1 /*
2 * Mesa 3-D graphics library
3 *
4 * Copyright (C) 1999-2005 Brian Paul All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included
14 * in all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
17 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26 /**
27 * \file m_matrix.c
28 * Matrix operations.
29 *
30 * \note
31 * -# 4x4 transformation matrices are stored in memory in column major order.
32 * -# Points/vertices are to be thought of as column vectors.
33 * -# Transformation of a point p by a matrix M is: p' = M * p
34 */
35
36
37 #include "c99_math.h"
38 #include "main/glheader.h"
39 #include "main/imports.h"
40 #include "main/macros.h"
41
42 #include "m_matrix.h"
43
44
45 /**
46 * \defgroup MatFlags MAT_FLAG_XXX-flags
47 *
48 * Bitmasks to indicate different kinds of 4x4 matrices in GLmatrix::flags
49 */
50 /*@{*/
51 #define MAT_FLAG_IDENTITY 0 /**< is an identity matrix flag.
52 * (Not actually used - the identity
53 * matrix is identified by the absence
54 * of all other flags.)
55 */
56 #define MAT_FLAG_GENERAL 0x1 /**< is a general matrix flag */
57 #define MAT_FLAG_ROTATION 0x2 /**< is a rotation matrix flag */
58 #define MAT_FLAG_TRANSLATION 0x4 /**< is a translation matrix flag */
59 #define MAT_FLAG_UNIFORM_SCALE 0x8 /**< is an uniform scaling matrix flag */
60 #define MAT_FLAG_GENERAL_SCALE 0x10 /**< is a general scaling matrix flag */
61 #define MAT_FLAG_GENERAL_3D 0x20 /**< general 3D matrix flag */
62 #define MAT_FLAG_PERSPECTIVE 0x40 /**< is a perspective proj matrix flag */
63 #define MAT_FLAG_SINGULAR 0x80 /**< is a singular matrix flag */
64 #define MAT_DIRTY_TYPE 0x100 /**< matrix type is dirty */
65 #define MAT_DIRTY_FLAGS 0x200 /**< matrix flags are dirty */
66 #define MAT_DIRTY_INVERSE 0x400 /**< matrix inverse is dirty */
67
68 /** angle preserving matrix flags mask */
69 #define MAT_FLAGS_ANGLE_PRESERVING (MAT_FLAG_ROTATION | \
70 MAT_FLAG_TRANSLATION | \
71 MAT_FLAG_UNIFORM_SCALE)
72
73 /** geometry related matrix flags mask */
74 #define MAT_FLAGS_GEOMETRY (MAT_FLAG_GENERAL | \
75 MAT_FLAG_ROTATION | \
76 MAT_FLAG_TRANSLATION | \
77 MAT_FLAG_UNIFORM_SCALE | \
78 MAT_FLAG_GENERAL_SCALE | \
79 MAT_FLAG_GENERAL_3D | \
80 MAT_FLAG_PERSPECTIVE | \
81 MAT_FLAG_SINGULAR)
82
83 /** length preserving matrix flags mask */
84 #define MAT_FLAGS_LENGTH_PRESERVING (MAT_FLAG_ROTATION | \
85 MAT_FLAG_TRANSLATION)
86
87
88 /** 3D (non-perspective) matrix flags mask */
89 #define MAT_FLAGS_3D (MAT_FLAG_ROTATION | \
90 MAT_FLAG_TRANSLATION | \
91 MAT_FLAG_UNIFORM_SCALE | \
92 MAT_FLAG_GENERAL_SCALE | \
93 MAT_FLAG_GENERAL_3D)
94
95 /** dirty matrix flags mask */
96 #define MAT_DIRTY (MAT_DIRTY_TYPE | \
97 MAT_DIRTY_FLAGS | \
98 MAT_DIRTY_INVERSE)
99
100 /*@}*/
101
102
103 /**
104 * Test geometry related matrix flags.
105 *
106 * \param mat a pointer to a GLmatrix structure.
107 * \param a flags mask.
108 *
109 * \returns non-zero if all geometry related matrix flags are contained within
110 * the mask, or zero otherwise.
111 */
112 #define TEST_MAT_FLAGS(mat, a) \
113 ((MAT_FLAGS_GEOMETRY & (~(a)) & ((mat)->flags) ) == 0)
114
115
116
117 /**
118 * Names of the corresponding GLmatrixtype values.
