1 // This file was extracted from the TCG Published
2 // Trusted Platform Module Library
3 // Part 4: Supporting Routines
4 // Family "2.0"
5 // Level 00 Revision 01.16
6 // October 30, 2014
7
8 #include <string.h>
9
10 #include "OsslCryptoEngine.h"
11
12 #ifdef TPM_ALG_ECC
13 #include "CpriDataEcc.h"
14 #include "CpriDataEcc.c"
15 //
16 //
17 // Functions
18 //
19 // _cpri__EccStartup()
20 //
21 // This function is called at TPM Startup to initialize the crypto units.
22 // In this implementation, no initialization is performed at startup but a future version may initialize the self-
23 // test functions here.
24 //
25 LIB_EXPORT BOOL
_cpri__EccStartup(void)26 _cpri__EccStartup(
27 void
28 )
29 {
30 return TRUE;
31 }
32 //
33 //
34 // _cpri__GetCurveIdByIndex()
35 //
36 // This function returns the number of the i-th implemented curve. The normal use would be to call this
37 // function with i starting at 0. When the i is greater than or equal to the number of implemented curves,
38 // TPM_ECC_NONE is returned.
39 //
40 LIB_EXPORT TPM_ECC_CURVE
_cpri__GetCurveIdByIndex(UINT16 i)41 _cpri__GetCurveIdByIndex(
42 UINT16 i
43 )
44 {
45 if(i >= ECC_CURVE_COUNT)
46 return TPM_ECC_NONE;
47 return eccCurves[i].curveId;
48 }
49 LIB_EXPORT UINT32
_cpri__EccGetCurveCount(void)50 _cpri__EccGetCurveCount(
51 void
52 )
53 {
54 return ECC_CURVE_COUNT;
55 }
56 //
57 //
58 // _cpri__EccGetParametersByCurveId()
59 //
60 // This function returns a pointer to the curve data that is associated with the indicated curveId. If there is no
61 // curve with the indicated ID, the function returns NULL.
62 //
63 //
64 //
65 //
66 // Return Value Meaning
67 //
68 // NULL curve with the indicated TPM_ECC_CURVE value is not
69 // implemented
70 // non-NULL pointer to the curve data
71 //
72 LIB_EXPORT const ECC_CURVE *
_cpri__EccGetParametersByCurveId(TPM_ECC_CURVE curveId)73 _cpri__EccGetParametersByCurveId(
74 TPM_ECC_CURVE curveId // IN: the curveID
75 )
76 {
77 int i;
78 for(i = 0; i < ECC_CURVE_COUNT; i++)
79 {
80 if(eccCurves[i].curveId == curveId)
81 return &eccCurves[i];
82 }
83 FAIL(FATAL_ERROR_INTERNAL);
84
85 return NULL; // Never reached.
86 }
87 static const ECC_CURVE_DATA *
GetCurveData(TPM_ECC_CURVE curveId)88 GetCurveData(
89 TPM_ECC_CURVE curveId // IN: the curveID
90 )
91 {
92 const ECC_CURVE *curve = _cpri__EccGetParametersByCurveId(curveId);
93 return curve->curveData;
94 }
95 //
96 //
97 // Point2B()
98 //
99 // This function makes a TPMS_ECC_POINT from a BIGNUM EC_POINT.
100 //
101 static BOOL
Point2B(EC_GROUP * group,TPMS_ECC_POINT * p,EC_POINT * ecP,INT16 size,BN_CTX * context)102 Point2B(
103 EC_GROUP *group, // IN: group for the point
104 TPMS_ECC_POINT *p, // OUT: receives the converted point
105 EC_POINT *ecP, // IN: the point to convert
106 INT16 size, // IN: size of the coordinates
107 BN_CTX *context // IN: working context
108 )
109 {
110 BIGNUM *bnX;
111 BIGNUM *bnY;
112 BN_CTX_start(context);
113 bnX = BN_CTX_get(context);
114 bnY = BN_CTX_get(context);
115 if( bnY == NULL
116 // Get the coordinate values
117 || EC_POINT_get_affine_coordinates_GFp(group, ecP, bnX, bnY, context) != 1
118 // Convert x
119 || (!BnTo2B(&p->x.b, bnX, size))
120 // Convert y
121 || (!BnTo2B(&p->y.b, bnY, size))
122 )
123 FAIL(FATAL_ERROR_INTERNAL);
124 BN_CTX_end(context);
125 return TRUE;
126 }
127 //
128 //
129 // EccCurveInit()
130 //
131 // This function initializes the OpenSSL() group definition structure
132 // This function is only used within this file.
133 // It is a fatal error if groupContext is not provided.
134 //
135 // Return Value Meaning
136 //
137 // NULL the TPM_ECC_CURVE is not valid
138 // non-NULL points to a structure in groupContext static EC_GROUP *
139 //
140 static EC_GROUP *
EccCurveInit(TPM_ECC_CURVE curveId,BN_CTX * groupContext)141 EccCurveInit(
142 TPM_ECC_CURVE curveId, // IN: the ID of the curve
143 BN_CTX *groupContext // IN: the context in which the group is to be
144 // created
145 )
146 {
147 const ECC_CURVE_DATA *curveData = GetCurveData(curveId);
148 EC_GROUP *group = NULL;
149 EC_POINT *P = NULL;
150 BN_CTX *context;
151 BIGNUM *bnP;
152 BIGNUM *bnA;
153 BIGNUM *bnB;
154 BIGNUM *bnX;
155 BIGNUM *bnY;
156 BIGNUM *bnN;
157 BIGNUM *bnH;
158 int ok = FALSE;
159 // Context must be provided and curve selector must be valid
160 pAssert(groupContext != NULL && curveData != NULL);
161 context = BN_CTX_new();
162 if(context == NULL)
163 FAIL(FATAL_ERROR_ALLOCATION);
164 BN_CTX_start(context);
165 bnP = BN_CTX_get(context);
166 bnA = BN_CTX_get(context);
167 bnB = BN_CTX_get(context);
168 bnX = BN_CTX_get(context);
169 bnY = BN_CTX_get(context);
170 bnN = BN_CTX_get(context);
171 bnH = BN_CTX_get(context);
172 if (bnH == NULL)
173 goto Cleanup;
174 // Convert the number formats
175 BnFrom2B(bnP, curveData->p);
176 BnFrom2B(bnA, curveData->a);
177 BnFrom2B(bnB, curveData->b);
178 BnFrom2B(bnX, curveData->x);
179 BnFrom2B(bnY, curveData->y);
180 BnFrom2B(bnN, curveData->n);
181 BnFrom2B(bnH, curveData->h);
182 // initialize EC group, associate a generator point and initialize the point
183 // from the parameter data
184 ok = ( (group = EC_GROUP_new_curve_GFp(bnP, bnA, bnB, groupContext)) != NULL
185 && (P = EC_POINT_new(group)) != NULL
186 && EC_POINT_set_affine_coordinates_GFp(group, P, bnX, bnY, groupContext)
187 && EC_GROUP_set_generator(group, P, bnN, bnH)
188 );
189 Cleanup:
190 if (!ok && group != NULL)
191 {
192 EC_GROUP_free(group);
193 group = NULL;
194 }
195 if(P != NULL)
196 EC_POINT_free(P);
197 BN_CTX_end(context);
198 BN_CTX_free(context);
199 return group;
200 }
201 //
202 //
203 // PointFrom2B()
204 //
205 // This function sets the coordinates of an existing BN Point from a TPMS_ECC_POINT.
206 //
207 static EC_POINT *
PointFrom2B(EC_GROUP * group,EC_POINT * ecP,TPMS_ECC_POINT * p,BN_CTX * context)208 PointFrom2B(
209 EC_GROUP *group, // IN: the group for the point
210 EC_POINT *ecP, // IN: an existing BN point in the group
211 TPMS_ECC_POINT *p, // IN: the 2B coordinates of the point
212 BN_CTX *context // IN: the BIGNUM context
213 )
214 {
215 BIGNUM *bnX;
216 BIGNUM *bnY;
217 // If the point is not allocated then just return a NULL
218 if(ecP == NULL)
219 return NULL;
220 BN_CTX_start(context);
221 bnX = BN_CTX_get(context);
222 bnY = BN_CTX_get(context);
223 if( // Set the coordinates of the point
224 bnY == NULL
225 || BN_bin2bn(p->x.t.buffer, p->x.t.size, bnX) == NULL
226 || BN_bin2bn(p->y.t.buffer, p->y.t.size, bnY) == NULL
227 || !EC_POINT_set_affine_coordinates_GFp(group, ecP, bnX, bnY, context)
228 )
229 FAIL(FATAL_ERROR_INTERNAL);
230 BN_CTX_end(context);
231 return ecP;
232 }
233 //
234 //
235 // EccInitPoint2B()
236 //
237 // This function allocates a point in the provided group and initializes it with the values in a
238 // TPMS_ECC_POINT.
239 //
240 static EC_POINT *
EccInitPoint2B(EC_GROUP * group,TPMS_ECC_POINT * p,BN_CTX * context)241 EccInitPoint2B(
242 EC_GROUP *group, // IN: group for the point
243 TPMS_ECC_POINT *p, // IN: the coordinates for the point
244 BN_CTX *context // IN: the BIGNUM context
245 )
246 {
247 EC_POINT *ecP;
248 BN_CTX_start(context);
249 ecP = EC_POINT_new(group);
250 if(PointFrom2B(group, ecP, p, context) == NULL)
251 FAIL(FATAL_ERROR_INTERNAL);
252 BN_CTX_end(context);
253 return ecP;
254 }
255 //
256 //
257 // PointMul()
258 //
259 // This function does a point multiply and checks for the result being the point at infinity. Q = ([A]G + [B]P)
260 //
261 // Return Value Meaning
262 //
263 // CRYPT_NO_RESULT point is at infinity
264 // CRYPT_SUCCESS point not at infinity
265 //
266 static CRYPT_RESULT
PointMul(EC_GROUP * group,EC_POINT * ecpQ,BIGNUM * bnA,EC_POINT * ecpP,BIGNUM * bnB,BN_CTX * context)267 PointMul(
268 EC_GROUP *group, // IN: group curve
269 EC_POINT *ecpQ, // OUT: result
270 BIGNUM *bnA, // IN: scalar for [A]G
271 EC_POINT *ecpP, // IN: point for [B]P
272 BIGNUM *bnB, // IN: scalar for [B]P
273 BN_CTX *context // IN: working context
274 )
275 {
276 if(EC_POINT_mul(group, ecpQ, bnA, ecpP, bnB, context) != 1)
277 FAIL(FATAL_ERROR_INTERNAL);
278 if(EC_POINT_is_at_infinity(group, ecpQ))
279 return CRYPT_NO_RESULT;
280 return CRYPT_SUCCESS;
281 }
282 //
283 //
284 // GetRandomPrivate()
285 //
286 // This function gets a random value (d) to use as a private ECC key and then qualifies the key so that it is
287 // between 0 < d < n.
288 // It is a fatal error if dOut or pIn is not provided or if the size of pIn is larger than MAX_ECC_KEY_BYTES
289 // (the largest buffer size of a TPM2B_ECC_PARAMETER)
290 //
291 static void
GetRandomPrivate(TPM2B_ECC_PARAMETER * dOut,const TPM2B * pIn)292 GetRandomPrivate(
293 TPM2B_ECC_PARAMETER *dOut, // OUT: the qualified random value
294 const TPM2B *pIn // IN: the maximum value for the key
295 )
296 {
297 int i;
298 BYTE *pb;
299 pAssert(pIn != NULL && dOut != NULL && pIn->size <= MAX_ECC_KEY_BYTES);
300 // Set the size of the output
301 dOut->t.size = pIn->size;
302 // Get some random bits
303 while(TRUE)
304 {
305 _cpri__GenerateRandom(dOut->t.size, dOut->t.buffer);
306 // See if the d < n
307 if(memcmp(dOut->t.buffer, pIn->buffer, pIn->size) < 0)
308 {
309 // dOut < n so make sure that 0 < dOut
310 for(pb = dOut->t.buffer, i = dOut->t.size; i > 0; i--)
311 {
312 if(*pb++ != 0)
313 return;
314 }
315 }
316 }
317 }
318 //
319 //
320 // _cpri__EccPointMultiply
321 //
322 // This function computes 'R := [dIn]G + [uIn]QIn. Where dIn and uIn are scalars, G and QIn are points on
323 // the specified curve and G is the default generator of the curve.
324 // The xOut and yOut parameters are optional and may be set to NULL if not used.
325 // It is not necessary to provide uIn if QIn is specified but one of uIn and dIn must be provided. If dIn and
326 // QIn are specified but uIn is not provided, then R = [dIn]QIn.
327 // If the multiply produces the point at infinity, the CRYPT_NO_RESULT is returned.
328 // The sizes of xOut and yOut' will be set to be the size of the degree of the curve
329 // It is a fatal error if dIn and uIn are both unspecified (NULL) or if Qin or Rout is unspecified.
