthFolding &&
868 (Ext = getExtendTypeForNode(RHS, true)) !=
869 AArch64_AM::InvalidShiftExtend) {
870 Base = LHS;
871 Offset = narrowIfNeeded(CurDAG, RHS.getOperand(0));
872 SignExtend = CurDAG->getTargetConstant(Ext == AArch64_AM::SXTW, dl,
873 MVT::i32);
874 if (isWorthFolding(RHS))
875 return true;
876 }
877
878 return false;
879 }
880
881 // Check if the given immediate is preferred by ADD. If an immediate can be
882 // encoded in an ADD, or it can be encoded in an "ADD LSL #12" and can not be
883 // encoded by one MOVZ, return true.
isPreferredADD(int64_t ImmOff)884 static bool isPreferredADD(int64_t ImmOff) {
885 // Constant in [0x0, 0xfff] can be encoded in ADD.
886 if ((ImmOff & 0xfffffffffffff000LL) == 0x0LL)
887 return true;
888 // Check if it can be encoded in an "ADD LSL #12".
889 if ((ImmOff & 0xffffffffff000fffLL) == 0x0LL)
890 // As a single MOVZ is faster than a "ADD of LSL #12", ignore such constant.
891 return (ImmOff & 0xffffffffff00ffffLL) != 0x0LL &&
892 (ImmOff & 0xffffffffffff0fffLL) != 0x0LL;
893 return false;
894 }
895
SelectAddrModeXRO(SDValue N,unsigned Size,SDValue & Base,SDValue & Offset,SDValue & SignExtend,SDValue & DoShift)896 bool AArch64DAGToDAGISel::SelectAddrModeXRO(SDValue N, unsigned Size,
897 SDValue &Base, SDValue &Offset,
898 SDValue &SignExtend,
899 SDValue &DoShift) {
900 if (N.getOpcode() != ISD::ADD)
901 return false;
902 SDValue LHS = N.getOperand(0);
903 SDValue RHS = N.getOperand(1);
904 SDLoc DL(N);
905
906 // Check if this particular node is reused in any non-memory related
907 // operation. If yes, do not try to fold this node into the address
908 // computation, since the computation will be kept.
909 const SDNode *Node = N.getNode();
910 for (SDNode *UI : Node->uses()) {
911 if (!isa<MemSDNode>(*UI))
912 return false;
913 }
914
915 // Watch out if RHS is a wide immediate, it can not be selected into
916 // [BaseReg+Imm] addressing mode. Also it may not be able to be encoded into
917 // ADD/SUB. Instead it will use [BaseReg + 0] address mode and generate
918 // instructions like:
919 // MOV X0, WideImmediate
920 // ADD X1, BaseReg, X0
921 // LDR X2, [X1, 0]
922 // For such situation, using [BaseReg, XReg] addressing mode can save one
923 // ADD/SUB:
924 // MOV X0, WideImmediate
925 // LDR X2, [BaseReg, X0]
926 if (isa<ConstantSDNode>(RHS)) {
927 int64_t ImmOff = (int64_t)cast<ConstantSDNode>(RHS)->getZExtValue();
928 unsigned Scale = Log2_32(Size);
929 // Skip the immediate can be selected by load/store addressing mode.
930 // Also skip the immediate can be encoded by a single ADD (SUB is also
931 // checked by using -ImmOff).
932 if ((ImmOff % Size == 0 && ImmOff >= 0 && ImmOff < (0x1000 << Scale)) ||
933 isPreferredADD(ImmOff) || isPreferredADD(-ImmOff))
934 return false;
935
936 SDValue Ops[] = { RHS };
937 SDNode *MOVI =
938 CurDAG->getMachineNode(AArch64::MOVi64imm, DL, MVT::i64, Ops);
939 SDValue MOVIV = SDValue(MOVI, 0);
940 // This ADD of two X register will be selected into [Reg+Reg] mode.
941 N = CurDAG->getNode(ISD::ADD, DL, MVT::i64, LHS, MOVIV);
942 }
943
944 // Remember if it is worth folding N when it produces extended register.
945 bool IsExtendedRegisterWorthFolding = isWorthFolding(N);
946
947 // Try to match a shifted extend on the RHS.
948 if (IsExtendedRegisterWorthFolding && RHS.getOpcode() == ISD::SHL &&
949 SelectExtendedSHL(RHS, Size, false, Offset, SignExtend)) {
950 Base = LHS;
951 DoShift = CurDAG->getTargetConstant(true, DL, MVT::i32);
952 return true;
953 }
954
955 // Try to match a shifted extend on the LHS.
956 if (IsExtendedRegisterWorthFolding && LHS.getOpcode() == ISD::SHL &&
957 SelectExtendedSHL(LHS, Size, false, Offset, SignExtend)) {
958 Base = RHS;
959 DoShift = CurDAG->getTargetConstant(true, DL, MVT::i32);
960 return true;
961 }
962
963 // Match any non-shifted, non-extend, non-immediate add expression.
964 Base = LHS;
965 Offset = RHS;
966 SignExtend = CurDAG->getTargetConstant(false, DL, MVT::i32);
967 DoShift = CurDAG->getTargetConstant(false, DL, MVT::i32);
968 // Reg1 + Reg2 is free: no check needed.
969 return true;
970 }
971
createDTuple(ArrayRef<SDValue> Regs)972 SDValue AArch64DAGToDAGISel::createDTuple(ArrayRef<SDValue> Regs) {
973 static const unsigned RegClassIDs[] = {
974 AArch64::DDRegClassID, AArch64::DDDRegClassID, AArch64::DDDDRegClassID};
975 static const unsigned SubRegs[] = {AArch64::dsub0, AArch64::dsub1,
976 AArch64::dsub2, AArch64::dsub3};
977
978 return createTuple(Regs, RegClassIDs, SubRegs);
979 }
980
createQTuple(ArrayRef<SDValue> Regs)981 SDValue AArch64DAGToDAGISel::createQTuple(ArrayRef<SDValue> Regs) {
982 static const unsigned RegClassIDs[] = {
983 AArch64::QQRegClassID, AArch64::QQQRegClassID, AArch64::QQQQRegClassID};
984 static const unsigned SubRegs[] = {AArch64::qsub0, AArch64::qsub1,
985 AArch64::qsub2, AArch64::qsub3};
986
987 return createTuple(Regs, RegClassIDs, SubRegs);
988 }
989
createTuple(ArrayRef<SDValue> Regs,const unsigned RegClassIDs[],const unsigned SubRegs[])990 SDValue AArch64DAGToDAGISel::createTuple(ArrayRef<SDValue> Regs,
991 const unsigned RegClassIDs[],
992 const unsigned SubRegs[]) {
993 // There's no special register-class for a vector-list of 1 element: it's just
994 // a vector.
995 if (Regs.size() == 1)
996 return Regs[0];
997
998 assert(Regs.size() >= 2 && Regs.size() <= 4);
999
1000 SDLoc DL(Regs[0]);
1001
1002 SmallVector<SDValue, 4> Ops;
1003
1004 // First operand of REG_SEQUENCE is the desired RegClass.
1005 Ops.push_back(
1006 CurDAG->getTargetConstant(RegClassIDs[Regs.size() - 2], DL, MVT::i32));
1007
1008 // Then we get pairs of source & subregister-position for the components.
1009 for (unsigned i = 0; i < Regs.size(); ++i) {
1010 Ops.push_back(Regs[i]);
1011 Ops.push_back(CurDAG->getTargetConstant(SubRegs[i], DL, MVT::i32));
1012 }
1013
1014 SDNode *N =
1015 CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, MVT::Untyped, Ops);
1016 return SDValue(N, 0);
1017 }
1018
SelectTable(SDNode * N,unsigned NumVecs,unsigned Opc,bool isExt)1019 void AArch64DAGToDAGISel::SelectTable(SDNode *N, unsigned NumVecs, unsigned Opc,
1020 bool isExt) {
1021 SDLoc dl(N);
1022 EVT VT = N->getValueType(0);
1023
1024 unsigned ExtOff = isExt;
1025
1026 // Form a REG_SEQUENCE to force register allocation.
1027 unsigned Vec0Off = ExtOff + 1;
1028 SmallVector<SDValue, 4> Regs(N->op_begin() + Vec0Off,
1029 N->op_begin() + Vec0Off + NumVecs);
1030 SDValue RegSeq = createQTuple(Regs);
1031
1032 SmallVector<SDValue, 6> Ops;
1033 if (isExt)
1034 Ops.push_back(N->getOperand(1));
1035 Ops.push_back(RegSeq);
1036 Ops.push_back(N->getOperand(NumVecs + ExtOff + 1));
1037 ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, VT, Ops));
1038 }
1039
tryIndexedLoad(SDNode * N)1040 bool AArch64DAGToDAGISel::tryIndexedLoad(SDNode *N) {
1041 LoadSDNode *LD = cast<LoadSDNode>(N);
1042 if (LD->isUnindexed())
1043 return false;
1044 EVT VT = LD->getMemoryVT();
1045 EVT DstVT = N->getValueType(0);
1046 ISD::MemIndexedMode AM = LD->getAddressingMode();
1047 bool IsPre = AM == ISD::PRE_INC || AM == ISD::PRE_DEC;
1048
1049 // We're not doing validity checking here. That was done when checking
1050 // if we should mark the load as indexed or not. We're just selecting
1051 // the right instruction.
1052 unsigned Opcode = 0;
1053
1054 ISD::LoadExtType ExtType = LD->getExtensionType();
1055 bool InsertTo64 = false;
1056 if (VT == MVT::i64)
1057 Opcode = IsPre ? AArch64::LDRXpre : AArch64::LDRXpost;
1058 else if (VT == MVT::i32) {
1059 if (ExtType == ISD::NON_EXTLOAD)
1060 Opcode = IsPre ? AArch64::LDRWpre : AArch64::LDRWpost;
1061 else if (ExtType == ISD::SEXTLOAD)
1062 Opcode = IsPre ? AArch64::LDRSWpre : AArch64::LDRSWpost;
1063 else {
1064 Opcode = IsPre ? AArch64::LDRWpre : AArch64::LDRWpost;
1065 InsertTo64 = true;
1066 // The result of the load is only i32. It's the subreg_to_reg that makes
1067 // it into an i64.
1068 DstVT = MVT::i32;
1069 }
1070 } else if (VT == MVT::i16) {
1071 if (ExtType == ISD::SEXTLOAD) {
1072 if (DstVT == MVT::i64)
1073 Opcode = IsPre ? AArch64::LDRSHXpre : AArch64::LDRSHXpost;
1074 else
1075 Opcode = IsPre ? AArch64::LDRSHWpre : AArch64::LDRSHWpost;
1076 } else {
1077 Opcode = IsPre ? AArch64::LDRHHpre : AArch64::LDRHHpost;
1078 InsertTo64 = DstVT == MVT::i64;
1079 // The result of the load is only i32. It's the subreg_to_reg that makes
1080 // it into an i64.
1081 DstVT = MVT::i32;
1082 }
1083 } else if (VT == MVT::i8) {
1084 if (ExtType == ISD::SEXTLOAD) {
1085 if (DstVT == MVT::i64)
1086 Opcode = IsPre ? AArch64::LDRSBXpre : AArch64::LDRSBXpost;
1087 else
1088 Opcode = IsPre ? AArch64::LDRSBWpre : AArch64::LDRSBWpost;
1089 } else {
1090 Opcode = IsPre ? AArch64::LDRBBpre : AArch64::LDRBBpost;
1091 InsertTo64 = DstVT == MVT::i64;
1092 // The result of the load is only i32. It's the subreg_to_reg that makes
1093 // it into an i64.
1094 DstVT = MVT::i32;
1095 }
1096 } else if (VT == MVT::f16) {
1097 Opcode = IsPre ? AArch64::LDRHpre : AArch64::LDRHpost;
1098 } else if (VT == MVT::f32) {
1099 Opcode = IsPre ? AArch64::LDRSpre : AArch64::LDRSpost;
1100 } else if (VT == MVT::f64 || VT.is64BitVector()) {
1101 Opcode = IsPre ? AArch64::LDRDpre : AArch64::LDRDpost;
1102 } else if (VT.is128BitVector()) {
1103 Opcode = IsPre ? AArch64::LDRQpre : AArch64::LDRQpost;
1104 } else
1105 return false;
1106 SDValue Chain = LD->getChain();
1107 SDValue Base = LD->getBasePtr();
1108 ConstantSDNode *OffsetOp = cast<ConstantSDNode>(LD->getOffset());
1109 int OffsetVal = (int)OffsetOp->getZExtValue();
1110 SDLoc dl(N);
1111 SDValue Offset = CurDAG->getTargetConstant(OffsetVal, dl, MVT::i64);
1112 SDValue Ops[] = { Base, Offset, Chain };
1113 SDNode *Res = CurDAG->getMachineNode(Opcode, dl, MVT::i64, DstVT,
1114 MVT::Other, Ops);
1115 // Either way, we're replacing the node, so tell the caller that.
1116 SDValue LoadedVal = SDValue(Res, 1);
1117 if (InsertTo64) {
1118 SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, dl, MVT::i32);
1119 LoadedVal =
1120 SDValue(CurDAG->getMachineNode(
1121 AArch64::SUBREG_TO_REG, dl, MVT::i64,
1122 CurDAG->getTargetConstant(0, dl, MVT::i64), LoadedVal,
1123 SubReg),
1124 0);
1125 }
1126
1127 ReplaceUses(SDValue(N, 0), LoadedVal);
1128 ReplaceUses(SDValue(N, 1), SDValue(Res, 0));
1129 ReplaceUses(SDValue(N, 2), SDValue(Res, 2));
1130 CurDAG->RemoveDeadNode(N);
1131 return true;
1132 }
1133
SelectLoad(SDNode * N,unsigned NumVecs,unsigned Opc,unsigned SubRegIdx)1134 void AArch64DAGToDAGISel::SelectLoad(SDNode *N, unsigned NumVecs, unsigned Opc,
1135 unsigned SubRegIdx) {
1136 SDLoc dl(N);
1137 EVT VT = N->getValueType(0);
1138 SDValue Chain = N->getOperand(0);
1139
1140 SDValue Ops[] = {N->getOperand(2), // Mem operand;
1141 Chain};
1142
1143 const EVT ResTys[] = {MVT::Untyped, MVT::Other};
1144
1145 SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
1146 SDValue SuperReg = SDValue(Ld, 0);
1147 for (unsigned i = 0; i < NumVecs; ++i)
1148 ReplaceUses(SDValue(N, i),
1149 CurDAG->getTargetExtractSubreg(SubRegIdx + i, dl, VT, SuperReg));
1150
1151 ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 1));
1152 CurDAG->RemoveDeadNode(N);
1153 }
1154
SelectPostLoad(SDNode * N,unsigned NumVecs,unsigned Opc,unsigned SubRegIdx)1155 void AArch64DAGToDAGISel::SelectPostLoad(SDNode *N, unsigned NumVecs,
1156 unsigned Opc, unsigned SubRegIdx) {
1157 SDLoc dl(N);
1158 EVT VT = N->getValueType(0);
1159 SDValue Chain = N->getOperand(0);
1160
1161 SDValue Ops[] = {N->getOperand(1), // Mem operand
1162 N->getOperand(2), // Incremental
1163 Chain};
1164
1165 const EVT ResTys[] = {MVT::i64, // Type of the write back register
1166 MVT::Untyped, MVT::Other};
1167
1168 SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
1169
1170 // Update uses of write back register
1171 ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 0));
1172
1173 // Update uses of vector list
1174 SDValue SuperReg = SDValue(Ld, 1);
1175 if (NumVecs == 1)
1176 ReplaceUses(SDValue(N, 0), SuperReg);
1177 else
1178 for (unsigned i = 0; i < NumVecs; ++i)
1179 ReplaceUses(SDValue(N, i),
1180 CurDAG->getTargetExtractSubreg(SubRegIdx + i, dl, VT, SuperReg));
1181
1182 // Update the chain
1183 ReplaceUses(SDValue(N, NumVecs + 1), SDValue(Ld, 2));
1184 CurDAG->RemoveDeadNode(N);
1185 }
1186
SelectStore(SDNode * N,unsigned NumVecs,unsigned Opc)1187 void AArch64DAGToDAGISel::SelectStore(SDNode *N, unsigned NumVecs,
1188 unsigned Opc) {
1189 SDLoc dl(N);
1190 EVT VT = N->getOperand(2)->getValueType(0);
1191
1192 // Form a REG_SEQUENCE to force register allocation.
1193 bool Is128Bit = VT.getSizeInBits() == 128;
1194 SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs);
1195 SDValue RegSeq = Is128Bit ? createQTuple(Regs) : createDTuple(Regs);
1196
1197 SDValue Ops[] = {RegSeq, N->getOperand(NumVecs + 2), N->getOperand(0)};
1198 SDNode *St = CurDAG->getMachineNode(Opc, dl, N->getValueType(0), Ops);
1199
1200 ReplaceNode(N, St);
1201 }
1202
SelectPostStore(SDNode * N,unsigned NumVecs,unsigned Opc)1203 void AArch64DAGToDAGISel::SelectPostStore(SDNode *N, unsigned NumVecs,
1204 unsigned Opc) {
1205 SDLoc dl(N);
1206 EVT VT = N->getOperand(2)->getValueType(0);
1207 const EVT ResTys[] = {MVT::i64, // Type of the write back register
1208 MVT::Other}; // Type for the Chain
1209
1210 // Form a REG_SEQUENCE to force register allocation.
