• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Mesa 3-D graphics library
3  *
4  * Copyright (C) 1999-2005  Brian Paul   All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included
14  * in all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
17  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  */
24 
25 
26 /**
27  * \file m_matrix.c
28  * Matrix operations.
29  *
30  * \note
31  * -# 4x4 transformation matrices are stored in memory in column major order.
32  * -# Points/vertices are to be thought of as column vectors.
33  * -# Transformation of a point p by a matrix M is: p' = M * p
34  */
35 
36 
37 #include "c99_math.h"
38 #include "main/glheader.h"
39 #include "main/imports.h"
40 #include "main/macros.h"
41 
42 #include "m_matrix.h"
43 
44 
45 /**
46  * \defgroup MatFlags MAT_FLAG_XXX-flags
47  *
48  * Bitmasks to indicate different kinds of 4x4 matrices in GLmatrix::flags
49  */
50 /*@{*/
51 #define MAT_FLAG_IDENTITY       0     /**< is an identity matrix flag.
52                                        *   (Not actually used - the identity
53                                        *   matrix is identified by the absence
54                                        *   of all other flags.)
55                                        */
56 #define MAT_FLAG_GENERAL        0x1   /**< is a general matrix flag */
57 #define MAT_FLAG_ROTATION       0x2   /**< is a rotation matrix flag */
58 #define MAT_FLAG_TRANSLATION    0x4   /**< is a translation matrix flag */
59 #define MAT_FLAG_UNIFORM_SCALE  0x8   /**< is an uniform scaling matrix flag */
60 #define MAT_FLAG_GENERAL_SCALE  0x10  /**< is a general scaling matrix flag */
61 #define MAT_FLAG_GENERAL_3D     0x20  /**< general 3D matrix flag */
62 #define MAT_FLAG_PERSPECTIVE    0x40  /**< is a perspective proj matrix flag */
63 #define MAT_FLAG_SINGULAR       0x80  /**< is a singular matrix flag */
64 #define MAT_DIRTY_TYPE          0x100  /**< matrix type is dirty */
65 #define MAT_DIRTY_FLAGS         0x200  /**< matrix flags are dirty */
66 #define MAT_DIRTY_INVERSE       0x400  /**< matrix inverse is dirty */
67 
68 /** angle preserving matrix flags mask */
69 #define MAT_FLAGS_ANGLE_PRESERVING (MAT_FLAG_ROTATION | \
70 				    MAT_FLAG_TRANSLATION | \
71 				    MAT_FLAG_UNIFORM_SCALE)
72 
73 /** geometry related matrix flags mask */
74 #define MAT_FLAGS_GEOMETRY (MAT_FLAG_GENERAL | \
75 			    MAT_FLAG_ROTATION | \
76 			    MAT_FLAG_TRANSLATION | \
77 			    MAT_FLAG_UNIFORM_SCALE | \
78 			    MAT_FLAG_GENERAL_SCALE | \
79 			    MAT_FLAG_GENERAL_3D | \
80 			    MAT_FLAG_PERSPECTIVE | \
81 	                    MAT_FLAG_SINGULAR)
82 
83 /** length preserving matrix flags mask */
84 #define MAT_FLAGS_LENGTH_PRESERVING (MAT_FLAG_ROTATION | \
85 				     MAT_FLAG_TRANSLATION)
86 
87 
88 /** 3D (non-perspective) matrix flags mask */
89 #define MAT_FLAGS_3D (MAT_FLAG_ROTATION | \
90 		      MAT_FLAG_TRANSLATION | \
91 		      MAT_FLAG_UNIFORM_SCALE | \
92 		      MAT_FLAG_GENERAL_SCALE | \
93 		      MAT_FLAG_GENERAL_3D)
94 
95 /** dirty matrix flags mask */
96 #define MAT_DIRTY          (MAT_DIRTY_TYPE | \
97 			    MAT_DIRTY_FLAGS | \
98 			    MAT_DIRTY_INVERSE)
99 
100 /*@}*/
101 
102 
103 /**
104  * Test geometry related matrix flags.
105  *
106  * \param mat a pointer to a GLmatrix structure.
107  * \param a flags mask.
108  *
109  * \returns non-zero if all geometry related matrix flags are contained within
110  * the mask, or zero otherwise.
111  */
112 #define TEST_MAT_FLAGS(mat, a)  \
113     ((MAT_FLAGS_GEOMETRY & (~(a)) & ((mat)->flags) ) == 0)
114 
115 
116 
117 /**
118  * Names of the corresponding GLmatrixtype values.
119  */
120 static const char *types[] = {
121    "MATRIX_GENERAL",
122    "MATRIX_IDENTITY",
123    "MATRIX_3D_NO_ROT",
124    "MATRIX_PERSPECTIVE",
125    "MATRIX_2D",
126    "MATRIX_2D_NO_ROT",
127    "MATRIX_3D"
128 };
129 
130 
131 /**
132  * Identity matrix.
133  */
134 static const GLfloat Identity[16] = {
135    1.0, 0.0, 0.0, 0.0,
136    0.0, 1.0, 0.0, 0.0,
137    0.0, 0.0, 1.0, 0.0,
138    0.0, 0.0, 0.0, 1.0
139 };
140 
141 
142 
143 /**********************************************************************/
144 /** \name Matrix multiplication */
145 /*@{*/
146 
147 #define A(row,col)  a[(col<<2)+row]
148 #define B(row,col)  b[(col<<2)+row]
149 #define P(row,col)  product[(col<<2)+row]
150 
151 /**
152  * Perform a full 4x4 matrix multiplication.
153  *
154  * \param a matrix.
155  * \param b matrix.
156  * \param product will receive the product of \p a and \p b.
157  *
158  * \warning Is assumed that \p product != \p b. \p product == \p a is allowed.
159  *
160  * \note KW: 4*16 = 64 multiplications
161  *
162  * \author This \c matmul was contributed by Thomas Malik
163  */
matmul4(GLfloat * product,const GLfloat * a,const GLfloat * b)164 static void matmul4( GLfloat *product, const GLfloat *a, const GLfloat *b )
165 {
166    GLint i;
167    for (i = 0; i < 4; i++) {
168       const GLfloat ai0=A(i,0),  ai1=A(i,1),  ai2=A(i,2),  ai3=A(i,3);
169       P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0) + ai3 * B(3,0);
170       P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1) + ai3 * B(3,1);
171       P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2) + ai3 * B(3,2);
172       P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3 * B(3,3);
173    }
174 }
175 
176 /**
177  * Multiply two matrices known to occupy only the top three rows, such
178  * as typical model matrices, and orthogonal matrices.
179  *
180  * \param a matrix.
181  * \param b matrix.
182  * \param product will receive the product of \p a and \p b.
183  */
matmul34(GLfloat * product,const GLfloat * a,const GLfloat * b)184 static void matmul34( GLfloat *product, const GLfloat *a, const GLfloat *b )
185 {
186    GLint i;
187    for (i = 0; i < 3; i++) {
188       const GLfloat ai0=A(i,0),  ai1=A(i,1),  ai2=A(i,2),  ai3=A(i,3);
189       P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0);
190       P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1);
191       P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2);
192       P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3;
193    }
194    P(3,0) = 0;
195    P(3,1) = 0;
196    P(3,2) = 0;
197    P(3,3) = 1;
198 }
199 
200 #undef A
201 #undef B
202 #undef P
203 
204 /**
205  * Multiply a matrix by an array of floats with known properties.
206  *
207  * \param mat pointer to a GLmatrix structure containing the left multiplication
208  * matrix, and that will receive the product result.
209  * \param m right multiplication matrix array.
210  * \param flags flags of the matrix \p m.
211  *
212  * Joins both flags and marks the type and inverse as dirty.  Calls matmul34()
213  * if both matrices are 3D, or matmul4() otherwise.
214  */
matrix_multf(GLmatrix * mat,const GLfloat * m,GLuint flags)215 static void matrix_multf( GLmatrix *mat, const GLfloat *m, GLuint flags )
216 {
217    mat->flags |= (flags | MAT_DIRTY_TYPE | MAT_DIRTY_INVERSE);
218 
219    if (TEST_MAT_FLAGS(mat, MAT_FLAGS_3D))
220       matmul34( mat->m, mat->m, m );
221    else
222       matmul4( mat->m, mat->m, m );
223 }
224 
225 /**
226  * Matrix multiplication.
227  *
228  * \param dest destination matrix.
229  * \param a left matrix.
230  * \param b right matrix.
231  *
232  * Joins both flags and marks the type and inverse as dirty.  Calls matmul34()
233  * if both matrices are 3D, or matmul4() otherwise.