330 //
331 //
332 //
333 //
334 // Return Value Meaning
335 //
336 // CRYPT_SUCCESS point multiplication succeeded
337 // CRYPT_POINT the point Qin is not on the curve
338 // CRYPT_NO_RESULT the product point is at infinity
339 //
340 LIB_EXPORT CRYPT_RESULT
_cpri__EccPointMultiply(TPMS_ECC_POINT * Rout,TPM_ECC_CURVE curveId,TPM2B_ECC_PARAMETER * dIn,TPMS_ECC_POINT * Qin,TPM2B_ECC_PARAMETER * uIn)341 _cpri__EccPointMultiply(
342 TPMS_ECC_POINT *Rout, // OUT: the product point R
343 TPM_ECC_CURVE curveId, // IN: the curve to use
344 TPM2B_ECC_PARAMETER *dIn, // IN: value to multiply against the
345 // curve generator
346 TPMS_ECC_POINT *Qin, // IN: point Q
347 TPM2B_ECC_PARAMETER *uIn // IN: scalar value for the multiplier
348 // of Q
349 )
350 {
351 BN_CTX *context;
352 BIGNUM *bnD;
353 BIGNUM *bnU;
354 EC_GROUP *group;
355 EC_POINT *R = NULL;
356 EC_POINT *Q = NULL;
357 CRYPT_RESULT retVal = CRYPT_SUCCESS;
358 // Validate that the required parameters are provided.
359 pAssert((dIn != NULL || uIn != NULL) && (Qin != NULL || dIn != NULL));
360 // If a point is provided for the multiply, make sure that it is on the curve
361 if(Qin != NULL && !_cpri__EccIsPointOnCurve(curveId, Qin))
362 return CRYPT_POINT;
363 context = BN_CTX_new();
364 if(context == NULL)
365 FAIL(FATAL_ERROR_ALLOCATION);
366 BN_CTX_start(context);
367 bnU = BN_CTX_get(context);
368 bnD = BN_CTX_get(context);
369 group = EccCurveInit(curveId, context);
370 // There should be no path for getting a bad curve ID into this function.
371 pAssert(group != NULL);
372 // check allocations should have worked and allocate R
373 if( bnD == NULL
374 || (R = EC_POINT_new(group)) == NULL)
375 FAIL(FATAL_ERROR_ALLOCATION);
376 // If Qin is present, create the point
377 if(Qin != NULL)
378 {
379 // Assume the size variables do not overflow. This should not happen in
380 // the contexts in which this function will be called.
381 assert2Bsize(Qin->x.t);
382 assert2Bsize(Qin->x.t);
383 Q = EccInitPoint2B(group, Qin, context);
384 }
385 if(dIn != NULL)
386 {
387 // Assume the size variables do not overflow, which should not happen in
388 // the contexts that this function will be called.
389 assert2Bsize(dIn->t);
390 BnFrom2B(bnD, &dIn->b);
391 }
392 else
393 bnD = NULL;
394 // If uIn is specified, initialize its BIGNUM
395 if(uIn != NULL)
396 {
397 // Assume the size variables do not overflow, which should not happen in
398 // the contexts that this function will be called.
399 assert2Bsize(uIn->t);
400 BnFrom2B(bnU, &uIn->b);
401 }
402 // If uIn is not specified but Q is, then we are going to
403 // do R = [d]Q
404 else if(Qin != NULL)
405 {
406 bnU = bnD;
407 bnD = NULL;
408 }
409 // If neither Q nor u is specified, then null this pointer
410 else
411 bnU = NULL;
412 // Use the generator of the curve
413 if((retVal = PointMul(group, R, bnD, Q, bnU, context)) == CRYPT_SUCCESS)
414 Point2B(group, Rout, R, (INT16) ((EC_GROUP_get_degree(group)+7)/8), context);
415 if (Q)
416 EC_POINT_free(Q);
417 if(R)
418 EC_POINT_free(R);
419 if(group)
420 EC_GROUP_free(group);
421 BN_CTX_end(context);
422 BN_CTX_free(context);
423 return retVal;
424 }
425 #if defined TPM_ALG_ECDAA || defined TPM_ALG_SM2 //%
426 //
427 //
428 // ClearPoint2B()
429 //
430 // Initialize the size values of a point
431 //
432 static void
ClearPoint2B(TPMS_ECC_POINT * p)433 ClearPoint2B(
434 TPMS_ECC_POINT *p // IN: the point
435 )
436 {
437 if(p != NULL) {
438 p->x.t.size = 0;
439 p->y.t.size = 0;
440 }
441 }
442 //
443 //
444 // _cpri__EccCommitCompute()
445 //
446 // This function performs the point multiply operations required by TPM2_Commit().
447 // If B or M is provided, they must be on the curve defined by curveId. This routine does not check that they
448 // are on the curve and results are unpredictable if they are not.
449 //
450 //
451 //
452 // It is a fatal error if r or d is NULL. If B is not NULL, then it is a fatal error if K and L are both NULL. If M is
453 // not NULL, then it is a fatal error if E is NULL.
454 //
455 // Return Value Meaning
456 //
457 // CRYPT_SUCCESS computations completed normally
458 // CRYPT_NO_RESULT if K, L or E was computed to be the point at infinity
459 // CRYPT_CANCEL a cancel indication was asserted during this function
460 //
461 LIB_EXPORT CRYPT_RESULT
_cpri__EccCommitCompute(TPMS_ECC_POINT * K,TPMS_ECC_POINT * L,TPMS_ECC_POINT * E,TPM_ECC_CURVE curveId,TPMS_ECC_POINT * M,TPMS_ECC_POINT * B,TPM2B_ECC_PARAMETER * d,TPM2B_ECC_PARAMETER * r)462 _cpri__EccCommitCompute(
463 TPMS_ECC_POINT *K, // OUT: [d]B or [r]Q
464 TPMS_ECC_POINT *L, // OUT: [r]B
465 TPMS_ECC_POINT *E, // OUT: [r]M
466 TPM_ECC_CURVE curveId, // IN: the curve for the computations
467 TPMS_ECC_POINT *M, // IN: M (optional)
468 TPMS_ECC_POINT *B, // IN: B (optional)
469 TPM2B_ECC_PARAMETER *d, // IN: d (required)
470 TPM2B_ECC_PARAMETER *r // IN: the computed r value (required)
471 )
472 {
473 BN_CTX *context;
474 BIGNUM *bnY, *bnR, *bnD;
475 EC_GROUP *group;
476 EC_POINT *pK = NULL, *pL = NULL, *pE = NULL, *pM = NULL, *pB = NULL;
477 UINT16 keySizeInBytes;
478 CRYPT_RESULT retVal = CRYPT_SUCCESS;
479 // Validate that the required parameters are provided.
480 // Note: E has to be provided if computing E := [r]Q or E := [r]M. Will do
481 // E := [r]Q if both M and B are NULL.
482
483 pAssert((r && (K || !B) && (L || !B)) || (E || (!M && B)));
484 context = BN_CTX_new();
485 if(context == NULL)
486 FAIL(FATAL_ERROR_ALLOCATION);
487 BN_CTX_start(context);
488 bnR = BN_CTX_get(context);
489 bnD = BN_CTX_get(context);
490 bnY = BN_CTX_get(context);
491 if(bnY == NULL)
492 FAIL(FATAL_ERROR_ALLOCATION);
493 // Initialize the output points in case they are not computed
494 ClearPoint2B(K);
495 ClearPoint2B(L);
496 ClearPoint2B(E);
497 if((group = EccCurveInit(curveId, context)) == NULL)
498 {
499 retVal = CRYPT_PARAMETER;
500 goto Cleanup2;
501 }
502 keySizeInBytes = (UINT16) ((EC_GROUP_get_degree(group)+7)/8);
503 // Size of the r parameter may not be zero
504 pAssert((int) r->t.size > 0);
505 // Convert scalars to BIGNUM
506 BnFrom2B(bnR, &r->b);
507 // If B is provided, compute K=[d]B and L=[r]B
508 if(B != NULL)
509 {
510 // Size of the d parameter may not be zero
511 pAssert((int) d->t.size > 0);
512 BnFrom2B(bnD, &d->b);
513
514 // Allocate the points to receive the value
515 if( (pK = EC_POINT_new(group)) == NULL
516 || (pL = EC_POINT_new(group)) == NULL)
517 FAIL(FATAL_ERROR_ALLOCATION);
518 // need to compute K = [d]B
519 // Allocate and initialize BIGNUM version of B
520 pB = EccInitPoint2B(group, B, context);
521 // do the math for K = [d]B
522 if((retVal = PointMul(group, pK, NULL, pB, bnD, context)) != CRYPT_SUCCESS)
523 goto Cleanup;
524 // Convert BN K to TPM2B K
525 Point2B(group, K, pK, (INT16)keySizeInBytes, context);
526 // compute L= [r]B after checking for cancel
527 if(_plat__IsCanceled())
528 {
529 retVal = CRYPT_CANCEL;
530 goto Cleanup;
531 }
532 // compute L = [r]B
533 if((retVal = PointMul(group, pL, NULL, pB, bnR, context)) != CRYPT_SUCCESS)
534 goto Cleanup;
535 // Convert BN L to TPM2B L
536 Point2B(group, L, pL, (INT16)keySizeInBytes, context);
537 }
538 if(M != NULL || B == NULL)
539 {
540 // if this is the third point multiply, check for cancel first
541 if(B != NULL && _plat__IsCanceled())
542 {
543 retVal = CRYPT_CANCEL;
544 goto Cleanup;
545 }
546 // Allocate E
547 if((pE = EC_POINT_new(group)) == NULL)
548 FAIL(FATAL_ERROR_ALLOCATION);
549 // Create BIGNUM version of M unless M is NULL
550 if(M != NULL)
551 {
552 // M provided so initialize a BIGNUM M and compute E = [r]M
553 pM = EccInitPoint2B(group, M, context);
554 retVal = PointMul(group, pE, NULL, pM, bnR, context);
555 }
556 else
557 // compute E = [r]G (this is only done if M and B are both NULL
558 retVal = PointMul(group, pE, bnR, NULL, NULL, context);
559 if(retVal == CRYPT_SUCCESS)
560 // Convert E to 2B format
561 Point2B(group, E, pE, (INT16)keySizeInBytes, context);
562 }
563 Cleanup:
564 EC_GROUP_free(group);
565 if(pK != NULL) EC_POINT_free(pK);
566 if(pL != NULL) EC_POINT_free(pL);
567 if(pE != NULL) EC_POINT_free(pE);
568 if(pM != NULL) EC_POINT_free(pM);
569 if(pB != NULL) EC_POINT_free(pB);
570 Cleanup2:
571 BN_CTX_end(context);
572 BN_CTX_free(context);
573 return retVal;
574 }
575 #endif //%
576 //
577 //
578 // _cpri__EccIsPointOnCurve()
579 //
580 // This function is used to test if a point is on a defined curve. It does this by checking that y^2 mod p = x^3
581 // + a*x + b mod p
582 // It is a fatal error if Q is not specified (is NULL).
583 //
584 // Return Value Meaning
585 //
586 // TRUE point is on curve
587 // FALSE point is not on curve or curve is not supported
588 //
589 LIB_EXPORT BOOL
_cpri__EccIsPointOnCurve(TPM_ECC_CURVE curveId,TPMS_ECC_POINT * Q)590 _cpri__EccIsPointOnCurve(
591 TPM_ECC_CURVE curveId, // IN: the curve selector
592 TPMS_ECC_POINT *Q // IN: the point.
593 )
594 {
595 BN_CTX *context;
596 BIGNUM *bnX;
597 BIGNUM *bnY;
598 BIGNUM *bnA;
599 BIGNUM *bnB;
600 BIGNUM *bnP;
601 BIGNUM *bn3;
602 const ECC_CURVE_DATA *curveData = GetCurveData(curveId);
603 BOOL retVal;
604 pAssert(Q != NULL && curveData != NULL);
605 if((context = BN_CTX_new()) == NULL)
606 FAIL(FATAL_ERROR_ALLOCATION);
607 BN_CTX_start(context);
608 bnX = BN_CTX_get(context);
609 bnY = BN_CTX_get(context);
610 bnA = BN_CTX_get(context);
611 bnB = BN_CTX_get(context);
612 bn3 = BN_CTX_get(context);
613 bnP = BN_CTX_get(context);
614 if(bnP == NULL)
615 FAIL(FATAL_ERROR_ALLOCATION);
616 // Convert values
617 if ( !BN_bin2bn(Q->x.t.buffer, Q->x.t.size, bnX)
618 || !BN_bin2bn(Q->y.t.buffer, Q->y.t.size, bnY)
619 || !BN_bin2bn(curveData->p->buffer, curveData->p->size, bnP)
620 || !BN_bin2bn(curveData->a->buffer, curveData->a->size, bnA)
621 || !BN_set_word(bn3, 3)
622 || !BN_bin2bn(curveData->b->buffer, curveData->b->size, bnB)
623 )
624 FAIL(FATAL_ERROR_INTERNAL);
625 // The following sequence is probably not optimal but it seems to be correct.
626 // compute x^3 + a*x + b mod p
627 // first, compute a*x mod p
628 if( !BN_mod_mul(bnA, bnA, bnX, bnP, context)
629 //
630 // next, compute a*x + b mod p
631 || !BN_mod_add(bnA, bnA, bnB, bnP, context)
632 // next, compute X^3 mod p
633 || !BN_mod_exp(bnX, bnX, bn3, bnP, context)
634 // finally, compute x^3 + a*x + b mod p
635 || !BN_mod_add(bnX, bnX, bnA, bnP, context)
636 // then compute y^2
637 || !BN_mod_mul(bnY, bnY, bnY, bnP, context)
638 )
639 FAIL(FATAL_ERROR_INTERNAL);
640 retVal = BN_cmp(bnX, bnY) == 0;
641 BN_CTX_end(context);
642 BN_CTX_free(context);
643 return retVal;
644 }
645 //
646 //
647 // _cpri__GenerateKeyEcc()
648 //
649 // This function generates an ECC key pair based on the input parameters. This routine uses KDFa() to
650 // produce candidate numbers. The method is according to FIPS 186-3, section B.4.1 "GKey() Pair
651 // Generation Using Extra Random Bits." According to the method in FIPS 186-3, the resulting private value
652 // d should be 1 <= d < n where n is the order of the base point. In this implementation, the range of the
653 // private value is further restricted to be 2^(nLen/2) <= d < n where nLen is the order of n.