119 */
120 static const char *types[] = {
121 "MATRIX_GENERAL",
122 "MATRIX_IDENTITY",
123 "MATRIX_3D_NO_ROT",
124 "MATRIX_PERSPECTIVE",
125 "MATRIX_2D",
126 "MATRIX_2D_NO_ROT",
127 "MATRIX_3D"
128 };
129
130
131 /**
132 * Identity matrix.
133 */
134 static const GLfloat Identity[16] = {
135 1.0, 0.0, 0.0, 0.0,
136 0.0, 1.0, 0.0, 0.0,
137 0.0, 0.0, 1.0, 0.0,
138 0.0, 0.0, 0.0, 1.0
139 };
140
141
142
143 /**********************************************************************/
144 /** \name Matrix multiplication */
145 /*@{*/
146
147 #define A(row,col) a[(col<<2)+row]
148 #define B(row,col) b[(col<<2)+row]
149 #define P(row,col) product[(col<<2)+row]
150
151 /**
152 * Perform a full 4x4 matrix multiplication.
153 *
154 * \param a matrix.
155 * \param b matrix.
156 * \param product will receive the product of \p a and \p b.
157 *
158 * \warning Is assumed that \p product != \p b. \p product == \p a is allowed.
159 *
160 * \note KW: 4*16 = 64 multiplications
161 *
162 * \author This \c matmul was contributed by Thomas Malik
163 */
matmul4(GLfloat * product,const GLfloat * a,const GLfloat * b)164 static void matmul4( GLfloat *product, const GLfloat *a, const GLfloat *b )
165 {
166 GLint i;
167 for (i = 0; i < 4; i++) {
168 const GLfloat ai0=A(i,0), ai1=A(i,1), ai2=A(i,2), ai3=A(i,3);
169 P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0) + ai3 * B(3,0);
170 P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1) + ai3 * B(3,1);
171 P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2) + ai3 * B(3,2);
172 P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3 * B(3,3);
173 }
174 }
175
176 /**
177 * Multiply two matrices known to occupy only the top three rows, such
178 * as typical model matrices, and orthogonal matrices.
179 *
180 * \param a matrix.
181 * \param b matrix.
182 * \param product will receive the product of \p a and \p b.
183 */
matmul34(GLfloat * product,const GLfloat * a,const GLfloat * b)184 static void matmul34( GLfloat *product, const GLfloat *a, const GLfloat *b )
185 {
186 GLint i;
187 for (i = 0; i < 3; i++) {
188 const GLfloat ai0=A(i,0), ai1=A(i,1), ai2=A(i,2), ai3=A(i,3);
189 P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0);
190 P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1);
191 P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2);
192 P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3;
193 }
194 P(3,0) = 0;
195 P(3,1) = 0;
196 P(3,2) = 0;
197 P(3,3) = 1;
198 }
199
200 #undef A
201 #undef B
202 #undef P
203
204 /**
205 * Multiply a matrix by an array of floats with known properties.
206 *
207 * \param mat pointer to a GLmatrix structure containing the left multiplication
208 * matrix, and that will receive the product result.
209 * \param m right multiplication matrix array.
210 * \param flags flags of the matrix \p m.
211 *
212 * Joins both flags and marks the type and inverse as dirty. Calls matmul34()
213 * if both matrices are 3D, or matmul4() otherwise.
214 */
matrix_multf(GLmatrix * mat,const GLfloat * m,GLuint flags)215 static void matrix_multf( GLmatrix *mat, const GLfloat *m, GLuint flags )
216 {
217 mat->flags |= (flags | MAT_DIRTY_TYPE | MAT_DIRTY_INVERSE);
218
219 if (TEST_MAT_FLAGS(mat, MAT_FLAGS_3D))
220 matmul34( mat->m, mat->m, m );
221 else
222 matmul4( mat->m, mat->m, m );
223 }
224
225 /**
226 * Matrix multiplication.
227 *
228 * \param dest destination matrix.
229 * \param a left matrix.
230 * \param b right matrix.
231 *
232 * Joins both flags and marks the type and inverse as dirty. Calls matmul34()
233 * if both matrices are 3D, or matmul4() otherwise.