234  */
235 void
_math_matrix_mul_matrix(GLmatrix * dest,const GLmatrix * a,const GLmatrix * b)236 _math_matrix_mul_matrix( GLmatrix *dest, const GLmatrix *a, const GLmatrix *b )
237 {
238    dest->flags = (a->flags |
239 		  b->flags |
240 		  MAT_DIRTY_TYPE |
241 		  MAT_DIRTY_INVERSE);
242 
243    if (TEST_MAT_FLAGS(dest, MAT_FLAGS_3D))
244       matmul34( dest->m, a->m, b->m );
245    else
246       matmul4( dest->m, a->m, b->m );
247 }
248 
249 /**
250  * Matrix multiplication.
251  *
252  * \param dest left and destination matrix.
253  * \param m right matrix array.
254  *
255  * Marks the matrix flags with general flag, and type and inverse dirty flags.
256  * Calls matmul4() for the multiplication.
257  */
258 void
_math_matrix_mul_floats(GLmatrix * dest,const GLfloat * m)259 _math_matrix_mul_floats( GLmatrix *dest, const GLfloat *m )
260 {
261    dest->flags |= (MAT_FLAG_GENERAL |
262 		   MAT_DIRTY_TYPE |
263 		   MAT_DIRTY_INVERSE |
264                    MAT_DIRTY_FLAGS);
265 
266    matmul4( dest->m, dest->m, m );
267 }
268 
269 /*@}*/
270 
271 
272 /**********************************************************************/
273 /** \name Matrix output */
274 /*@{*/
275 
276 /**
277  * Print a matrix array.
278  *
279  * \param m matrix array.
280  *
281  * Called by _math_matrix_print() to print a matrix or its inverse.
282  */
print_matrix_floats(const GLfloat m[16])283 static void print_matrix_floats( const GLfloat m[16] )
284 {
285    int i;
286    for (i=0;i<4;i++) {
287       _mesa_debug(NULL,"\t%f %f %f %f\n", m[i], m[4+i], m[8+i], m[12+i] );
288    }
289 }
290 
291 /**
292  * Dumps the contents of a GLmatrix structure.
293  *
294  * \param m pointer to the GLmatrix structure.
295  */
296 void
_math_matrix_print(const GLmatrix * m)297 _math_matrix_print( const GLmatrix *m )
298 {
299    GLfloat prod[16];
300 
301    _mesa_debug(NULL, "Matrix type: %s, flags: %x\n", types[m->type], m->flags);
302    print_matrix_floats(m->m);
303    _mesa_debug(NULL, "Inverse: \n");
304    print_matrix_floats(m->inv);
305    matmul4(prod, m->m, m->inv);
306    _mesa_debug(NULL, "Mat * Inverse:\n");
307    print_matrix_floats(prod);
308 }
309 
310 /*@}*/
311 
312 
313 /**
314  * References an element of 4x4 matrix.
315  *
316  * \param m matrix array.
317  * \param c column of the desired element.
318  * \param r row of the desired element.
319  *
320  * \return value of the desired element.
321  *
322  * Calculate the linear storage index of the element and references it.
323  */
324 #define MAT(m,r,c) (m)[(c)*4+(r)]
325 
326 
327 /**********************************************************************/
328 /** \name Matrix inversion */
329 /*@{*/
330 
331 /**
332  * Swaps the values of two floating point variables.
333  *
334  * Used by invert_matrix_general() to swap the row pointers.
335  */
336 #define SWAP_ROWS(a, b) { GLfloat *_tmp = a; (a)=(b); (b)=_tmp; }
337 
338 /**
339  * Compute inverse of 4x4 transformation matrix.
340  *
341  * \param mat pointer to a GLmatrix structure. The matrix inverse will be
342  * stored in the GLmatrix::inv attribute.
343  *
344  * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
345  *
346  * \author
347  * Code contributed by Jacques Leroy jle@star.be
348  *
349  * Calculates the inverse matrix by performing the gaussian matrix reduction
350  * with partial pivoting followed by back/substitution with the loops manually
351  * unrolled.
352  */
invert_matrix_general(GLmatrix * mat)353 static GLboolean invert_matrix_general( GLmatrix *mat )
354 {
355    const GLfloat *m = mat->m;
356    GLfloat *out = mat->inv;
357    GLfloat wtmp[4][8];
358    GLfloat m0, m1, m2, m3, s;
359    GLfloat *r0, *r1, *r2, *r3;
360 
361    r0 = wtmp[0], r1 = wtmp[1], r2 = wtmp[2], r3 = wtmp[3];
362 
363    r0[0] = MAT(m,0,0), r0[1] = MAT(m,0,1),
364    r0[2] = MAT(m,0,2), r0[3] = MAT(m,0,3),
365    r0[4] = 1.0, r0[5] = r0[6] = r0[7] = 0.0,
366 
367    r1[0] = MAT(m,1,0), r1[1] = MAT(m,1,1),
368    r1[2] = MAT(m,1,2), r1[3] = MAT(m,1,3),
369    r1[5] = 1.0, r1[4] = r1[6] = r1[7] = 0.0,
370 
371    r2[0] = MAT(m,2,0), r2[1] = MAT(m,2,1),
372    r2[2] = MAT(m,2,2), r2[3] = MAT(m,2,3),
373    r2[6] = 1.0, r2[4] = r2[5] = r2[7] = 0.0,
374 
375    r3[0] = MAT(m,3,0), r3[1] = MAT(m,3,1),
376    r3[2] = MAT(m,3,2), r3[3] = MAT(m,3,3),
377    r3[7] = 1.0, r3[4] = r3[5] = r3[6] = 0.0;
378 
379    /* choose pivot - or die */
380    if (fabsf(r3[0])>fabsf(r2[0])) SWAP_ROWS(r3, r2);
381    if (fabsf(r2[0])>fabsf(r1[0])) SWAP_ROWS(r2, r1);
382    if (fabsf(r1[0])>fabsf(r0[0])) SWAP_ROWS(r1, r0);
383    if (0.0F == r0[0])  return GL_FALSE;
384 
385    /* eliminate first variable     */
386    m1 = r1[0]/r0[0]; m2 = r2[0]/r0[0]; m3 = r3[0]/r0[0];
387    s = r0[1]; r1[1] -= m1 * s; r2[1] -= m2 * s; r3[1] -= m3 * s;
388    s = r0[2]; r1[2] -= m1 * s; r2[2] -= m2 * s; r3[2] -= m3 * s;
389    s = r0[3]; r1[3] -= m1 * s; r2[3] -= m2 * s; r3[3] -= m3 * s;
390    s = r0[4];
391    if (s != 0.0F) { r1[4] -= m1 * s; r2[4] -= m2 * s; r3[4] -= m3 * s; }
392    s = r0[5];
393    if (s != 0.0F) { r1[5] -= m1 * s; r2[5] -= m2 * s; r3[5] -= m3 * s; }
394    s = r0[6];
395    if (s != 0.0F) { r1[6] -= m1 * s; r2[6] -= m2 * s; r3[6] -= m3 * s; }
396    s = r0[7];
397    if (s != 0.0F) { r1[7] -= m1 * s; r2[7] -= m2 * s; r3[7] -= m3 * s; }
398 
399    /* choose pivot - or die */
400    if (fabsf(r3[1])>fabsf(r2[1])) SWAP_ROWS(r3, r2);
401    if (fabsf(r2[1])>fabsf(r1[1])) SWAP_ROWS(r2, r1);
402    if (0.0F == r1[1])  return GL_FALSE;
403 
404    /* eliminate second variable */
405    m2 = r2[1]/r1[1]; m3 = r3[1]/r1[1];
406    r2[2] -= m2 * r1[2]; r3[2] -= m3 * r1[2];
407    r2[3] -= m2 * r1[3]; r3[3] -= m3 * r1[3];
408    s = r1[4]; if (0.0F != s) { r2[4] -= m2 * s; r3[4] -= m3 * s; }
409    s = r1[5]; if (0.0F != s) { r2[5] -= m2 * s; r3[5] -= m3 * s; }