1211 bool Is128Bit = VT.getSizeInBits() == 128;
1212 SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs);
1213 SDValue RegSeq = Is128Bit ? createQTuple(Regs) : createDTuple(Regs);
1214
1215 SDValue Ops[] = {RegSeq,
1216 N->getOperand(NumVecs + 1), // base register
1217 N->getOperand(NumVecs + 2), // Incremental
1218 N->getOperand(0)}; // Chain
1219 SDNode *St = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
1220
1221 ReplaceNode(N, St);
1222 }
1223
1224 namespace {
1225 /// WidenVector - Given a value in the V64 register class, produce the
1226 /// equivalent value in the V128 register class.
1227 class WidenVector {
1228 SelectionDAG &DAG;
1229
1230 public:
WidenVector(SelectionDAG & DAG)1231 WidenVector(SelectionDAG &DAG) : DAG(DAG) {}
1232
operator ()(SDValue V64Reg)1233 SDValue operator()(SDValue V64Reg) {
1234 EVT VT = V64Reg.getValueType();
1235 unsigned NarrowSize = VT.getVectorNumElements();
1236 MVT EltTy = VT.getVectorElementType().getSimpleVT();
1237 MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
1238 SDLoc DL(V64Reg);
1239
1240 SDValue Undef =
1241 SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, WideTy), 0);
1242 return DAG.getTargetInsertSubreg(AArch64::dsub, DL, WideTy, Undef, V64Reg);
1243 }
1244 };
1245 } // namespace
1246
1247 /// NarrowVector - Given a value in the V128 register class, produce the
1248 /// equivalent value in the V64 register class.
NarrowVector(SDValue V128Reg,SelectionDAG & DAG)1249 static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) {
1250 EVT VT = V128Reg.getValueType();
1251 unsigned WideSize = VT.getVectorNumElements();
1252 MVT EltTy = VT.getVectorElementType().getSimpleVT();
1253 MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2);
1254
1255 return DAG.getTargetExtractSubreg(AArch64::dsub, SDLoc(V128Reg), NarrowTy,
1256 V128Reg);
1257 }
1258
SelectLoadLane(SDNode * N,unsigned NumVecs,unsigned Opc)1259 void AArch64DAGToDAGISel::SelectLoadLane(SDNode *N, unsigned NumVecs,
1260 unsigned Opc) {
1261 SDLoc dl(N);
1262 EVT VT = N->getValueType(0);
1263 bool Narrow = VT.getSizeInBits() == 64;
1264
1265 // Form a REG_SEQUENCE to force register allocation.
1266 SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs);
1267
1268 if (Narrow)
1269 std::transform(Regs.begin(), Regs.end(), Regs.begin(),
1270 WidenVector(*CurDAG));
1271
1272 SDValue RegSeq = createQTuple(Regs);
1273
1274 const EVT ResTys[] = {MVT::Untyped, MVT::Other};
1275
1276 unsigned LaneNo =
1277 cast<ConstantSDNode>(N->getOperand(NumVecs + 2))->getZExtValue();
1278
1279 SDValue Ops[] = {RegSeq, CurDAG->getTargetConstant(LaneNo, dl, MVT::i64),
1280 N->getOperand(NumVecs + 3), N->getOperand(0)};
1281 SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
1282 SDValue SuperReg = SDValue(Ld, 0);
1283
1284 EVT WideVT = RegSeq.getOperand(1)->getValueType(0);
1285 static const unsigned QSubs[] = { AArch64::qsub0, AArch64::qsub1,
1286 AArch64::qsub2, AArch64::qsub3 };
1287 for (unsigned i = 0; i < NumVecs; ++i) {
1288 SDValue NV = CurDAG->getTargetExtractSubreg(QSubs[i], dl, WideVT, SuperReg);
1289 if (Narrow)
1290 NV = NarrowVector(NV, *CurDAG);
1291 ReplaceUses(SDValue(N, i), NV);
1292 }
1293
1294 ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 1));
1295 CurDAG->RemoveDeadNode(N);
1296 }
1297
SelectPostLoadLane(SDNode * N,unsigned NumVecs,unsigned Opc)1298 void AArch64DAGToDAGISel::SelectPostLoadLane(SDNode *N, unsigned NumVecs,
1299 unsigned Opc) {
1300 SDLoc dl(N);
1301 EVT VT = N->getValueType(0);
1302 bool Narrow = VT.getSizeInBits() == 64;
1303
1304 // Form a REG_SEQUENCE to force register allocation.
1305 SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs);
1306
1307 if (Narrow)
1308 std::transform(Regs.begin(), Regs.end(), Regs.begin(),
1309 WidenVector(*CurDAG));
1310
1311 SDValue RegSeq = createQTuple(Regs);
1312
1313 const EVT ResTys[] = {MVT::i64, // Type of the write back register
1314 RegSeq->getValueType(0), MVT::Other};
1315
1316 unsigned LaneNo =
1317 cast<ConstantSDNode>(N->getOperand(NumVecs + 1))->getZExtValue();
1318
1319 SDValue Ops[] = {RegSeq,
1320 CurDAG->getTargetConstant(LaneNo, dl,
1321 MVT::i64), // Lane Number
1322 N->getOperand(NumVecs + 2), // Base register
1323 N->getOperand(NumVecs + 3), // Incremental
1324 N->getOperand(0)};
1325 SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
1326
1327 // Update uses of the write back register
1328 ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 0));
1329
1330 // Update uses of the vector list
1331 SDValue SuperReg = SDValue(Ld, 1);
1332 if (NumVecs == 1) {
1333 ReplaceUses(SDValue(N, 0),
1334 Narrow ? NarrowVector(SuperReg, *CurDAG) : SuperReg);
1335 } else {
1336 EVT WideVT = RegSeq.getOperand(1)->getValueType(0);
1337 static const unsigned QSubs[] = { AArch64::qsub0, AArch64::qsub1,
1338 AArch64::qsub2, AArch64::qsub3 };
1339 for (unsigned i = 0; i < NumVecs; ++i) {
1340 SDValue NV = CurDAG->getTargetExtractSubreg(QSubs[i], dl, WideVT,
1341 SuperReg);
1342 if (Narrow)
1343 NV = NarrowVector(NV, *CurDAG);
1344 ReplaceUses(SDValue(N, i), NV);
1345 }
1346 }
1347
1348 // Update the Chain
1349 ReplaceUses(SDValue(N, NumVecs + 1), SDValue(Ld, 2));
1350 CurDAG->RemoveDeadNode(N);
1351 }
1352
SelectStoreLane(SDNode * N,unsigned NumVecs,unsigned Opc)1353 void AArch64DAGToDAGISel::SelectStoreLane(SDNode *N, unsigned NumVecs,
1354 unsigned Opc) {
1355 SDLoc dl(N);
1356 EVT VT = N->getOperand(2)->getValueType(0);
1357 bool Narrow = VT.getSizeInBits() == 64;
1358
1359 // Form a REG_SEQUENCE to force register allocation.
1360 SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs);
1361
1362 if (Narrow)
1363 std::transform(Regs.begin(), Regs.end(), Regs.begin(),
1364 WidenVector(*CurDAG));
1365
1366 SDValue RegSeq = createQTuple(Regs);
1367
1368 unsigned LaneNo =
1369 cast<ConstantSDNode>(N->getOperand(NumVecs + 2))->getZExtValue();
1370
1371 SDValue Ops[] = {RegSeq, CurDAG->getTargetConstant(LaneNo, dl, MVT::i64),
1372 N->getOperand(NumVecs + 3), N->getOperand(0)};
1373 SDNode *St = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops);
1374
1375 // Transfer memoperands.
1376 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1377 MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
1378 cast<MachineSDNode>(St)->setMemRefs(MemOp, MemOp + 1);
1379
1380 ReplaceNode(N, St);
1381 }
1382
SelectPostStoreLane(SDNode * N,unsigned NumVecs,unsigned Opc)1383 void AArch64DAGToDAGISel::SelectPostStoreLane(SDNode *N, unsigned NumVecs,
1384 unsigned Opc) {
1385 SDLoc dl(N);
1386 EVT VT = N->getOperand(2)->getValueType(0);
1387 bool Narrow = VT.getSizeInBits() == 64;
1388
1389 // Form a REG_SEQUENCE to force register allocation.
1390 SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs);
1391
1392 if (Narrow)
1393 std::transform(Regs.begin(), Regs.end(), Regs.begin(),
1394 WidenVector(*CurDAG));
1395
1396 SDValue RegSeq = createQTuple(Regs);
1397
1398 const EVT ResTys[] = {MVT::i64, // Type of the write back register
1399 MVT::Other};
1400
1401 unsigned LaneNo =
1402 cast<ConstantSDNode>(N->getOperand(NumVecs + 1))->getZExtValue();
1403
1404 SDValue Ops[] = {RegSeq, CurDAG->getTargetConstant(LaneNo, dl, MVT::i64),
1405 N->getOperand(NumVecs + 2), // Base Register
1406 N->getOperand(NumVecs + 3), // Incremental
1407 N->getOperand(0)};
1408 SDNode *St = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
1409
1410 // Transfer memoperands.
1411 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1412 MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
1413 cast<MachineSDNode>(St)->setMemRefs(MemOp, MemOp + 1);
1414
1415 ReplaceNode(N, St);
1416 }
1417
isBitfieldExtractOpFromAnd(SelectionDAG * CurDAG,SDNode * N,unsigned & Opc,SDValue & Opd0,unsigned & LSB,unsigned & MSB,unsigned NumberOfIgnoredLowBits,bool BiggerPattern)1418 static bool isBitfieldExtractOpFromAnd(SelectionDAG *CurDAG, SDNode *N,
1419 unsigned &Opc, SDValue &Opd0,
1420 unsigned &LSB, unsigned &MSB,
1421 unsigned NumberOfIgnoredLowBits,
1422 bool BiggerPattern) {
1423 assert(N->getOpcode() == ISD::AND &&
1424 "N must be a AND operation to call this function");
1425
1426 EVT VT = N->getValueType(0);
1427
1428 // Here we can test the type of VT and return false when the type does not
1429 // match, but since it is done prior to that call in the current context
1430 // we turned that into an assert to avoid redundant code.
1431 assert((VT == MVT::i32 || VT == MVT::i64) &&
1432 "Type checking must have been done before calling this function");
1433
1434 // FIXME: simplify-demanded-bits in DAGCombine will probably have
1435 // changed the AND node to a 32-bit mask operation. We'll have to
1436 // undo that as part of the transform here if we want to catch all
1437 // the opportunities.
1438 // Currently the NumberOfIgnoredLowBits argument helps to recover
1439 // form these situations when matching bigger pattern (bitfield insert).
1440
1441 // For unsigned extracts, check for a shift right and mask
1442 uint64_t AndImm = 0;
1443 if (!isOpcWithIntImmediate(N, ISD::AND, AndImm))
1444 return false;
1445
1446 const SDNode *Op0 = N->getOperand(0).getNode();
1447
1448 // Because of simplify-demanded-bits in DAGCombine, the mask may have been
1449 // simplified. Try to undo that
1450 AndImm |= (1 << NumberOfIgnoredLowBits) - 1;
1451
1452 // The immediate is a mask of the low bits iff imm & (imm+1) == 0
1453 if (AndImm & (AndImm + 1))
1454 return false;
1455
1456 bool ClampMSB = false;
1457 uint64_t SrlImm = 0;
1458 // Handle the SRL + ANY_EXTEND case.
1459 if (VT == MVT::i64 && Op0->getOpcode() == ISD::ANY_EXTEND &&
1460 isOpcWithIntImmediate(Op0->getOperand(0).getNode(), ISD::SRL, SrlImm)) {
1461 // Extend the incoming operand of the SRL to 64-bit.
1462 Opd0 = Widen(CurDAG, Op0->getOperand(0).getOperand(0));
1463 // Make sure to clamp the MSB so that we preserve the semantics of the
1464 // original operations.
1465 ClampMSB = true;
1466 } else if (VT == MVT::i32 && Op0->getOpcode() == ISD::TRUNCATE &&
1467 isOpcWithIntImmediate(Op0->getOperand(0).getNode(), ISD::SRL,
1468 SrlImm)) {
1469 // If the shift result was truncated, we can still combine them.
1470 Opd0 = Op0->getOperand(0).getOperand(0);
1471
1472 // Use the type of SRL node.
1473 VT = Opd0->getValueType(0);
1474 } else if (isOpcWithIntImmediate(Op0, ISD::SRL, SrlImm)) {
1475 Opd0 = Op0->getOperand(0);
1476 } else if (BiggerPattern) {
1477 // Let's pretend a 0 shift right has been performed.
1478 // The resulting code will be at least as good as the original one
1479 // plus it may expose more opportunities for bitfield insert pattern.
1480 // FIXME: Currently we limit this to the bigger pattern, because
1481 // some optimizations expect AND and not UBFM.
1482 Opd0 = N->getOperand(0);
1483 } else
1484 return false;
1485
1486 // Bail out on large immediates. This happens when no proper
1487 // combining/constant folding was performed.
1488 if (!BiggerPattern && (SrlImm <= 0 || SrlImm >= VT.getSizeInBits())) {
1489 DEBUG((dbgs() << N
1490 << ": Found large shift immediate, this should not happen\n"));
1491 return false;
1492 }
1493
1494 LSB = SrlImm;
1495 MSB = SrlImm + (VT == MVT::i32 ? countTrailingOnes<uint32_t>(AndImm)
1496 : countTrailingOnes<uint64_t>(AndImm)) -
1497 1;
1498 if (ClampMSB)
1499 // Since we're moving the extend before the right shift operation, we need
1500 // to clamp the MSB to make sure we don't shift in undefined bits instead of
1501 // the zeros which would get shifted in with the original right shift
1502 // operation.
1503 MSB = MSB > 31 ? 31 : MSB;
1504
1505 Opc = VT == MVT::i32 ? AArch64::UBFMWri : AArch64::UBFMXri;
1506 return true;
1507 }
1508
isBitfieldExtractOpFromSExtInReg(SDNode * N,unsigned & Opc,SDValue & Opd0,unsigned & Immr,unsigned & Imms)1509 static bool isBitfieldExtractOpFromSExtInReg(SDNode *N, unsigned &Opc,
1510 SDValue &Opd0, unsigned &Immr,
1511 unsigned &Imms) {
1512 assert(N->getOpcode() == ISD::SIGN_EXTEND_INREG);
1513
1514 EVT VT = N->getValueType(0);
1515 unsigned BitWidth = VT.getSizeInBits();
1516 assert((VT == MVT::i32 || VT == MVT::i64) &&
1517 "Type checking must have been done before calling this function");
1518
1519 SDValue Op = N->getOperand(0);
1520 if (Op->getOpcode() == ISD::TRUNCATE) {
1521 Op = Op->getOperand(0);
1522 VT = Op->getValueType(0);
1523 BitWidth = VT.getSizeInBits();
1524 }
1525
1526 uint64_t ShiftImm;
1527 if (!isOpcWithIntImmediate(Op.getNode(), ISD::SRL, ShiftImm) &&
1528 !isOpcWithIntImmediate(Op.getNode(), ISD::SRA, ShiftImm))
1529 return false;
1530
1531 unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits();
1532 if (ShiftImm + Width > BitWidth)
1533 return false;
1534
1535 Opc = (VT == MVT::i32) ? AArch64::SBFMWri : AArch64::SBFMXri;
1536 Opd0 = Op.getOperand(0);
1537 Immr = ShiftImm;
1538 Imms = ShiftImm + Width - 1;
1539 return true;
1540 }
1541
isSeveralBitsExtractOpFromShr(SDNode * N,unsigned & Opc,SDValue & Opd0,unsigned & LSB,unsigned & MSB)1542 static bool isSeveralBitsExtractOpFromShr(SDNode *N, unsigned &Opc,
1543 SDValue &Opd0, unsigned &LSB,
1544 unsigned &MSB) {
1545 // We are looking for the following pattern which basically extracts several
1546 // continuous bits from the source value and places it from the LSB of the
1547 // destination value, all other bits of the destination value or set to zero:
1548 //
1549 // Value2 = AND Value, MaskImm
1550 // SRL Value2, ShiftImm
1551 //
1552 // with MaskImm >> ShiftImm to search for the bit width.
1553 //
1554 // This gets selected into a single UBFM:
1555 //
1556 // UBFM Value, ShiftImm, BitWide + SrlImm -1
1557 //
1558
1559 if (N->getOpcode() != ISD::SRL)
1560 return false;
1561
1562 uint64_t AndMask = 0;
1563 if (!isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, AndMask))
1564 return false;
1565
1566 Opd0 = N->getOperand(0).getOperand(0);
1567
1568 uint64_t SrlImm = 0;
1569 if (!isIntImmediate(N->getOperand(1), SrlImm))
1570 return false;
1571
1572 // Check whether we really have several bits extract here.
1573 unsigned BitWide = 64 - countLeadingOnes(~(AndMask >> SrlImm));
1574 if (BitWide && isMask_64(AndMask >> SrlImm)) {
1575 if (N->getValueType(0) == MVT::i32)
1576 Opc = AArch64::UBFMWri;
1577 else
1578 Opc = AArch64::UBFMXri;
1579
1580 LSB = SrlImm;
1581 MSB = BitWide + SrlImm - 1;
1582 return true;
1583 }
1584
1585 return false;
1586 }
1587
isBitfieldExtractOpFromShr(SDNode * N,unsigned & Opc,SDValue & Opd0,unsigned & Immr,unsigned & Imms,bool BiggerPattern)1588 static bool isBitfieldExtractOpFromShr(SDNode *N, unsigned &Opc, SDValue &Opd0,
1589 unsigned &Immr, unsigned &Imms,
1590 bool BiggerPattern) {
1591 assert((N->getOpcode() == ISD::SRA || N->getOpcode() == ISD::SRL) &&
1592 "N must be a SHR/SRA operation to call this function");
1593
1594 EVT VT = N->getValueType(0);
1595
1596 // Here we can test the type of VT and return false when the type does not
1597 // match, but since it is done prior to that call in the current context
1598 // we turned that into an assert to avoid redundant code.