234 */
235 void
_math_matrix_mul_matrix(GLmatrix * dest,const GLmatrix * a,const GLmatrix * b)236 _math_matrix_mul_matrix( GLmatrix *dest, const GLmatrix *a, const GLmatrix *b )
237 {
238 dest->flags = (a->flags |
239 b->flags |
240 MAT_DIRTY_TYPE |
241 MAT_DIRTY_INVERSE);
242
243 if (TEST_MAT_FLAGS(dest, MAT_FLAGS_3D))
244 matmul34( dest->m, a->m, b->m );
245 else
246 matmul4( dest->m, a->m, b->m );
247 }
248
249 /**
250 * Matrix multiplication.
251 *
252 * \param dest left and destination matrix.
253 * \param m right matrix array.
254 *
255 * Marks the matrix flags with general flag, and type and inverse dirty flags.
256 * Calls matmul4() for the multiplication.
257 */
258 void
_math_matrix_mul_floats(GLmatrix * dest,const GLfloat * m)259 _math_matrix_mul_floats( GLmatrix *dest, const GLfloat *m )
260 {
261 dest->flags |= (MAT_FLAG_GENERAL |
262 MAT_DIRTY_TYPE |
263 MAT_DIRTY_INVERSE |
264 MAT_DIRTY_FLAGS);
265
266 matmul4( dest->m, dest->m, m );
267 }
268
269 /*@}*/
270
271
272 /**********************************************************************/
273 /** \name Matrix output */
274 /*@{*/
275
276 /**
277 * Print a matrix array.
278 *
279 * \param m matrix array.
280 *
281 * Called by _math_matrix_print() to print a matrix or its inverse.
282 */
print_matrix_floats(const GLfloat m[16])283 static void print_matrix_floats( const GLfloat m[16] )
284 {
285 int i;
286 for (i=0;i<4;i++) {
287 _mesa_debug(NULL,"\t%f %f %f %f\n", m[i], m[4+i], m[8+i], m[12+i] );
288 }
289 }
290
291 /**
292 * Dumps the contents of a GLmatrix structure.
293 *
294 * \param m pointer to the GLmatrix structure.
295 */
296 void
_math_matrix_print(const GLmatrix * m)297 _math_matrix_print( const GLmatrix *m )
298 {
299 GLfloat prod[16];
300
301 _mesa_debug(NULL, "Matrix type: %s, flags: %x\n", types[m->type], m->flags);
302 print_matrix_floats(m->m);
303 _mesa_debug(NULL, "Inverse: \n");
304 print_matrix_floats(m->inv);
305 matmul4(prod, m->m, m->inv);
306 _mesa_debug(NULL, "Mat * Inverse:\n");
307 print_matrix_floats(prod);
308 }
309
310 /*@}*/
311
312
313 /**
314 * References an element of 4x4 matrix.
315 *
316 * \param m matrix array.
317 * \param c column of the desired element.
318 * \param r row of the desired element.
319 *
320 * \return value of the desired element.
321 *
322 * Calculate the linear storage index of the element and references it.
323 */
324 #define MAT(m,r,c) (m)[(c)*4+(r)]
325
326
327 /**********************************************************************/
328 /** \name Matrix inversion */
329 /*@{*/
330
331 /**
332 * Swaps the values of two floating point variables.
333 *
334 * Used by invert_matrix_general() to swap the row pointers.
335 */
336 #define SWAP_ROWS(a, b) { GLfloat *_tmp = a; (a)=(b); (b)=_tmp; }
337
338 /**
339 * Compute inverse of 4x4 transformation matrix.
340 *
341 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
342 * stored in the GLmatrix::inv attribute.
343 *
344 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
345 *
346 * \author
347 * Code contributed by Jacques Leroy jle@star.be
348 *
349 * Calculates the inverse matrix by performing the gaussian matrix reduction
350 * with partial pivoting followed by back/substitution with the loops manually
351 * unrolled.