410    s = r1[6]; if (0.0F != s) { r2[6] -= m2 * s; r3[6] -= m3 * s; }
411    s = r1[7]; if (0.0F != s) { r2[7] -= m2 * s; r3[7] -= m3 * s; }
412 
413    /* choose pivot - or die */
414    if (fabsf(r3[2])>fabsf(r2[2])) SWAP_ROWS(r3, r2);
415    if (0.0F == r2[2])  return GL_FALSE;
416 
417    /* eliminate third variable */
418    m3 = r3[2]/r2[2];
419    r3[3] -= m3 * r2[3], r3[4] -= m3 * r2[4],
420    r3[5] -= m3 * r2[5], r3[6] -= m3 * r2[6],
421    r3[7] -= m3 * r2[7];
422 
423    /* last check */
424    if (0.0F == r3[3]) return GL_FALSE;
425 
426    s = 1.0F/r3[3];             /* now back substitute row 3 */
427    r3[4] *= s; r3[5] *= s; r3[6] *= s; r3[7] *= s;
428 
429    m2 = r2[3];                 /* now back substitute row 2 */
430    s  = 1.0F/r2[2];
431    r2[4] = s * (r2[4] - r3[4] * m2), r2[5] = s * (r2[5] - r3[5] * m2),
432    r2[6] = s * (r2[6] - r3[6] * m2), r2[7] = s * (r2[7] - r3[7] * m2);
433    m1 = r1[3];
434    r1[4] -= r3[4] * m1, r1[5] -= r3[5] * m1,
435    r1[6] -= r3[6] * m1, r1[7] -= r3[7] * m1;
436    m0 = r0[3];
437    r0[4] -= r3[4] * m0, r0[5] -= r3[5] * m0,
438    r0[6] -= r3[6] * m0, r0[7] -= r3[7] * m0;
439 
440    m1 = r1[2];                 /* now back substitute row 1 */
441    s  = 1.0F/r1[1];
442    r1[4] = s * (r1[4] - r2[4] * m1), r1[5] = s * (r1[5] - r2[5] * m1),
443    r1[6] = s * (r1[6] - r2[6] * m1), r1[7] = s * (r1[7] - r2[7] * m1);
444    m0 = r0[2];
445    r0[4] -= r2[4] * m0, r0[5] -= r2[5] * m0,
446    r0[6] -= r2[6] * m0, r0[7] -= r2[7] * m0;
447 
448    m0 = r0[1];                 /* now back substitute row 0 */
449    s  = 1.0F/r0[0];
450    r0[4] = s * (r0[4] - r1[4] * m0), r0[5] = s * (r0[5] - r1[5] * m0),
451    r0[6] = s * (r0[6] - r1[6] * m0), r0[7] = s * (r0[7] - r1[7] * m0);
452 
453    MAT(out,0,0) = r0[4]; MAT(out,0,1) = r0[5],
454    MAT(out,0,2) = r0[6]; MAT(out,0,3) = r0[7],
455    MAT(out,1,0) = r1[4]; MAT(out,1,1) = r1[5],
456    MAT(out,1,2) = r1[6]; MAT(out,1,3) = r1[7],
457    MAT(out,2,0) = r2[4]; MAT(out,2,1) = r2[5],
458    MAT(out,2,2) = r2[6]; MAT(out,2,3) = r2[7],
459    MAT(out,3,0) = r3[4]; MAT(out,3,1) = r3[5],
460    MAT(out,3,2) = r3[6]; MAT(out,3,3) = r3[7];
461 
462    return GL_TRUE;
463 }
464 #undef SWAP_ROWS
465 
466 /**
467  * Compute inverse of a general 3d transformation matrix.
468  *
469  * \param mat pointer to a GLmatrix structure. The matrix inverse will be
470  * stored in the GLmatrix::inv attribute.
471  *
472  * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
473  *
474  * \author Adapted from graphics gems II.
475  *
476  * Calculates the inverse of the upper left by first calculating its
477  * determinant and multiplying it to the symmetric adjust matrix of each
478  * element. Finally deals with the translation part by transforming the
479  * original translation vector using by the calculated submatrix inverse.
480  */
invert_matrix_3d_general(GLmatrix * mat)481 static GLboolean invert_matrix_3d_general( GLmatrix *mat )
482 {
483    const GLfloat *in = mat->m;
484    GLfloat *out = mat->inv;
485    GLfloat pos, neg, t;
486    GLfloat det;
487 
488    /* Calculate the determinant of upper left 3x3 submatrix and
489     * determine if the matrix is singular.
490     */
491    pos = neg = 0.0;
492    t =  MAT(in,0,0) * MAT(in,1,1) * MAT(in,2,2);
493    if (t >= 0.0F) pos += t; else neg += t;
494 
495    t =  MAT(in,1,0) * MAT(in,2,1) * MAT(in,0,2);
496    if (t >= 0.0F) pos += t; else neg += t;
497 
498    t =  MAT(in,2,0) * MAT(in,0,1) * MAT(in,1,2);
499    if (t >= 0.0F) pos += t; else neg += t;
500 
501    t = -MAT(in,2,0) * MAT(in,1,1) * MAT(in,0,2);
502    if (t >= 0.0F) pos += t; else neg += t;
503 
504    t = -MAT(in,1,0) * MAT(in,0,1) * MAT(in,2,2);
505    if (t >= 0.0F) pos += t; else neg += t;
506 
507    t = -MAT(in,0,0) * MAT(in,2,1) * MAT(in,1,2);
508    if (t >= 0.0F) pos += t; else neg += t;
509 
510    det = pos + neg;
511 
512    if (fabsf(det) < 1e-25F)
513       return GL_FALSE;
514 
515    det = 1.0F / det;
516    MAT(out,0,0) = (  (MAT(in,1,1)*MAT(in,2,2) - MAT(in,2,1)*MAT(in,1,2) )*det);
517    MAT(out,0,1) = (- (MAT(in,0,1)*MAT(in,2,2) - MAT(in,2,1)*MAT(in,0,2) )*det);
518    MAT(out,0,2) = (  (MAT(in,0,1)*MAT(in,1,2) - MAT(in,1,1)*MAT(in,0,2) )*det);
519    MAT(out,1,0) = (- (MAT(in,1,0)*MAT(in,2,2) - MAT(in,2,0)*MAT(in,1,2) )*det);
520    MAT(out,1,1) = (  (MAT(in,0,0)*MAT(in,2,2) - MAT(in,2,0)*MAT(in,0,2) )*det);
521    MAT(out,1,2) = (- (MAT(in,0,0)*MAT(in,1,2) - MAT(in,1,0)*MAT(in,0,2) )*det);
522    MAT(out,2,0) = (  (MAT(in,1,0)*MAT(in,2,1) - MAT(in,2,0)*MAT(in,1,1) )*det);
523    MAT(out,2,1) = (- (MAT(in,0,0)*MAT(in,2,1) - MAT(in,2,0)*MAT(in,0,1) )*det);
524    MAT(out,2,2) = (  (MAT(in,0,0)*MAT(in,1,1) - MAT(in,1,0)*MAT(in,0,1) )*det);
525 
526    /* Do the translation part */
527    MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0) +
528 		     MAT(in,1,3) * MAT(out,0,1) +
529 		     MAT(in,2,3) * MAT(out,0,2) );
530    MAT(out,1,3) = - (MAT(in,0,3) * MAT(out,1,0) +
531 		     MAT(in,1,3) * MAT(out,1,1) +
532 		     MAT(in,2,3) * MAT(out,1,2) );
533    MAT(out,2,3) = - (MAT(in,0,3) * MAT(out,2,0) +
534 		     MAT(in,1,3) * MAT(out,2,1) +
535 		     MAT(in,2,3) * MAT(out,2,2) );
536 
537    return GL_TRUE;
538 }
539 
540 /**
541  * Compute inverse of a 3d transformation matrix.
542  *
543  * \param mat pointer to a GLmatrix structure. The matrix inverse will be
544  * stored in the GLmatrix::inv attribute.
545  *
546  * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
547  *
548  * If the matrix is not an angle preserving matrix then calls
549  * invert_matrix_3d_general for the actual calculation. Otherwise calculates
550  * the inverse matrix analyzing and inverting each of the scaling, rotation and
551  * translation parts.