1599 assert((VT == MVT::i32 || VT == MVT::i64) &&
1600 "Type checking must have been done before calling this function");
1601
1602 // Check for AND + SRL doing several bits extract.
1603 if (isSeveralBitsExtractOpFromShr(N, Opc, Opd0, Immr, Imms))
1604 return true;
1605
1606 // We're looking for a shift of a shift.
1607 uint64_t ShlImm = 0;
1608 uint64_t TruncBits = 0;
1609 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SHL, ShlImm)) {
1610 Opd0 = N->getOperand(0).getOperand(0);
1611 } else if (VT == MVT::i32 && N->getOpcode() == ISD::SRL &&
1612 N->getOperand(0).getNode()->getOpcode() == ISD::TRUNCATE) {
1613 // We are looking for a shift of truncate. Truncate from i64 to i32 could
1614 // be considered as setting high 32 bits as zero. Our strategy here is to
1615 // always generate 64bit UBFM. This consistency will help the CSE pass
1616 // later find more redundancy.
1617 Opd0 = N->getOperand(0).getOperand(0);
1618 TruncBits = Opd0->getValueType(0).getSizeInBits() - VT.getSizeInBits();
1619 VT = Opd0->getValueType(0);
1620 assert(VT == MVT::i64 && "the promoted type should be i64");
1621 } else if (BiggerPattern) {
1622 // Let's pretend a 0 shift left has been performed.
1623 // FIXME: Currently we limit this to the bigger pattern case,
1624 // because some optimizations expect AND and not UBFM
1625 Opd0 = N->getOperand(0);
1626 } else
1627 return false;
1628
1629 // Missing combines/constant folding may have left us with strange
1630 // constants.
1631 if (ShlImm >= VT.getSizeInBits()) {
1632 DEBUG((dbgs() << N
1633 << ": Found large shift immediate, this should not happen\n"));
1634 return false;
1635 }
1636
1637 uint64_t SrlImm = 0;
1638 if (!isIntImmediate(N->getOperand(1), SrlImm))
1639 return false;
1640
1641 assert(SrlImm > 0 && SrlImm < VT.getSizeInBits() &&
1642 "bad amount in shift node!");
1643 int immr = SrlImm - ShlImm;
1644 Immr = immr < 0 ? immr + VT.getSizeInBits() : immr;
1645 Imms = VT.getSizeInBits() - ShlImm - TruncBits - 1;
1646 // SRA requires a signed extraction
1647 if (VT == MVT::i32)
1648 Opc = N->getOpcode() == ISD::SRA ? AArch64::SBFMWri : AArch64::UBFMWri;
1649 else
1650 Opc = N->getOpcode() == ISD::SRA ? AArch64::SBFMXri : AArch64::UBFMXri;
1651 return true;
1652 }
1653
tryBitfieldExtractOpFromSExt(SDNode * N)1654 bool AArch64DAGToDAGISel::tryBitfieldExtractOpFromSExt(SDNode *N) {
1655 assert(N->getOpcode() == ISD::SIGN_EXTEND);
1656
1657 EVT VT = N->getValueType(0);
1658 EVT NarrowVT = N->getOperand(0)->getValueType(0);
1659 if (VT != MVT::i64 || NarrowVT != MVT::i32)
1660 return false;
1661
1662 uint64_t ShiftImm;
1663 SDValue Op = N->getOperand(0);
1664 if (!isOpcWithIntImmediate(Op.getNode(), ISD::SRA, ShiftImm))
1665 return false;
1666
1667 SDLoc dl(N);
1668 // Extend the incoming operand of the shift to 64-bits.
1669 SDValue Opd0 = Widen(CurDAG, Op.getOperand(0));
1670 unsigned Immr = ShiftImm;
1671 unsigned Imms = NarrowVT.getSizeInBits() - 1;
1672 SDValue Ops[] = {Opd0, CurDAG->getTargetConstant(Immr, dl, VT),
1673 CurDAG->getTargetConstant(Imms, dl, VT)};
1674 CurDAG->SelectNodeTo(N, AArch64::SBFMXri, VT, Ops);
1675 return true;
1676 }
1677
isBitfieldExtractOp(SelectionDAG * CurDAG,SDNode * N,unsigned & Opc,SDValue & Opd0,unsigned & Immr,unsigned & Imms,unsigned NumberOfIgnoredLowBits=0,bool BiggerPattern=false)1678 static bool isBitfieldExtractOp(SelectionDAG *CurDAG, SDNode *N, unsigned &Opc,
1679 SDValue &Opd0, unsigned &Immr, unsigned &Imms,
1680 unsigned NumberOfIgnoredLowBits = 0,
1681 bool BiggerPattern = false) {
1682 if (N->getValueType(0) != MVT::i32 && N->getValueType(0) != MVT::i64)
1683 return false;
1684
1685 switch (N->getOpcode()) {
1686 default:
1687 if (!N->isMachineOpcode())
1688 return false;
1689 break;
1690 case ISD::AND:
1691 return isBitfieldExtractOpFromAnd(CurDAG, N, Opc, Opd0, Immr, Imms,
1692 NumberOfIgnoredLowBits, BiggerPattern);
1693 case ISD::SRL:
1694 case ISD::SRA:
1695 return isBitfieldExtractOpFromShr(N, Opc, Opd0, Immr, Imms, BiggerPattern);
1696
1697 case ISD::SIGN_EXTEND_INREG:
1698 return isBitfieldExtractOpFromSExtInReg(N, Opc, Opd0, Immr, Imms);
1699 }
1700
1701 unsigned NOpc = N->getMachineOpcode();
1702 switch (NOpc) {
1703 default:
1704 return false;
1705 case AArch64::SBFMWri:
1706 case AArch64::UBFMWri:
1707 case AArch64::SBFMXri:
1708 case AArch64::UBFMXri:
1709 Opc = NOpc;
1710 Opd0 = N->getOperand(0);
1711 Immr = cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
1712 Imms = cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
1713 return true;
1714 }
1715 // Unreachable
1716 return false;
1717 }
1718
tryBitfieldExtractOp(SDNode * N)1719 bool AArch64DAGToDAGISel::tryBitfieldExtractOp(SDNode *N) {
1720 unsigned Opc, Immr, Imms;
1721 SDValue Opd0;
1722 if (!isBitfieldExtractOp(CurDAG, N, Opc, Opd0, Immr, Imms))
1723 return false;
1724
1725 EVT VT = N->getValueType(0);
1726 SDLoc dl(N);
1727
1728 // If the bit extract operation is 64bit but the original type is 32bit, we
1729 // need to add one EXTRACT_SUBREG.
1730 if ((Opc == AArch64::SBFMXri || Opc == AArch64::UBFMXri) && VT == MVT::i32) {
1731 SDValue Ops64[] = {Opd0, CurDAG->getTargetConstant(Immr, dl, MVT::i64),
1732 CurDAG->getTargetConstant(Imms, dl, MVT::i64)};
1733
1734 SDNode *BFM = CurDAG->getMachineNode(Opc, dl, MVT::i64, Ops64);
1735 SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, dl, MVT::i32);
1736 ReplaceNode(N, CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl,
1737 MVT::i32, SDValue(BFM, 0), SubReg));
1738 return true;
1739 }
1740
1741 SDValue Ops[] = {Opd0, CurDAG->getTargetConstant(Immr, dl, VT),
1742 CurDAG->getTargetConstant(Imms, dl, VT)};
1743 CurDAG->SelectNodeTo(N, Opc, VT, Ops);
1744 return true;
1745 }
1746
1747 /// Does DstMask form a complementary pair with the mask provided by
1748 /// BitsToBeInserted, suitable for use in a BFI instruction. Roughly speaking,
1749 /// this asks whether DstMask zeroes precisely those bits that will be set by
1750 /// the other half.
isBitfieldDstMask(uint64_t DstMask,const APInt & BitsToBeInserted,unsigned NumberOfIgnoredHighBits,EVT VT)1751 static bool isBitfieldDstMask(uint64_t DstMask, const APInt &BitsToBeInserted,
1752 unsigned NumberOfIgnoredHighBits, EVT VT) {
1753 assert((VT == MVT::i32 || VT == MVT::i64) &&
1754 "i32 or i64 mask type expected!");
1755 unsigned BitWidth = VT.getSizeInBits() - NumberOfIgnoredHighBits;
1756
1757 APInt SignificantDstMask = APInt(BitWidth, DstMask);
1758 APInt SignificantBitsToBeInserted = BitsToBeInserted.zextOrTrunc(BitWidth);
1759
1760 return (SignificantDstMask & SignificantBitsToBeInserted) == 0 &&
1761 (SignificantDstMask | SignificantBitsToBeInserted).isAllOnesValue();
1762 }
1763
1764 // Look for bits that will be useful for later uses.
1765 // A bit is consider useless as soon as it is dropped and never used
1766 // before it as been dropped.
1767 // E.g., looking for useful bit of x
1768 // 1. y = x & 0x7
1769 // 2. z = y >> 2
1770 // After #1, x useful bits are 0x7, then the useful bits of x, live through
1771 // y.
1772 // After #2, the useful bits of x are 0x4.
1773 // However, if x is used on an unpredicatable instruction, then all its bits
1774 // are useful.
1775 // E.g.
1776 // 1. y = x & 0x7
1777 // 2. z = y >> 2
1778 // 3. str x, [@x]
1779 static void getUsefulBits(SDValue Op, APInt &UsefulBits, unsigned Depth = 0);
1780
getUsefulBitsFromAndWithImmediate(SDValue Op,APInt & UsefulBits,unsigned Depth)1781 static void getUsefulBitsFromAndWithImmediate(SDValue Op, APInt &UsefulBits,
1782 unsigned Depth) {
1783 uint64_t Imm =
1784 cast<const ConstantSDNode>(Op.getOperand(1).getNode())->getZExtValue();
1785 Imm = AArch64_AM::decodeLogicalImmediate(Imm, UsefulBits.getBitWidth());
1786 UsefulBits &= APInt(UsefulBits.getBitWidth(), Imm);
1787 getUsefulBits(Op, UsefulBits, Depth + 1);
1788 }
1789
getUsefulBitsFromBitfieldMoveOpd(SDValue Op,APInt & UsefulBits,uint64_t Imm,uint64_t MSB,unsigned Depth)1790 static void getUsefulBitsFromBitfieldMoveOpd(SDValue Op, APInt &UsefulBits,
1791 uint64_t Imm, uint64_t MSB,
1792 unsigned Depth) {
1793 // inherit the bitwidth value
1794 APInt OpUsefulBits(UsefulBits);
1795 OpUsefulBits = 1;
1796
1797 if (MSB >= Imm) {
1798 OpUsefulBits = OpUsefulBits.shl(MSB - Imm + 1);
1799 --OpUsefulBits;
1800 // The interesting part will be in the lower part of the result
1801 getUsefulBits(Op, OpUsefulBits, Depth + 1);
1802 // The interesting part was starting at Imm in the argument
1803 OpUsefulBits = OpUsefulBits.shl(Imm);
1804 } else {
1805 OpUsefulBits = OpUsefulBits.shl(MSB + 1);
1806 --OpUsefulBits;
1807 // The interesting part will be shifted in the result
1808 OpUsefulBits = OpUsefulBits.shl(OpUsefulBits.getBitWidth() - Imm);
1809 getUsefulBits(Op, OpUsefulBits, Depth + 1);
1810 // The interesting part was at zero in the argument
1811 OpUsefulBits = OpUsefulBits.lshr(OpUsefulBits.getBitWidth() - Imm);
1812 }
1813
1814 UsefulBits &= OpUsefulBits;
1815 }
1816
getUsefulBitsFromUBFM(SDValue Op,APInt & UsefulBits,unsigned Depth)1817 static void getUsefulBitsFromUBFM(SDValue Op, APInt &UsefulBits,
1818 unsigned Depth) {
1819 uint64_t Imm =
1820 cast<const ConstantSDNode>(Op.getOperand(1).getNode())->getZExtValue();
1821 uint64_t MSB =
1822 cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
1823
1824 getUsefulBitsFromBitfieldMoveOpd(Op, UsefulBits, Imm, MSB, Depth);
1825 }
1826
getUsefulBitsFromOrWithShiftedReg(SDValue Op,APInt & UsefulBits,unsigned Depth)1827 static void getUsefulBitsFromOrWithShiftedReg(SDValue Op, APInt &UsefulBits,
1828 unsigned Depth) {
1829 uint64_t ShiftTypeAndValue =
1830 cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
1831 APInt Mask(UsefulBits);
1832 Mask.clearAllBits();
1833 Mask.flipAllBits();
1834
1835 if (AArch64_AM::getShiftType(ShiftTypeAndValue) == AArch64_AM::LSL) {
1836 // Shift Left
1837 uint64_t ShiftAmt = AArch64_AM::getShiftValue(ShiftTypeAndValue);
1838 Mask = Mask.shl(ShiftAmt);
1839 getUsefulBits(Op, Mask, Depth + 1);
1840 Mask = Mask.lshr(ShiftAmt);
1841 } else if (AArch64_AM::getShiftType(ShiftTypeAndValue) == AArch64_AM::LSR) {
1842 // Shift Right
1843 // We do not handle AArch64_AM::ASR, because the sign will change the
1844 // number of useful bits
1845 uint64_t ShiftAmt = AArch64_AM::getShiftValue(ShiftTypeAndValue);
1846 Mask = Mask.lshr(ShiftAmt);
1847 getUsefulBits(Op, Mask, Depth + 1);
1848 Mask = Mask.shl(ShiftAmt);
1849 } else
1850 return;
1851
1852 UsefulBits &= Mask;
1853 }
1854
getUsefulBitsFromBFM(SDValue Op,SDValue Orig,APInt & UsefulBits,unsigned Depth)1855 static void getUsefulBitsFromBFM(SDValue Op, SDValue Orig, APInt &UsefulBits,
1856 unsigned Depth) {
1857 uint64_t Imm =
1858 cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
1859 uint64_t MSB =
1860 cast<const ConstantSDNode>(Op.getOperand(3).getNode())->getZExtValue();
1861
1862 if (Op.getOperand(1) == Orig)
1863 return getUsefulBitsFromBitfieldMoveOpd(Op, UsefulBits, Imm, MSB, Depth);
1864
1865 APInt OpUsefulBits(UsefulBits);
1866 OpUsefulBits = 1;
1867
1868 if (MSB >= Imm) {
1869 OpUsefulBits = OpUsefulBits.shl(MSB - Imm + 1);
1870 --OpUsefulBits;
1871 UsefulBits &= ~OpUsefulBits;
1872 getUsefulBits(Op, UsefulBits, Depth + 1);
1873 } else {
1874 OpUsefulBits = OpUsefulBits.shl(MSB + 1);
1875 --OpUsefulBits;
1876 UsefulBits = ~(OpUsefulBits.shl(OpUsefulBits.getBitWidth() - Imm));
1877 getUsefulBits(Op, UsefulBits, Depth + 1);
1878 }
1879 }
1880
getUsefulBitsForUse(SDNode * UserNode,APInt & UsefulBits,SDValue Orig,unsigned Depth)1881 static void getUsefulBitsForUse(SDNode *UserNode, APInt &UsefulBits,
1882 SDValue Orig, unsigned Depth) {
1883
1884 // Users of this node should have already been instruction selected
1885 // FIXME: Can we turn that into an assert?