352 */
invert_matrix_general(GLmatrix * mat)353 static GLboolean invert_matrix_general( GLmatrix *mat )
354 {
355 const GLfloat *m = mat->m;
356 GLfloat *out = mat->inv;
357 GLfloat wtmp[4][8];
358 GLfloat m0, m1, m2, m3, s;
359 GLfloat *r0, *r1, *r2, *r3;
360
361 r0 = wtmp[0], r1 = wtmp[1], r2 = wtmp[2], r3 = wtmp[3];
362
363 r0[0] = MAT(m,0,0), r0[1] = MAT(m,0,1),
364 r0[2] = MAT(m,0,2), r0[3] = MAT(m,0,3),
365 r0[4] = 1.0, r0[5] = r0[6] = r0[7] = 0.0,
366
367 r1[0] = MAT(m,1,0), r1[1] = MAT(m,1,1),
368 r1[2] = MAT(m,1,2), r1[3] = MAT(m,1,3),
369 r1[5] = 1.0, r1[4] = r1[6] = r1[7] = 0.0,
370
371 r2[0] = MAT(m,2,0), r2[1] = MAT(m,2,1),
372 r2[2] = MAT(m,2,2), r2[3] = MAT(m,2,3),
373 r2[6] = 1.0, r2[4] = r2[5] = r2[7] = 0.0,
374
375 r3[0] = MAT(m,3,0), r3[1] = MAT(m,3,1),
376 r3[2] = MAT(m,3,2), r3[3] = MAT(m,3,3),
377 r3[7] = 1.0, r3[4] = r3[5] = r3[6] = 0.0;
378
379 /* choose pivot - or die */
380 if (fabsf(r3[0])>fabsf(r2[0])) SWAP_ROWS(r3, r2);
381 if (fabsf(r2[0])>fabsf(r1[0])) SWAP_ROWS(r2, r1);
382 if (fabsf(r1[0])>fabsf(r0[0])) SWAP_ROWS(r1, r0);
383 if (0.0F == r0[0]) return GL_FALSE;
384
385 /* eliminate first variable */
386 m1 = r1[0]/r0[0]; m2 = r2[0]/r0[0]; m3 = r3[0]/r0[0];
387 s = r0[1]; r1[1] -= m1 * s; r2[1] -= m2 * s; r3[1] -= m3 * s;
388 s = r0[2]; r1[2] -= m1 * s; r2[2] -= m2 * s; r3[2] -= m3 * s;
389 s = r0[3]; r1[3] -= m1 * s; r2[3] -= m2 * s; r3[3] -= m3 * s;
390 s = r0[4];
391 if (s != 0.0F) { r1[4] -= m1 * s; r2[4] -= m2 * s; r3[4] -= m3 * s; }
392 s = r0[5];
393 if (s != 0.0F) { r1[5] -= m1 * s; r2[5] -= m2 * s; r3[5] -= m3 * s; }
394 s = r0[6];
395 if (s != 0.0F) { r1[6] -= m1 * s; r2[6] -= m2 * s; r3[6] -= m3 * s; }
396 s = r0[7];
397 if (s != 0.0F) { r1[7] -= m1 * s; r2[7] -= m2 * s; r3[7] -= m3 * s; }
398
399 /* choose pivot - or die */
400 if (fabsf(r3[1])>fabsf(r2[1])) SWAP_ROWS(r3, r2);
401 if (fabsf(r2[1])>fabsf(r1[1])) SWAP_ROWS(r2, r1);
402 if (0.0F == r1[1]) return GL_FALSE;
403
404 /* eliminate second variable */
405 m2 = r2[1]/r1[1]; m3 = r3[1]/r1[1];
406 r2[2] -= m2 * r1[2]; r3[2] -= m3 * r1[2];
407 r2[3] -= m2 * r1[3]; r3[3] -= m3 * r1[3];
408 s = r1[4]; if (0.0F != s) { r2[4] -= m2 * s; r3[4] -= m3 * s; }
409 s = r1[5]; if (0.0F != s) { r2[5] -= m2 * s; r3[5] -= m3 * s; }
410 s = r1[6]; if (0.0F != s) { r2[6] -= m2 * s; r3[6] -= m3 * s; }
411 s = r1[7]; if (0.0F != s) { r2[7] -= m2 * s; r3[7] -= m3 * s; }
412
413 /* choose pivot - or die */
414 if (fabsf(r3[2])>fabsf(r2[2])) SWAP_ROWS(r3, r2);
415 if (0.0F == r2[2]) return GL_FALSE;
416
417 /* eliminate third variable */
418 m3 = r3[2]/r2[2];
419 r3[3] -= m3 * r2[3], r3[4] -= m3 * r2[4],