552  */
invert_matrix_3d(GLmatrix * mat)553 static GLboolean invert_matrix_3d( GLmatrix *mat )
554 {
555    const GLfloat *in = mat->m;
556    GLfloat *out = mat->inv;
557 
558    if (!TEST_MAT_FLAGS(mat, MAT_FLAGS_ANGLE_PRESERVING)) {
559       return invert_matrix_3d_general( mat );
560    }
561 
562    if (mat->flags & MAT_FLAG_UNIFORM_SCALE) {
563       GLfloat scale = (MAT(in,0,0) * MAT(in,0,0) +
564                        MAT(in,0,1) * MAT(in,0,1) +
565                        MAT(in,0,2) * MAT(in,0,2));
566 
567       if (scale == 0.0F)
568          return GL_FALSE;
569 
570       scale = 1.0F / scale;
571 
572       /* Transpose and scale the 3 by 3 upper-left submatrix. */
573       MAT(out,0,0) = scale * MAT(in,0,0);
574       MAT(out,1,0) = scale * MAT(in,0,1);
575       MAT(out,2,0) = scale * MAT(in,0,2);
576       MAT(out,0,1) = scale * MAT(in,1,0);
577       MAT(out,1,1) = scale * MAT(in,1,1);
578       MAT(out,2,1) = scale * MAT(in,1,2);
579       MAT(out,0,2) = scale * MAT(in,2,0);
580       MAT(out,1,2) = scale * MAT(in,2,1);
581       MAT(out,2,2) = scale * MAT(in,2,2);
582    }
583    else if (mat->flags & MAT_FLAG_ROTATION) {
584       /* Transpose the 3 by 3 upper-left submatrix. */
585       MAT(out,0,0) = MAT(in,0,0);
586       MAT(out,1,0) = MAT(in,0,1);
587       MAT(out,2,0) = MAT(in,0,2);
588       MAT(out,0,1) = MAT(in,1,0);
589       MAT(out,1,1) = MAT(in,1,1);
590       MAT(out,2,1) = MAT(in,1,2);
591       MAT(out,0,2) = MAT(in,2,0);
592       MAT(out,1,2) = MAT(in,2,1);
593       MAT(out,2,2) = MAT(in,2,2);
594    }
595    else {
596       /* pure translation */
597       memcpy( out, Identity, sizeof(Identity) );
598       MAT(out,0,3) = - MAT(in,0,3);
599       MAT(out,1,3) = - MAT(in,1,3);
600       MAT(out,2,3) = - MAT(in,2,3);
601       return GL_TRUE;
602    }
603 
604    if (mat->flags & MAT_FLAG_TRANSLATION) {
605       /* Do the translation part */
606       MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0) +
607 			MAT(in,1,3) * MAT(out,0,1) +
608 			MAT(in,2,3) * MAT(out,0,2) );
609       MAT(out,1,3) = - (MAT(in,0,3) * MAT(out,1,0) +
610 			MAT(in,1,3) * MAT(out,1,1) +
611 			MAT(in,2,3) * MAT(out,1,2) );
612       MAT(out,2,3) = - (MAT(in,0,3) * MAT(out,2,0) +
613 			MAT(in,1,3) * MAT(out,2,1) +
614 			MAT(in,2,3) * MAT(out,2,2) );
615    }
616    else {
617       MAT(out,0,3) = MAT(out,1,3) = MAT(out,2,3) = 0.0;
618    }
619 
620    return GL_TRUE;
621 }
622 
623 /**
624  * Compute inverse of an identity transformation matrix.
625  *
626  * \param mat pointer to a GLmatrix structure. The matrix inverse will be
627  * stored in the GLmatrix::inv attribute.
628  *
629  * \return always GL_TRUE.
630  *
631  * Simply copies Identity into GLmatrix::inv.
632  */
invert_matrix_identity(GLmatrix * mat)633 static GLboolean invert_matrix_identity( GLmatrix *mat )
634 {
635    memcpy( mat->inv, Identity, sizeof(Identity) );
636    return GL_TRUE;
637 }
638 
639 /**
640  * Compute inverse of a no-rotation 3d transformation matrix.
641  *
642  * \param mat pointer to a GLmatrix structure. The matrix inverse will be
643  * stored in the GLmatrix::inv attribute.
644  *
645  * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
646  *
647  * Calculates the
648  */
invert_matrix_3d_no_rot(GLmatrix * mat)649 static GLboolean invert_matrix_3d_no_rot( GLmatrix *mat )
650 {
651    const GLfloat *in = mat->m;
652    GLfloat *out = mat->inv;
653 
654    if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0 || MAT(in,2,2) == 0 )
655       return GL_FALSE;
656 
657    memcpy( out, Identity, sizeof(Identity) );
658    MAT(out,0,0) = 1.0F / MAT(in,0,0);
659    MAT(out,1,1) = 1.0F / MAT(in,1,1);
660    MAT(out,2,2) = 1.0F / MAT(in,2,2);
661 
662    if (mat->flags & MAT_FLAG_TRANSLATION) {
663       MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0));
664       MAT(out,1,3) = - (MAT(in,1,3) * MAT(out,1,1));
665       MAT(out,2,3) = - (MAT(in,2,3) * MAT(out,2,2));
666    }
667 
668    return GL_TRUE;
669 }
670 
671 /**
672  * Compute inverse of a no-rotation 2d transformation matrix.
673  *
674  * \param mat pointer to a GLmatrix structure. The matrix inverse will be
675  * stored in the GLmatrix::inv attribute.
676  *
677  * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
678  *
679  * Calculates the inverse matrix by applying the inverse scaling and
680  * translation to the identity matrix.
681  */
invert_matrix_2d_no_rot(GLmatrix * mat)682 static GLboolean invert_matrix_2d_no_rot( GLmatrix *mat )
683 {
684    const GLfloat *in = mat->m;
685    GLfloat *out = mat->inv;
686 
687    if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0)
688       return GL_FALSE;
689 
690    memcpy( out, Identity, sizeof(Identity) );
691    MAT(out,0,0) = 1.0F / MAT(in,0,0);
692    MAT(out,1,1) = 1.0F / MAT(in,1,1);
693 
694    if (mat->flags & MAT_FLAG_TRANSLATION) {
695       MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0));
696       MAT(out,1,3) = - (MAT(in,1,3) * MAT(out,1,1));
697    }
698 
699    return GL_TRUE;
700 }
701 
702 #if 0
703 /* broken */
704 static GLboolean invert_matrix_perspective( GLmatrix *mat )
705 {
706    const GLfloat *in = mat->m;
707    GLfloat *out = mat->inv;
708 
709    if (MAT(in,2,3) == 0)
710       return GL_FALSE;
711 
712    memcpy( out, Identity, sizeof(Identity) );
713 
714    MAT(out,0,0) = 1.0F / MAT(in,0,0);
715    MAT(out,1,1) = 1.0F / MAT(in,1,1);
716 
717    MAT(out,0,3) = MAT(in,0,2);
718    MAT(out,1,3) = MAT(in,1,2);
719 
720    MAT(out,2,2) = 0;
721    MAT(out,2,3) = -1;
722 
723    MAT(out,3,2) = 1.0F / MAT(in,2,3);
724    MAT(out,3,3) = MAT(in,2,2) * MAT(out,3,2);
725 
726    return GL_TRUE;
727 }
728 #endif
729 
730 /**
731  * Matrix inversion function pointer type.
732  */
733 typedef GLboolean (*inv_mat_func)( GLmatrix *mat );
734 
735 /**
736  * Table of the matrix inversion functions according to the matrix type.
737  */
738 static inv_mat_func inv_mat_tab[7] = {
739    invert_matrix_general,
740    invert_matrix_identity,
741    invert_matrix_3d_no_rot,
742 #if 0
743    /* Don't use this function for now - it fails when the projection matrix
744     * is premultiplied by a translation (ala Chromium's tilesort SPU).
745     */
746    invert_matrix_perspective,
747 #else
748    invert_matrix_general,
749 #endif
750    invert_matrix_3d,		/* lazy! */
751    invert_matrix_2d_no_rot,
752    invert_matrix_3d
753 };
754 
755 /**
756  * Compute inverse of a transformation matrix.
757  *
758  * \param mat pointer to a GLmatrix structure. The matrix inverse will be
759  * stored in the GLmatrix::inv attribute.
760  *
761  * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
762  *
763  * Calls the matrix inversion function in inv_mat_tab corresponding to the
764  * given matrix type.  In case of failure, updates the MAT_FLAG_SINGULAR flag,
765  * and copies the identity matrix into GLmatrix::inv.
766  */
matrix_invert(GLmatrix * mat)767 static GLboolean matrix_invert( GLmatrix *mat )
768 {
769    if (inv_mat_tab[mat->type](mat)) {
770       mat->flags &= ~MAT_FLAG_SINGULAR;
771       return GL_TRUE;
772    } else {
773       mat->flags |= MAT_FLAG_SINGULAR;
774       memcpy( mat->inv, Identity, sizeof(Identity) );
775       return GL_FALSE;
776    }
777 }
778 
779 /*@}*/
780 
781 
782 /**********************************************************************/
783 /** \name Matrix generation */
784 /*@{*/
785 
786 /**
787  * Generate a 4x4 transformation matrix from glRotate parameters, and
788  * post-multiply the input matrix by it.
789  *
790  * \author
791  * This function was contributed by Erich Boleyn (erich@uruk.org).
792  * Optimizations contributed by Rudolf Opalla (rudi@khm.de).