654 //
655 // EXAMPLE: If the curve is NIST-P256, then nLen is 256 bits and d will need to be between 2^128 <= d < n
656 //
657 // It is a fatal error if Qout, dOut, or seed is not provided (is NULL).
658 //
659 // Return Value Meaning
660 //
661 // CRYPT_PARAMETER the hash algorithm is not supported
662 //
663 LIB_EXPORT CRYPT_RESULT
_cpri__GenerateKeyEcc(TPMS_ECC_POINT * Qout,TPM2B_ECC_PARAMETER * dOut,TPM_ECC_CURVE curveId,TPM_ALG_ID hashAlg,TPM2B * seed,const char * label,TPM2B * extra,UINT32 * counter)664 _cpri__GenerateKeyEcc(
665 TPMS_ECC_POINT *Qout, // OUT: the public point
666 TPM2B_ECC_PARAMETER *dOut, // OUT: the private scalar
667 TPM_ECC_CURVE curveId, // IN: the curve identifier
668 TPM_ALG_ID hashAlg, // IN: hash algorithm to use in the key
669 // generation process
670 TPM2B *seed, // IN: the seed to use
671 const char *label, // IN: A label for the generation
672 // process.
673 TPM2B *extra, // IN: Party 1 data for the KDF
674 UINT32 *counter // IN/OUT: Counter value to allow KDF
675 // iteration to be propagated across
676 // multiple functions
677 )
678 {
679 const ECC_CURVE_DATA *curveData = GetCurveData(curveId);
680 INT16 keySizeInBytes;
681 UINT32 count = 0;
682 CRYPT_RESULT retVal;
683 UINT16 hLen = _cpri__GetDigestSize(hashAlg);
684 BIGNUM *bnNm1; // Order of the curve minus one
685 BIGNUM *bnD; // the private scalar
686 BN_CTX *context; // the context for the BIGNUM values
687 BYTE withExtra[MAX_ECC_KEY_BYTES + 8]; // trial key with
688 //extra bits
689 TPM2B_4_BYTE_VALUE marshaledCounter = {.t = {4}};
690 UINT32 totalBits;
691 // Validate parameters (these are fatal)
692 pAssert( seed != NULL && dOut != NULL && Qout != NULL && curveData != NULL);
693 // Non-fatal parameter checks.
694 if(hLen <= 0)
695 return CRYPT_PARAMETER;
696 // allocate the local BN values
697 context = BN_CTX_new();
698 if(context == NULL)
699 FAIL(FATAL_ERROR_ALLOCATION);
700 BN_CTX_start(context);
701 bnNm1 = BN_CTX_get(context);
702 bnD = BN_CTX_get(context);
703 // The size of the input scalars is limited by the size of the size of a
704 // TPM2B_ECC_PARAMETER. Make sure that it is not irrational.
705 pAssert((int) curveData->n->size <= MAX_ECC_KEY_BYTES);
706 if( bnD == NULL
707 || BN_bin2bn(curveData->n->buffer, curveData->n->size, bnNm1) == NULL
708 || (keySizeInBytes = (INT16) BN_num_bytes(bnNm1)) > MAX_ECC_KEY_BYTES)
709 FAIL(FATAL_ERROR_INTERNAL);
710 // get the total number of bits
711 totalBits = BN_num_bits(bnNm1) + 64;
712 // Reduce bnNm1 from 'n' to 'n' - 1
713 BN_sub_word(bnNm1, 1);
714 // Initialize the count value
715 if(counter != NULL)
716 count = *counter;
717 if(count == 0)
718 count = 1;
719 // Start search for key (should be quick)
720 for(; count != 0; count++)
721 {
722 UINT32_TO_BYTE_ARRAY(count, marshaledCounter.t.buffer);
723 _cpri__KDFa(hashAlg, seed, label, extra, &marshaledCounter.b,
724 totalBits, withExtra, NULL, FALSE);
725 // Convert the result and modular reduce
726 // Assume the size variables do not overflow, which should not happen in
727 // the contexts that this function will be called.
728 pAssert(keySizeInBytes <= MAX_ECC_KEY_BYTES);
729 if ( BN_bin2bn(withExtra, keySizeInBytes+8, bnD) == NULL
730 || BN_mod(bnD, bnD, bnNm1, context) != 1)
731 FAIL(FATAL_ERROR_INTERNAL);
732 // Add one to get 0 < d < n
733 BN_add_word(bnD, 1);
734 if(BnTo2B(&dOut->b, bnD, keySizeInBytes) != 1)
735 FAIL(FATAL_ERROR_INTERNAL);
736 // Do the point multiply to create the public portion of the key. If
737 // the multiply generates the point at infinity (unlikely), do another
738 // iteration.
739 if( (retVal = _cpri__EccPointMultiply(Qout, curveId, dOut, NULL, NULL))
740 != CRYPT_NO_RESULT)
741 break;
742 }
743 if(count == 0) // if counter wrapped, then the TPM should go into failure mode
744 FAIL(FATAL_ERROR_INTERNAL);
745 // Free up allocated BN values
746 BN_CTX_end(context);
747 BN_CTX_free(context);
748 if(counter != NULL)
749 *counter = count;
750 return retVal;
751 }
752 //
753 //
754 // _cpri__GetEphemeralEcc()
755 //
756 // This function creates an ephemeral ECC. It is ephemeral in that is expected that the private part of the
757 // key will be discarded
758 //
759 LIB_EXPORT CRYPT_RESULT
_cpri__GetEphemeralEcc(TPMS_ECC_POINT * Qout,TPM2B_ECC_PARAMETER * dOut,TPM_ECC_CURVE curveId)760 _cpri__GetEphemeralEcc(
761 TPMS_ECC_POINT *Qout, // OUT: the public point
762 TPM2B_ECC_PARAMETER *dOut, // OUT: the private scalar
763 TPM_ECC_CURVE curveId // IN: the curve for the key
764 )
765 {
766 CRYPT_RESULT retVal;
767 const ECC_CURVE_DATA *curveData = GetCurveData(curveId);
768 pAssert(curveData != NULL);
769 // Keep getting random values until one is found that doesn't create a point
770 // at infinity. This will never, ever, ever, ever, ever, happen but if it does
771 // we have to get a next random value.
772 while(TRUE)
773 {
774 GetRandomPrivate(dOut, curveData->p);
775 // _cpri__EccPointMultiply does not return CRYPT_ECC_POINT if no point is
776 // provided. CRYPT_PARAMTER should not be returned because the curve ID
777 // has to be supported. Thus the only possible error is CRYPT_NO_RESULT.
778 retVal = _cpri__EccPointMultiply(Qout, curveId, dOut, NULL, NULL);
779 if(retVal != CRYPT_NO_RESULT)
780 return retVal; // Will return CRYPT_SUCCESS
781 }
782 }
783 #ifdef TPM_ALG_ECDSA //%
784 //
785 //
786 // SignEcdsa()
787 //
788 // This function implements the ECDSA signing algorithm. The method is described in the comments below.
789 // It is a fatal error if rOut, sOut, dIn, or digest are not provided.
790 //
791 LIB_EXPORT CRYPT_RESULT
SignEcdsa(TPM2B_ECC_PARAMETER * rOut,TPM2B_ECC_PARAMETER * sOut,TPM_ECC_CURVE curveId,TPM2B_ECC_PARAMETER * dIn,TPM2B * digest)792 SignEcdsa(
793 TPM2B_ECC_PARAMETER *rOut, // OUT: r component of the signature
794 TPM2B_ECC_PARAMETER *sOut, // OUT: s component of the signature
795 TPM_ECC_CURVE curveId, // IN: the curve used in the signature
796 // process
797 TPM2B_ECC_PARAMETER *dIn, // IN: the private key
798 TPM2B *digest // IN: the value to sign
799 )
800 {
801 BIGNUM *bnK;
802 BIGNUM *bnIk;
803 BIGNUM *bnN;
804 BIGNUM *bnR;
805 //
806 BIGNUM *bnD;
807 BIGNUM *bnZ;
808 TPM2B_ECC_PARAMETER k;
809 TPMS_ECC_POINT R;
810 BN_CTX *context;
811 CRYPT_RESULT retVal = CRYPT_SUCCESS;
812 const ECC_CURVE_DATA *curveData = GetCurveData(curveId);
813 pAssert(rOut != NULL && sOut != NULL && dIn != NULL && digest != NULL);
814 context = BN_CTX_new();
815 if(context == NULL)
816 FAIL(FATAL_ERROR_ALLOCATION);
817 BN_CTX_start(context);
818 bnN = BN_CTX_get(context);
819 bnZ = BN_CTX_get(context);
820 bnR = BN_CTX_get(context);
821 bnD = BN_CTX_get(context);
822 bnIk = BN_CTX_get(context);
823 bnK = BN_CTX_get(context);
824 // Assume the size variables do not overflow, which should not happen in
825 // the contexts that this function will be called.
826 pAssert(curveData->n->size <= MAX_ECC_PARAMETER_BYTES);
827 if( bnK == NULL
828 || BN_bin2bn(curveData->n->buffer, curveData->n->size, bnN) == NULL)
829 FAIL(FATAL_ERROR_INTERNAL);
830 // The algorithm as described in "Suite B Implementer's Guide to FIPS 186-3(ECDSA)"
831 // 1. Use one of the routines in Appendix A.2 to generate (k, k^-1), a per-message
832 // secret number and its inverse modulo n. Since n is prime, the
833 // output will be invalid only if there is a failure in the RBG.
834 // 2. Compute the elliptic curve point R = [k]G = (xR, yR) using EC scalar
835 // multiplication (see [Routines]), where G is the base point included in
836 // the set of domain parameters.
837 // 3. Compute r = xR mod n. If r = 0, then return to Step 1. 1.
838 // 4. Use the selected hash function to compute H = Hash(M).
839 // 5. Convert the bit string H to an integer e as described in Appendix B.2.
840 // 6. Compute s = (k^-1 * (e + d * r)) mod n. If s = 0, return to Step 1.2.
841 // 7. Return (r, s).
842 // Generate a random value k in the range 1 <= k < n
843 // Want a K value that is the same size as the curve order
844 k.t.size = curveData->n->size;
845 while(TRUE) // This implements the loop at step 6. If s is zero, start over.
846 {
847 while(TRUE)
848 {
849 // Step 1 and 2 -- generate an ephemeral key and the modular inverse
850 // of the private key.
851 while(TRUE)
852 {
853 GetRandomPrivate(&k, curveData->n);
854 // Do the point multiply to generate a point and check to see if
855 // the point it at infinity
856 if( _cpri__EccPointMultiply(&R, curveId, &k, NULL, NULL)
857 != CRYPT_NO_RESULT)
858 break; // can only be CRYPT_SUCCESS
859 }
860 // x coordinate is mod p. Make it mod n
861 // Assume the size variables do not overflow, which should not happen
862 // in the contexts that this function will be called.
863 assert2Bsize(R.x.t);
864 BN_bin2bn(R.x.t.buffer, R.x.t.size, bnR);
865 BN_mod(bnR, bnR, bnN, context);
866 // Make sure that it is not zero;
867 if(BN_is_zero(bnR))
868 continue;
869 // Make sure that a modular inverse exists
870 // Assume the size variables do not overflow, which should not happen
871 // in the contexts that this function will be called.
872 assert2Bsize(k.t);
873 BN_bin2bn(k.t.buffer, k.t.size, bnK);
874 if( BN_mod_inverse(bnIk, bnK, bnN, context) != NULL)
875 break;
876 }
877 // Set z = leftmost bits of the digest
878 // NOTE: This is implemented such that the key size needs to be
879 // an even number of bytes in length.
880 if(digest->size > curveData->n->size)
881 {
882 // Assume the size variables do not overflow, which should not happen
883 // in the contexts that this function will be called.
884 pAssert(curveData->n->size <= MAX_ECC_KEY_BYTES);
885 // digest is larger than n so truncate
886 BN_bin2bn(digest->buffer, curveData->n->size, bnZ);
887 }
888 else
889 {
890 // Assume the size variables do not overflow, which should not happen
891 // in the contexts that this function will be called.
892 pAssert(digest->size <= MAX_DIGEST_SIZE);
893 // digest is same or smaller than n so use it all
894 BN_bin2bn(digest->buffer, digest->size, bnZ);
895 }
896 // Assume the size variables do not overflow, which should not happen in
897 // the contexts that this function will be called.
898 assert2Bsize(dIn->t);
899 if( bnZ == NULL
900 // need the private scalar of the signing key
901 || BN_bin2bn(dIn->t.buffer, dIn->t.size, bnD) == NULL)
902 FAIL(FATAL_ERROR_INTERNAL);
903 // NOTE: When the result of an operation is going to be reduced mod x
904 // any modular multiplication is done so that the intermediate values
905 // don't get too large.