420 r3[5] -= m3 * r2[5], r3[6] -= m3 * r2[6],
421 r3[7] -= m3 * r2[7];
422
423 /* last check */
424 if (0.0F == r3[3]) return GL_FALSE;
425
426 s = 1.0F/r3[3]; /* now back substitute row 3 */
427 r3[4] *= s; r3[5] *= s; r3[6] *= s; r3[7] *= s;
428
429 m2 = r2[3]; /* now back substitute row 2 */
430 s = 1.0F/r2[2];
431 r2[4] = s * (r2[4] - r3[4] * m2), r2[5] = s * (r2[5] - r3[5] * m2),
432 r2[6] = s * (r2[6] - r3[6] * m2), r2[7] = s * (r2[7] - r3[7] * m2);
433 m1 = r1[3];
434 r1[4] -= r3[4] * m1, r1[5] -= r3[5] * m1,
435 r1[6] -= r3[6] * m1, r1[7] -= r3[7] * m1;
436 m0 = r0[3];
437 r0[4] -= r3[4] * m0, r0[5] -= r3[5] * m0,
438 r0[6] -= r3[6] * m0, r0[7] -= r3[7] * m0;
439
440 m1 = r1[2]; /* now back substitute row 1 */
441 s = 1.0F/r1[1];
442 r1[4] = s * (r1[4] - r2[4] * m1), r1[5] = s * (r1[5] - r2[5] * m1),
443 r1[6] = s * (r1[6] - r2[6] * m1), r1[7] = s * (r1[7] - r2[7] * m1);
444 m0 = r0[2];
445 r0[4] -= r2[4] * m0, r0[5] -= r2[5] * m0,
446 r0[6] -= r2[6] * m0, r0[7] -= r2[7] * m0;
447
448 m0 = r0[1]; /* now back substitute row 0 */
449 s = 1.0F/r0[0];
450 r0[4] = s * (r0[4] - r1[4] * m0), r0[5] = s * (r0[5] - r1[5] * m0),
451 r0[6] = s * (r0[6] - r1[6] * m0), r0[7] = s * (r0[7] - r1[7] * m0);
452
453 MAT(out,0,0) = r0[4]; MAT(out,0,1) = r0[5],
454 MAT(out,0,2) = r0[6]; MAT(out,0,3) = r0[7],
455 MAT(out,1,0) = r1[4]; MAT(out,1,1) = r1[5],
456 MAT(out,1,2) = r1[6]; MAT(out,1,3) = r1[7],
457 MAT(out,2,0) = r2[4]; MAT(out,2,1) = r2[5],
458 MAT(out,2,2) = r2[6]; MAT(out,2,3) = r2[7],
459 MAT(out,3,0) = r3[4]; MAT(out,3,1) = r3[5],
460 MAT(out,3,2) = r3[6]; MAT(out,3,3) = r3[7];
461
462 return GL_TRUE;
463 }
464 #undef SWAP_ROWS
465
466 /**
467 * Compute inverse of a general 3d transformation matrix.
468 *
469 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
470 * stored in the GLmatrix::inv attribute.
471 *
472 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
473 *
474 * \author Adapted from graphics gems II.
475 *
476 * Calculates the inverse of the upper left by first calculating its
477 * determinant and multiplying it to the symmetric adjust matrix of each
478 * element. Finally deals with the translation part by transforming the
479 * original translation vector using by the calculated submatrix inverse.
480 */
invert_matrix_3d_general(GLmatrix * mat)481 static GLboolean invert_matrix_3d_general( GLmatrix *mat )
482 {
483 const GLfloat *in = mat->m;
484 GLfloat *out = mat->inv;
485 GLfloat pos, neg, t;
486 GLfloat det;
487
488 /* Calculate the determinant of upper left 3x3 submatrix and
489 * determine if the matrix is singular.