793  */
794 void
_math_matrix_rotate(GLmatrix * mat,GLfloat angle,GLfloat x,GLfloat y,GLfloat z)795 _math_matrix_rotate( GLmatrix *mat,
796 		     GLfloat angle, GLfloat x, GLfloat y, GLfloat z )
797 {
798    GLfloat xx, yy, zz, xy, yz, zx, xs, ys, zs, one_c, s, c;
799    GLfloat m[16];
800    GLboolean optimized;
801 
802    s = sinf( angle * M_PI / 180.0 );
803    c = cosf( angle * M_PI / 180.0 );
804 
805    memcpy(m, Identity, sizeof(Identity));
806    optimized = GL_FALSE;
807 
808 #define M(row,col)  m[col*4+row]
809 
810    if (x == 0.0F) {
811       if (y == 0.0F) {
812          if (z != 0.0F) {
813             optimized = GL_TRUE;
814             /* rotate only around z-axis */
815             M(0,0) = c;
816             M(1,1) = c;
817             if (z < 0.0F) {
818                M(0,1) = s;
819                M(1,0) = -s;
820             }
821             else {
822                M(0,1) = -s;
823                M(1,0) = s;
824             }
825          }
826       }
827       else if (z == 0.0F) {
828          optimized = GL_TRUE;
829          /* rotate only around y-axis */
830          M(0,0) = c;
831          M(2,2) = c;
832          if (y < 0.0F) {
833             M(0,2) = -s;
834             M(2,0) = s;
835          }
836          else {
837             M(0,2) = s;
838             M(2,0) = -s;
839          }
840       }
841    }
842    else if (y == 0.0F) {
843       if (z == 0.0F) {
844          optimized = GL_TRUE;
845          /* rotate only around x-axis */
846          M(1,1) = c;
847          M(2,2) = c;
848          if (x < 0.0F) {
849             M(1,2) = s;
850             M(2,1) = -s;
851          }
852          else {
853             M(1,2) = -s;
854             M(2,1) = s;
855          }
856       }
857    }
858 
859    if (!optimized) {
860       const GLfloat mag = sqrtf(x * x + y * y + z * z);
861 
862       if (mag <= 1.0e-4F) {
863          /* no rotation, leave mat as-is */
864          return;
865       }
866 
867       x /= mag;
868       y /= mag;
869       z /= mag;
870 
871 
872       /*
873        *     Arbitrary axis rotation matrix.
874        *
875        *  This is composed of 5 matrices, Rz, Ry, T, Ry', Rz', multiplied
876        *  like so:  Rz * Ry * T * Ry' * Rz'.  T is the final rotation
877        *  (which is about the X-axis), and the two composite transforms
878        *  Ry' * Rz' and Rz * Ry are (respectively) the rotations necessary
879        *  from the arbitrary axis to the X-axis then back.  They are
880        *  all elementary rotations.
881        *
882        *  Rz' is a rotation about the Z-axis, to bring the axis vector
883        *  into the x-z plane.  Then Ry' is applied, rotating about the
884        *  Y-axis to bring the axis vector parallel with the X-axis.  The
885        *  rotation about the X-axis is then performed.  Ry and Rz are
886        *  simply the respective inverse transforms to bring the arbitrary
887        *  axis back to its original orientation.  The first transforms
888        *  Rz' and Ry' are considered inverses, since the data from the
889        *  arbitrary axis gives you info on how to get to it, not how
890        *  to get away from it, and an inverse must be applied.
891        *
892        *  The basic calculation used is to recognize that the arbitrary
893        *  axis vector (x, y, z), since it is of unit length, actually
894        *  represents the sines and cosines of the angles to rotate the
895        *  X-axis to the same orientation, with theta being the angle about
896        *  Z and phi the angle about Y (in the order described above)
897        *  as follows:
898        *
899        *  cos ( theta ) = x / sqrt ( 1 - z^2 )
900        *  sin ( theta ) = y / sqrt ( 1 - z^2 )
901        *
902        *  cos ( phi ) = sqrt ( 1 - z^2 )
903        *  sin ( phi ) = z
904        *
905        *  Note that cos ( phi ) can further be inserted to the above
906        *  formulas:
907        *
908        *  cos ( theta ) = x / cos ( phi )
909        *  sin ( theta ) = y / sin ( phi )
910        *
911        *  ...etc.  Because of those relations and the standard trigonometric
912        *  relations, it is pssible to reduce the transforms down to what
913        *  is used below.  It may be that any primary axis chosen will give the
914        *  same results (modulo a sign convention) using thie method.
915        *
916        *  Particularly nice is to notice that all divisions that might
917        *  have caused trouble when parallel to certain planes or
918        *  axis go away with care paid to reducing the expressions.
919        *  After checking, it does perform correctly under all cases, since
920        *  in all the cases of division where the denominator would have
921        *  been zero, the numerator would have been zero as well, giving
922        *  the expected result.
923        */
924 
925       xx = x * x;
926       yy = y * y;
927       zz = z * z;
928       xy = x * y;
929       yz = y * z;
930       zx = z * x;
931       xs = x * s;
932       ys = y * s;
933       zs = z * s;
934       one_c = 1.0F - c;
935 
936       /* We already hold the identity-matrix so we can skip some statements */
937       M(0,0) = (one_c * xx) + c;
938       M(0,1) = (one_c * xy) - zs;
939       M(0,2) = (one_c * zx) + ys;
940 /*    M(0,3) = 0.0F; */
941 
942       M(1,0) = (one_c * xy) + zs;
943       M(1,1) = (one_c * yy) + c;
944       M(1,2) = (one_c * yz) - xs;
945 /*    M(1,3) = 0.0F; */
946 
947       M(2,0) = (one_c * zx) - ys;
948       M(2,1) = (one_c * yz) + xs;
949       M(2,2) = (one_c * zz) + c;
950 /*    M(2,3) = 0.0F; */
951 
952 /*
953       M(3,0) = 0.0F;
954       M(3,1) = 0.0F;
955       M(3,2) = 0.0F;
956       M(3,3) = 1.0F;
957 */
958    }
959 #undef M
960 
961    matrix_multf( mat, m, MAT_FLAG_ROTATION );
962 }
963 
964 /**
965  * Apply a perspective projection matrix.
966  *
967  * \param mat matrix to apply the projection.
968  * \param left left clipping plane coordinate.
969  * \param right right clipping plane coordinate.
970  * \param bottom bottom clipping plane coordinate.
971  * \param top top clipping plane coordinate.
972  * \param nearval distance to the near clipping plane.
973  * \param farval distance to the far clipping plane.
974  *
975  * Creates the projection matrix and multiplies it with \p mat, marking the
976  * MAT_FLAG_PERSPECTIVE flag.
977  */
978 void
_math_matrix_frustum(GLmatrix * mat,GLfloat left,GLfloat right,GLfloat bottom,GLfloat top,GLfloat nearval,GLfloat farval)979 _math_matrix_frustum( GLmatrix *mat,
980 		      GLfloat left, GLfloat right,
981 		      GLfloat bottom, GLfloat top,
982 		      GLfloat nearval, GLfloat farval )
983 {
984    GLfloat x, y, a, b, c, d;
985    GLfloat m[16];
986 
987    x = (2.0F*nearval) / (right-left);
988    y = (2.0F*nearval) / (top-bottom);
989    a = (right+left) / (right-left);
990    b = (top+bottom) / (top-bottom);
991    c = -(farval+nearval) / ( farval-nearval);
992    d = -(2.0F*farval*nearval) / (farval-nearval);  /* error? */
993 
994 #define M(row,col)  m[col*4+row]
995    M(0,0) = x;     M(0,1) = 0.0F;  M(0,2) = a;      M(0,3) = 0.0F;
996    M(1,0) = 0.0F;  M(1,1) = y;     M(1,2) = b;      M(1,3) = 0.0F;
997    M(2,0) = 0.0F;  M(2,1) = 0.0F;  M(2,2) = c;      M(2,3) = d;
998    M(3,0) = 0.0F;  M(3,1) = 0.0F;  M(3,2) = -1.0F;  M(3,3) = 0.0F;
999 #undef M
1000 
1001    matrix_multf( mat, m, MAT_FLAG_PERSPECTIVE );
1002 }
1003 
1004 /**
1005  * Apply an orthographic projection matrix.
1006  *
1007  * \param mat matrix to apply the projection.
1008  * \param left left clipping plane coordinate.
1009  * \param right right clipping plane coordinate.
1010  * \param bottom bottom clipping plane coordinate.
1011  * \param top top clipping plane coordinate.
1012  * \param nearval distance to the near clipping plane.
1013  * \param farval distance to the far clipping plane.
1014  *
1015  * Creates the projection matrix and multiplies it with \p mat, marking the
1016  * MAT_FLAG_GENERAL_SCALE and MAT_FLAG_TRANSLATION flags.