906 //
907 // now have inverse of K (bnIk), z (bnZ), r (bnR), d (bnD) and n (bnN)
908 // Compute s = k^-1 (z + r*d)(mod n)
909 // first do d = r*d mod n
910 if( !BN_mod_mul(bnD, bnR, bnD, bnN, context)
911 // d = z + r * d
912 || !BN_add(bnD, bnZ, bnD)
913 // d = k^(-1)(z + r * d)(mod n)
914 || !BN_mod_mul(bnD, bnIk, bnD, bnN, context)
915 // convert to TPM2B format
916 || !BnTo2B(&sOut->b, bnD, curveData->n->size)
917 // and write the modular reduced version of r
918 // NOTE: this was deferred to reduce the number of
919 // error checks.
920 || !BnTo2B(&rOut->b, bnR, curveData->n->size))
921 FAIL(FATAL_ERROR_INTERNAL);
922 if(!BN_is_zero(bnD))
923 break; // signature not zero so done
924 // if the signature value was zero, start over
925 }
926 // Free up allocated BN values
927 BN_CTX_end(context);
928 BN_CTX_free(context);
929 return retVal;
930 }
931 #endif //%
932 #if defined TPM_ALG_ECDAA || defined TPM_ALG_ECSCHNORR //%
933 //
934 //
935 // EcDaa()
936 //
937 // This function is used to perform a modified Schnorr signature for ECDAA.
938 // This function performs s = k + T * d mod n where
939 // a) 'k is a random, or pseudo-random value used in the commit phase
940 // b) T is the digest to be signed, and
941 // c) d is a private key.
942 // If tIn is NULL then use tOut as T
943 //
944 // Return Value Meaning
945 //
946 // CRYPT_SUCCESS signature created
947 //
948 static CRYPT_RESULT
EcDaa(TPM2B_ECC_PARAMETER * tOut,TPM2B_ECC_PARAMETER * sOut,TPM_ECC_CURVE curveId,TPM2B_ECC_PARAMETER * dIn,TPM2B * tIn,TPM2B_ECC_PARAMETER * kIn)949 EcDaa(
950 TPM2B_ECC_PARAMETER *tOut, // OUT: T component of the signature
951 TPM2B_ECC_PARAMETER *sOut, // OUT: s component of the signature
952 TPM_ECC_CURVE curveId, // IN: the curve used in signing
953 TPM2B_ECC_PARAMETER *dIn, // IN: the private key
954 TPM2B *tIn, // IN: the value to sign
955 TPM2B_ECC_PARAMETER *kIn // IN: a random value from commit
956 )
957 {
958 BIGNUM *bnN, *bnK, *bnT, *bnD;
959 BN_CTX *context;
960 const TPM2B *n;
961 const ECC_CURVE_DATA *curveData = GetCurveData(curveId);
962 BOOL OK = TRUE;
963 // Parameter checks
964 pAssert( sOut != NULL && dIn != NULL && tOut != NULL
965 && kIn != NULL && curveData != NULL);
966 // this just saves key strokes
967 n = curveData->n;
968 if(tIn != NULL)
969 Copy2B(&tOut->b, tIn);
970 // The size of dIn and kIn input scalars is limited by the size of the size
971 // of a TPM2B_ECC_PARAMETER and tIn can be no larger than a digest.
972 // Make sure they are within range.
973 pAssert( (int) dIn->t.size <= MAX_ECC_KEY_BYTES
974 && (int) kIn->t.size <= MAX_ECC_KEY_BYTES
975 //
976 && (int) tOut->t.size <= MAX_DIGEST_SIZE
977 );
978 context = BN_CTX_new();
979 if(context == NULL)
980 FAIL(FATAL_ERROR_ALLOCATION);
981 BN_CTX_start(context);
982 bnN = BN_CTX_get(context);
983 bnK = BN_CTX_get(context);
984 bnT = BN_CTX_get(context);
985 bnD = BN_CTX_get(context);
986 // Check for allocation problems
987 if(bnD == NULL)
988 FAIL(FATAL_ERROR_ALLOCATION);
989 // Convert values
990 if( BN_bin2bn(n->buffer, n->size, bnN) == NULL
991 || BN_bin2bn(kIn->t.buffer, kIn->t.size, bnK) == NULL
992 || BN_bin2bn(dIn->t.buffer, dIn->t.size, bnD) == NULL
993 || BN_bin2bn(tOut->t.buffer, tOut->t.size, bnT) == NULL)
994 FAIL(FATAL_ERROR_INTERNAL);
995 // Compute T = T mod n
996 OK = OK && BN_mod(bnT, bnT, bnN, context);
997 // compute (s = k + T * d mod n)
998 // d = T * d mod n
999 OK = OK && BN_mod_mul(bnD, bnT, bnD, bnN, context) == 1;
1000 // d = k + T * d mod n
1001 OK = OK && BN_mod_add(bnD, bnK, bnD, bnN, context) == 1;
1002 // s = d
1003 OK = OK && BnTo2B(&sOut->b, bnD, n->size);
1004 // r = T
1005 OK = OK && BnTo2B(&tOut->b, bnT, n->size);
1006 if(!OK)
1007 FAIL(FATAL_ERROR_INTERNAL);
1008 // Cleanup
1009 BN_CTX_end(context);
1010 BN_CTX_free(context);
1011 return CRYPT_SUCCESS;
1012 }
1013 #endif //%
1014 #ifdef TPM_ALG_ECSCHNORR //%
1015 //
1016 //
1017 // Mod2B()
1018 //
1019 // Function does modular reduction of TPM2B values.
1020 //
1021 static CRYPT_RESULT
Mod2B(TPM2B * x,const TPM2B * n)1022 Mod2B(
1023 TPM2B *x, // IN/OUT: value to reduce
1024 const TPM2B *n // IN: mod
1025 )
1026 {
1027 int compare;
1028 compare = _math__uComp(x->size, x->buffer, n->size, n->buffer);
1029 if(compare < 0)
1030 // if x < n, then mod is x
1031 return CRYPT_SUCCESS;
1032 if(compare == 0)
1033 {
1034 // if x == n then mod is 0
1035 x->size = 0;
1036 x->buffer[0] = 0;
1037 return CRYPT_SUCCESS;
1038 }
1039 return _math__Div(x, n, NULL, x);
1040 }
1041
1042 //
1043 //
1044 // SchnorrEcc()
1045 //
1046 // This function is used to perform a modified Schnorr signature.
1047 // This function will generate a random value k and compute
1048 // a) (xR, yR) = [k]G
1049 // b) r = hash(P || xR)(mod n)
1050 // c) s= k + r * ds
1051 // d) return the tuple T, s
1052 //
1053 //
1054 //
1055 //
1056 // Return Value Meaning
1057 //
1058 // CRYPT_SUCCESS signature created
1059 // CRYPT_SCHEME hashAlg can't produce zero-length digest
1060 //
1061 static CRYPT_RESULT
SchnorrEcc(TPM2B_ECC_PARAMETER * rOut,TPM2B_ECC_PARAMETER * sOut,TPM_ALG_ID hashAlg,TPM_ECC_CURVE curveId,TPM2B_ECC_PARAMETER * dIn,TPM2B * digest,TPM2B_ECC_PARAMETER * kIn)1062 SchnorrEcc(
1063 TPM2B_ECC_PARAMETER *rOut, // OUT: r component of the signature
1064 TPM2B_ECC_PARAMETER *sOut, // OUT: s component of the signature
1065 TPM_ALG_ID hashAlg, // IN: hash algorithm used
1066 TPM_ECC_CURVE curveId, // IN: the curve used in signing
1067 TPM2B_ECC_PARAMETER *dIn, // IN: the private key
1068 TPM2B *digest, // IN: the digest to sign
1069 TPM2B_ECC_PARAMETER *kIn // IN: for testing
1070 )
1071 {
1072 TPM2B_ECC_PARAMETER k;
1073 BIGNUM *bnR, *bnN, *bnK, *bnT, *bnD;
1074 BN_CTX *context;
1075 const TPM2B *n;
1076 EC_POINT *pR = NULL;
1077 EC_GROUP *group = NULL;
1078 CPRI_HASH_STATE hashState;
1079 UINT16 digestSize = _cpri__GetDigestSize(hashAlg);
1080 const ECC_CURVE_DATA *curveData = GetCurveData(curveId);
1081 TPM2B_TYPE(T, MAX(MAX_DIGEST_SIZE, MAX_ECC_PARAMETER_BYTES));
1082 TPM2B_T T2b;
1083 BOOL OK = TRUE;
1084 // Parameter checks
1085 // Must have a place for the 'r' and 's' parts of the signature, a private
1086 // key ('d')
1087 pAssert( rOut != NULL && sOut != NULL && dIn != NULL
1088 && digest != NULL && curveData != NULL);
1089 // to save key strokes
1090 n = curveData->n;
1091 // If the digest does not produce a hash, then null the signature and return
1092 // a failure.
1093 if(digestSize == 0)
1094 {
1095 rOut->t.size = 0;
1096 sOut->t.size = 0;
1097 return CRYPT_SCHEME;
1098 }
1099 // Allocate big number values
1100 context = BN_CTX_new();
1101 if(context == NULL)
1102 FAIL(FATAL_ERROR_ALLOCATION);
1103 BN_CTX_start(context);
1104 bnR = BN_CTX_get(context);
1105 bnN = BN_CTX_get(context);
1106 bnK = BN_CTX_get(context);
1107 bnT = BN_CTX_get(context);
1108 bnD = BN_CTX_get(context);
1109 if( bnD == NULL
1110 // initialize the group parameters
1111 || (group = EccCurveInit(curveId, context)) == NULL
1112 // allocate a local point
1113 || (pR = EC_POINT_new(group)) == NULL
1114 )
1115 FAIL(FATAL_ERROR_ALLOCATION);
1116 if(BN_bin2bn(curveData->n->buffer, curveData->n->size, bnN) == NULL)
1117 FAIL(FATAL_ERROR_INTERNAL);
1118 while(OK)
1119 {
1120 // a) set k to a random value such that 1 k n-1
1121 if(kIn != NULL)
1122 {
1123 Copy2B(&k.b, &kIn->b); // copy input k if testing
1124 OK = FALSE; // not OK to loop
1125 }
1126 else
1127 // If get a random value in the correct range
1128 GetRandomPrivate(&k, n);
1129 // Convert 'k' and generate pR = ['k']G
1130 BnFrom2B(bnK, &k.b);
1131 // b) compute E (xE, yE) [k]G
1132 if(PointMul(group, pR, bnK, NULL, NULL, context) == CRYPT_NO_RESULT)
1133 // c) if E is the point at infinity, go to a)
1134 continue;
1135 // d) compute e xE (mod n)
1136 // Get the x coordinate of the point
1137 EC_POINT_get_affine_coordinates_GFp(group, pR, bnR, NULL, context);
1138 // make (mod n)
1139 BN_mod(bnR, bnR, bnN, context);
1140 // e) if e is zero, go to a)
1141 if(BN_is_zero(bnR))
1142 continue;
1143 // Convert xR to a string (use T as a temp)
1144 BnTo2B(&T2b.b, bnR, (UINT16)(BN_num_bits(bnR)+7)/8);
1145 // f) compute r HschemeHash(P || e) (mod n)
1146 _cpri__StartHash(hashAlg, FALSE, &hashState);
1147 _cpri__UpdateHash(&hashState, digest->size, digest->buffer);
1148 _cpri__UpdateHash(&hashState, T2b.t.size, T2b.t.buffer);
1149 if(_cpri__CompleteHash(&hashState, digestSize, T2b.b.buffer) != digestSize)
1150 FAIL(FATAL_ERROR_INTERNAL);
1151 T2b.t.size = digestSize;
1152 BnFrom2B(bnT, &T2b.b);
1153 BN_div(NULL, bnT, bnT, bnN, context);
1154 BnTo2B(&rOut->b, bnT, (UINT16)BN_num_bytes(bnT));
1155 // We have a value and we are going to exit the loop successfully
1156 OK = TRUE;
1157 break;
1158 }
1159 // Cleanup
1160 EC_POINT_free(pR);
1161 EC_GROUP_free(group);
1162 BN_CTX_end(context);
1163 BN_CTX_free(context);
1164 // If we have a value, finish the signature
1165 if(OK)
1166 return EcDaa(rOut, sOut, curveId, dIn, NULL, &k);
1167 else
1168 return CRYPT_NO_RESULT;
1169 }
1170 #endif //%
1171 #ifdef TPM_ALG_SM2 //%
1172 #ifdef _SM2_SIGN_DEBUG //%
1173 static int
cmp_bn2hex(BIGNUM * bn,const char * c)1174 cmp_bn2hex(
1175 BIGNUM *bn, // IN: big number value
1176 const char *c // IN: character string number
1177 )
1178 {
1179 int result;
1180 BIGNUM *bnC = BN_new();
1181 pAssert(bnC != NULL);
1182 BN_hex2bn(&bnC, c);
1183 result = BN_ucmp(bn, bnC);
1184 BN_free(bnC);
1185 return result;
1186 }
1187 static int
cmp_2B2hex(TPM2B * a,const char * c)1188 cmp_2B2hex(
1189 TPM2B *a, // IN: TPM2B number to compare
1190 const char *c // IN: character string
1191 )
1192 {
1193 int result;
1194 int sl = strlen(c);
1195 BIGNUM *bnA;
1196 result = (a->size * 2) - sl;
1197 if(result != 0)
1198 return result;
1199 pAssert((bnA = BN_bin2bn(a->buffer, a->size, NULL)) != NULL);
1200 result = cmp_bn2hex(bnA, c);
1201 BN_free(bnA);
1202 return result;
1203 }
1204 static void
cpy_hexTo2B(TPM2B * b,const char * c)1205 cpy_hexTo2B(
1206 TPM2B *b, // OUT: receives value
1207 const char *c // IN: source string
1208 )
1209 {
1210 BIGNUM *bnB = BN_new();
1211 pAssert((strlen(c) & 1) == 0); // must have an even number of digits
1212 b->size = strlen(c) / 2;
1213 BN_hex2bn(&bnB, c);
1214 pAssert(bnB != NULL);
1215 BnTo2B(b, bnB, b->size);
1216 BN_free(bnB);
1217 }
1218 #endif //% _SM2_SIGN_DEBUG
1219 //
1220 //
1221 // SignSM2()
1222 //
1223 // This function signs a digest using the method defined in SM2 Part 2. The method in the standard will add
1224 // a header to the message to be signed that is a hash of the values that define the key. This then hashed
1225 // with the message to produce a digest (e) that is signed. This function signs e.