490 */
491 pos = neg = 0.0;
492 t = MAT(in,0,0) * MAT(in,1,1) * MAT(in,2,2);
493 if (t >= 0.0F) pos += t; else neg += t;
494
495 t = MAT(in,1,0) * MAT(in,2,1) * MAT(in,0,2);
496 if (t >= 0.0F) pos += t; else neg += t;
497
498 t = MAT(in,2,0) * MAT(in,0,1) * MAT(in,1,2);
499 if (t >= 0.0F) pos += t; else neg += t;
500
501 t = -MAT(in,2,0) * MAT(in,1,1) * MAT(in,0,2);
502 if (t >= 0.0F) pos += t; else neg += t;
503
504 t = -MAT(in,1,0) * MAT(in,0,1) * MAT(in,2,2);
505 if (t >= 0.0F) pos += t; else neg += t;
506
507 t = -MAT(in,0,0) * MAT(in,2,1) * MAT(in,1,2);
508 if (t >= 0.0F) pos += t; else neg += t;
509
510 det = pos + neg;
511
512 if (fabsf(det) < 1e-25F)
513 return GL_FALSE;
514
515 det = 1.0F / det;
516 MAT(out,0,0) = ( (MAT(in,1,1)*MAT(in,2,2) - MAT(in,2,1)*MAT(in,1,2) )*det);
517 MAT(out,0,1) = (- (MAT(in,0,1)*MAT(in,2,2) - MAT(in,2,1)*MAT(in,0,2) )*det);
518 MAT(out,0,2) = ( (MAT(in,0,1)*MAT(in,1,2) - MAT(in,1,1)*MAT(in,0,2) )*det);
519 MAT(out,1,0) = (- (MAT(in,1,0)*MAT(in,2,2) - MAT(in,2,0)*MAT(in,1,2) )*det);
520 MAT(out,1,1) = ( (MAT(in,0,0)*MAT(in,2,2) - MAT(in,2,0)*MAT(in,0,2) )*det);
521 MAT(out,1,2) = (- (MAT(in,0,0)*MAT(in,1,2) - MAT(in,1,0)*MAT(in,0,2) )*det);
522 MAT(out,2,0) = ( (MAT(in,1,0)*MAT(in,2,1) - MAT(in,2,0)*MAT(in,1,1) )*det);
523 MAT(out,2,1) = (- (MAT(in,0,0)*MAT(in,2,1) - MAT(in,2,0)*MAT(in,0,1) )*det);
524 MAT(out,2,2) = ( (MAT(in,0,0)*MAT(in,1,1) - MAT(in,1,0)*MAT(in,0,1) )*det);
525
526 /* Do the translation part */
527 MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0) +
528 MAT(in,1,3) * MAT(out,0,1) +
529 MAT(in,2,3) * MAT(out,0,2) );
530 MAT(out,1,3) = - (MAT(in,0,3) * MAT(out,1,0) +
531 MAT(in,1,3) * MAT(out,1,1) +
532 MAT(in,2,3) * MAT(out,1,2) );
533 MAT(out,2,3) = - (MAT(in,0,3) * MAT(out,2,0) +
534 MAT(in,1,3) * MAT(out,2,1) +
535 MAT(in,2,3) * MAT(out,2,2) );
536
537 return GL_TRUE;
538 }
539
540 /**
541 * Compute inverse of a 3d transformation matrix.
542 *
543 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
544 * stored in the GLmatrix::inv attribute.
545 *
546 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
547 *
548 * If the matrix is not an angle preserving matrix then calls
549 * invert_matrix_3d_general for the actual calculation. Otherwise calculates
550 * the inverse matrix analyzing and inverting each of the scaling, rotation and
551 * translation parts.
552 */
invert_matrix_3d(GLmatrix * mat)553 static GLboolean invert_matrix_3d( GLmatrix *mat )
554 {
555 const GLfloat *in = mat->m;
556 GLfloat *out = mat->inv;
557
558 if (!TEST_MAT_FLAGS(mat, MAT_FLAGS_ANGLE_PRESERVING)) {
559 return invert_matrix_3d_general( mat );
560 }
561
562 if (mat->flags & MAT_FLAG_UNIFORM_SCALE) {
563 GLfloat scale = (MAT(in,0,0) * MAT(in,0,0) +
564 MAT(in,0,1) * MAT(in,0,1) +
565 MAT(in,0,2) * MAT(in,0,2));
566
567 if (scale == 0.0F)
568 return GL_FALSE;
569
570 scale = 1.0F / scale;
571
572 /* Transpose and scale the 3 by 3 upper-left submatrix. */
573 MAT(out,0,0) = scale * MAT(in,0,0);
574 MAT(out,1,0) = scale * MAT(in,0,1);
575 MAT(out,2,0) = scale * MAT(in,0,2);
576 MAT(out,0,1) = scale * MAT(in,1,0);
577 MAT(out,1,1) = scale * MAT(in,1,1);
578 MAT(out,2,1) = scale * MAT(in,1,2);
579 MAT(out,0,2) = scale * MAT(in,2,0);
580 MAT(out,1,2) = scale * MAT(in,2,1);