1886 if (!UserNode->isMachineOpcode())
1887 return;
1888
1889 switch (UserNode->getMachineOpcode()) {
1890 default:
1891 return;
1892 case AArch64::ANDSWri:
1893 case AArch64::ANDSXri:
1894 case AArch64::ANDWri:
1895 case AArch64::ANDXri:
1896 // We increment Depth only when we call the getUsefulBits
1897 return getUsefulBitsFromAndWithImmediate(SDValue(UserNode, 0), UsefulBits,
1898 Depth);
1899 case AArch64::UBFMWri:
1900 case AArch64::UBFMXri:
1901 return getUsefulBitsFromUBFM(SDValue(UserNode, 0), UsefulBits, Depth);
1902
1903 case AArch64::ORRWrs:
1904 case AArch64::ORRXrs:
1905 if (UserNode->getOperand(1) != Orig)
1906 return;
1907 return getUsefulBitsFromOrWithShiftedReg(SDValue(UserNode, 0), UsefulBits,
1908 Depth);
1909 case AArch64::BFMWri:
1910 case AArch64::BFMXri:
1911 return getUsefulBitsFromBFM(SDValue(UserNode, 0), Orig, UsefulBits, Depth);
1912
1913 case AArch64::STRBBui:
1914 case AArch64::STURBBi:
1915 if (UserNode->getOperand(0) != Orig)
1916 return;
1917 UsefulBits &= APInt(UsefulBits.getBitWidth(), 0xff);
1918 return;
1919
1920 case AArch64::STRHHui:
1921 case AArch64::STURHHi:
1922 if (UserNode->getOperand(0) != Orig)
1923 return;
1924 UsefulBits &= APInt(UsefulBits.getBitWidth(), 0xffff);
1925 return;
1926 }
1927 }
1928
getUsefulBits(SDValue Op,APInt & UsefulBits,unsigned Depth)1929 static void getUsefulBits(SDValue Op, APInt &UsefulBits, unsigned Depth) {
1930 if (Depth >= 6)
1931 return;
1932 // Initialize UsefulBits
1933 if (!Depth) {
1934 unsigned Bitwidth = Op.getValueType().getScalarType().getSizeInBits();
1935 // At the beginning, assume every produced bits is useful
1936 UsefulBits = APInt(Bitwidth, 0);
1937 UsefulBits.flipAllBits();
1938 }
1939 APInt UsersUsefulBits(UsefulBits.getBitWidth(), 0);
1940
1941 for (SDNode *Node : Op.getNode()->uses()) {
1942 // A use cannot produce useful bits
1943 APInt UsefulBitsForUse = APInt(UsefulBits);
1944 getUsefulBitsForUse(Node, UsefulBitsForUse, Op, Depth);
1945 UsersUsefulBits |= UsefulBitsForUse;
1946 }
1947 // UsefulBits contains the produced bits that are meaningful for the
1948 // current definition, thus a user cannot make a bit meaningful at
1949 // this point
1950 UsefulBits &= UsersUsefulBits;
1951 }
1952
1953 /// Create a machine node performing a notional SHL of Op by ShlAmount. If
1954 /// ShlAmount is negative, do a (logical) right-shift instead. If ShlAmount is
1955 /// 0, return Op unchanged.
getLeftShift(SelectionDAG * CurDAG,SDValue Op,int ShlAmount)1956 static SDValue getLeftShift(SelectionDAG *CurDAG, SDValue Op, int ShlAmount) {
1957 if (ShlAmount == 0)
1958 return Op;
1959
1960 EVT VT = Op.getValueType();
1961 SDLoc dl(Op);
1962 unsigned BitWidth = VT.getSizeInBits();
1963 unsigned UBFMOpc = BitWidth == 32 ? AArch64::UBFMWri : AArch64::UBFMXri;
1964
1965 SDNode *ShiftNode;
1966 if (ShlAmount > 0) {
1967 // LSL wD, wN, #Amt == UBFM wD, wN, #32-Amt, #31-Amt
1968 ShiftNode = CurDAG->getMachineNode(
1969 UBFMOpc, dl, VT, Op,
1970 CurDAG->getTargetConstant(BitWidth - ShlAmount, dl, VT),
1971 CurDAG->getTargetConstant(BitWidth - 1 - ShlAmount, dl, VT));
1972 } else {
1973 // LSR wD, wN, #Amt == UBFM wD, wN, #Amt, #32-1
1974 assert(ShlAmount < 0 && "expected right shift");
1975 int ShrAmount = -ShlAmount;
1976 ShiftNode = CurDAG->getMachineNode(
1977 UBFMOpc, dl, VT, Op, CurDAG->getTargetConstant(ShrAmount, dl, VT),
1978 CurDAG->getTargetConstant(BitWidth - 1, dl, VT));
1979 }
1980
1981 return SDValue(ShiftNode, 0);
1982 }
1983
1984 /// Does this tree qualify as an attempt to move a bitfield into position,
1985 /// essentially "(and (shl VAL, N), Mask)".
isBitfieldPositioningOp(SelectionDAG * CurDAG,SDValue Op,bool BiggerPattern,SDValue & Src,int & ShiftAmount,int & MaskWidth)1986 static bool isBitfieldPositioningOp(SelectionDAG *CurDAG, SDValue Op,
1987 bool BiggerPattern,
1988 SDValue &Src, int &ShiftAmount,
1989 int &MaskWidth) {
1990 EVT VT = Op.getValueType();
1991 unsigned BitWidth = VT.getSizeInBits();
1992 (void)BitWidth;
1993 assert(BitWidth == 32 || BitWidth == 64);
1994
1995 APInt KnownZero, KnownOne;
1996 CurDAG->computeKnownBits(Op, KnownZero, KnownOne);
1997
1998 // Non-zero in the sense that they're not provably zero, which is the key
1999 // point if we want to use this value
2000 uint64_t NonZeroBits = (~KnownZero).getZExtValue();
2001
2002 // Discard a constant AND mask if present. It's safe because the node will
2003 // already have been factored into the computeKnownBits calculation above.
2004 uint64_t AndImm;
2005 if (isOpcWithIntImmediate(Op.getNode(), ISD::AND, AndImm)) {
2006 assert((~APInt(BitWidth, AndImm) & ~KnownZero) == 0);
2007 Op = Op.getOperand(0);
2008 }
2009
2010 // Don't match if the SHL has more than one use, since then we'll end up
2011 // generating SHL+UBFIZ instead of just keeping SHL+AND.
2012 if (!BiggerPattern && !Op.hasOneUse())
2013 return false;
2014
2015 uint64_t ShlImm;
2016 if (!isOpcWithIntImmediate(Op.getNode(), ISD::SHL, ShlImm))
2017 return false;
2018 Op = Op.getOperand(0);
2019
2020 if (!isShiftedMask_64(NonZeroBits))
2021 return false;
2022
2023 ShiftAmount = countTrailingZeros(NonZeroBits);
2024 MaskWidth = countTrailingOnes(NonZeroBits >> ShiftAmount);
2025
2026 // BFI encompasses sufficiently many nodes that it's worth inserting an extra
2027 // LSL/LSR if the mask in NonZeroBits doesn't quite match up with the ISD::SHL
2028 // amount. BiggerPattern is true when this pattern is being matched for BFI,
2029 // BiggerPattern is false when this pattern is being matched for UBFIZ, in
2030 // which case it is not profitable to insert an extra shift.
2031 if (ShlImm - ShiftAmount != 0 && !BiggerPattern)
2032 return false;
2033 Src = getLeftShift(CurDAG, Op, ShlImm - ShiftAmount);
2034
2035 return true;
2036 }
2037
isShiftedMask(uint64_t Mask,EVT VT)2038 static bool isShiftedMask(uint64_t Mask, EVT VT) {
2039 assert(VT == MVT::i32 || VT == MVT::i64);
2040 if (VT == MVT::i32)
2041 return isShiftedMask_32(Mask);
2042 return isShiftedMask_64(Mask);
2043 }
2044
2045 // Generate a BFI/BFXIL from 'or (and X, MaskImm), OrImm' iff the value being
2046 // inserted only sets known zero bits.
tryBitfieldInsertOpFromOrAndImm(SDNode * N,SelectionDAG * CurDAG)2047 static bool tryBitfieldInsertOpFromOrAndImm(SDNode *N, SelectionDAG *CurDAG) {
2048 assert(N->getOpcode() == ISD::OR && "Expect a OR operation");
2049
2050 EVT VT = N->getValueType(0);
2051 if (VT != MVT::i32 && VT != MVT::i64)
2052 return false;
2053
2054 unsigned BitWidth = VT.getSizeInBits();
2055
2056 uint64_t OrImm;
2057 if (!isOpcWithIntImmediate(N, ISD::OR, OrImm))
2058 return false;
2059
2060 // Skip this transformation if the ORR immediate can be encoded in the ORR.
2061 // Otherwise, we'll trade an AND+ORR for ORR+BFI/BFXIL, which is most likely
2062 // performance neutral.
2063 if (AArch64_AM::isLogicalImmediate(OrImm, BitWidth))
2064 return false;
2065
2066 uint64_t MaskImm;
2067 SDValue And = N->getOperand(0);
2068 // Must be a single use AND with an immediate operand.
2069 if (!And.hasOneUse() ||
2070 !isOpcWithIntImmediate(And.getNode(), ISD::AND, MaskImm))
2071 return false;
2072
2073 // Compute the Known Zero for the AND as this allows us to catch more general
2074 // cases than just looking for AND with imm.
2075 APInt KnownZero, KnownOne;
2076 CurDAG->computeKnownBits(And, KnownZero, KnownOne);
2077
2078 // Non-zero in the sense that they're not provably zero, which is the key
2079 // point if we want to use this value.
2080 uint64_t NotKnownZero = (~KnownZero).getZExtValue();
2081
2082 // The KnownZero mask must be a shifted mask (e.g., 1110..011, 11100..00).
2083 if (!isShiftedMask(KnownZero.getZExtValue(), VT))
2084 return false;
2085
2086 // The bits being inserted must only set those bits that are known to be zero.
2087 if ((OrImm & NotKnownZero) != 0) {
2088 // FIXME: It's okay if the OrImm sets NotKnownZero bits to 1, but we don't
2089 // currently handle this case.
2090 return false;
2091 }
2092
2093 // BFI/BFXIL dst, src, #lsb, #width.
2094 int LSB = countTrailingOnes(NotKnownZero);
2095 int Width = BitWidth - APInt(BitWidth, NotKnownZero).countPopulation();
2096
2097 // BFI/BFXIL is an alias of BFM, so translate to BFM operands.
2098 unsigned ImmR = (BitWidth - LSB) % BitWidth;
2099 unsigned ImmS = Width - 1;
2100
2101 // If we're creating a BFI instruction avoid cases where we need more
2102 // instructions to materialize the BFI constant as compared to the original
2103 // ORR. A BFXIL will use the same constant as the original ORR, so the code
2104 // should be no worse in this case.
2105 bool IsBFI = LSB != 0;
2106 uint64_t BFIImm = OrImm >> LSB;
2107 if (IsBFI && !AArch64_AM::isLogicalImmediate(BFIImm, BitWidth)) {
2108 // We have a BFI instruction and we know the constant can't be materialized
2109 // with a ORR-immediate with the zero register.
2110 unsigned OrChunks = 0, BFIChunks = 0;
2111 for (unsigned Shift = 0; Shift < BitWidth; Shift += 16) {
2112 if (((OrImm >> Shift) & 0xFFFF) != 0)
2113 ++OrChunks;
2114 if (((BFIImm >> Shift) & 0xFFFF) != 0)
2115 ++BFIChunks;
2116 }
2117 if (BFIChunks > OrChunks)
2118 return false;
2119 }
2120
2121 // Materialize the constant to be inserted.
2122 SDLoc DL(N);
2123 unsigned MOVIOpc = VT == MVT::i32 ? AArch64::MOVi32imm : AArch64::MOVi64imm;
2124 SDNode *MOVI = CurDAG->getMachineNode(
2125 MOVIOpc, DL, VT, CurDAG->getTargetConstant(BFIImm, DL, VT));
2126
2127 // Create the BFI/BFXIL instruction.
2128 SDValue Ops[] = {And.getOperand(0), SDValue(MOVI, 0),
2129 CurDAG->getTargetConstant(ImmR, DL, VT),
2130 CurDAG->getTargetConstant(ImmS, DL, VT)};
2131 unsigned Opc = (VT == MVT::i32) ? AArch64::BFMWri : AArch64::BFMXri;
2132 CurDAG->SelectNodeTo(N, Opc, VT, Ops);
2133 return true;
2134 }
2135
tryBitfieldInsertOpFromOr(SDNode * N,const APInt & UsefulBits,SelectionDAG * CurDAG)2136 static bool tryBitfieldInsertOpFromOr(SDNode *N, const APInt &UsefulBits,
2137 SelectionDAG *CurDAG) {
2138 assert(N->getOpcode() == ISD::OR && "Expect a OR operation");
2139
2140 EVT VT = N->getValueType(0);
2141 if (VT != MVT::i32 && VT != MVT::i64)
2142 return false;
2143
2144 unsigned BitWidth = VT.getSizeInBits();
2145
2146 // Because of simplify-demanded-bits in DAGCombine, involved masks may not
2147 // have the expected shape. Try to undo that.
2148
2149 unsigned NumberOfIgnoredLowBits = UsefulBits.countTrailingZeros();
2150 unsigned NumberOfIgnoredHighBits = UsefulBits.countLeadingZeros();
2151
2152 // Given a OR operation, check if we have the following pattern
2153 // ubfm c, b, imm, imm2 (or something that does the same jobs, see
2154 // isBitfieldExtractOp)
2155 // d = e & mask2 ; where mask is a binary sequence of 1..10..0 and
2156 // countTrailingZeros(mask2) == imm2 - imm + 1
2157 // f = d | c
2158 // if yes, replace the OR instruction with:
2159 // f = BFM Opd0, Opd1, LSB, MSB ; where LSB = imm, and MSB = imm2
2160
2161 // OR is commutative, check all combinations of operand order and values of
2162 // BiggerPattern, i.e.
2163 // Opd0, Opd1, BiggerPattern=false
2164 // Opd1, Opd0, BiggerPattern=false
2165 // Opd0, Opd1, BiggerPattern=true
2166 // Opd1, Opd0, BiggerPattern=true
2167 // Several of these combinations may match, so check with BiggerPattern=false
2168 // first since that will produce better results by matching more instructions
2169 // and/or inserting fewer extra instructions.
2170 for (int I = 0; I < 4; ++I) {
2171
2172 SDValue Dst, Src;
2173 unsigned ImmR, ImmS;
2174 bool BiggerPattern = I / 2;
2175 SDValue OrOpd0Val = N->getOperand(I % 2);
2176 SDNode *OrOpd0 = OrOpd0Val.getNode();
2177 SDValue OrOpd1Val = N->getOperand((I + 1) % 2);
2178 SDNode *OrOpd1 = OrOpd1Val.getNode();
2179
2180 unsigned BFXOpc;
2181 int DstLSB, Width;
2182 if (isBitfieldExtractOp(CurDAG, OrOpd0, BFXOpc, Src, ImmR, ImmS,
2183 NumberOfIgnoredLowBits, BiggerPattern)) {
2184 // Check that the returned opcode is compatible with the pattern,
2185 // i.e., same type and zero extended (U and not S)
2186 if ((BFXOpc != AArch64::UBFMXri && VT == MVT::i64) ||
2187 (BFXOpc != AArch64::UBFMWri && VT == MVT::i32))
2188 continue;
2189
2190 // Compute the width of the bitfield insertion
2191 DstLSB = 0;
2192 Width = ImmS - ImmR + 1;
2193 // FIXME: This constraint is to catch bitfield insertion we may
2194 // want to widen the pattern if we want to grab general bitfied
2195 // move case
2196 if (Width <= 0)
2197 continue;
2198
2199 // If the mask on the insertee is correct, we have a BFXIL operation. We
2200 // can share the ImmR and ImmS values from the already-computed UBFM.
2201 } else if (isBitfieldPositioningOp(CurDAG, OrOpd0Val,
2202 BiggerPattern,
2203 Src, DstLSB, Width)) {
2204 ImmR = (BitWidth - DstLSB) % BitWidth;
2205 ImmS = Width - 1;
2206 } else
2207 continue;
2208
2209 // Check the second part of the pattern
2210 EVT VT = OrOpd1->getValueType(0);
2211 assert((VT == MVT::i32 || VT == MVT::i64) && "unexpected OR operand");
2212
2213 // Compute the Known Zero for the candidate of the first operand.
2214 // This allows to catch more general case than just looking for
2215 // AND with imm. Indeed, simplify-demanded-bits may have removed
2216 // the AND instruction because it proves it was useless.
2217 APInt KnownZero, KnownOne;
2218 CurDAG->computeKnownBits(OrOpd1Val, KnownZero, KnownOne);
2219
2220 // Check if there is enough room for the second operand to appear
2221 // in the first one
2222 APInt BitsToBeInserted =
2223 APInt::getBitsSet(KnownZero.getBitWidth(), DstLSB, DstLSB + Width);
2224
2225 if ((BitsToBeInserted & ~KnownZero) != 0)
2226 continue;
2227
2228 // Set the first operand
2229 uint64_t Imm;
2230 if (isOpcWithIntImmediate(OrOpd1, ISD::AND, Imm) &&
2231 isBitfieldDstMask(Imm, BitsToBeInserted, NumberOfIgnoredHighBits, VT))
2232 // In that case, we can eliminate the AND
2233 Dst = OrOpd1->getOperand(0);
2234 else
2235 // Maybe the AND has been removed by simplify-demanded-bits
2236 // or is useful because it discards more bits
2237 Dst = OrOpd1Val;
2238
2239 // both parts match
2240 SDLoc DL(N);
2241 SDValue Ops[] = {Dst, Src, CurDAG->getTargetConstant(ImmR, DL, VT),
2242 CurDAG->getTargetConstant(ImmS, DL, VT)};
2243 unsigned Opc = (VT == MVT::i32) ? AArch64::BFMWri : AArch64::BFMXri;
2244 CurDAG->SelectNodeTo(N, Opc, VT, Ops);
2245 return true;
2246 }
2247
2248 // Generate a BFXIL from 'or (and X, Mask0Imm), (and Y, Mask1Imm)' iff
2249 // Mask0Imm and ~Mask1Imm are equivalent and one of the MaskImms is a shifted
2250 // mask (e.g., 0x000ffff0).
2251 uint64_t Mask0Imm, Mask1Imm;
2252 SDValue And0 = N->getOperand(0);
2253 SDValue And1 = N->getOperand(1);
2254 if (And0.hasOneUse() && And1.hasOneUse() &&
2255 isOpcWithIntImmediate(And0.getNode(), ISD::AND, Mask0Imm) &&
2256 isOpcWithIntImmediate(And1.getNode(), ISD::AND, Mask1Imm) &&
2257 APInt(BitWidth, Mask0Imm) == ~APInt(BitWidth, Mask1Imm) &&
2258 (isShiftedMask(Mask0Imm, VT) || isShiftedMask(Mask1Imm, VT))) {
2259
2260 // ORR is commutative, so canonicalize to the form 'or (and X, Mask0Imm),
2261 // (and Y, Mask1Imm)' where Mask1Imm is the shifted mask masking off the
2262 // bits to be inserted.
