• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #ifndef _LINUX_HASH_H
2 #define _LINUX_HASH_H
3 
4 #include <inttypes.h>
5 #include "arch/arch.h"
6 
7 /* Fast hashing routine for a long.
8    (C) 2002 William Lee Irwin III, IBM */
9 
10 /*
11  * Knuth recommends primes in approximately golden ratio to the maximum
12  * integer representable by a machine word for multiplicative hashing.
13  * Chuck Lever verified the effectiveness of this technique:
14  * http://www.citi.umich.edu/techreports/reports/citi-tr-00-1.pdf
15  *
16  * These primes are chosen to be bit-sparse, that is operations on
17  * them can use shifts and additions instead of multiplications for
18  * machines where multiplications are slow.
19  */
20 
21 #if BITS_PER_LONG == 32
22 /* 2^31 + 2^29 - 2^25 + 2^22 - 2^19 - 2^16 + 1 */
23 #define GOLDEN_RATIO_PRIME 0x9e370001UL
24 #elif BITS_PER_LONG == 64
25 /*  2^63 + 2^61 - 2^57 + 2^54 - 2^51 - 2^18 + 1 */
26 #define GOLDEN_RATIO_PRIME 0x9e37fffffffc0001UL
27 #else
28 #error Define GOLDEN_RATIO_PRIME for your wordsize.
29 #endif
30 
31 /*
32  * The above primes are actively bad for hashing, since they are
33  * too sparse. The 32-bit one is mostly ok, the 64-bit one causes
34  * real problems. Besides, the "prime" part is pointless for the
35  * multiplicative hash.
36  *
37  * Although a random odd number will do, it turns out that the golden
38  * ratio phi = (sqrt(5)-1)/2, or its negative, has particularly nice
39  * properties.
40  *
41  * These are the negative, (1 - phi) = (phi^2) = (3 - sqrt(5))/2.
42  * (See Knuth vol 3, section 6.4, exercise 9.)
43  */
44 #define GOLDEN_RATIO_32 0x61C88647
45 #define GOLDEN_RATIO_64 0x61C8864680B583EBull
46 
__hash_long(uint64_t val)47 static inline unsigned long __hash_long(uint64_t val)
48 {
49 	uint64_t hash = val;
50 
51 #if BITS_PER_LONG == 64
52 	hash *= GOLDEN_RATIO_64;
53 #else
54 	/*  Sigh, gcc can't optimise this alone like it does for 32 bits. */
55 	uint64_t n = hash;
56 	n <<= 18;
57 	hash -= n;
58 	n <<= 33;
59 	hash -= n;
60 	n <<= 3;
61 	hash += n;
62 	n <<= 3;
63 	hash -= n;
64 	n <<= 4;
65 	hash += n;
66 	n <<= 2;
67 	hash += n;
68 #endif
69 
70 	return hash;
71 }
72 
hash_long(unsigned long val,unsigned int bits)73 static inline unsigned long hash_long(unsigned long val, unsigned int bits)
74 {
75 	/* High bits are more random, so use them. */
76 	return __hash_long(val) >> (BITS_PER_LONG - bits);
77 }
78 
__hash_u64(uint64_t val)79 static inline uint64_t __hash_u64(uint64_t val)
80 {
81 	return val * GOLDEN_RATIO_64;
82 }
83 
hash_ptr(void * ptr,unsigned int bits)84 static inline unsigned long hash_ptr(void *ptr, unsigned int bits)
85 {
86 	return hash_long((uintptr_t)ptr, bits);
87 }
88 
89 /*
90  * Bob Jenkins jhash
91  */
92 
93 #define JHASH_INITVAL	GOLDEN_RATIO_32
94 
rol32(uint32_t word,uint32_t shift)95 static inline uint32_t rol32(uint32_t word, uint32_t shift)
96 {
97 	return (word << shift) | (word >> (32 - shift));
98 }
99 
100 /* __jhash_mix -- mix 3 32-bit values reversibly. */
101 #define __jhash_mix(a, b, c)			\
102 {						\
103 	a -= c;  a ^= rol32(c, 4);  c += b;	\
104 	b -= a;  b ^= rol32(a, 6);  a += c;	\
105 	c -= b;  c ^= rol32(b, 8);  b += a;	\
106 	a -= c;  a ^= rol32(c, 16); c += b;	\
107 	b -= a;  b ^= rol32(a, 19); a += c;	\
108 	c -= b;  c ^= rol32(b, 4);  b += a;	\
109 }
110 
111 /* __jhash_final - final mixing of 3 32-bit values (a,b,c) into c */
112 #define __jhash_final(a, b, c)			\
113 {						\
114 	c ^= b; c -= rol32(b, 14);		\
115 	a ^= c; a -= rol32(c, 11);		\
116 	b ^= a; b -= rol32(a, 25);		\
117 	c ^= b; c -= rol32(b, 16);		\
118 	a ^= c; a -= rol32(c, 4);		\
119 	b ^= a; b -= rol32(a, 14);		\
120 	c ^= b; c -= rol32(b, 24);		\
121 }
122 
jhash(const void * key,uint32_t length,uint32_t initval)123 static inline uint32_t jhash(const void *key, uint32_t length, uint32_t initval)
124 {
125 	const uint8_t *k = key;
126 	uint32_t a, b, c;
127 
128 	/* Set up the internal state */
129 	a = b = c = JHASH_INITVAL + length + initval;
130 
131 	/* All but the last block: affect some 32 bits of (a,b,c) */
132 	while (length > 12) {
133 		a += *k;
134 		b += *(k + 4);
135 		c += *(k + 8);
136 		__jhash_mix(a, b, c);
137 		length -= 12;
138 		k += 12;
139 	}
140 
141 	/* Last block: affect all 32 bits of (c) */
142 	/* All the case statements fall through */
143 	switch (length) {
144 	case 12: c += (uint32_t) k[11] << 24;
145 	case 11: c += (uint32_t) k[10] << 16;
146 	case 10: c += (uint32_t) k[9] << 8;
147 	case 9:  c += k[8];
148 	case 8:  b += (uint32_t) k[7] << 24;
149 	case 7:  b += (uint32_t) k[6] << 16;
150 	case 6:  b += (uint32_t) k[5] << 8;
151 	case 5:  b += k[4];
152 	case 4:  a += (uint32_t) k[3] << 24;
153 	case 3:  a += (uint32_t) k[2] << 16;
154 	case 2:  a += (uint32_t) k[1] << 8;
155 	case 1:  a += k[0];
156 		 __jhash_final(a, b, c);
157 	case 0: /* Nothing left to add */
158 		break;
159 	}
160 
161 	return c;
162 }
163 
164 #endif /* _LINUX_HASH_H */
165