1226 //
1227 //
1228 //
1229 //
1230 // Return Value Meaning
1231 //
1232 // CRYPT_SUCCESS sign worked
1233 //
1234 static CRYPT_RESULT
SignSM2(TPM2B_ECC_PARAMETER * rOut,TPM2B_ECC_PARAMETER * sOut,TPM_ECC_CURVE curveId,TPM2B_ECC_PARAMETER * dIn,TPM2B * digest)1235 SignSM2(
1236 TPM2B_ECC_PARAMETER *rOut, // OUT: r component of the signature
1237 TPM2B_ECC_PARAMETER *sOut, // OUT: s component of the signature
1238 TPM_ECC_CURVE curveId, // IN: the curve used in signing
1239 TPM2B_ECC_PARAMETER *dIn, // IN: the private key
1240 TPM2B *digest // IN: the digest to sign
1241 )
1242 {
1243 BIGNUM *bnR;
1244 BIGNUM *bnS;
1245 BIGNUM *bnN;
1246 BIGNUM *bnK;
1247 BIGNUM *bnX1;
1248 BIGNUM *bnD;
1249 BIGNUM *bnT; // temp
1250 BIGNUM *bnE;
1251 BN_CTX *context;
1252 TPM2B_ECC_PARAMETER k;
1253 TPMS_ECC_POINT p2Br;
1254 const ECC_CURVE_DATA *curveData = GetCurveData(curveId);
1255 pAssert(curveData != NULL);
1256 context = BN_CTX_new();
1257 BN_CTX_start(context);
1258 bnK = BN_CTX_get(context);
1259 bnR = BN_CTX_get(context);
1260 bnS = BN_CTX_get(context);
1261 bnX1 = BN_CTX_get(context);
1262 bnN = BN_CTX_get(context);
1263 bnD = BN_CTX_get(context);
1264 bnT = BN_CTX_get(context);
1265 bnE = BN_CTX_get(context);
1266 if(bnE == NULL)
1267 FAIL(FATAL_ERROR_ALLOCATION);
1268 BnFrom2B(bnE, digest);
1269 BnFrom2B(bnN, curveData->n);
1270 BnFrom2B(bnD, &dIn->b);
1271 #ifdef _SM2_SIGN_DEBUG
1272 BN_hex2bn(&bnE, "B524F552CD82B8B028476E005C377FB19A87E6FC682D48BB5D42E3D9B9EFFE76");
1273 BN_hex2bn(&bnD, "128B2FA8BD433C6C068C8D803DFF79792A519A55171B1B650C23661D15897263");
1274 #endif
1275 // A3: Use random number generator to generate random number 1 <= k <= n-1;
1276 // NOTE: Ax: numbers are from the SM2 standard
1277 k.t.size = curveData->n->size;
1278 loop:
1279 {
1280 // Get a random number
1281 _cpri__GenerateRandom(k.t.size, k.t.buffer);
1282 #ifdef _SM2_SIGN_DEBUG
1283 BN_hex2bn(&bnK, "6CB28D99385C175C94F94E934817663FC176D925DD72B727260DBAAE1FB2F96F");
1284 BnTo2B(&k.b,bnK, 32);
1285 k.t.size = 32;
1286 #endif
1287 //make sure that the number is 0 < k < n
1288 BnFrom2B(bnK, &k.b);
1289 if( BN_ucmp(bnK, bnN) >= 0
1290 || BN_is_zero(bnK))
1291 goto loop;
1292 // A4: Figure out the point of elliptic curve (x1, y1)=[k]G, and according
1293 // to details specified in 4.2.7 in Part 1 of this document, transform the
1294 // data type of x1 into an integer;
1295 if( _cpri__EccPointMultiply(&p2Br, curveId, &k, NULL, NULL)
1296 == CRYPT_NO_RESULT)
1297 goto loop;
1298 BnFrom2B(bnX1, &p2Br.x.b);
1299 // A5: Figure out r = (e + x1) mod n,
1300 if(!BN_mod_add(bnR, bnE, bnX1, bnN, context))
1301 FAIL(FATAL_ERROR_INTERNAL);
1302 #ifdef _SM2_SIGN_DEBUG
1303 pAssert(cmp_bn2hex(bnR,
1304 "40F1EC59F793D9F49E09DCEF49130D4194F79FB1EED2CAA55BACDB49C4E755D1")
1305 == 0);
1306 #endif
1307 // if r=0 or r+k=n, return to A3;
1308 if(!BN_add(bnT, bnK, bnR))
1309 FAIL(FATAL_ERROR_INTERNAL);
1310 if(BN_is_zero(bnR) || BN_ucmp(bnT, bnN) == 0)
1311 goto loop;
1312 // A6: Figure out s = ((1 + dA)^-1 (k - r dA)) mod n, if s=0, return to A3;
1313 // compute t = (1+d)-1
1314 BN_copy(bnT, bnD);
1315 if( !BN_add_word(bnT, 1)
1316 || !BN_mod_inverse(bnT, bnT, bnN, context) // (1 + dA)^-1 mod n
1317 )
1318 FAIL(FATAL_ERROR_INTERNAL);
1319 #ifdef _SM2_SIGN_DEBUG
1320 pAssert(cmp_bn2hex(bnT,
1321 "79BFCF3052C80DA7B939E0C6914A18CBB2D96D8555256E83122743A7D4F5F956")
1322 == 0);
1323 #endif
1324 // compute s = t * (k - r * dA) mod n
1325 if( !BN_mod_mul(bnS, bnD, bnR, bnN, context) // (r * dA) mod n
1326 || !BN_mod_sub(bnS, bnK, bnS, bnN, context) // (k - (r * dA) mod n
1327 || !BN_mod_mul(bnS, bnT, bnS, bnN, context))// t * (k - (r * dA) mod n
1328 FAIL(FATAL_ERROR_INTERNAL);
1329 #ifdef _SM2_SIGN_DEBUG
1330 pAssert(cmp_bn2hex(bnS,
1331 "6FC6DAC32C5D5CF10C77DFB20F7C2EB667A457872FB09EC56327A67EC7DEEBE7")
1332 == 0);
1333 #endif
1334 if(BN_is_zero(bnS))
1335 goto loop;
1336 }
1337 // A7: According to details specified in 4.2.1 in Part 1 of this document, transform
1338 // the data type of r, s into bit strings, signature of message M is (r, s).
1339 BnTo2B(&rOut->b, bnR, curveData->n->size);
1340 BnTo2B(&sOut->b, bnS, curveData->n->size);
1341 #ifdef _SM2_SIGN_DEBUG
1342 pAssert(cmp_2B2hex(&rOut->b,
1343 "40F1EC59F793D9F49E09DCEF49130D4194F79FB1EED2CAA55BACDB49C4E755D1")
1344 == 0);
1345 pAssert(cmp_2B2hex(&sOut->b,
1346 "6FC6DAC32C5D5CF10C77DFB20F7C2EB667A457872FB09EC56327A67EC7DEEBE7")
1347 == 0);
1348 #endif
1349 BN_CTX_end(context);
1350 BN_CTX_free(context);
1351 return CRYPT_SUCCESS;
1352 }
1353 #endif //% TPM_ALG_SM2
1354 //
1355 //
1356 // _cpri__SignEcc()
1357 //
1358 // This function is the dispatch function for the various ECC-based signing schemes.
1359 //
1360 // Return Value Meaning
1361 //
1362 // CRYPT_SCHEME scheme is not supported
1363 //
1364 LIB_EXPORT CRYPT_RESULT
_cpri__SignEcc(TPM2B_ECC_PARAMETER * rOut,TPM2B_ECC_PARAMETER * sOut,TPM_ALG_ID scheme,TPM_ALG_ID hashAlg,TPM_ECC_CURVE curveId,TPM2B_ECC_PARAMETER * dIn,TPM2B * digest,TPM2B_ECC_PARAMETER * kIn)1365 _cpri__SignEcc(
1366 TPM2B_ECC_PARAMETER *rOut, // OUT: r component of the signature
1367 TPM2B_ECC_PARAMETER *sOut, // OUT: s component of the signature
1368 TPM_ALG_ID scheme, // IN: the scheme selector
1369 TPM_ALG_ID hashAlg, // IN: the hash algorithm if need
1370 TPM_ECC_CURVE curveId, // IN: the curve used in the signature
1371 // process
1372 TPM2B_ECC_PARAMETER *dIn, // IN: the private key
1373 TPM2B *digest, // IN: the digest to sign
1374 TPM2B_ECC_PARAMETER *kIn // IN: k for input
1375 )
1376 {
1377 switch (scheme)
1378 {
1379 case TPM_ALG_ECDSA:
1380 // SignEcdsa always works
1381 return SignEcdsa(rOut, sOut, curveId, dIn, digest);
1382 break;
1383 #ifdef TPM_ALG_ECDAA
1384 case TPM_ALG_ECDAA:
1385 if(rOut != NULL)
1386 rOut->b.size = 0;
1387 return EcDaa(rOut, sOut, curveId, dIn, digest, kIn);
1388 break;
1389 #endif
1390 #ifdef TPM_ALG_ECSCHNORR
1391 case TPM_ALG_ECSCHNORR:
1392 return SchnorrEcc(rOut, sOut, hashAlg, curveId, dIn, digest, kIn);
1393 break;
1394 #endif
1395 #ifdef TPM_ALG_SM2
1396 case TPM_ALG_SM2:
1397 return SignSM2(rOut, sOut, curveId, dIn, digest);
1398 break;
1399 #endif
1400 default:
1401 return CRYPT_SCHEME;
1402 }
1403 }
1404 #ifdef TPM_ALG_ECDSA //%
1405 //
1406 //
1407 // ValidateSignatureEcdsa()
1408 //
1409 // This function validates an ECDSA signature. rIn and sIn shoudl have been checked to make sure that
1410 // they are not zero.
1411 //
1412 // Return Value Meaning
1413 //
1414 // CRYPT_SUCCESS signature valid
1415 // CRYPT_FAIL signature not valid
1416 //
1417 static CRYPT_RESULT
ValidateSignatureEcdsa(TPM2B_ECC_PARAMETER * rIn,TPM2B_ECC_PARAMETER * sIn,TPM_ECC_CURVE curveId,TPMS_ECC_POINT * Qin,TPM2B * digest)1418 ValidateSignatureEcdsa(
1419 TPM2B_ECC_PARAMETER *rIn, // IN: r component of the signature
1420 TPM2B_ECC_PARAMETER *sIn, // IN: s component of the signature
1421 TPM_ECC_CURVE curveId, // IN: the curve used in the signature
1422 // process
1423 TPMS_ECC_POINT *Qin, // IN: the public point of the key
1424 TPM2B *digest // IN: the digest that was signed
1425 )
1426 {
1427 TPM2B_ECC_PARAMETER U1;
1428 TPM2B_ECC_PARAMETER U2;
1429 TPMS_ECC_POINT R;
1430 const TPM2B *n;
1431 BN_CTX *context;
1432 EC_POINT *pQ = NULL;
1433 EC_GROUP *group = NULL;
1434 BIGNUM *bnU1;
1435 BIGNUM *bnU2;
1436 BIGNUM *bnR;
1437 BIGNUM *bnS;
1438 BIGNUM *bnW;
1439 BIGNUM *bnV;
1440 BIGNUM *bnN;
1441 BIGNUM *bnE;
1442 BIGNUM *bnQx;
1443 BIGNUM *bnQy;
1444 CRYPT_RESULT retVal = CRYPT_FAIL;
1445 int t;
1446 const ECC_CURVE_DATA *curveData = GetCurveData(curveId);
1447 // The curve selector should have been filtered by the unmarshaling process
1448 pAssert (curveData != NULL);
1449 n = curveData->n;
1450 // 1. If r and s are not both integers in the interval [1, n - 1], output
1451 // INVALID.
1452 // rIn and sIn are known to be greater than zero (was checked by the caller).
1453 if( _math__uComp(rIn->t.size, rIn->t.buffer, n->size, n->buffer) >= 0
1454 || _math__uComp(sIn->t.size, sIn->t.buffer, n->size, n->buffer) >= 0
1455 )
1456 return CRYPT_FAIL;
1457 context = BN_CTX_new();
1458 if(context == NULL)
1459 FAIL(FATAL_ERROR_ALLOCATION);
1460 BN_CTX_start(context);
1461 bnR = BN_CTX_get(context);
1462 bnS = BN_CTX_get(context);
1463 bnN = BN_CTX_get(context);
1464 bnE = BN_CTX_get(context);
1465 bnV = BN_CTX_get(context);
1466 bnW = BN_CTX_get(context);
1467 bnQx = BN_CTX_get(context);
1468 bnQy = BN_CTX_get(context);
1469 bnU1 = BN_CTX_get(context);
1470 bnU2 = BN_CTX_get(context);
1471 // Assume the size variables do not overflow, which should not happen in
1472 // the contexts that this function will be called.