2263 if (isShiftedMask(Mask0Imm, VT)) {
2264 std::swap(And0, And1);
2265 std::swap(Mask0Imm, Mask1Imm);
2266 }
2267
2268 SDValue Src = And1->getOperand(0);
2269 SDValue Dst = And0->getOperand(0);
2270 unsigned LSB = countTrailingZeros(Mask1Imm);
2271 int Width = BitWidth - APInt(BitWidth, Mask0Imm).countPopulation();
2272
2273 // The BFXIL inserts the low-order bits from a source register, so right
2274 // shift the needed bits into place.
2275 SDLoc DL(N);
2276 unsigned ShiftOpc = (VT == MVT::i32) ? AArch64::UBFMWri : AArch64::UBFMXri;
2277 SDNode *LSR = CurDAG->getMachineNode(
2278 ShiftOpc, DL, VT, Src, CurDAG->getTargetConstant(LSB, DL, VT),
2279 CurDAG->getTargetConstant(BitWidth - 1, DL, VT));
2280
2281 // BFXIL is an alias of BFM, so translate to BFM operands.
2282 unsigned ImmR = (BitWidth - LSB) % BitWidth;
2283 unsigned ImmS = Width - 1;
2284
2285 // Create the BFXIL instruction.
2286 SDValue Ops[] = {Dst, SDValue(LSR, 0),
2287 CurDAG->getTargetConstant(ImmR, DL, VT),
2288 CurDAG->getTargetConstant(ImmS, DL, VT)};
2289 unsigned Opc = (VT == MVT::i32) ? AArch64::BFMWri : AArch64::BFMXri;
2290 CurDAG->SelectNodeTo(N, Opc, VT, Ops);
2291 return true;
2292 }
2293
2294 return false;
2295 }
2296
tryBitfieldInsertOp(SDNode * N)2297 bool AArch64DAGToDAGISel::tryBitfieldInsertOp(SDNode *N) {
2298 if (N->getOpcode() != ISD::OR)
2299 return false;
2300
2301 APInt NUsefulBits;
2302 getUsefulBits(SDValue(N, 0), NUsefulBits);
2303
2304 // If all bits are not useful, just return UNDEF.
2305 if (!NUsefulBits) {
2306 CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0));
2307 return true;
2308 }
2309
2310 if (tryBitfieldInsertOpFromOr(N, NUsefulBits, CurDAG))
2311 return true;
2312
2313 return tryBitfieldInsertOpFromOrAndImm(N, CurDAG);
2314 }
2315
2316 /// SelectBitfieldInsertInZeroOp - Match a UBFIZ instruction that is the
2317 /// equivalent of a left shift by a constant amount followed by an and masking
2318 /// out a contiguous set of bits.
tryBitfieldInsertInZeroOp(SDNode * N)2319 bool AArch64DAGToDAGISel::tryBitfieldInsertInZeroOp(SDNode *N) {
2320 if (N->getOpcode() != ISD::AND)
2321 return false;
2322
2323 EVT VT = N->getValueType(0);
2324 if (VT != MVT::i32 && VT != MVT::i64)
2325 return false;
2326
2327 SDValue Op0;
2328 int DstLSB, Width;
2329 if (!isBitfieldPositioningOp(CurDAG, SDValue(N, 0), /*BiggerPattern=*/false,
2330 Op0, DstLSB, Width))
2331 return false;
2332
2333 // ImmR is the rotate right amount.
2334 unsigned ImmR = (VT.getSizeInBits() - DstLSB) % VT.getSizeInBits();
2335 // ImmS is the most significant bit of the source to be moved.
2336 unsigned ImmS = Width - 1;
2337
2338 SDLoc DL(N);
2339 SDValue Ops[] = {Op0, CurDAG->getTargetConstant(ImmR, DL, VT),
2340 CurDAG->getTargetConstant(ImmS, DL, VT)};
2341 unsigned Opc = (VT == MVT::i32) ? AArch64::UBFMWri : AArch64::UBFMXri;
2342 CurDAG->SelectNodeTo(N, Opc, VT, Ops);
2343 return true;
2344 }
2345
2346 bool
SelectCVTFixedPosOperand(SDValue N,SDValue & FixedPos,unsigned RegWidth)2347 AArch64DAGToDAGISel::SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos,
2348 unsigned RegWidth) {
2349 APFloat FVal(0.0);
2350 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
2351 FVal = CN->getValueAPF();
2352 else if (LoadSDNode *LN = dyn_cast<LoadSDNode>(N)) {
2353 // Some otherwise illegal constants are allowed in this case.
2354 if (LN->getOperand(1).getOpcode() != AArch64ISD::ADDlow ||
2355 !isa<ConstantPoolSDNode>(LN->getOperand(1)->getOperand(1)))
2356 return false;
2357
2358 ConstantPoolSDNode *CN =
2359 dyn_cast<ConstantPoolSDNode>(LN->getOperand(1)->getOperand(1));
2360 FVal = cast<ConstantFP>(CN->getConstVal())->getValueAPF();
2361 } else
2362 return false;
2363
2364 // An FCVT[SU] instruction performs: convertToInt(Val * 2^fbits) where fbits
2365 // is between 1 and 32 for a destination w-register, or 1 and 64 for an
2366 // x-register.
2367 //
2368 // By this stage, we've detected (fp_to_[su]int (fmul Val, THIS_NODE)) so we
2369 // want THIS_NODE to be 2^fbits. This is much easier to deal with using
2370 // integers.
2371 bool IsExact;
2372
2373 // fbits is between 1 and 64 in the worst-case, which means the fmul
2374 // could have 2^64 as an actual operand. Need 65 bits of precision.
2375 APSInt IntVal(65, true);
2376 FVal.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact);
2377
2378 // N.b. isPowerOf2 also checks for > 0.
2379 if (!IsExact || !IntVal.isPowerOf2()) return false;
2380 unsigned FBits = IntVal.logBase2();
2381
2382 // Checks above should have guaranteed that we haven't lost information in
2383 // finding FBits, but it must still be in range.
2384 if (FBits == 0 || FBits > RegWidth) return false;
2385
2386 FixedPos = CurDAG->getTargetConstant(FBits, SDLoc(N), MVT::i32);
2387 return true;
2388 }
2389
2390 // Inspects a register string of the form o0:op1:CRn:CRm:op2 gets the fields
2391 // of the string and obtains the integer values from them and combines these
2392 // into a single value to be used in the MRS/MSR instruction.
getIntOperandFromRegisterString(StringRef RegString)2393 static int getIntOperandFromRegisterString(StringRef RegString) {
2394 SmallVector<StringRef, 5> Fields;
2395 RegString.split(Fields, ':');
2396
2397 if (Fields.size() == 1)
2398 return -1;
2399
2400 assert(Fields.size() == 5
2401 && "Invalid number of fields in read register string");
2402
2403 SmallVector<int, 5> Ops;
2404 bool AllIntFields = true;
2405
2406 for (StringRef Field : Fields) {
2407 unsigned IntField;
2408 AllIntFields &= !Field.getAsInteger(10, IntField);
2409 Ops.push_back(IntField);
2410 }
2411
2412 assert(AllIntFields &&
2413 "Unexpected non-integer value in special register string.");
2414
2415 // Need to combine the integer fields of the string into a single value
2416 // based on the bit encoding of MRS/MSR instruction.
2417 return (Ops[0] << 14) | (Ops[1] << 11) | (Ops[2] << 7) |
2418 (Ops[3] << 3) | (Ops[4]);
2419 }
2420
2421 // Lower the read_register intrinsic to an MRS instruction node if the special
2422 // register string argument is either of the form detailed in the ALCE (the
2423 // form described in getIntOperandsFromRegsterString) or is a named register
2424 // known by the MRS SysReg mapper.
tryReadRegister(SDNode * N)2425 bool AArch64DAGToDAGISel::tryReadRegister(SDNode *N) {
2426 const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(N->getOperand(1));
2427 const MDString *RegString = dyn_cast<MDString>(MD->getMD()->getOperand(0));
2428 SDLoc DL(N);
2429
2430 int Reg = getIntOperandFromRegisterString(RegString->getString());
2431 if (Reg != -1) {
2432 ReplaceNode(N, CurDAG->getMachineNode(
2433 AArch64::MRS, DL, N->getSimpleValueType(0), MVT::Other,
2434 CurDAG->getTargetConstant(Reg, DL, MVT::i32),
2435 N->getOperand(0)));
2436 return true;
2437 }
2438
2439 // Use the sysreg mapper to map the remaining possible strings to the
2440 // value for the register to be used for the instruction operand.
2441 auto TheReg = AArch64SysReg::lookupSysRegByName(RegString->getString());
2442 if (TheReg && TheReg->Readable &&
2443 TheReg->haveFeatures(Subtarget->getFeatureBits()))
2444 Reg = TheReg->Encoding;
2445 else
2446 Reg = AArch64SysReg::parseGenericRegister(RegString->getString());
2447
2448 if (Reg != -1) {
2449 ReplaceNode(N, CurDAG->getMachineNode(
2450 AArch64::MRS, DL, N->getSimpleValueType(0), MVT::Other,
2451 CurDAG->getTargetConstant(Reg, DL, MVT::i32),
2452 N->getOperand(0)));
2453 return true;
2454 }
2455
2456 return false;
2457 }
2458
2459 // Lower the write_register intrinsic to an MSR instruction node if the special
2460 // register string argument is either of the form detailed in the ALCE (the
2461 // form described in getIntOperandsFromRegsterString) or is a named register
2462 // known by the MSR SysReg mapper.
tryWriteRegister(SDNode * N)2463 bool AArch64DAGToDAGISel::tryWriteRegister(SDNode *N) {
2464 const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(N->getOperand(1));
2465 const MDString *RegString = dyn_cast<MDString>(MD->getMD()->getOperand(0));
2466 SDLoc DL(N);
2467
2468 int Reg = getIntOperandFromRegisterString(RegString->getString());
2469 if (Reg != -1) {
2470 ReplaceNode(
2471 N, CurDAG->getMachineNode(AArch64::MSR, DL, MVT::Other,
2472 CurDAG->getTargetConstant(Reg, DL, MVT::i32),
2473 N->getOperand(2), N->getOperand(0)));
2474 return true;
2475 }
2476
2477 // Check if the register was one of those allowed as the pstatefield value in
2478 // the MSR (immediate) instruction. To accept the values allowed in the
2479 // pstatefield for the MSR (immediate) instruction, we also require that an
2480 // immediate value has been provided as an argument, we know that this is
2481 // the case as it has been ensured by semantic checking.
2482 auto PMapper = AArch64PState::lookupPStateByName(RegString->getString());;
2483 if (PMapper) {
2484 assert (isa<ConstantSDNode>(N->getOperand(2))
2485 && "Expected a constant integer expression.");
2486 unsigned Reg = PMapper->Encoding;
2487 uint64_t Immed = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
2488 unsigned State;
2489 if (Reg == AArch64PState::PAN || Reg == AArch64PState::UAO) {
2490 assert(Immed < 2 && "Bad imm");
2491 State = AArch64::MSRpstateImm1;
2492 } else {
2493 assert(Immed < 16 && "Bad imm");
2494 State = AArch64::MSRpstateImm4;
2495 }
2496 ReplaceNode(N, CurDAG->getMachineNode(
2497 State, DL, MVT::Other,
2498 CurDAG->getTargetConstant(Reg, DL, MVT::i32),
2499 CurDAG->getTargetConstant(Immed, DL, MVT::i16),
2500 N->getOperand(0)));
2501 return true;
2502 }
2503
2504 // Use the sysreg mapper to attempt to map the remaining possible strings
2505 // to the value for the register to be used for the MSR (register)
2506 // instruction operand.
2507 auto TheReg = AArch64SysReg::lookupSysRegByName(RegString->getString());
2508 if (TheReg && TheReg->Writeable &&
2509 TheReg->haveFeatures(Subtarget->getFeatureBits()))
2510 Reg = TheReg->Encoding;
2511 else
2512 Reg = AArch64SysReg::parseGenericRegister(RegString->getString());
2513 if (Reg != -1) {
2514 ReplaceNode(N, CurDAG->getMachineNode(
2515 AArch64::MSR, DL, MVT::Other,
2516 CurDAG->getTargetConstant(Reg, DL, MVT::i32),
2517 N->getOperand(2), N->getOperand(0)));
2518 return true;
2519 }
2520
2521 return false;
2522 }
2523
2524 /// We've got special pseudo-instructions for these
SelectCMP_SWAP(SDNode * N)2525 void AArch64DAGToDAGISel::SelectCMP_SWAP(SDNode *N) {
2526 unsigned Opcode;
2527 EVT MemTy = cast<MemSDNode>(N)->getMemoryVT();
2528 if (MemTy == MVT::i8)
2529 Opcode = AArch64::CMP_SWAP_8;
2530 else if (MemTy == MVT::i16)
2531 Opcode = AArch64::CMP_SWAP_16;
2532 else if (MemTy == MVT::i32)
2533 Opcode = AArch64::CMP_SWAP_32;
2534 else if (MemTy == MVT::i64)
2535 Opcode = AArch64::CMP_SWAP_64;
2536 else
2537 llvm_unreachable("Unknown AtomicCmpSwap type");
2538
2539 MVT RegTy = MemTy == MVT::i64 ? MVT::i64 : MVT::i32;
2540 SDValue Ops[] = {N->getOperand(1), N->getOperand(2), N->getOperand(3),
2541 N->getOperand(0)};
2542 SDNode *CmpSwap = CurDAG->getMachineNode(
2543 Opcode, SDLoc(N),
2544 CurDAG->getVTList(RegTy, MVT::i32, MVT::Other), Ops);
2545
2546 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
2547 MemOp[0] = cast<MemSDNode>(N)->getMemOperand();
2548 cast<MachineSDNode>(CmpSwap)->setMemRefs(MemOp, MemOp + 1);
2549
2550 ReplaceUses(SDValue(N, 0), SDValue(CmpSwap, 0));
2551 ReplaceUses(SDValue(N, 1), SDValue(CmpSwap, 2));
2552 CurDAG->RemoveDeadNode(N);
2553 }
2554
Select(SDNode * Node)2555 void AArch64DAGToDAGISel::Select(SDNode *Node) {
2556 // Dump information about the Node being selected
2557 DEBUG(errs() << "Selecting: ");
2558 DEBUG(Node->dump(CurDAG));
2559 DEBUG(errs() << "\n");
2560
2561 // If we have a custom node, we already have selected!
2562 if (Node->isMachineOpcode()) {
2563 DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
2564 Node->setNodeId(-1);
2565 return;
2566 }
2567
2568 // Few custom selection stuff.
2569 EVT VT = Node->getValueType(0);
2570
2571 switch (Node->getOpcode()) {
2572 default:
2573 break;
2574
2575 case ISD::ATOMIC_CMP_SWAP:
2576 SelectCMP_SWAP(Node);
2577 return;
2578
2579 case ISD::READ_REGISTER:
2580 if (tryReadRegister(Node))
2581 return;
2582 break;
2583
2584 case ISD::WRITE_REGISTER:
2585 if (tryWriteRegister(Node))
2586 return;
2587 break;
2588
2589 case ISD::ADD:
2590 if (tryMLAV64LaneV128(Node))
2591 return;
2592 break;
2593
2594 case ISD::LOAD: {
2595 // Try to select as an indexed load. Fall through to normal processing
2596 // if we can't.
2597 if (tryIndexedLoad(Node))
2598 return;
2599 break;
2600 }
2601
2602 case ISD::SRL:
2603 case ISD::AND:
2604 case ISD::SRA:
2605 case ISD::SIGN_EXTEND_INREG:
2606 if (tryBitfieldExtractOp(Node))
2607 return;
2608 if (tryBitfieldInsertInZeroOp(Node))
2609 return;
2610 break;
2611
2612 case ISD::SIGN_EXTEND:
2613 if (tryBitfieldExtractOpFromSExt(Node))
2614 return;
2615 break;
2616
2617 case ISD::OR:
2618 if (tryBitfieldInsertOp(Node))
2619 return;
2620 break;
2621
2622 case ISD::EXTRACT_VECTOR_ELT: {
2623 // Extracting lane zero is a special case where we can just use a plain
2624 // EXTRACT_SUBREG instruction, which will become FMOV. This is easier for
2625 // the rest of the compiler, especially the register allocator and copyi
2626 // propagation, to reason about, so is preferred when it's possible to
2627 // use it.
2628 ConstantSDNode *LaneNode = cast<ConstantSDNode>(Node->getOperand(1));
2629 // Bail and use the default Select() for non-zero lanes.
2630 if (LaneNode->getZExtValue() != 0)
2631 break;
2632 // If the element type is not the same as the result type, likewise
2633 // bail and use the default Select(), as there's more to do than just
2634 // a cross-class COPY. This catches extracts of i8 and i16 elements
2635 // since they will need an explicit zext.