1017  */
1018 void
_math_matrix_ortho(GLmatrix * mat,GLfloat left,GLfloat right,GLfloat bottom,GLfloat top,GLfloat nearval,GLfloat farval)1019 _math_matrix_ortho( GLmatrix *mat,
1020 		    GLfloat left, GLfloat right,
1021 		    GLfloat bottom, GLfloat top,
1022 		    GLfloat nearval, GLfloat farval )
1023 {
1024    GLfloat m[16];
1025 
1026 #define M(row,col)  m[col*4+row]
1027    M(0,0) = 2.0F / (right-left);
1028    M(0,1) = 0.0F;
1029    M(0,2) = 0.0F;
1030    M(0,3) = -(right+left) / (right-left);
1031 
1032    M(1,0) = 0.0F;
1033    M(1,1) = 2.0F / (top-bottom);
1034    M(1,2) = 0.0F;
1035    M(1,3) = -(top+bottom) / (top-bottom);
1036 
1037    M(2,0) = 0.0F;
1038    M(2,1) = 0.0F;
1039    M(2,2) = -2.0F / (farval-nearval);
1040    M(2,3) = -(farval+nearval) / (farval-nearval);
1041 
1042    M(3,0) = 0.0F;
1043    M(3,1) = 0.0F;
1044    M(3,2) = 0.0F;
1045    M(3,3) = 1.0F;
1046 #undef M
1047 
1048    matrix_multf( mat, m, (MAT_FLAG_GENERAL_SCALE|MAT_FLAG_TRANSLATION));
1049 }
1050 
1051 /**
1052  * Multiply a matrix with a general scaling matrix.
1053  *
1054  * \param mat matrix.
1055  * \param x x axis scale factor.
1056  * \param y y axis scale factor.
1057  * \param z z axis scale factor.
1058  *
1059  * Multiplies in-place the elements of \p mat by the scale factors. Checks if
1060  * the scales factors are roughly the same, marking the MAT_FLAG_UNIFORM_SCALE
1061  * flag, or MAT_FLAG_GENERAL_SCALE. Marks the MAT_DIRTY_TYPE and
1062  * MAT_DIRTY_INVERSE dirty flags.
1063  */
1064 void
_math_matrix_scale(GLmatrix * mat,GLfloat x,GLfloat y,GLfloat z)1065 _math_matrix_scale( GLmatrix *mat, GLfloat x, GLfloat y, GLfloat z )
1066 {
1067    GLfloat *m = mat->m;
1068    m[0] *= x;   m[4] *= y;   m[8]  *= z;
1069    m[1] *= x;   m[5] *= y;   m[9]  *= z;
1070    m[2] *= x;   m[6] *= y;   m[10] *= z;
1071    m[3] *= x;   m[7] *= y;   m[11] *= z;
1072 
1073    if (fabsf(x - y) < 1e-8F && fabsf(x - z) < 1e-8F)
1074       mat->flags |= MAT_FLAG_UNIFORM_SCALE;
1075    else
1076       mat->flags |= MAT_FLAG_GENERAL_SCALE;
1077 
1078    mat->flags |= (MAT_DIRTY_TYPE |
1079 		  MAT_DIRTY_INVERSE);
1080 }
1081 
1082 /**
1083  * Multiply a matrix with a translation matrix.
1084  *
1085  * \param mat matrix.
1086  * \param x translation vector x coordinate.
1087  * \param y translation vector y coordinate.
1088  * \param z translation vector z coordinate.
1089  *
1090  * Adds the translation coordinates to the elements of \p mat in-place.  Marks
1091  * the MAT_FLAG_TRANSLATION flag, and the MAT_DIRTY_TYPE and MAT_DIRTY_INVERSE
1092  * dirty flags.
1093  */
1094 void
_math_matrix_translate(GLmatrix * mat,GLfloat x,GLfloat y,GLfloat z)1095 _math_matrix_translate( GLmatrix *mat, GLfloat x, GLfloat y, GLfloat z )
1096 {
1097    GLfloat *m = mat->m;
1098    m[12] = m[0] * x + m[4] * y + m[8]  * z + m[12];
1099    m[13] = m[1] * x + m[5] * y + m[9]  * z + m[13];
1100    m[14] = m[2] * x + m[6] * y + m[10] * z + m[14];
1101    m[15] = m[3] * x + m[7] * y + m[11] * z + m[15];
1102 
1103    mat->flags |= (MAT_FLAG_TRANSLATION |
1104 		  MAT_DIRTY_TYPE |
1105 		  MAT_DIRTY_INVERSE);
1106 }
1107 
1108 
1109 /**
1110  * Set matrix to do viewport and depthrange mapping.
1111  * Transforms Normalized Device Coords to window/Z values.
1112  */
1113 void
_math_matrix_viewport(GLmatrix * m,const float scale[3],const float translate[3],double depthMax)1114 _math_matrix_viewport(GLmatrix *m, const float scale[3],
1115                       const float translate[3], double depthMax)
1116 {
1117    m->m[MAT_SX] = scale[0];
1118    m->m[MAT_TX] = translate[0];
1119    m->m[MAT_SY] = scale[1];
1120    m->m[MAT_TY] = translate[1];
1121    m->m[MAT_SZ] = depthMax*scale[2];
1122    m->m[MAT_TZ] = depthMax*translate[2];
1123    m->flags = MAT_FLAG_GENERAL_SCALE | MAT_FLAG_TRANSLATION;
1124    m->type = MATRIX_3D_NO_ROT;
1125 }
1126 
1127 
1128 /**
1129  * Set a matrix to the identity matrix.
1130  *
1131  * \param mat matrix.
1132  *
1133  * Copies ::Identity into \p GLmatrix::m, and into GLmatrix::inv if not NULL.
1134  * Sets the matrix type to identity, and clear the dirty flags.
1135  */
1136 void
_math_matrix_set_identity(GLmatrix * mat)1137 _math_matrix_set_identity( GLmatrix *mat )
1138 {
1139    memcpy( mat->m, Identity, sizeof(Identity) );
1140    memcpy( mat->inv, Identity, sizeof(Identity) );
1141 
1142    mat->type = MATRIX_IDENTITY;
1143    mat->flags &= ~(MAT_DIRTY_FLAGS|
1144 		   MAT_DIRTY_TYPE|
1145 		   MAT_DIRTY_INVERSE);
1146 }
1147 
1148 /*@}*/
1149 
1150 
1151 /**********************************************************************/
1152 /** \name Matrix analysis */
1153 /*@{*/
1154 
1155 #define ZERO(x) (1<<x)
1156 #define ONE(x)  (1<<(x+16))
1157 
1158 #define MASK_NO_TRX      (ZERO(12) | ZERO(13) | ZERO(14))
1159 #define MASK_NO_2D_SCALE ( ONE(0)  | ONE(5))
1160 
1161 #define MASK_IDENTITY    ( ONE(0)  | ZERO(4)  | ZERO(8)  | ZERO(12) |\
1162 			  ZERO(1)  |  ONE(5)  | ZERO(9)  | ZERO(13) |\
1163 			  ZERO(2)  | ZERO(6)  |  ONE(10) | ZERO(14) |\
1164 			  ZERO(3)  | ZERO(7)  | ZERO(11) |  ONE(15) )
1165 
1166 #define MASK_2D_NO_ROT   (           ZERO(4)  | ZERO(8)  |           \
1167 			  ZERO(1)  |            ZERO(9)  |           \
1168 			  ZERO(2)  | ZERO(6)  |  ONE(10) | ZERO(14) |\
1169 			  ZERO(3)  | ZERO(7)  | ZERO(11) |  ONE(15) )
1170 
1171 #define MASK_2D          (                      ZERO(8)  |           \
1172 			                        ZERO(9)  |           \
1173 			  ZERO(2)  | ZERO(6)  |  ONE(10) | ZERO(14) |\
1174 			  ZERO(3)  | ZERO(7)  | ZERO(11) |  ONE(15) )
1175 
1176 
1177 #define MASK_3D_NO_ROT   (           ZERO(4)  | ZERO(8)  |           \
1178 			  ZERO(1)  |            ZERO(9)  |           \
1179 			  ZERO(2)  | ZERO(6)  |                      \
1180 			  ZERO(3)  | ZERO(7)  | ZERO(11) |  ONE(15) )
1181 
1182 #define MASK_3D          (                                           \
1183 			                                             \
1184 			                                             \
1185 			  ZERO(3)  | ZERO(7)  | ZERO(11) |  ONE(15) )
1186 
1187 
1188 #define MASK_PERSPECTIVE (           ZERO(4)  |            ZERO(12) |\
1189 			  ZERO(1)  |                       ZERO(13) |\
1190 			  ZERO(2)  | ZERO(6)  |                      \
1191 			  ZERO(3)  | ZERO(7)  |            ZERO(15) )
1192 
1193 #define SQ(x) ((x)*(x))
1194 
1195 /**
1196  * Determine type and flags from scratch.