1473 assert2Bsize(Qin->x.t);
1474 assert2Bsize(rIn->t);
1475 assert2Bsize(sIn->t);
1476 // BN_CTX_get() is sticky so only need to check the last value to know that
1477 // all worked.
1478 if( bnU2 == NULL
1479 // initialize the group parameters
1480 || (group = EccCurveInit(curveId, context)) == NULL
1481 // allocate a local point
1482 || (pQ = EC_POINT_new(group)) == NULL
1483 // use the public key values (QxIn and QyIn) to initialize Q
1484 || BN_bin2bn(Qin->x.t.buffer, Qin->x.t.size, bnQx) == NULL
1485 || BN_bin2bn(Qin->x.t.buffer, Qin->x.t.size, bnQy) == NULL
1486 || !EC_POINT_set_affine_coordinates_GFp(group, pQ, bnQx, bnQy, context)
1487 // convert the signature values
1488 || BN_bin2bn(rIn->t.buffer, rIn->t.size, bnR) == NULL
1489 || BN_bin2bn(sIn->t.buffer, sIn->t.size, bnS) == NULL
1490 // convert the curve order
1491 || BN_bin2bn(curveData->n->buffer, curveData->n->size, bnN) == NULL)
1492 FAIL(FATAL_ERROR_INTERNAL);
1493 // 2. Use the selected hash function to compute H0 = Hash(M0).
1494 // This is an input parameter
1495 // 3. Convert the bit string H0 to an integer e as described in Appendix B.2.
1496 t = (digest->size > rIn->t.size) ? rIn->t.size : digest->size;
1497 if(BN_bin2bn(digest->buffer, t, bnE) == NULL)
1498 FAIL(FATAL_ERROR_INTERNAL);
1499 // 4. Compute w = (s')^-1 mod n, using the routine in Appendix B.1.
1500 if (BN_mod_inverse(bnW, bnS, bnN, context) == NULL)
1501 FAIL(FATAL_ERROR_INTERNAL);
1502 // 5. Compute u1 = (e' * w) mod n, and compute u2 = (r' * w) mod n.
1503 if( !BN_mod_mul(bnU1, bnE, bnW, bnN, context)
1504 || !BN_mod_mul(bnU2, bnR, bnW, bnN, context))
1505 FAIL(FATAL_ERROR_INTERNAL);
1506 BnTo2B(&U1.b, bnU1, (INT16) BN_num_bytes(bnU1));
1507 BnTo2B(&U2.b, bnU2, (INT16) BN_num_bytes(bnU2));
1508 // 6. Compute the elliptic curve point R = (xR, yR) = u1G+u2Q, using EC
1509 // scalar multiplication and EC addition (see [Routines]). If R is equal to
1510 // the point at infinity O, output INVALID.
1511 if(_cpri__EccPointMultiply(&R, curveId, &U1, Qin, &U2) == CRYPT_SUCCESS)
1512 {
1513 // 7. Compute v = Rx mod n.
1514 if( BN_bin2bn(R.x.t.buffer, R.x.t.size, bnV) == NULL
1515 || !BN_mod(bnV, bnV, bnN, context))
1516 FAIL(FATAL_ERROR_INTERNAL);
1517 // 8. Compare v and r0. If v = r0, output VALID; otherwise, output INVALID
1518 if(BN_cmp(bnV, bnR) == 0)
1519 retVal = CRYPT_SUCCESS;
1520 }
1521 if(pQ != NULL) EC_POINT_free(pQ);
1522 if(group != NULL) EC_GROUP_free(group);
1523 BN_CTX_end(context);
1524 BN_CTX_free(context);
1525 return retVal;
1526 }
1527 #endif //% TPM_ALG_ECDSA
1528 #ifdef TPM_ALG_ECSCHNORR //%
1529 //
1530 //
1531 // ValidateSignatureEcSchnorr()
1532 //
1533 // This function is used to validate an EC Schnorr signature. rIn and sIn are required to be greater than
1534 // zero. This is checked in _cpri__ValidateSignatureEcc().
1535 //
1536 // Return Value Meaning
1537 //
1538 // CRYPT_SUCCESS signature valid
1539 // CRYPT_FAIL signature not valid
1540 // CRYPT_SCHEME hashAlg is not supported
1541 //
1542 static CRYPT_RESULT
ValidateSignatureEcSchnorr(TPM2B_ECC_PARAMETER * rIn,TPM2B_ECC_PARAMETER * sIn,TPM_ALG_ID hashAlg,TPM_ECC_CURVE curveId,TPMS_ECC_POINT * Qin,TPM2B * digest)1543 ValidateSignatureEcSchnorr(
1544 TPM2B_ECC_PARAMETER *rIn, // IN: r component of the signature
1545 TPM2B_ECC_PARAMETER *sIn, // IN: s component of the signature
1546 TPM_ALG_ID hashAlg, // IN: hash algorithm of the signature
1547 TPM_ECC_CURVE curveId, // IN: the curve used in the signature
1548 // process
1549 TPMS_ECC_POINT *Qin, // IN: the public point of the key
1550 TPM2B *digest // IN: the digest that was signed
1551 )
1552 {
1553 TPMS_ECC_POINT pE;
1554 const TPM2B *n;
1555 CPRI_HASH_STATE hashState;
1556 TPM2B_DIGEST rPrime;
1557 TPM2B_ECC_PARAMETER minusR;
1558 UINT16 digestSize = _cpri__GetDigestSize(hashAlg);
1559 const ECC_CURVE_DATA *curveData = GetCurveData(curveId);
1560 // The curve parameter should have been filtered by unmarshaling code
1561 pAssert(curveData != NULL);
1562 if(digestSize == 0)
1563 return CRYPT_SCHEME;
1564 // Input parameter validation
1565 pAssert(rIn != NULL && sIn != NULL && Qin != NULL && digest != NULL);
1566 n = curveData->n;
1567 // if sIn or rIn are not between 1 and N-1, signature check fails
1568 // sIn and rIn were verified to be non-zero by the caller
1569 if( _math__uComp(sIn->b.size, sIn->b.buffer, n->size, n->buffer) >= 0
1570 || _math__uComp(rIn->b.size, rIn->b.buffer, n->size, n->buffer) >= 0
1571 )
1572 return CRYPT_FAIL;
1573 //E = [s]InG - [r]InQ
1574 _math__sub(n->size, n->buffer,
1575 rIn->t.size, rIn->t.buffer,
1576 &minusR.t.size, minusR.t.buffer);
1577 if(_cpri__EccPointMultiply(&pE, curveId, sIn, Qin, &minusR) != CRYPT_SUCCESS)
1578 return CRYPT_FAIL;
1579 // Ex = Ex mod N
1580 if(Mod2B(&pE.x.b, n) != CRYPT_SUCCESS)
1581 FAIL(FATAL_ERROR_INTERNAL);
1582 _math__Normalize2B(&pE.x.b);
1583 // rPrime = h(digest || pE.x) mod n;
1584 _cpri__StartHash(hashAlg, FALSE, &hashState);
1585 _cpri__UpdateHash(&hashState, digest->size, digest->buffer);
1586 _cpri__UpdateHash(&hashState, pE.x.t.size, pE.x.t.buffer);
1587 if(_cpri__CompleteHash(&hashState, digestSize, rPrime.t.buffer) != digestSize)
1588 FAIL(FATAL_ERROR_INTERNAL);
1589 rPrime.t.size = digestSize;
1590 // rPrime = rPrime (mod n)
1591 if(Mod2B(&rPrime.b, n) != CRYPT_SUCCESS)
1592 FAIL(FATAL_ERROR_INTERNAL);
1593 // if the values don't match, then the signature is bad
1594 if(_math__uComp(rIn->t.size, rIn->t.buffer,
1595 rPrime.t.size, rPrime.t.buffer) != 0)
1596 return CRYPT_FAIL;
1597 else
1598 return CRYPT_SUCCESS;
1599 }
1600 #endif //% TPM_ALG_ECSCHNORR
1601 #ifdef TPM_ALG_SM2 //%
1602 //
1603 //
1604 // ValidateSignatueSM2Dsa()
1605 //
1606 // This function is used to validate an SM2 signature.
1607 //
1608 // Return Value Meaning
1609 //
1610 // CRYPT_SUCCESS signature valid
1611 // CRYPT_FAIL signature not valid
1612 //
1613 static CRYPT_RESULT
ValidateSignatureSM2Dsa(TPM2B_ECC_PARAMETER * rIn,TPM2B_ECC_PARAMETER * sIn,TPM_ECC_CURVE curveId,TPMS_ECC_POINT * Qin,TPM2B * digest)1614 ValidateSignatureSM2Dsa(
1615 TPM2B_ECC_PARAMETER *rIn, // IN: r component of the signature
1616 TPM2B_ECC_PARAMETER *sIn, // IN: s component of the signature
1617 TPM_ECC_CURVE curveId, // IN: the curve used in the signature
1618 // process
1619 TPMS_ECC_POINT *Qin, // IN: the public point of the key
1620 TPM2B *digest // IN: the digest that was signed
1621 )
1622 {
1623 BIGNUM *bnR;
1624 BIGNUM *bnRp;
1625 BIGNUM *bnT;
1626 BIGNUM *bnS;
1627 BIGNUM *bnE;
1628 BIGNUM *order;
1629 EC_POINT *pQ;
1630 BN_CTX *context;
1631 EC_GROUP *group = NULL;
1632 const ECC_CURVE_DATA *curveData = GetCurveData(curveId);
1633 BOOL fail = FALSE;
1634 //
1635 if((context = BN_CTX_new()) == NULL || curveData == NULL)
1636 FAIL(FATAL_ERROR_INTERNAL);
1637 bnR = BN_CTX_get(context);
1638 bnRp= BN_CTX_get(context);
1639 bnE = BN_CTX_get(context);
1640 bnT = BN_CTX_get(context);
1641 bnS = BN_CTX_get(context);
1642 order = BN_CTX_get(context);
1643 if( order == NULL
1644 || (group = EccCurveInit(curveId, context)) == NULL)
1645 FAIL(FATAL_ERROR_INTERNAL);
1646 #ifdef _SM2_SIGN_DEBUG
1647 cpy_hexTo2B(&Qin->x.b,
1648 "0AE4C7798AA0F119471BEE11825BE46202BB79E2A5844495E97C04FF4DF2548A");
1649 cpy_hexTo2B(&Qin->y.b,
1650 "7C0240F88F1CD4E16352A73C17B7F16F07353E53A176D684A9FE0C6BB798E857");
1651 cpy_hexTo2B(digest,
1652 "B524F552CD82B8B028476E005C377FB19A87E6FC682D48BB5D42E3D9B9EFFE76");
1653 #endif
1654 pQ = EccInitPoint2B(group, Qin, context);
1655 #ifdef _SM2_SIGN_DEBUG
1656 pAssert(EC_POINT_get_affine_coordinates_GFp(group, pQ, bnT, bnS, context));
1657 pAssert(cmp_bn2hex(bnT,
1658 "0AE4C7798AA0F119471BEE11825BE46202BB79E2A5844495E97C04FF4DF2548A")
1659 == 0);
1660 pAssert(cmp_bn2hex(bnS,
1661 "7C0240F88F1CD4E16352A73C17B7F16F07353E53A176D684A9FE0C6BB798E857")
1662 == 0);
1663 #endif
1664 BnFrom2B(bnR, &rIn->b);
1665 BnFrom2B(bnS, &sIn->b);
1666 BnFrom2B(bnE, digest);
1667 #ifdef _SM2_SIGN_DEBUG
1668 // Make sure that the input signature is the test signature
1669 pAssert(cmp_2B2hex(&rIn->b,
1670 "40F1EC59F793D9F49E09DCEF49130D4194F79FB1EED2CAA55BACDB49C4E755D1") == 0);
1671 pAssert(cmp_2B2hex(&sIn->b,
1672 "6FC6DAC32C5D5CF10C77DFB20F7C2EB667A457872FB09EC56327A67EC7DEEBE7") == 0);
1673 #endif
1674 // a) verify that r and s are in the inclusive interval 1 to (n 1)
1675 if (!EC_GROUP_get_order(group, order, context)) goto Cleanup;
1676 fail = (BN_ucmp(bnR, order) >= 0);
1677 fail = (BN_ucmp(bnS, order) >= 0) || fail;
1678 if(fail)
1679 // There is no reason to continue. Since r and s are inputs from the caller,
1680 // they can know that the values are not in the proper range. So, exiting here
1681 // does not disclose any information.