2636 if (VT != Node->getOperand(0).getValueType().getVectorElementType())
2637 break;
2638 unsigned SubReg;
2639 switch (Node->getOperand(0)
2640 .getValueType()
2641 .getVectorElementType()
2642 .getSizeInBits()) {
2643 default:
2644 llvm_unreachable("Unexpected vector element type!");
2645 case 64:
2646 SubReg = AArch64::dsub;
2647 break;
2648 case 32:
2649 SubReg = AArch64::ssub;
2650 break;
2651 case 16:
2652 SubReg = AArch64::hsub;
2653 break;
2654 case 8:
2655 llvm_unreachable("unexpected zext-requiring extract element!");
2656 }
2657 SDValue Extract = CurDAG->getTargetExtractSubreg(SubReg, SDLoc(Node), VT,
2658 Node->getOperand(0));
2659 DEBUG(dbgs() << "ISEL: Custom selection!\n=> ");
2660 DEBUG(Extract->dumpr(CurDAG));
2661 DEBUG(dbgs() << "\n");
2662 ReplaceNode(Node, Extract.getNode());
2663 return;
2664 }
2665 case ISD::Constant: {
2666 // Materialize zero constants as copies from WZR/XZR. This allows
2667 // the coalescer to propagate these into other instructions.
2668 ConstantSDNode *ConstNode = cast<ConstantSDNode>(Node);
2669 if (ConstNode->isNullValue()) {
2670 if (VT == MVT::i32) {
2671 SDValue New = CurDAG->getCopyFromReg(
2672 CurDAG->getEntryNode(), SDLoc(Node), AArch64::WZR, MVT::i32);
2673 ReplaceNode(Node, New.getNode());
2674 return;
2675 } else if (VT == MVT::i64) {
2676 SDValue New = CurDAG->getCopyFromReg(
2677 CurDAG->getEntryNode(), SDLoc(Node), AArch64::XZR, MVT::i64);
2678 ReplaceNode(Node, New.getNode());
2679 return;
2680 }
2681 }
2682 break;
2683 }
2684
2685 case ISD::FrameIndex: {
2686 // Selects to ADDXri FI, 0 which in turn will become ADDXri SP, imm.
2687 int FI = cast<FrameIndexSDNode>(Node)->getIndex();
2688 unsigned Shifter = AArch64_AM::getShifterImm(AArch64_AM::LSL, 0);
2689 const TargetLowering *TLI = getTargetLowering();
2690 SDValue TFI = CurDAG->getTargetFrameIndex(
2691 FI, TLI->getPointerTy(CurDAG->getDataLayout()));
2692 SDLoc DL(Node);
2693 SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, DL, MVT::i32),
2694 CurDAG->getTargetConstant(Shifter, DL, MVT::i32) };
2695 CurDAG->SelectNodeTo(Node, AArch64::ADDXri, MVT::i64, Ops);
2696 return;
2697 }
2698 case ISD::INTRINSIC_W_CHAIN: {
2699 unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
2700 switch (IntNo) {
2701 default:
2702 break;
2703 case Intrinsic::aarch64_ldaxp:
2704 case Intrinsic::aarch64_ldxp: {
2705 unsigned Op =
2706 IntNo == Intrinsic::aarch64_ldaxp ? AArch64::LDAXPX : AArch64::LDXPX;
2707 SDValue MemAddr = Node->getOperand(2);
2708 SDLoc DL(Node);
2709 SDValue Chain = Node->getOperand(0);
2710
2711 SDNode *Ld = CurDAG->getMachineNode(Op, DL, MVT::i64, MVT::i64,
2712 MVT::Other, MemAddr, Chain);
2713
2714 // Transfer memoperands.
2715 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
2716 MemOp[0] = cast<MemIntrinsicSDNode>(Node)->getMemOperand();
2717 cast<MachineSDNode>(Ld)->setMemRefs(MemOp, MemOp + 1);
2718 ReplaceNode(Node, Ld);
2719 return;
2720 }
2721 case Intrinsic::aarch64_stlxp:
2722 case Intrinsic::aarch64_stxp: {
2723 unsigned Op =
2724 IntNo == Intrinsic::aarch64_stlxp ? AArch64::STLXPX : AArch64::STXPX;
2725 SDLoc DL(Node);
2726 SDValue Chain = Node->getOperand(0);
2727 SDValue ValLo = Node->getOperand(2);
2728 SDValue ValHi = Node->getOperand(3);
2729 SDValue MemAddr = Node->getOperand(4);
2730
2731 // Place arguments in the right order.
2732 SDValue Ops[] = {ValLo, ValHi, MemAddr, Chain};
2733
2734 SDNode *St = CurDAG->getMachineNode(Op, DL, MVT::i32, MVT::Other, Ops);
2735 // Transfer memoperands.
2736 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
2737 MemOp[0] = cast<MemIntrinsicSDNode>(Node)->getMemOperand();
2738 cast<MachineSDNode>(St)->setMemRefs(MemOp, MemOp + 1);
2739
2740 ReplaceNode(Node, St);
2741 return;
2742 }
2743 case Intrinsic::aarch64_neon_ld1x2:
2744 if (VT == MVT::v8i8) {
2745 SelectLoad(Node, 2, AArch64::LD1Twov8b, AArch64::dsub0);
2746 return;
2747 } else if (VT == MVT::v16i8) {
2748 SelectLoad(Node, 2, AArch64::LD1Twov16b, AArch64::qsub0);
2749 return;
2750 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
2751 SelectLoad(Node, 2, AArch64::LD1Twov4h, AArch64::dsub0);
2752 return;
2753 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
2754 SelectLoad(Node, 2, AArch64::LD1Twov8h, AArch64::qsub0);
2755 return;
2756 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
2757 SelectLoad(Node, 2, AArch64::LD1Twov2s, AArch64::dsub0);
2758 return;
2759 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
2760 SelectLoad(Node, 2, AArch64::LD1Twov4s, AArch64::qsub0);
2761 return;
2762 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
2763 SelectLoad(Node, 2, AArch64::LD1Twov1d, AArch64::dsub0);
2764 return;
2765 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
2766 SelectLoad(Node, 2, AArch64::LD1Twov2d, AArch64::qsub0);
2767 return;
2768 }
2769 break;
2770 case Intrinsic::aarch64_neon_ld1x3:
2771 if (VT == MVT::v8i8) {
2772 SelectLoad(Node, 3, AArch64::LD1Threev8b, AArch64::dsub0);
2773 return;
2774 } else if (VT == MVT::v16i8) {
2775 SelectLoad(Node, 3, AArch64::LD1Threev16b, AArch64::qsub0);
2776 return;
2777 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
2778 SelectLoad(Node, 3, AArch64::LD1Threev4h, AArch64::dsub0);
2779 return;
2780 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
2781 SelectLoad(Node, 3, AArch64::LD1Threev8h, AArch64::qsub0);
2782 return;
2783 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
2784 SelectLoad(Node, 3, AArch64::LD1Threev2s, AArch64::dsub0);
2785 return;
2786 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
2787 SelectLoad(Node, 3, AArch64::LD1Threev4s, AArch64::qsub0);
2788 return;
2789 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
2790 SelectLoad(Node, 3, AArch64::LD1Threev1d, AArch64::dsub0);
2791 return;
2792 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
2793 SelectLoad(Node, 3, AArch64::LD1Threev2d, AArch64::qsub0);
2794 return;
2795 }
2796 break;
2797 case Intrinsic::aarch64_neon_ld1x4:
2798 if (VT == MVT::v8i8) {
2799 SelectLoad(Node, 4, AArch64::LD1Fourv8b, AArch64::dsub0);
2800 return;
2801 } else if (VT == MVT::v16i8) {
2802 SelectLoad(Node, 4, AArch64::LD1Fourv16b, AArch64::qsub0);
2803 return;
2804 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
2805 SelectLoad(Node, 4, AArch64::LD1Fourv4h, AArch64::dsub0);
2806 return;
2807 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
2808 SelectLoad(Node, 4, AArch64::LD1Fourv8h, AArch64::qsub0);
2809 return;
2810 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
2811 SelectLoad(Node, 4, AArch64::LD1Fourv2s, AArch64::dsub0);
2812 return;
2813 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
2814 SelectLoad(Node, 4, AArch64::LD1Fourv4s, AArch64::qsub0);
2815 return;
2816 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
2817 SelectLoad(Node, 4, AArch64::LD1Fourv1d, AArch64::dsub0);
2818 return;
2819 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
2820 SelectLoad(Node, 4, AArch64::LD1Fourv2d, AArch64::qsub0);
2821 return;
2822 }
2823 break;
2824 case Intrinsic::aarch64_neon_ld2:
2825 if (VT == MVT::v8i8) {
2826 SelectLoad(Node, 2, AArch64::LD2Twov8b, AArch64::dsub0);
2827 return;
2828 } else if (VT == MVT::v16i8) {
2829 SelectLoad(Node, 2, AArch64::LD2Twov16b, AArch64::qsub0);
2830 return;
2831 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
2832 SelectLoad(Node, 2, AArch64::LD2Twov4h, AArch64::dsub0);
2833 return;
2834 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
2835 SelectLoad(Node, 2, AArch64::LD2Twov8h, AArch64::qsub0);
2836 return;
2837 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
2838 SelectLoad(Node, 2, AArch64::LD2Twov2s, AArch64::dsub0);
2839 return;
2840 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
2841 SelectLoad(Node, 2, AArch64::LD2Twov4s, AArch64::qsub0);
2842 return;
2843 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
2844 SelectLoad(Node, 2, AArch64::LD1Twov1d, AArch64::dsub0);
2845 return;
2846 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
2847 SelectLoad(Node, 2, AArch64::LD2Twov2d, AArch64::qsub0);
2848 return;
2849 }
2850 break;
2851 case Intrinsic::aarch64_neon_ld3:
2852 if (VT == MVT::v8i8) {
2853 SelectLoad(Node, 3, AArch64::LD3Threev8b, AArch64::dsub0);
2854 return;
2855 } else if (VT == MVT::v16i8) {
2856 SelectLoad(Node, 3, AArch64::LD3Threev16b, AArch64::qsub0);
2857 return;
2858 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
2859 SelectLoad(Node, 3, AArch64::LD3Threev4h, AArch64::dsub0);
2860 return;
2861 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
2862 SelectLoad(Node, 3, AArch64::LD3Threev8h, AArch64::qsub0);
2863 return;
2864 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
2865 SelectLoad(Node, 3, AArch64::LD3Threev2s, AArch64::dsub0);
2866 return;
2867 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
2868 SelectLoad(Node, 3, AArch64::LD3Threev4s, AArch64::qsub0);
2869 return;
2870 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
2871 SelectLoad(Node, 3, AArch64::LD1Threev1d, AArch64::dsub0);
2872 return;
2873 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
2874 SelectLoad(Node, 3, AArch64::LD3Threev2d, AArch64::qsub0);
2875 return;
2876 }
2877 break;
2878 case Intrinsic::aarch64_neon_ld4:
2879 if (VT == MVT::v8i8) {
2880 SelectLoad(Node, 4, AArch64::LD4Fourv8b, AArch64::dsub0);
2881 return;
2882 } else if (VT == MVT::v16i8) {
2883 SelectLoad(Node, 4, AArch64::LD4Fourv16b, AArch64::qsub0);
2884 return;
2885 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
2886 SelectLoad(Node, 4, AArch64::LD4Fourv4h, AArch64::dsub0);
2887 return;
2888 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
2889 SelectLoad(Node, 4, AArch64::LD4Fourv8h, AArch64::qsub0);
2890 return;
2891 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
2892 SelectLoad(Node, 4, AArch64::LD4Fourv2s, AArch64::dsub0);
2893 return;
2894 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
2895 SelectLoad(Node, 4, AArch64::LD4Fourv4s, AArch64::qsub0);
2896 return;
2897 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
2898 SelectLoad(Node, 4, AArch64::LD1Fourv1d, AArch64::dsub0);
2899 return;
2900 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
2901 SelectLoad(Node, 4, AArch64::LD4Fourv2d, AArch64::qsub0);
2902 return;
2903 }
2904 break;
2905 case Intrinsic::aarch64_neon_ld2r:
2906 if (VT == MVT::v8i8) {
2907 SelectLoad(Node, 2, AArch64::LD2Rv8b, AArch64::dsub0);
2908 return;
2909 } else if (VT == MVT::v16i8) {
2910 SelectLoad(Node, 2, AArch64::LD2Rv16b, AArch64::qsub0);
2911 return;
2912 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
2913 SelectLoad(Node, 2, AArch64::LD2Rv4h, AArch64::dsub0);
2914 return;
2915 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
2916 SelectLoad(Node, 2, AArch64::LD2Rv8h, AArch64::qsub0);
2917 return;
2918 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
2919 SelectLoad(Node, 2, AArch64::LD2Rv2s, AArch64::dsub0);
2920 return;
2921 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
2922 SelectLoad(Node, 2, AArch64::LD2Rv4s, AArch64::qsub0);
2923 return;
2924 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
2925 SelectLoad(Node, 2, AArch64::LD2Rv1d, AArch64::dsub0);
2926 return;
2927 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
2928 SelectLoad(Node, 2, AArch64::LD2Rv2d, AArch64::qsub0);
2929 return;
2930 }
2931 break;
2932 case Intrinsic::aarch64_neon_ld3r:
2933 if (VT == MVT::v8i8) {
2934 SelectLoad(Node, 3, AArch64::LD3Rv8b, AArch64::dsub0);
2935 return;
2936 } else if (VT == MVT::v16i8) {
2937 SelectLoad(Node, 3, AArch64::LD3Rv16b, AArch64::qsub0);
2938 return;
2939 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
2940 SelectLoad(Node, 3, AArch64::LD3Rv4h, AArch64::dsub0);
2941 return;
2942 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
2943 SelectLoad(Node, 3, AArch64::LD3Rv8h, AArch64::qsub0);
2944 return;
2945 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
2946 SelectLoad(Node, 3, AArch64::LD3Rv2s, AArch64::dsub0);
2947 return;
2948 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
2949 SelectLoad(Node, 3, AArch64::LD3Rv4s, AArch64::qsub0);
2950 return;
2951 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
2952 SelectLoad(Node, 3, AArch64::LD3Rv1d, AArch64::dsub0);
2953 return;
2954 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
2955 SelectLoad(Node, 3, AArch64::LD3Rv2d, AArch64::qsub0);
2956 return;
2957 }
2958 break;
2959 case Intrinsic::aarch64_neon_ld4r:
2960 if (VT == MVT::v8i8) {
2961 SelectLoad(Node, 4, AArch64::LD4Rv8b, AArch64::dsub0);
2962 return;
2963 } else if (VT == MVT::v16i8) {
2964 SelectLoad(Node, 4, AArch64::LD4Rv16b, AArch64::qsub0);
2965 return;
2966 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
2967 SelectLoad(Node, 4, AArch64::LD4Rv4h, AArch64::dsub0);
2968 return;
2969 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
2970 SelectLoad(Node, 4, AArch64::LD4Rv8h, AArch64::qsub0);
2971 return;
2972 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
2973 SelectLoad(Node, 4, AArch64::LD4Rv2s, AArch64::dsub0);
2974 return;
2975 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
2976 SelectLoad(Node, 4, AArch64::LD4Rv4s, AArch64::qsub0);
2977 return;
2978 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
2979 SelectLoad(Node, 4, AArch64::LD4Rv1d, AArch64::dsub0);
2980 return;
2981 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
2982 SelectLoad(Node, 4, AArch64::LD4Rv2d, AArch64::qsub0);
2983 return;
2984 }
2985 break;
2986 case Intrinsic::aarch64_neon_ld2lane:
2987 if (VT == MVT::v16i8 || VT == MVT::v8i8) {
2988 SelectLoadLane(Node, 2, AArch64::LD2i8);
2989 return;
2990 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
2991 VT == MVT::v8f16) {
2992 SelectLoadLane(Node, 2, AArch64::LD2i16);
2993 return;
2994 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
2995 VT == MVT::v2f32) {
2996 SelectLoadLane(Node, 2, AArch64::LD2i32);
2997 return;
2998 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
2999 VT == MVT::v1f64) {
3000 SelectLoadLane(Node, 2, AArch64::LD2i64);
3001 return;
3002 }
3003 break;
3004 case Intrinsic::aarch64_neon_ld3lane:
3005 if (VT == MVT::v16i8 || VT == MVT::v8i8) {
3006 SelectLoadLane(Node, 3, AArch64::LD3i8);
3007 return;
3008 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
3009 VT == MVT::v8f16) {
3010 SelectLoadLane(Node, 3, AArch64::LD3i16);
3011 return;
3012 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
3013 VT == MVT::v2f32) {
3014 SelectLoadLane(Node, 3, AArch64::LD3i32);
3015 return;
3016 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
3017 VT == MVT::v1f64) {
3018 SelectLoadLane(Node, 3, AArch64::LD3i64);
3019 return;
3020 }
3021 break;
3022 case Intrinsic::aarch64_neon_ld4lane:
3023 if (VT == MVT::v16i8 || VT == MVT::v8i8) {
3024 SelectLoadLane(Node, 4, AArch64::LD4i8);
3025 return;
3026 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
3027 VT == MVT::v8f16) {
3028 SelectLoadLane(Node, 4, AArch64::LD4i16);
3029 return;
3030 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
3031 VT == MVT::v2f32) {
3032 SelectLoadLane(Node, 4, AArch64::LD4i32);
3033 return;
3034 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
3035 VT == MVT::v1f64) {
3036 SelectLoadLane(Node, 4, AArch64::LD4i64);
3037 return;
3038 }
3039 break;
3040 }
3041 } break;
3042 case ISD::INTRINSIC_WO_CHAIN: {
3043 unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
3044 switch (IntNo) {
3045 default:
3046 break;
3047 case Intrinsic::aarch64_neon_tbl2:
3048 SelectTable(Node, 2,
3049 VT == MVT::v8i8 ? AArch64::TBLv8i8Two : AArch64::TBLv16i8Two,
3050 false);
3051 return;
3052 case Intrinsic::aarch64_neon_tbl3:
3053 SelectTable(Node, 3, VT == MVT::v8i8 ? AArch64::TBLv8i8Three
3054 : AArch64::TBLv16i8Three,
3055 false);
3056 return;
3057 case Intrinsic::aarch64_neon_tbl4:
3058 SelectTable(Node, 4, VT == MVT::v8i8 ? AArch64::TBLv8i8Four