1197  *
1198  * \param mat matrix.
1199  *
1200  * This is expensive enough to only want to do it once.
1201  */
analyse_from_scratch(GLmatrix * mat)1202 static void analyse_from_scratch( GLmatrix *mat )
1203 {
1204    const GLfloat *m = mat->m;
1205    GLuint mask = 0;
1206    GLuint i;
1207 
1208    for (i = 0 ; i < 16 ; i++) {
1209       if (m[i] == 0.0F) mask |= (1<<i);
1210    }
1211 
1212    if (m[0] == 1.0F) mask |= (1<<16);
1213    if (m[5] == 1.0F) mask |= (1<<21);
1214    if (m[10] == 1.0F) mask |= (1<<26);
1215    if (m[15] == 1.0F) mask |= (1<<31);
1216 
1217    mat->flags &= ~MAT_FLAGS_GEOMETRY;
1218 
1219    /* Check for translation - no-one really cares
1220     */
1221    if ((mask & MASK_NO_TRX) != MASK_NO_TRX)
1222       mat->flags |= MAT_FLAG_TRANSLATION;
1223 
1224    /* Do the real work
1225     */
1226    if (mask == (GLuint) MASK_IDENTITY) {
1227       mat->type = MATRIX_IDENTITY;
1228    }
1229    else if ((mask & MASK_2D_NO_ROT) == (GLuint) MASK_2D_NO_ROT) {
1230       mat->type = MATRIX_2D_NO_ROT;
1231 
1232       if ((mask & MASK_NO_2D_SCALE) != MASK_NO_2D_SCALE)
1233 	 mat->flags |= MAT_FLAG_GENERAL_SCALE;
1234    }
1235    else if ((mask & MASK_2D) == (GLuint) MASK_2D) {
1236       GLfloat mm = DOT2(m, m);
1237       GLfloat m4m4 = DOT2(m+4,m+4);
1238       GLfloat mm4 = DOT2(m,m+4);
1239 
1240       mat->type = MATRIX_2D;
1241 
1242       /* Check for scale */
1243       if (SQ(mm-1) > SQ(1e-6F) ||
1244 	  SQ(m4m4-1) > SQ(1e-6F))
1245 	 mat->flags |= MAT_FLAG_GENERAL_SCALE;
1246 
1247       /* Check for rotation */
1248       if (SQ(mm4) > SQ(1e-6F))
1249 	 mat->flags |= MAT_FLAG_GENERAL_3D;
1250       else
1251 	 mat->flags |= MAT_FLAG_ROTATION;
1252 
1253    }
1254    else if ((mask & MASK_3D_NO_ROT) == (GLuint) MASK_3D_NO_ROT) {
1255       mat->type = MATRIX_3D_NO_ROT;
1256 
1257       /* Check for scale */
1258       if (SQ(m[0]-m[5]) < SQ(1e-6F) &&
1259 	  SQ(m[0]-m[10]) < SQ(1e-6F)) {
1260 	 if (SQ(m[0]-1.0F) > SQ(1e-6F)) {
1261 	    mat->flags |= MAT_FLAG_UNIFORM_SCALE;
1262          }
1263       }
1264       else {
1265 	 mat->flags |= MAT_FLAG_GENERAL_SCALE;
1266       }
1267    }
1268    else if ((mask & MASK_3D) == (GLuint) MASK_3D) {
1269       GLfloat c1 = DOT3(m,m);
1270       GLfloat c2 = DOT3(m+4,m+4);
1271       GLfloat c3 = DOT3(m+8,m+8);
1272       GLfloat d1 = DOT3(m, m+4);
1273       GLfloat cp[3];
1274 
1275       mat->type = MATRIX_3D;
1276 
1277       /* Check for scale */
1278       if (SQ(c1-c2) < SQ(1e-6F) && SQ(c1-c3) < SQ(1e-6F)) {
1279 	 if (SQ(c1-1.0F) > SQ(1e-6F))
1280 	    mat->flags |= MAT_FLAG_UNIFORM_SCALE;
1281 	 /* else no scale at all */
1282       }
1283       else {
1284 	 mat->flags |= MAT_FLAG_GENERAL_SCALE;
1285       }
1286 
1287       /* Check for rotation */
1288       if (SQ(d1) < SQ(1e-6F)) {
1289 	 CROSS3( cp, m, m+4 );
1290 	 SUB_3V( cp, cp, (m+8) );
1291 	 if (LEN_SQUARED_3FV(cp) < SQ(1e-6F))
1292 	    mat->flags |= MAT_FLAG_ROTATION;
1293 	 else
1294 	    mat->flags |= MAT_FLAG_GENERAL_3D;
1295       }
1296       else {
1297 	 mat->flags |= MAT_FLAG_GENERAL_3D; /* shear, etc */
1298       }
1299    }
1300    else if ((mask & MASK_PERSPECTIVE) == MASK_PERSPECTIVE && m[11]==-1.0F) {
1301       mat->type = MATRIX_PERSPECTIVE;
1302       mat->flags |= MAT_FLAG_GENERAL;
1303    }
1304    else {
1305       mat->type = MATRIX_GENERAL;
1306       mat->flags |= MAT_FLAG_GENERAL;
1307    }
1308 }
1309 
1310 /**
1311  * Analyze a matrix given that its flags are accurate.
1312  *
1313  * This is the more common operation, hopefully.
1314  */
analyse_from_flags(GLmatrix * mat)1315 static void analyse_from_flags( GLmatrix *mat )
1316 {
1317    const GLfloat *m = mat->m;
1318 
1319    if (TEST_MAT_FLAGS(mat, 0)) {
1320       mat->type = MATRIX_IDENTITY;
1321    }
1322    else if (TEST_MAT_FLAGS(mat, (MAT_FLAG_TRANSLATION |
1323 				 MAT_FLAG_UNIFORM_SCALE |
1324 				 MAT_FLAG_GENERAL_SCALE))) {
1325       if ( m[10]==1.0F && m[14]==0.0F ) {
1326 	 mat->type = MATRIX_2D_NO_ROT;
1327       }
1328       else {
1329 	 mat->type = MATRIX_3D_NO_ROT;
1330       }
1331    }
1332    else if (TEST_MAT_FLAGS(mat, MAT_FLAGS_3D)) {
1333       if (                                 m[ 8]==0.0F
1334             &&                             m[ 9]==0.0F
1335             && m[2]==0.0F && m[6]==0.0F && m[10]==1.0F && m[14]==0.0F) {
1336 	 mat->type = MATRIX_2D;
1337       }
1338       else {
1339 	 mat->type = MATRIX_3D;
1340       }
1341    }
1342    else if (                 m[4]==0.0F                 && m[12]==0.0F
1343             && m[1]==0.0F                               && m[13]==0.0F
1344             && m[2]==0.0F && m[6]==0.0F
1345             && m[3]==0.0F && m[7]==0.0F && m[11]==-1.0F && m[15]==0.0F) {
1346       mat->type = MATRIX_PERSPECTIVE;
1347    }
1348    else {
1349       mat->type = MATRIX_GENERAL;
1350    }
1351 }
1352 
1353 /**
1354  * Analyze and update a matrix.
1355  *
1356  * \param mat matrix.
1357  *
1358  * If the matrix type is dirty then calls either analyse_from_scratch() or
1359  * analyse_from_flags() to determine its type, according to whether the flags
1360  * are dirty or not, respectively. If the matrix has an inverse and it's dirty
1361  * then calls matrix_invert(). Finally clears the dirty flags.
1362  */
1363 void
_math_matrix_analyse(GLmatrix * mat)1364 _math_matrix_analyse( GLmatrix *mat )
1365 {
1366    if (mat->flags & MAT_DIRTY_TYPE) {
1367       if (mat->flags & MAT_DIRTY_FLAGS)
1368 	 analyse_from_scratch( mat );
1369       else
1370 	 analyse_from_flags( mat );
1371    }
1372 
1373    if (mat->inv && (mat->flags & MAT_DIRTY_INVERSE)) {
1374       matrix_invert( mat );
1375       mat->flags &= ~MAT_DIRTY_INVERSE;
1376    }
1377 
1378    mat->flags &= ~(MAT_DIRTY_FLAGS | MAT_DIRTY_TYPE);
1379 }
1380 
1381 /*@}*/
1382 
1383 
1384 /**
1385  * Test if the given matrix preserves vector lengths.