1682 goto Cleanup;
1683 // b) compute t := (r + s) mod n
1684 if(!BN_mod_add(bnT, bnR, bnS, order, context))
1685 FAIL(FATAL_ERROR_INTERNAL);
1686 #ifdef _SM2_SIGN_DEBUG
1687 pAssert(cmp_bn2hex(bnT,
1688 "2B75F07ED7ECE7CCC1C8986B991F441AD324D6D619FE06DD63ED32E0C997C801")
1689 == 0);
1690 #endif
1691 // c) verify that t > 0
1692 if(BN_is_zero(bnT)) {
1693 fail = TRUE;
1694 // set to a value that should allow rest of the computations to run without
1695 // trouble
1696 BN_copy(bnT, bnS);
1697 }
1698 // d) compute (x, y) := [s]G + [t]Q
1699 if(!EC_POINT_mul(group, pQ, bnS, pQ, bnT, context))
1700 FAIL(FATAL_ERROR_INTERNAL);
1701 // Get the x coordinate of the point
1702 if(!EC_POINT_get_affine_coordinates_GFp(group, pQ, bnT, NULL, context))
1703 FAIL(FATAL_ERROR_INTERNAL);
1704 #ifdef _SM2_SIGN_DEBUG
1705 pAssert(cmp_bn2hex(bnT,
1706 "110FCDA57615705D5E7B9324AC4B856D23E6D9188B2AE47759514657CE25D112")
1707 == 0);
1708 #endif
1709 // e) compute r' := (e + x) mod n (the x coordinate is in bnT)
1710 if(!BN_mod_add(bnRp, bnE, bnT, order, context))
1711 FAIL(FATAL_ERROR_INTERNAL);
1712 // f) verify that r' = r
1713 fail = BN_ucmp(bnR, bnRp) != 0 || fail;
1714 Cleanup:
1715 if(pQ) EC_POINT_free(pQ);
1716 if(group) EC_GROUP_free(group);
1717 BN_CTX_end(context);
1718 BN_CTX_free(context);
1719 if(fail)
1720 return CRYPT_FAIL;
1721 else
1722 return CRYPT_SUCCESS;
1723 }
1724 #endif //% TPM_ALG_SM2
1725 //
1726 //
1727 // _cpri__ValidateSignatureEcc()
1728 //
1729 // This function validates
1730 //
1731 // Return Value Meaning
1732 //
1733 // CRYPT_SUCCESS signature is valid
1734 // CRYPT_FAIL not a valid signature
1735 // CRYPT_SCHEME unsupported scheme
1736 //
1737 LIB_EXPORT CRYPT_RESULT
_cpri__ValidateSignatureEcc(TPM2B_ECC_PARAMETER * rIn,TPM2B_ECC_PARAMETER * sIn,TPM_ALG_ID scheme,TPM_ALG_ID hashAlg,TPM_ECC_CURVE curveId,TPMS_ECC_POINT * Qin,TPM2B * digest)1738 _cpri__ValidateSignatureEcc(
1739 TPM2B_ECC_PARAMETER *rIn, // IN: r component of the signature
1740 TPM2B_ECC_PARAMETER *sIn, // IN: s component of the signature
1741 TPM_ALG_ID scheme, // IN: the scheme selector
1742 TPM_ALG_ID hashAlg, // IN: the hash algorithm used (not used
1743 // in all schemes)
1744 TPM_ECC_CURVE curveId, // IN: the curve used in the signature
1745 // process
1746 TPMS_ECC_POINT *Qin, // IN: the public point of the key
1747 TPM2B *digest // IN: the digest that was signed
1748 )
1749 {
1750 CRYPT_RESULT retVal;
1751 // return failure if either part of the signature is zero
1752 if(_math__Normalize2B(&rIn->b) == 0 || _math__Normalize2B(&sIn->b) == 0)
1753 return CRYPT_FAIL;
1754 switch (scheme)
1755 {
1756 case TPM_ALG_ECDSA:
1757 retVal = ValidateSignatureEcdsa(rIn, sIn, curveId, Qin, digest);
1758 break;
1759 #ifdef TPM_ALG_ECSCHNORR
1760 case TPM_ALG_ECSCHNORR:
1761 retVal = ValidateSignatureEcSchnorr(rIn, sIn, hashAlg, curveId, Qin,
1762 digest);
1763 break;
1764 #endif
1765 #ifdef TPM_ALG_SM2
1766 case TPM_ALG_SM2:
1767 retVal = ValidateSignatureSM2Dsa(rIn, sIn, curveId, Qin, digest);
1768 #endif
1769 default:
1770 retVal = CRYPT_SCHEME;
1771 break;
1772 }
1773 return retVal;
1774 }
1775 #if CC_ZGen_2Phase == YES //%
1776 #ifdef TPM_ALG_ECMQV
1777 //
1778 //
1779 // avf1()
1780 //
1781 // This function does the associated value computation required by MQV key exchange. Process:
1782 // a) Convert xQ to an integer xqi using the convention specified in Appendix C.3.
1783 // b) Calculate xqm = xqi mod 2^ceil(f/2) (where f = ceil(log2(n)).
1784 // c) Calculate the associate value function avf(Q) = xqm + 2ceil(f / 2)
1785 //
1786 static BOOL
avf1(BIGNUM * bnX,BIGNUM * bnN)1787 avf1(
1788 BIGNUM *bnX, // IN/OUT: the reduced value
1789 BIGNUM *bnN // IN: the order of the curve
1790 )
1791 {
1792 // compute f = 2^(ceil(ceil(log2(n)) / 2))
1793 int f = (BN_num_bits(bnN) + 1) / 2;
1794 // x' = 2^f + (x mod 2^f)
1795 BN_mask_bits(bnX, f); // This is mod 2*2^f but it doesn't matter because
1796 // the next operation will SET the extra bit anyway
1797 BN_set_bit(bnX, f);
1798 return TRUE;
1799 }
1800 //
1801 //
1802 // C_2_2_MQV()
1803 //
1804 // This function performs the key exchange defined in SP800-56A 6.1.1.4 Full MQV, C(2, 2, ECC MQV).
1805 // CAUTION: Implementation of this function may require use of essential claims in patents not owned by
1806 // TCG members.
1807 // Points QsB() and QeB() are required to be on the curve of inQsA. The function will fail, possibly
1808 // catastrophically, if this is not the case.
1809 //
1810 //
1811 //
1812 // Return Value Meaning
1813 //
1814 // CRYPT_SUCCESS results is valid
1815 // CRYPT_NO_RESULT the value for dsA does not give a valid point on the curve
1816 //
1817 static CRYPT_RESULT
C_2_2_MQV(TPMS_ECC_POINT * outZ,TPM_ECC_CURVE curveId,TPM2B_ECC_PARAMETER * dsA,TPM2B_ECC_PARAMETER * deA,TPMS_ECC_POINT * QsB,TPMS_ECC_POINT * QeB)1818 C_2_2_MQV(
1819 TPMS_ECC_POINT *outZ, // OUT: the computed point
1820 TPM_ECC_CURVE curveId, // IN: the curve for the computations
1821 TPM2B_ECC_PARAMETER *dsA, // IN: static private TPM key
1822 TPM2B_ECC_PARAMETER *deA, // IN: ephemeral private TPM key
1823 TPMS_ECC_POINT *QsB, // IN: static public party B key
1824 TPMS_ECC_POINT *QeB // IN: ephemeral public party B key
1825 )
1826 {
1827 BN_CTX *context;
1828 EC_POINT *pQeA = NULL;
1829 EC_POINT *pQeB = NULL;
1830 EC_POINT *pQsB = NULL;
1831 EC_GROUP *group = NULL;
1832 BIGNUM *bnTa;
1833 BIGNUM *bnDeA;
1834 BIGNUM *bnDsA;
1835 BIGNUM *bnXeA; // x coordinate of ephemeral party A key
1836 BIGNUM *bnH;
1837 BIGNUM *bnN;
1838 BIGNUM *bnXeB;
1839 const ECC_CURVE_DATA *curveData = GetCurveData(curveId);
1840 CRYPT_RESULT retVal;
1841 pAssert( curveData != NULL && outZ != NULL && dsA != NULL
1842 && deA != NULL && QsB != NULL && QeB != NULL);
1843 context = BN_CTX_new();
1844 if(context == NULL || curveData == NULL)
1845 FAIL(FATAL_ERROR_ALLOCATION);
1846 BN_CTX_start(context);
1847 bnTa = BN_CTX_get(context);
1848 bnDeA = BN_CTX_get(context);
1849 bnDsA = BN_CTX_get(context);
1850 bnXeA = BN_CTX_get(context);
1851 bnH = BN_CTX_get(context);
1852 bnN = BN_CTX_get(context);
1853 bnXeB = BN_CTX_get(context);
1854 if(bnXeB == NULL)
1855 FAIL(FATAL_ERROR_ALLOCATION);
1856 // Process:
1857 // 1. implicitsigA = (de,A + avf(Qe,A)ds,A ) mod n.
1858 // 2. P = h(implicitsigA)(Qe,B + avf(Qe,B)Qs,B).
1859 // 3. If P = O, output an error indicator.
1860 // 4. Z=xP, where xP is the x-coordinate of P.
1861 // Initialize group parameters and local values of input
1862 if((group = EccCurveInit(curveId, context)) == NULL)
1863 FAIL(FATAL_ERROR_INTERNAL);
1864 if((pQeA = EC_POINT_new(group)) == NULL)
1865 FAIL(FATAL_ERROR_ALLOCATION);
1866 BnFrom2B(bnDeA, &deA->b);
1867 BnFrom2B(bnDsA, &dsA->b);
1868 BnFrom2B(bnH, curveData->h);
1869 BnFrom2B(bnN, curveData->n);
1870 BnFrom2B(bnXeB, &QeB->x.b);
1871 pQeB = EccInitPoint2B(group, QeB, context);
1872 pQsB = EccInitPoint2B(group, QsB, context);
1873 // Compute the public ephemeral key pQeA = [de,A]G
1874 if( (retVal = PointMul(group, pQeA, bnDeA, NULL, NULL, context))
1875 != CRYPT_SUCCESS)
1876 goto Cleanup;
1877 if(EC_POINT_get_affine_coordinates_GFp(group, pQeA, bnXeA, NULL, context) != 1)
1878 FAIL(FATAL_ERROR_INTERNAL);
1879 // 1. implicitsigA = (de,A + avf(Qe,A)ds,A ) mod n.
1880 // tA := (ds,A + de,A avf(Xe,A)) mod n (3)
1881 // Compute 'tA' = ('deA' + 'dsA' avf('XeA')) mod n
1882 // Ta = avf(XeA);
1883 BN_copy(bnTa, bnXeA);
1884 avf1(bnTa, bnN);
1885 if(// do Ta = ds,A * Ta mod n = dsA * avf(XeA) mod n
1886 !BN_mod_mul(bnTa, bnDsA, bnTa, bnN, context)
1887 // now Ta = deA + Ta mod n = deA + dsA * avf(XeA) mod n
1888 || !BN_mod_add(bnTa, bnDeA, bnTa, bnN, context)
1889 )
1890 FAIL(FATAL_ERROR_INTERNAL);
1891 // 2. P = h(implicitsigA)(Qe,B + avf(Qe,B)Qs,B).
1892 // Put this in because almost every case of h is == 1 so skip the call when
1893 // not necessary.
1894 if(!BN_is_one(bnH))
1895 {
1896 // Cofactor is not 1 so compute Ta := Ta * h mod n
1897 if(!BN_mul(bnTa, bnTa, bnH, context))
1898 FAIL(FATAL_ERROR_INTERNAL);
1899 }
1900 // Now that 'tA' is (h * 'tA' mod n)
1901 // 'outZ' = (tA)(Qe,B + avf(Qe,B)Qs,B).
1902 // first, compute XeB = avf(XeB)
1903 avf1(bnXeB, bnN);
1904 // QsB := [XeB]QsB
1905 if( !EC_POINT_mul(group, pQsB, NULL, pQsB, bnXeB, context)
1906 // QeB := QsB + QeB
1907 || !EC_POINT_add(group, pQeB, pQeB, pQsB, context)
1908 )
1909 FAIL(FATAL_ERROR_INTERNAL);
1910 // QeB := [tA]QeB = [tA](QsB + [Xe,B]QeB) and check for at infinity
1911 if(PointMul(group, pQeB, NULL, pQeB, bnTa, context) == CRYPT_SUCCESS)
1912 // Convert BIGNUM E to TPM2B E
1913 Point2B(group, outZ, pQeB, (INT16)BN_num_bytes(bnN), context);
1914 Cleanup:
1915 if(pQeA != NULL) EC_POINT_free(pQeA);
1916 if(pQeB != NULL) EC_POINT_free(pQeB);
1917 if(pQsB != NULL) EC_POINT_free(pQsB);
1918 if(group != NULL) EC_GROUP_free(group);
1919 BN_CTX_end(context);
1920 BN_CTX_free(context);
1921 return retVal;
1922 }
1923 #endif // TPM_ALG_ECMQV
1924 #ifdef TPM_ALG_SM2 //%
1925 //
1926 //
1927 // avfSm2()
1928 //
1929 // This function does the associated value computation required by SM2 key exchange. This is different
1930 // form the avf() in the international standards because it returns a value that is half the size of the value
1931 // returned by the standard avf. For example, if n is 15, Ws (w in the standard) is 2 but the W here is 1. This
1932 // means that an input value of 14 (1110b) would return a value of 110b with the standard but 10b with the
1933 // scheme in SM2.