3059 : AArch64::TBLv16i8Four,
3060 false);
3061 return;
3062 case Intrinsic::aarch64_neon_tbx2:
3063 SelectTable(Node, 2,
3064 VT == MVT::v8i8 ? AArch64::TBXv8i8Two : AArch64::TBXv16i8Two,
3065 true);
3066 return;
3067 case Intrinsic::aarch64_neon_tbx3:
3068 SelectTable(Node, 3, VT == MVT::v8i8 ? AArch64::TBXv8i8Three
3069 : AArch64::TBXv16i8Three,
3070 true);
3071 return;
3072 case Intrinsic::aarch64_neon_tbx4:
3073 SelectTable(Node, 4, VT == MVT::v8i8 ? AArch64::TBXv8i8Four
3074 : AArch64::TBXv16i8Four,
3075 true);
3076 return;
3077 case Intrinsic::aarch64_neon_smull:
3078 case Intrinsic::aarch64_neon_umull:
3079 if (tryMULLV64LaneV128(IntNo, Node))
3080 return;
3081 break;
3082 }
3083 break;
3084 }
3085 case ISD::INTRINSIC_VOID: {
3086 unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
3087 if (Node->getNumOperands() >= 3)
3088 VT = Node->getOperand(2)->getValueType(0);
3089 switch (IntNo) {
3090 default:
3091 break;
3092 case Intrinsic::aarch64_neon_st1x2: {
3093 if (VT == MVT::v8i8) {
3094 SelectStore(Node, 2, AArch64::ST1Twov8b);
3095 return;
3096 } else if (VT == MVT::v16i8) {
3097 SelectStore(Node, 2, AArch64::ST1Twov16b);
3098 return;
3099 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3100 SelectStore(Node, 2, AArch64::ST1Twov4h);
3101 return;
3102 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3103 SelectStore(Node, 2, AArch64::ST1Twov8h);
3104 return;
3105 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3106 SelectStore(Node, 2, AArch64::ST1Twov2s);
3107 return;
3108 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3109 SelectStore(Node, 2, AArch64::ST1Twov4s);
3110 return;
3111 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3112 SelectStore(Node, 2, AArch64::ST1Twov2d);
3113 return;
3114 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3115 SelectStore(Node, 2, AArch64::ST1Twov1d);
3116 return;
3117 }
3118 break;
3119 }
3120 case Intrinsic::aarch64_neon_st1x3: {
3121 if (VT == MVT::v8i8) {
3122 SelectStore(Node, 3, AArch64::ST1Threev8b);
3123 return;
3124 } else if (VT == MVT::v16i8) {
3125 SelectStore(Node, 3, AArch64::ST1Threev16b);
3126 return;
3127 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3128 SelectStore(Node, 3, AArch64::ST1Threev4h);
3129 return;
3130 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3131 SelectStore(Node, 3, AArch64::ST1Threev8h);
3132 return;
3133 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3134 SelectStore(Node, 3, AArch64::ST1Threev2s);
3135 return;
3136 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3137 SelectStore(Node, 3, AArch64::ST1Threev4s);
3138 return;
3139 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3140 SelectStore(Node, 3, AArch64::ST1Threev2d);
3141 return;
3142 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3143 SelectStore(Node, 3, AArch64::ST1Threev1d);
3144 return;
3145 }
3146 break;
3147 }
3148 case Intrinsic::aarch64_neon_st1x4: {
3149 if (VT == MVT::v8i8) {
3150 SelectStore(Node, 4, AArch64::ST1Fourv8b);
3151 return;
3152 } else if (VT == MVT::v16i8) {
3153 SelectStore(Node, 4, AArch64::ST1Fourv16b);
3154 return;
3155 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3156 SelectStore(Node, 4, AArch64::ST1Fourv4h);
3157 return;
3158 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3159 SelectStore(Node, 4, AArch64::ST1Fourv8h);
3160 return;
3161 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3162 SelectStore(Node, 4, AArch64::ST1Fourv2s);
3163 return;
3164 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3165 SelectStore(Node, 4, AArch64::ST1Fourv4s);
3166 return;
3167 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3168 SelectStore(Node, 4, AArch64::ST1Fourv2d);
3169 return;
3170 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3171 SelectStore(Node, 4, AArch64::ST1Fourv1d);
3172 return;
3173 }
3174 break;
3175 }
3176 case Intrinsic::aarch64_neon_st2: {
3177 if (VT == MVT::v8i8) {
3178 SelectStore(Node, 2, AArch64::ST2Twov8b);
3179 return;
3180 } else if (VT == MVT::v16i8) {
3181 SelectStore(Node, 2, AArch64::ST2Twov16b);
3182 return;
3183 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3184 SelectStore(Node, 2, AArch64::ST2Twov4h);
3185 return;
3186 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3187 SelectStore(Node, 2, AArch64::ST2Twov8h);
3188 return;
3189 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3190 SelectStore(Node, 2, AArch64::ST2Twov2s);
3191 return;
3192 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3193 SelectStore(Node, 2, AArch64::ST2Twov4s);
3194 return;
3195 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3196 SelectStore(Node, 2, AArch64::ST2Twov2d);
3197 return;
3198 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3199 SelectStore(Node, 2, AArch64::ST1Twov1d);
3200 return;
3201 }
3202 break;
3203 }
3204 case Intrinsic::aarch64_neon_st3: {
3205 if (VT == MVT::v8i8) {
3206 SelectStore(Node, 3, AArch64::ST3Threev8b);
3207 return;
3208 } else if (VT == MVT::v16i8) {
3209 SelectStore(Node, 3, AArch64::ST3Threev16b);
3210 return;
3211 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3212 SelectStore(Node, 3, AArch64::ST3Threev4h);
3213 return;
3214 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3215 SelectStore(Node, 3, AArch64::ST3Threev8h);
3216 return;
3217 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3218 SelectStore(Node, 3, AArch64::ST3Threev2s);
3219 return;
3220 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3221 SelectStore(Node, 3, AArch64::ST3Threev4s);
3222 return;
3223 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3224 SelectStore(Node, 3, AArch64::ST3Threev2d);
3225 return;
3226 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3227 SelectStore(Node, 3, AArch64::ST1Threev1d);
3228 return;
3229 }
3230 break;
3231 }
3232 case Intrinsic::aarch64_neon_st4: {
3233 if (VT == MVT::v8i8) {
3234 SelectStore(Node, 4, AArch64::ST4Fourv8b);
3235 return;
3236 } else if (VT == MVT::v16i8) {
3237 SelectStore(Node, 4, AArch64::ST4Fourv16b);
3238 return;
3239 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3240 SelectStore(Node, 4, AArch64::ST4Fourv4h);
3241 return;
3242 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3243 SelectStore(Node, 4, AArch64::ST4Fourv8h);
3244 return;
3245 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3246 SelectStore(Node, 4, AArch64::ST4Fourv2s);
3247 return;
3248 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3249 SelectStore(Node, 4, AArch64::ST4Fourv4s);
3250 return;
3251 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3252 SelectStore(Node, 4, AArch64::ST4Fourv2d);
3253 return;
3254 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3255 SelectStore(Node, 4, AArch64::ST1Fourv1d);
3256 return;
3257 }
3258 break;
3259 }
3260 case Intrinsic::aarch64_neon_st2lane: {
3261 if (VT == MVT::v16i8 || VT == MVT::v8i8) {
3262 SelectStoreLane(Node, 2, AArch64::ST2i8);
3263 return;
3264 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
3265 VT == MVT::v8f16) {
3266 SelectStoreLane(Node, 2, AArch64::ST2i16);
3267 return;
3268 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
3269 VT == MVT::v2f32) {
3270 SelectStoreLane(Node, 2, AArch64::ST2i32);
3271 return;
3272 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
3273 VT == MVT::v1f64) {
3274 SelectStoreLane(Node, 2, AArch64::ST2i64);
3275 return;
3276 }
3277 break;
3278 }
3279 case Intrinsic::aarch64_neon_st3lane: {
3280 if (VT == MVT::v16i8 || VT == MVT::v8i8) {
3281 SelectStoreLane(Node, 3, AArch64::ST3i8);
3282 return;
3283 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
3284 VT == MVT::v8f16) {
3285 SelectStoreLane(Node, 3, AArch64::ST3i16);
3286 return;
3287 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
3288 VT == MVT::v2f32) {
3289 SelectStoreLane(Node, 3, AArch64::ST3i32);
3290 return;
3291 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
3292 VT == MVT::v1f64) {
3293 SelectStoreLane(Node, 3, AArch64::ST3i64);
3294 return;
3295 }
3296 break;
3297 }
3298 case Intrinsic::aarch64_neon_st4lane: {
3299 if (VT == MVT::v16i8 || VT == MVT::v8i8) {
3300 SelectStoreLane(Node, 4, AArch64::ST4i8);
3301 return;
3302 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
3303 VT == MVT::v8f16) {
3304 SelectStoreLane(Node, 4, AArch64::ST4i16);
3305 return;
3306 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
3307 VT == MVT::v2f32) {
3308 SelectStoreLane(Node, 4, AArch64::ST4i32);
3309 return;
3310 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
3311 VT == MVT::v1f64) {
3312 SelectStoreLane(Node, 4, AArch64::ST4i64);
3313 return;
3314 }
3315 break;
3316 }
3317 }
3318 break;
3319 }
3320 case AArch64ISD::LD2post: {
3321 if (VT == MVT::v8i8) {
3322 SelectPostLoad(Node, 2, AArch64::LD2Twov8b_POST, AArch64::dsub0);
3323 return;
3324 } else if (VT == MVT::v16i8) {
3325 SelectPostLoad(Node, 2, AArch64::LD2Twov16b_POST, AArch64::qsub0);
3326 return;
3327 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3328 SelectPostLoad(Node, 2, AArch64::LD2Twov4h_POST, AArch64::dsub0);
3329 return;
3330 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3331 SelectPostLoad(Node, 2, AArch64::LD2Twov8h_POST, AArch64::qsub0);
3332 return;
3333 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3334 SelectPostLoad(Node, 2, AArch64::LD2Twov2s_POST, AArch64::dsub0);
3335 return;
3336 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3337 SelectPostLoad(Node, 2, AArch64::LD2Twov4s_POST, AArch64::qsub0);
3338 return;
3339 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3340 SelectPostLoad(Node, 2, AArch64::LD1Twov1d_POST, AArch64::dsub0);
3341 return;
3342 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3343 SelectPostLoad(Node, 2, AArch64::LD2Twov2d_POST, AArch64::qsub0);
3344 return;
3345 }
3346 break;
3347 }
3348 case AArch64ISD::LD3post: {
3349 if (VT == MVT::v8i8) {
3350 SelectPostLoad(Node, 3, AArch64::LD3Threev8b_POST, AArch64::dsub0);
3351 return;
3352 } else if (VT == MVT::v16i8) {
3353 SelectPostLoad(Node, 3, AArch64::LD3Threev16b_POST, AArch64::qsub0);
3354 return;
3355 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3356 SelectPostLoad(Node, 3, AArch64::LD3Threev4h_POST, AArch64::dsub0);
3357 return;
3358 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3359 SelectPostLoad(Node, 3, AArch64::LD3Threev8h_POST, AArch64::qsub0);
3360 return;
3361 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3362 SelectPostLoad(Node, 3, AArch64::LD3Threev2s_POST, AArch64::dsub0);
3363 return;
3364 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3365 SelectPostLoad(Node, 3, AArch64::LD3Threev4s_POST, AArch64::qsub0);
3366 return;
3367 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3368 SelectPostLoad(Node, 3, AArch64::LD1Threev1d_POST, AArch64::dsub0);
3369 return;
3370 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3371 SelectPostLoad(Node, 3, AArch64::LD3Threev2d_POST, AArch64::qsub0);
3372 return;
3373 }
3374 break;
3375 }
3376 case AArch64ISD::LD4post: {
3377 if (VT == MVT::v8i8) {
3378 SelectPostLoad(Node, 4, AArch64::LD4Fourv8b_POST, AArch64::dsub0);
3379 return;
3380 } else if (VT == MVT::v16i8) {
3381 SelectPostLoad(Node, 4, AArch64::LD4Fourv16b_POST, AArch64::qsub0);
3382 return;
3383 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3384 SelectPostLoad(Node, 4, AArch64::LD4Fourv4h_POST, AArch64::dsub0);
3385 return;
3386 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3387 SelectPostLoad(Node, 4, AArch64::LD4Fourv8h_POST, AArch64::qsub0);
3388 return;
3389 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3390 SelectPostLoad(Node, 4, AArch64::LD4Fourv2s_POST, AArch64::dsub0);
3391 return;
3392 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3393 SelectPostLoad(Node, 4, AArch64::LD4Fourv4s_POST, AArch64::qsub0);
3394 return;
3395 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3396 SelectPostLoad(Node, 4, AArch64::LD1Fourv1d_POST, AArch64::dsub0);
3397 return;
3398 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3399 SelectPostLoad(Node, 4, AArch64::LD4Fourv2d_POST, AArch64::qsub0);
3400 return;
3401 }
3402 break;
3403 }
3404 case AArch64ISD::LD1x2post: {
3405 if (VT == MVT::v8i8) {
3406 SelectPostLoad(Node, 2, AArch64::LD1Twov8b_POST, AArch64::dsub0);
3407 return;
3408 } else if (VT == MVT::v16i8) {
3409 SelectPostLoad(Node, 2, AArch64::LD1Twov16b_POST, AArch64::qsub0);
3410 return;
3411 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3412 SelectPostLoad(Node, 2, AArch64::LD1Twov4h_POST, AArch64::dsub0);
3413 return;
3414 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3415 SelectPostLoad(Node, 2, AArch64::LD1Twov8h_POST, AArch64::qsub0);
3416 return;
3417 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3418 SelectPostLoad(Node, 2, AArch64::LD1Twov2s_POST, AArch64::dsub0);
3419 return;
3420 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3421 SelectPostLoad(Node, 2, AArch64::LD1Twov4s_POST, AArch64::qsub0);
3422 return;
3423 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3424 SelectPostLoad(Node, 2, AArch64::LD1Twov1d_POST, AArch64::dsub0);
3425 return;
3426 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3427 SelectPostLoad(Node, 2, AArch64::LD1Twov2d_POST, AArch64::qsub0);
3428 return;
3429 }
3430 break;
3431 }
3432 case AArch64ISD::LD1x3post: {
3433 if (VT == MVT::v8i8) {
3434 SelectPostLoad(Node, 3, AArch64::LD1Threev8b_POST, AArch64::dsub0);
3435 return;
3436 } else if (VT == MVT::v16i8) {
3437 SelectPostLoad(Node, 3, AArch64::LD1Threev16b_POST, AArch64::qsub0);
3438 return;
3439 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3440 SelectPostLoad(Node, 3, AArch64::LD1Threev4h_POST, AArch64::dsub0);
3441 return;
3442 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3443 SelectPostLoad(Node, 3, AArch64::LD1Threev8h_POST, AArch64::qsub0);
3444 return;
3445 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3446 SelectPostLoad(Node, 3, AArch64::LD1Threev2s_POST, AArch64::dsub0);
3447 return;
3448 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3449 SelectPostLoad(Node, 3, AArch64::LD1Threev4s_POST, AArch64::qsub0);
3450 return;
3451 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3452 SelectPostLoad(Node, 3, AArch64::LD1Threev1d_POST, AArch64::dsub0);
3453 return;
3454 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3455 SelectPostLoad(Node, 3, AArch64::LD1Threev2d_POST, AArch64::qsub0);
3456 return;
3457 }
3458 break;
3459 }
3460 case AArch64ISD::LD1x4post: {
3461 if (VT == MVT::v8i8) {
3462 SelectPostLoad(Node, 4, AArch64::LD1Fourv8b_POST, AArch64::dsub0);
3463 return;
3464 } else if (VT == MVT::v16i8) {
3465 SelectPostLoad(Node, 4, AArch64::LD1Fourv16b_POST, AArch64::qsub0);
3466 return;
3467 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3468 SelectPostLoad(Node, 4, AArch64::LD1Fourv4h_POST, AArch64::dsub0);
3469 return;
3470 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3471 SelectPostLoad(Node, 4, AArch64::LD1Fourv8h_POST, AArch64::qsub0);
3472 return;
3473 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3474 SelectPostLoad(Node, 4, AArch64::LD1Fourv2s_POST, AArch64::dsub0);
3475 return;
3476 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3477 SelectPostLoad(Node, 4, AArch64::LD1Fourv4s_POST, AArch64::qsub0);
3478 return;
3479 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3480 SelectPostLoad(Node, 4, AArch64::LD1Fourv1d_POST, AArch64::dsub0);
3481 return;
3482 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3483 SelectPostLoad(Node, 4, AArch64::LD1Fourv2d_POST, AArch64::qsub0);
3484 return;
3485 }
3486 break;
3487 }
3488 case AArch64ISD::LD1DUPpost: {
3489 if (VT == MVT::v8i8) {
3490 SelectPostLoad(Node, 1, AArch64::LD1Rv8b_POST, AArch64::dsub0);
3491 return;
3492 } else if (VT == MVT::v16i8) {
3493 SelectPostLoad(Node, 1, AArch64::LD1Rv16b_POST, AArch64::qsub0);
3494 return;