1386  */
1387 GLboolean
_math_matrix_is_length_preserving(const GLmatrix * m)1388 _math_matrix_is_length_preserving( const GLmatrix *m )
1389 {
1390    return TEST_MAT_FLAGS( m, MAT_FLAGS_LENGTH_PRESERVING);
1391 }
1392 
1393 
1394 /**
1395  * Test if the given matrix does any rotation.
1396  * (or perhaps if the upper-left 3x3 is non-identity)
1397  */
1398 GLboolean
_math_matrix_has_rotation(const GLmatrix * m)1399 _math_matrix_has_rotation( const GLmatrix *m )
1400 {
1401    if (m->flags & (MAT_FLAG_GENERAL |
1402                    MAT_FLAG_ROTATION |
1403                    MAT_FLAG_GENERAL_3D |
1404                    MAT_FLAG_PERSPECTIVE))
1405       return GL_TRUE;
1406    else
1407       return GL_FALSE;
1408 }
1409 
1410 
1411 GLboolean
_math_matrix_is_general_scale(const GLmatrix * m)1412 _math_matrix_is_general_scale( const GLmatrix *m )
1413 {
1414    return (m->flags & MAT_FLAG_GENERAL_SCALE) ? GL_TRUE : GL_FALSE;
1415 }
1416 
1417 
1418 GLboolean
_math_matrix_is_dirty(const GLmatrix * m)1419 _math_matrix_is_dirty( const GLmatrix *m )
1420 {
1421    return (m->flags & MAT_DIRTY) ? GL_TRUE : GL_FALSE;
1422 }
1423 
1424 
1425 /**********************************************************************/
1426 /** \name Matrix setup */
1427 /*@{*/
1428 
1429 /**
1430  * Copy a matrix.
1431  *
1432  * \param to destination matrix.
1433  * \param from source matrix.
1434  *
1435  * Copies all fields in GLmatrix, creating an inverse array if necessary.
1436  */
1437 void
_math_matrix_copy(GLmatrix * to,const GLmatrix * from)1438 _math_matrix_copy( GLmatrix *to, const GLmatrix *from )
1439 {
1440    memcpy(to->m, from->m, 16 * sizeof(GLfloat));
1441    memcpy(to->inv, from->inv, 16 * sizeof(GLfloat));
1442    to->flags = from->flags;
1443    to->type = from->type;
1444 }
1445 
1446 /**
1447  * Loads a matrix array into GLmatrix.
1448  *
1449  * \param m matrix array.
1450  * \param mat matrix.
1451  *
1452  * Copies \p m into GLmatrix::m and marks the MAT_FLAG_GENERAL and MAT_DIRTY
1453  * flags.
1454  */
1455 void
_math_matrix_loadf(GLmatrix * mat,const GLfloat * m)1456 _math_matrix_loadf( GLmatrix *mat, const GLfloat *m )
1457 {
1458    memcpy( mat->m, m, 16*sizeof(GLfloat) );
1459    mat->flags = (MAT_FLAG_GENERAL | MAT_DIRTY);
1460 }
1461 
1462 /**
1463  * Matrix constructor.
1464  *
1465  * \param m matrix.
1466  *
1467  * Initialize the GLmatrix fields.
1468  */
1469 void
_math_matrix_ctr(GLmatrix * m)1470 _math_matrix_ctr( GLmatrix *m )
1471 {
1472    m->m = _mesa_align_malloc( 16 * sizeof(GLfloat), 16 );
1473    if (m->m)
1474       memcpy( m->m, Identity, sizeof(Identity) );
1475    m->inv = _mesa_align_malloc( 16 * sizeof(GLfloat), 16 );
1476    if (m->inv)
1477       memcpy( m->inv, Identity, sizeof(Identity) );
1478    m->type = MATRIX_IDENTITY;
1479    m->flags = 0;
1480 }
1481 
1482 /**
1483  * Matrix destructor.
1484  *
1485  * \param m matrix.
1486  *
1487  * Frees the data in a GLmatrix.
1488  */
1489 void
_math_matrix_dtr(GLmatrix * m)1490 _math_matrix_dtr( GLmatrix *m )
1491 {
1492    _mesa_align_free( m->m );
1493    m->m = NULL;
1494 
1495    _mesa_align_free( m->inv );
1496    m->inv = NULL;
1497 }
1498 
1499 /*@}*/
1500 
1501 
1502 /**********************************************************************/
1503 /** \name Matrix transpose */
1504 /*@{*/
1505 
1506 /**
1507  * Transpose a GLfloat matrix.
1508  *
1509  * \param to destination array.
1510  * \param from source array.
1511  */
1512 void
_math_transposef(GLfloat to[16],const GLfloat from[16])1513 _math_transposef( GLfloat to[16], const GLfloat from[16] )
1514 {
1515    to[0] = from[0];
1516    to[1] = from[4];
1517    to[2] = from[8];
1518    to[3] = from[12];
1519    to[4] = from[1];
1520    to[5] = from[5];
1521    to[6] = from[9];
1522    to[7] = from[13];
1523    to[8] = from[2];
1524    to[9] = from[6];
1525    to[10] = from[10];
1526    to[11] = from[14];
1527    to[12] = from[3];
1528    to[13] = from[7];
1529    to[14] = from[11];
1530    to[15] = from[15];
1531 }
1532 
1533 /**
1534  * Transpose a GLdouble matrix.
1535  *
1536  * \param to destination array.
1537  * \param from source array.
1538  */
1539 void
_math_transposed(GLdouble to[16],const GLdouble from[16])1540 _math_transposed( GLdouble to[16], const GLdouble from[16] )
1541 {
1542    to[0] = from[0];
1543    to[1] = from[4];
1544    to[2] = from[8];
1545    to[3] = from[12];
1546    to[4] = from[1];
1547    to[5] = from[5];
1548    to[6] = from[9];
1549    to[7] = from[13];
1550    to[8] = from[2];
1551    to[9] = from[6];
1552    to[10] = from[10];
1553    to[11] = from[14];
1554    to[12] = from[3];
1555    to[13] = from[7];
1556    to[14] = from[11];
1557    to[15] = from[15];
1558 }
1559 
1560 /**
1561  * Transpose a GLdouble matrix and convert to GLfloat.
1562  *
1563  * \param to destination array.
1564  * \param from source array.
1565  */
1566 void
_math_transposefd(GLfloat to[16],const GLdouble from[16])1567 _math_transposefd( GLfloat to[16], const GLdouble from[16] )
1568 {
1569    to[0] = (GLfloat) from[0];
1570    to[1] = (GLfloat) from[4];
1571    to[2] = (GLfloat) from[8];
1572    to[3] = (GLfloat) from[12];
1573    to[4] = (GLfloat) from[1];
1574    to[5] = (GLfloat) from[5];
1575    to[6] = (GLfloat) from[9];
1576    to[7] = (GLfloat) from[13];
1577    to[8] = (GLfloat) from[2];
1578    to[9] = (GLfloat) from[6];
1579    to[10] = (GLfloat) from[10];
1580    to[11] = (GLfloat) from[14];
1581    to[12] = (GLfloat) from[3];
1582    to[13] = (GLfloat) from[7];
1583    to[14] = (GLfloat) from[11];
1584    to[15] = (GLfloat) from[15];
1585 }
1586 
1587 /*@}*/
1588 
1589 
1590 /**
1591  * Transform a 4-element row vector (1x4 matrix) by a 4x4 matrix.  This
1592  * function is used for transforming clipping plane equations and spotlight
1593  * directions.
1594  * Mathematically,  u = v * m.
1595  * Input:  v - input vector
1596  *         m - transformation matrix
1597  * Output:  u - transformed vector
1598  */
1599 void
_mesa_transform_vector(GLfloat u[4],const GLfloat v[4],const GLfloat m[16])1600 _mesa_transform_vector( GLfloat u[4], const GLfloat v[4], const GLfloat m[16] )
1601 {
1602    const GLfloat v0 = v[0], v1 = v[1], v2 = v[2], v3 = v[3];
1603 #define M(row,col)  m[row + col*4]
1604    u[0] = v0 * M(0,0) + v1 * M(1,0) + v2 * M(2,0) + v3 * M(3,0);
1605    u[1] = v0 * M(0,1) + v1 * M(1,1) + v2 * M(2,1) + v3 * M(3,1);
1606    u[2] = v0 * M(0,2) + v1 * M(1,2) + v2 * M(2,2) + v3 * M(3,2);
1607    u[3] = v0 * M(0,3) + v1 * M(1,3) + v2 * M(2,3) + v3 * M(3,3);
1608 #undef M
1609 }
1610