1934 //
1935 static BOOL
avfSm2(BIGNUM * bnX,BIGNUM * bnN)1936 avfSm2(
1937 BIGNUM *bnX, // IN/OUT: the reduced value
1938 BIGNUM *bnN // IN: the order of the curve
1939 )
1940 {
1941 // a) set w := ceil(ceil(log2(n)) / 2) - 1
1942 int w = ((BN_num_bits(bnN) + 1) / 2) - 1;
1943 // b) set x' := 2^w + ( x & (2^w - 1))
1944 // This is just like the avf for MQV where x' = 2^w + (x mod 2^w)
1945 BN_mask_bits(bnX, w); // as wiht avf1, this is too big by a factor of 2 but
1946 // it doesn't matter becasue we SET the extra bit anyway
1947 BN_set_bit(bnX, w);
1948 return TRUE;
1949 }
1950 //
1951 // SM2KeyExchange() This function performs the key exchange defined in SM2. The first step is to compute
1952 // tA = (dsA + deA avf(Xe,A)) mod n Then, compute the Z value from outZ = (h tA mod n) (QsA +
1953 // [avf(QeB().x)](QeB())). The function will compute the ephemeral public key from the ephemeral private
1954 // key. All points are required to be on the curve of inQsA. The function will fail catastrophically if this is not
1955 // the case
1956 //
1957 // Return Value Meaning
1958 //
1959 // CRYPT_SUCCESS results is valid
1960 // CRYPT_NO_RESULT the value for dsA does not give a valid point on the curve
1961 //
1962 static CRYPT_RESULT
SM2KeyExchange(TPMS_ECC_POINT * outZ,TPM_ECC_CURVE curveId,TPM2B_ECC_PARAMETER * dsA,TPM2B_ECC_PARAMETER * deA,TPMS_ECC_POINT * QsB,TPMS_ECC_POINT * QeB)1963 SM2KeyExchange(
1964 TPMS_ECC_POINT *outZ, // OUT: the computed point
1965 TPM_ECC_CURVE curveId, // IN: the curve for the computations
1966 TPM2B_ECC_PARAMETER *dsA, // IN: static private TPM key
1967 TPM2B_ECC_PARAMETER *deA, // IN: ephemeral private TPM key
1968 TPMS_ECC_POINT *QsB, // IN: static public party B key
1969 TPMS_ECC_POINT *QeB // IN: ephemeral public party B key
1970 )
1971 {
1972 BN_CTX *context;
1973 EC_POINT *pQeA = NULL;
1974 EC_POINT *pQeB = NULL;
1975 EC_POINT *pQsB = NULL;
1976 EC_GROUP *group = NULL;
1977 BIGNUM *bnTa;
1978 BIGNUM *bnDeA;
1979 BIGNUM *bnDsA;
1980 BIGNUM *bnXeA; // x coordinate of ephemeral party A key
1981 BIGNUM *bnH;
1982 BIGNUM *bnN;
1983 BIGNUM *bnXeB;
1984 //
1985 const ECC_CURVE_DATA *curveData = GetCurveData(curveId);
1986 CRYPT_RESULT retVal;
1987 pAssert( curveData != NULL && outZ != NULL && dsA != NULL
1988 && deA != NULL && QsB != NULL && QeB != NULL);
1989 context = BN_CTX_new();
1990 if(context == NULL || curveData == NULL)
1991 FAIL(FATAL_ERROR_ALLOCATION);
1992 BN_CTX_start(context);
1993 bnTa = BN_CTX_get(context);
1994 bnDeA = BN_CTX_get(context);
1995 bnDsA = BN_CTX_get(context);
1996 bnXeA = BN_CTX_get(context);
1997 bnH = BN_CTX_get(context);
1998 bnN = BN_CTX_get(context);
1999 bnXeB = BN_CTX_get(context);
2000 if(bnXeB == NULL)
2001 FAIL(FATAL_ERROR_ALLOCATION);
2002 // Initialize group parameters and local values of input
2003 if((group = EccCurveInit(curveId, context)) == NULL)
2004 FAIL(FATAL_ERROR_INTERNAL);
2005 if((pQeA = EC_POINT_new(group)) == NULL)
2006 FAIL(FATAL_ERROR_ALLOCATION);
2007 BnFrom2B(bnDeA, &deA->b);
2008 BnFrom2B(bnDsA, &dsA->b);
2009 BnFrom2B(bnH, curveData->h);
2010 BnFrom2B(bnN, curveData->n);
2011 BnFrom2B(bnXeB, &QeB->x.b);
2012 pQeB = EccInitPoint2B(group, QeB, context);
2013 pQsB = EccInitPoint2B(group, QsB, context);
2014 // Compute the public ephemeral key pQeA = [de,A]G
2015 if( (retVal = PointMul(group, pQeA, bnDeA, NULL, NULL, context))
2016 != CRYPT_SUCCESS)
2017 goto Cleanup;
2018 if(EC_POINT_get_affine_coordinates_GFp(group, pQeA, bnXeA, NULL, context) != 1)
2019 FAIL(FATAL_ERROR_INTERNAL);
2020 // tA := (ds,A + de,A avf(Xe,A)) mod n (3)
2021 // Compute 'tA' = ('dsA' + 'deA' avf('XeA')) mod n
2022 // Ta = avf(XeA);
2023 BN_copy(bnTa, bnXeA);
2024 avfSm2(bnTa, bnN);
2025 if(// do Ta = de,A * Ta mod n = deA * avf(XeA) mod n
2026 !BN_mod_mul(bnTa, bnDeA, bnTa, bnN, context)
2027 // now Ta = dsA + Ta mod n = dsA + deA * avf(XeA) mod n
2028 || !BN_mod_add(bnTa, bnDsA, bnTa, bnN, context)
2029 )
2030 FAIL(FATAL_ERROR_INTERNAL);
2031 // outZ ? [h tA mod n] (Qs,B + [avf(Xe,B)](Qe,B)) (4)
2032 // Put this in because almost every case of h is == 1 so skip the call when
2033 // not necessary.
2034 if(!BN_is_one(bnH))
2035 {
2036 // Cofactor is not 1 so compute Ta := Ta * h mod n
2037 if(!BN_mul(bnTa, bnTa, bnH, context))
2038 FAIL(FATAL_ERROR_INTERNAL);
2039 }
2040 // Now that 'tA' is (h * 'tA' mod n)
2041 // 'outZ' = ['tA'](QsB + [avf(QeB.x)](QeB)).
2042 // first, compute XeB = avf(XeB)
2043 avfSm2(bnXeB, bnN);
2044 // QeB := [XeB]QeB
2045 if( !EC_POINT_mul(group, pQeB, NULL, pQeB, bnXeB, context)
2046 // QeB := QsB + QeB
2047 || !EC_POINT_add(group, pQeB, pQeB, pQsB, context)
2048 )
2049 FAIL(FATAL_ERROR_INTERNAL);
2050 // QeB := [tA]QeB = [tA](QsB + [Xe,B]QeB) and check for at infinity
2051 if(PointMul(group, pQeB, NULL, pQeB, bnTa, context) == CRYPT_SUCCESS)
2052 // Convert BIGNUM E to TPM2B E
2053 Point2B(group, outZ, pQeB, (INT16)BN_num_bytes(bnN), context);
2054 Cleanup:
2055 if(pQeA != NULL) EC_POINT_free(pQeA);
2056 if(pQeB != NULL) EC_POINT_free(pQeB);
2057 if(pQsB != NULL) EC_POINT_free(pQsB);
2058 if(group != NULL) EC_GROUP_free(group);
2059 BN_CTX_end(context);
2060 BN_CTX_free(context);
2061 return retVal;
2062 }
2063 #endif //% TPM_ALG_SM2
2064 //
2065 //
2066 // C_2_2_ECDH()
2067 //
2068 // This function performs the two phase key exchange defined in SP800-56A, 6.1.1.2 Full Unified Model,
2069 // C(2, 2, ECC CDH).
2070 //
2071 static CRYPT_RESULT
C_2_2_ECDH(TPMS_ECC_POINT * outZ1,TPMS_ECC_POINT * outZ2,TPM_ECC_CURVE curveId,TPM2B_ECC_PARAMETER * dsA,TPM2B_ECC_PARAMETER * deA,TPMS_ECC_POINT * QsB,TPMS_ECC_POINT * QeB)2072 C_2_2_ECDH(
2073 TPMS_ECC_POINT *outZ1, // OUT: Zs
2074 TPMS_ECC_POINT *outZ2, // OUT: Ze
2075 TPM_ECC_CURVE curveId, // IN: the curve for the computations
2076 TPM2B_ECC_PARAMETER *dsA, // IN: static private TPM key
2077 TPM2B_ECC_PARAMETER *deA, // IN: ephemeral private TPM key
2078 TPMS_ECC_POINT *QsB, // IN: static public party B key
2079 TPMS_ECC_POINT *QeB // IN: ephemeral public party B key
2080 )
2081 {
2082 BIGNUM *order;
2083 BN_CTX *context;
2084 EC_POINT *pQ = NULL;
2085 EC_GROUP *group = NULL;
2086 BIGNUM *bnD;
2087 INT16 size;
2088 const ECC_CURVE_DATA *curveData = GetCurveData(curveId);
2089 context = BN_CTX_new();
2090 if(context == NULL || curveData == NULL)
2091 FAIL(FATAL_ERROR_ALLOCATION);
2092 BN_CTX_start(context);
2093 order = BN_CTX_get(context);
2094 if((bnD = BN_CTX_get(context)) == NULL)
2095 FAIL(FATAL_ERROR_INTERNAL);
2096 // Initialize group parameters and local values of input
2097 if((group = EccCurveInit(curveId, context)) == NULL)
2098 FAIL(FATAL_ERROR_INTERNAL);
2099 if (!EC_GROUP_get_order(group, order, context))
2100 FAIL(FATAL_ERROR_INTERNAL);
2101 size = (INT16)BN_num_bytes(order);
2102 // Get the static private key of A
2103 BnFrom2B(bnD, &dsA->b);
2104 // Initialize the static public point from B
2105 pQ = EccInitPoint2B(group, QsB, context);
2106 // Do the point multiply for the Zs value
2107 if(PointMul(group, pQ, NULL, pQ, bnD, context) != CRYPT_NO_RESULT)
2108 // Convert the Zs value
2109 Point2B(group, outZ1, pQ, size, context);
2110 // Get the ephemeral private key of A
2111 BnFrom2B(bnD, &deA->b);
2112 // Initalize the ephemeral public point from B
2113 PointFrom2B(group, pQ, QeB, context);
2114 // Do the point multiply for the Ze value
2115 if(PointMul(group, pQ, NULL, pQ, bnD, context) != CRYPT_NO_RESULT)
2116 // Convert the Ze value.
2117 Point2B(group, outZ2, pQ, size, context);
2118 if(pQ != NULL) EC_POINT_free(pQ);
2119 if(group != NULL) EC_GROUP_free(group);
2120 BN_CTX_end(context);
2121 BN_CTX_free(context);
2122 return CRYPT_SUCCESS;
2123 }
2124 //
2125 //
2126 // _cpri__C_2_2_KeyExchange()
2127 //
2128 // This function is the dispatch routine for the EC key exchange function that use two ephemeral and two
2129 // static keys.
2130 //
2131 // Return Value Meaning
2132 //
2133 // CRYPT_SCHEME scheme is not defined
2134 //
2135 LIB_EXPORT CRYPT_RESULT
_cpri__C_2_2_KeyExchange(TPMS_ECC_POINT * outZ1,TPMS_ECC_POINT * outZ2,TPM_ECC_CURVE curveId,TPM_ALG_ID scheme,TPM2B_ECC_PARAMETER * dsA,TPM2B_ECC_PARAMETER * deA,TPMS_ECC_POINT * QsB,TPMS_ECC_POINT * QeB)2136 _cpri__C_2_2_KeyExchange(
2137 TPMS_ECC_POINT *outZ1, // OUT: a computed point
2138 TPMS_ECC_POINT *outZ2, // OUT: and optional second point
2139 TPM_ECC_CURVE curveId, // IN: the curve for the computations
2140 TPM_ALG_ID scheme, // IN: the key exchange scheme
2141 TPM2B_ECC_PARAMETER *dsA, // IN: static private TPM key
2142 TPM2B_ECC_PARAMETER *deA, // IN: ephemeral private TPM key
2143 TPMS_ECC_POINT *QsB, // IN: static public party B key
2144 TPMS_ECC_POINT *QeB // IN: ephemeral public party B key
2145 )
2146 {
2147 pAssert( outZ1 != NULL
2148 && dsA != NULL && deA != NULL
2149 && QsB != NULL && QeB != NULL);
2150 // Initalize the output points so that they are empty until one of the
2151 // functions decides otherwise
2152 outZ1->x.b.size = 0;
2153 outZ1->y.b.size = 0;
2154 if(outZ2 != NULL)
2155 {
2156 outZ2->x.b.size = 0;
2157 outZ2->y.b.size = 0;
2158 }
2159 switch (scheme)
2160 {
2161 case TPM_ALG_ECDH:
2162 return C_2_2_ECDH(outZ1, outZ2, curveId, dsA, deA, QsB, QeB);
2163 break;
2164 #ifdef TPM_ALG_ECMQV
2165 case TPM_ALG_ECMQV:
2166 return C_2_2_MQV(outZ1, curveId, dsA, deA, QsB, QeB);
2167 break;
2168 #endif
2169 #ifdef TPM_ALG_SM2
2170 case TPM_ALG_SM2:
2171 return SM2KeyExchange(outZ1, curveId, dsA, deA, QsB, QeB);
2172 break;
2173 #endif
2174 default:
2175 return CRYPT_SCHEME;
2176 }
2177 }
2178 #else //%
2179 //
2180 // Stub used when the 2-phase key exchange is not defined so that the linker has something to associate
2181 // with the value in the .def file.
2182 //
2183 LIB_EXPORT CRYPT_RESULT
_cpri__C_2_2_KeyExchange(void)2184 _cpri__C_2_2_KeyExchange(
2185 void
2186 )
2187 {
2188 return CRYPT_FAIL;
2189 }
2190 #endif //% CC_ZGen_2Phase
2191 #endif // TPM_ALG_ECC
2192