3495 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3496 SelectPostLoad(Node, 1, AArch64::LD1Rv4h_POST, AArch64::dsub0);
3497 return;
3498 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3499 SelectPostLoad(Node, 1, AArch64::LD1Rv8h_POST, AArch64::qsub0);
3500 return;
3501 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3502 SelectPostLoad(Node, 1, AArch64::LD1Rv2s_POST, AArch64::dsub0);
3503 return;
3504 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3505 SelectPostLoad(Node, 1, AArch64::LD1Rv4s_POST, AArch64::qsub0);
3506 return;
3507 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3508 SelectPostLoad(Node, 1, AArch64::LD1Rv1d_POST, AArch64::dsub0);
3509 return;
3510 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3511 SelectPostLoad(Node, 1, AArch64::LD1Rv2d_POST, AArch64::qsub0);
3512 return;
3513 }
3514 break;
3515 }
3516 case AArch64ISD::LD2DUPpost: {
3517 if (VT == MVT::v8i8) {
3518 SelectPostLoad(Node, 2, AArch64::LD2Rv8b_POST, AArch64::dsub0);
3519 return;
3520 } else if (VT == MVT::v16i8) {
3521 SelectPostLoad(Node, 2, AArch64::LD2Rv16b_POST, AArch64::qsub0);
3522 return;
3523 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3524 SelectPostLoad(Node, 2, AArch64::LD2Rv4h_POST, AArch64::dsub0);
3525 return;
3526 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3527 SelectPostLoad(Node, 2, AArch64::LD2Rv8h_POST, AArch64::qsub0);
3528 return;
3529 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3530 SelectPostLoad(Node, 2, AArch64::LD2Rv2s_POST, AArch64::dsub0);
3531 return;
3532 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3533 SelectPostLoad(Node, 2, AArch64::LD2Rv4s_POST, AArch64::qsub0);
3534 return;
3535 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3536 SelectPostLoad(Node, 2, AArch64::LD2Rv1d_POST, AArch64::dsub0);
3537 return;
3538 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3539 SelectPostLoad(Node, 2, AArch64::LD2Rv2d_POST, AArch64::qsub0);
3540 return;
3541 }
3542 break;
3543 }
3544 case AArch64ISD::LD3DUPpost: {
3545 if (VT == MVT::v8i8) {
3546 SelectPostLoad(Node, 3, AArch64::LD3Rv8b_POST, AArch64::dsub0);
3547 return;
3548 } else if (VT == MVT::v16i8) {
3549 SelectPostLoad(Node, 3, AArch64::LD3Rv16b_POST, AArch64::qsub0);
3550 return;
3551 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3552 SelectPostLoad(Node, 3, AArch64::LD3Rv4h_POST, AArch64::dsub0);
3553 return;
3554 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3555 SelectPostLoad(Node, 3, AArch64::LD3Rv8h_POST, AArch64::qsub0);
3556 return;
3557 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3558 SelectPostLoad(Node, 3, AArch64::LD3Rv2s_POST, AArch64::dsub0);
3559 return;
3560 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3561 SelectPostLoad(Node, 3, AArch64::LD3Rv4s_POST, AArch64::qsub0);
3562 return;
3563 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3564 SelectPostLoad(Node, 3, AArch64::LD3Rv1d_POST, AArch64::dsub0);
3565 return;
3566 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3567 SelectPostLoad(Node, 3, AArch64::LD3Rv2d_POST, AArch64::qsub0);
3568 return;
3569 }
3570 break;
3571 }
3572 case AArch64ISD::LD4DUPpost: {
3573 if (VT == MVT::v8i8) {
3574 SelectPostLoad(Node, 4, AArch64::LD4Rv8b_POST, AArch64::dsub0);
3575 return;
3576 } else if (VT == MVT::v16i8) {
3577 SelectPostLoad(Node, 4, AArch64::LD4Rv16b_POST, AArch64::qsub0);
3578 return;
3579 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3580 SelectPostLoad(Node, 4, AArch64::LD4Rv4h_POST, AArch64::dsub0);
3581 return;
3582 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3583 SelectPostLoad(Node, 4, AArch64::LD4Rv8h_POST, AArch64::qsub0);
3584 return;
3585 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3586 SelectPostLoad(Node, 4, AArch64::LD4Rv2s_POST, AArch64::dsub0);
3587 return;
3588 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3589 SelectPostLoad(Node, 4, AArch64::LD4Rv4s_POST, AArch64::qsub0);
3590 return;
3591 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3592 SelectPostLoad(Node, 4, AArch64::LD4Rv1d_POST, AArch64::dsub0);
3593 return;
3594 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3595 SelectPostLoad(Node, 4, AArch64::LD4Rv2d_POST, AArch64::qsub0);
3596 return;
3597 }
3598 break;
3599 }
3600 case AArch64ISD::LD1LANEpost: {
3601 if (VT == MVT::v16i8 || VT == MVT::v8i8) {
3602 SelectPostLoadLane(Node, 1, AArch64::LD1i8_POST);
3603 return;
3604 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
3605 VT == MVT::v8f16) {
3606 SelectPostLoadLane(Node, 1, AArch64::LD1i16_POST);
3607 return;
3608 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
3609 VT == MVT::v2f32) {
3610 SelectPostLoadLane(Node, 1, AArch64::LD1i32_POST);
3611 return;
3612 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
3613 VT == MVT::v1f64) {
3614 SelectPostLoadLane(Node, 1, AArch64::LD1i64_POST);
3615 return;
3616 }
3617 break;
3618 }
3619 case AArch64ISD::LD2LANEpost: {
3620 if (VT == MVT::v16i8 || VT == MVT::v8i8) {
3621 SelectPostLoadLane(Node, 2, AArch64::LD2i8_POST);
3622 return;
3623 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
3624 VT == MVT::v8f16) {
3625 SelectPostLoadLane(Node, 2, AArch64::LD2i16_POST);
3626 return;
3627 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
3628 VT == MVT::v2f32) {
3629 SelectPostLoadLane(Node, 2, AArch64::LD2i32_POST);
3630 return;
3631 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
3632 VT == MVT::v1f64) {
3633 SelectPostLoadLane(Node, 2, AArch64::LD2i64_POST);
3634 return;
3635 }
3636 break;
3637 }
3638 case AArch64ISD::LD3LANEpost: {
3639 if (VT == MVT::v16i8 || VT == MVT::v8i8) {
3640 SelectPostLoadLane(Node, 3, AArch64::LD3i8_POST);
3641 return;
3642 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
3643 VT == MVT::v8f16) {
3644 SelectPostLoadLane(Node, 3, AArch64::LD3i16_POST);
3645 return;
3646 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
3647 VT == MVT::v2f32) {
3648 SelectPostLoadLane(Node, 3, AArch64::LD3i32_POST);
3649 return;
3650 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
3651 VT == MVT::v1f64) {
3652 SelectPostLoadLane(Node, 3, AArch64::LD3i64_POST);
3653 return;
3654 }
3655 break;
3656 }
3657 case AArch64ISD::LD4LANEpost: {
3658 if (VT == MVT::v16i8 || VT == MVT::v8i8) {
3659 SelectPostLoadLane(Node, 4, AArch64::LD4i8_POST);
3660 return;
3661 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
3662 VT == MVT::v8f16) {
3663 SelectPostLoadLane(Node, 4, AArch64::LD4i16_POST);
3664 return;
3665 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
3666 VT == MVT::v2f32) {
3667 SelectPostLoadLane(Node, 4, AArch64::LD4i32_POST);
3668 return;
3669 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
3670 VT == MVT::v1f64) {
3671 SelectPostLoadLane(Node, 4, AArch64::LD4i64_POST);
3672 return;
3673 }
3674 break;
3675 }
3676 case AArch64ISD::ST2post: {
3677 VT = Node->getOperand(1).getValueType();
3678 if (VT == MVT::v8i8) {
3679 SelectPostStore(Node, 2, AArch64::ST2Twov8b_POST);
3680 return;
3681 } else if (VT == MVT::v16i8) {
3682 SelectPostStore(Node, 2, AArch64::ST2Twov16b_POST);
3683 return;
3684 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3685 SelectPostStore(Node, 2, AArch64::ST2Twov4h_POST);
3686 return;
3687 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3688 SelectPostStore(Node, 2, AArch64::ST2Twov8h_POST);
3689 return;
3690 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3691 SelectPostStore(Node, 2, AArch64::ST2Twov2s_POST);
3692 return;
3693 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3694 SelectPostStore(Node, 2, AArch64::ST2Twov4s_POST);
3695 return;
3696 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3697 SelectPostStore(Node, 2, AArch64::ST2Twov2d_POST);
3698 return;
3699 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3700 SelectPostStore(Node, 2, AArch64::ST1Twov1d_POST);
3701 return;
3702 }
3703 break;
3704 }
3705 case AArch64ISD::ST3post: {
3706 VT = Node->getOperand(1).getValueType();
3707 if (VT == MVT::v8i8) {
3708 SelectPostStore(Node, 3, AArch64::ST3Threev8b_POST);
3709 return;
3710 } else if (VT == MVT::v16i8) {
3711 SelectPostStore(Node, 3, AArch64::ST3Threev16b_POST);
3712 return;
3713 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3714 SelectPostStore(Node, 3, AArch64::ST3Threev4h_POST);
3715 return;
3716 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3717 SelectPostStore(Node, 3, AArch64::ST3Threev8h_POST);
3718 return;
3719 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3720 SelectPostStore(Node, 3, AArch64::ST3Threev2s_POST);
3721 return;
3722 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3723 SelectPostStore(Node, 3, AArch64::ST3Threev4s_POST);
3724 return;
3725 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3726 SelectPostStore(Node, 3, AArch64::ST3Threev2d_POST);
3727 return;
3728 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3729 SelectPostStore(Node, 3, AArch64::ST1Threev1d_POST);
3730 return;
3731 }
3732 break;
3733 }
3734 case AArch64ISD::ST4post: {
3735 VT = Node->getOperand(1).getValueType();
3736 if (VT == MVT::v8i8) {
3737 SelectPostStore(Node, 4, AArch64::ST4Fourv8b_POST);
3738 return;
3739 } else if (VT == MVT::v16i8) {
3740 SelectPostStore(Node, 4, AArch64::ST4Fourv16b_POST);
3741 return;
3742 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3743 SelectPostStore(Node, 4, AArch64::ST4Fourv4h_POST);
3744 return;
3745 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3746 SelectPostStore(Node, 4, AArch64::ST4Fourv8h_POST);
3747 return;
3748 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3749 SelectPostStore(Node, 4, AArch64::ST4Fourv2s_POST);
3750 return;
3751 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3752 SelectPostStore(Node, 4, AArch64::ST4Fourv4s_POST);
3753 return;
3754 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3755 SelectPostStore(Node, 4, AArch64::ST4Fourv2d_POST);
3756 return;
3757 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3758 SelectPostStore(Node, 4, AArch64::ST1Fourv1d_POST);
3759 return;
3760 }
3761 break;
3762 }
3763 case AArch64ISD::ST1x2post: {
3764 VT = Node->getOperand(1).getValueType();
3765 if (VT == MVT::v8i8) {
3766 SelectPostStore(Node, 2, AArch64::ST1Twov8b_POST);
3767 return;
3768 } else if (VT == MVT::v16i8) {
3769 SelectPostStore(Node, 2, AArch64::ST1Twov16b_POST);
3770 return;
3771 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3772 SelectPostStore(Node, 2, AArch64::ST1Twov4h_POST);
3773 return;
3774 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3775 SelectPostStore(Node, 2, AArch64::ST1Twov8h_POST);
3776 return;
3777 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3778 SelectPostStore(Node, 2, AArch64::ST1Twov2s_POST);
3779 return;
3780 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3781 SelectPostStore(Node, 2, AArch64::ST1Twov4s_POST);
3782 return;
3783 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3784 SelectPostStore(Node, 2, AArch64::ST1Twov1d_POST);
3785 return;
3786 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3787 SelectPostStore(Node, 2, AArch64::ST1Twov2d_POST);
3788 return;
3789 }
3790 break;
3791 }
3792 case AArch64ISD::ST1x3post: {
3793 VT = Node->getOperand(1).getValueType();
3794 if (VT == MVT::v8i8) {
3795 SelectPostStore(Node, 3, AArch64::ST1Threev8b_POST);
3796 return;
3797 } else if (VT == MVT::v16i8) {
3798 SelectPostStore(Node, 3, AArch64::ST1Threev16b_POST);
3799 return;
3800 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3801 SelectPostStore(Node, 3, AArch64::ST1Threev4h_POST);
3802 return;
3803 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3804 SelectPostStore(Node, 3, AArch64::ST1Threev8h_POST);
3805 return;
3806 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3807 SelectPostStore(Node, 3, AArch64::ST1Threev2s_POST);
3808 return;
3809 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3810 SelectPostStore(Node, 3, AArch64::ST1Threev4s_POST);
3811 return;
3812 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3813 SelectPostStore(Node, 3, AArch64::ST1Threev1d_POST);
3814 return;
3815 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3816 SelectPostStore(Node, 3, AArch64::ST1Threev2d_POST);
3817 return;
3818 }
3819 break;
3820 }
3821 case AArch64ISD::ST1x4post: {
3822 VT = Node->getOperand(1).getValueType();
3823 if (VT == MVT::v8i8) {
3824 SelectPostStore(Node, 4, AArch64::ST1Fourv8b_POST);
3825 return;
3826 } else if (VT == MVT::v16i8) {
3827 SelectPostStore(Node, 4, AArch64::ST1Fourv16b_POST);
3828 return;
3829 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3830 SelectPostStore(Node, 4, AArch64::ST1Fourv4h_POST);
3831 return;
3832 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3833 SelectPostStore(Node, 4, AArch64::ST1Fourv8h_POST);
3834 return;
3835 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3836 SelectPostStore(Node, 4, AArch64::ST1Fourv2s_POST);
3837 return;
3838 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3839 SelectPostStore(Node, 4, AArch64::ST1Fourv4s_POST);
3840 return;
3841 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3842 SelectPostStore(Node, 4, AArch64::ST1Fourv1d_POST);
3843 return;
3844 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3845 SelectPostStore(Node, 4, AArch64::ST1Fourv2d_POST);
3846 return;
3847 }
3848 break;
3849 }
3850 case AArch64ISD::ST2LANEpost: {
3851 VT = Node->getOperand(1).getValueType();
3852 if (VT == MVT::v16i8 || VT == MVT::v8i8) {
3853 SelectPostStoreLane(Node, 2, AArch64::ST2i8_POST);
3854 return;
3855 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
3856 VT == MVT::v8f16) {
3857 SelectPostStoreLane(Node, 2, AArch64::ST2i16_POST);
3858 return;
3859 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
3860 VT == MVT::v2f32) {
3861 SelectPostStoreLane(Node, 2, AArch64::ST2i32_POST);
3862 return;
3863 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
3864 VT == MVT::v1f64) {
3865 SelectPostStoreLane(Node, 2, AArch64::ST2i64_POST);
3866 return;
3867 }
3868 break;
3869 }
3870 case AArch64ISD::ST3LANEpost: {
3871 VT = Node->getOperand(1).getValueType();
3872 if (VT == MVT::v16i8 || VT == MVT::v8i8) {
3873 SelectPostStoreLane(Node, 3, AArch64::ST3i8_POST);
3874 return;
3875 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
3876 VT == MVT::v8f16) {
3877 SelectPostStoreLane(Node, 3, AArch64::ST3i16_POST);
3878 return;
3879 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
3880 VT == MVT::v2f32) {
3881 SelectPostStoreLane(Node, 3, AArch64::ST3i32_POST);
3882 return;
3883 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
3884 VT == MVT::v1f64) {
3885 SelectPostStoreLane(Node, 3, AArch64::ST3i64_POST);
3886 return;
3887 }
3888 break;
3889 }
3890 case AArch64ISD::ST4LANEpost: {
3891 VT = Node->getOperand(1).getValueType();
3892 if (VT == MVT::v16i8 || VT == MVT::v8i8) {
3893 SelectPostStoreLane(Node, 4, AArch64::ST4i8_POST);
3894 return;
3895 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
3896 VT == MVT::v8f16) {
3897 SelectPostStoreLane(Node, 4, AArch64::ST4i16_POST);
3898 return;
3899 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
3900 VT == MVT::v2f32) {
3901 SelectPostStoreLane(Node, 4, AArch64::ST4i32_POST);
3902 return;
3903 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
3904 VT == MVT::v1f64) {
3905 SelectPostStoreLane(Node, 4, AArch64::ST4i64_POST);
3906 return;
3907 }
3908 break;
3909 }
3910 }
3911
3912 // Select the default instruction
3913 SelectCode(Node);
3914 }
3915
3916 /// createAArch64ISelDag - This pass converts a legalized DAG into a
3917 /// AArch64-specific DAG, ready for instruction scheduling.
createAArch64ISelDag(AArch64TargetMachine & TM,CodeGenOpt::Level OptLevel)3918 FunctionPass *llvm::createAArch64ISelDag(AArch64TargetMachine &TM,
3919 CodeGenOpt::Level OptLevel) {
3920 return new AArch64DAGToDAGISel(TM, OptLevel);
3921 }
3922