581 MAT(out,2,2) = scale * MAT(in,2,2);
582 }
583 else if (mat->flags & MAT_FLAG_ROTATION) {
584 /* Transpose the 3 by 3 upper-left submatrix. */
585 MAT(out,0,0) = MAT(in,0,0);
586 MAT(out,1,0) = MAT(in,0,1);
587 MAT(out,2,0) = MAT(in,0,2);
588 MAT(out,0,1) = MAT(in,1,0);
589 MAT(out,1,1) = MAT(in,1,1);
590 MAT(out,2,1) = MAT(in,1,2);
591 MAT(out,0,2) = MAT(in,2,0);
592 MAT(out,1,2) = MAT(in,2,1);
593 MAT(out,2,2) = MAT(in,2,2);
594 }
595 else {
596 /* pure translation */
597 memcpy( out, Identity, sizeof(Identity) );
598 MAT(out,0,3) = - MAT(in,0,3);
599 MAT(out,1,3) = - MAT(in,1,3);
600 MAT(out,2,3) = - MAT(in,2,3);
601 return GL_TRUE;
602 }
603
604 if (mat->flags & MAT_FLAG_TRANSLATION) {
605 /* Do the translation part */
606 MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0) +
607 MAT(in,1,3) * MAT(out,0,1) +
608 MAT(in,2,3) * MAT(out,0,2) );
609 MAT(out,1,3) = - (MAT(in,0,3) * MAT(out,1,0) +
610 MAT(in,1,3) * MAT(out,1,1) +
611 MAT(in,2,3) * MAT(out,1,2) );
612 MAT(out,2,3) = - (MAT(in,0,3) * MAT(out,2,0) +
613 MAT(in,1,3) * MAT(out,2,1) +
614 MAT(in,2,3) * MAT(out,2,2) );
615 }
616 else {
617 MAT(out,0,3) = MAT(out,1,3) = MAT(out,2,3) = 0.0;
618 }
619
620 return GL_TRUE;
621 }
622
623 /**
624 * Compute inverse of an identity transformation matrix.
625 *
626 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
627 * stored in the GLmatrix::inv attribute.
628 *
629 * \return always GL_TRUE.
630 *
631 * Simply copies Identity into GLmatrix::inv.
632 */
invert_matrix_identity(GLmatrix * mat)633 static GLboolean invert_matrix_identity( GLmatrix *mat )
634 {
635 memcpy( mat->inv, Identity, sizeof(Identity) );
636 return GL_TRUE;
637 }
638
639 /**
640 * Compute inverse of a no-rotation 3d transformation matrix.
641 *
642 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
643 * stored in the GLmatrix::inv attribute.
644 *
645 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
646 *
647 * Calculates the
648 */
invert_matrix_3d_no_rot(GLmatrix * mat)649 static GLboolean invert_matrix_3d_no_rot( GLmatrix *mat )
650 {
651 const GLfloat *in = mat->m;
652 GLfloat *out = mat->inv;
653
654 if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0 || MAT(in,2,2) == 0 )
655 return GL_FALSE;
656
657 memcpy( out, Identity, sizeof(Identity) );
658 MAT(out,0,0) = 1.0F / MAT(in,0,0);
659 MAT(out,1,1) = 1.0F / MAT(in,1,1);
660 MAT(out,2,2) = 1.0F / MAT(in,2,2);
661
662 if (mat->flags & MAT_FLAG_TRANSLATION) {
663 MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0));
664 MAT(out,1,3) = - (MAT(in,1,3) * MAT(out,1,1));
665 MAT(out,2,3) = - (MAT(in,2,3) * MAT(out,2,2));
666 }
667
668 return GL_TRUE;
669 }
670
671 /**
672 * Compute inverse of a no-rotation 2d transformation matrix.
673 *
674 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
675 * stored in the GLmatrix::inv attribute.
676 *
677 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
678 *
679 * Calculates the inverse matrix by applying the inverse scaling and
680 * translation to the identity matrix.
681 */
invert_matrix_2d_no_rot(GLmatrix * mat)682 static GLboolean invert_matrix_2d_no_rot( GLmatrix *mat )
683 {
684 const GLfloat *in = mat->m;
685 GLfloat *out = mat->inv;
686
687 if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0)
688 return GL_FALSE;
689
690 memcpy( out, Identity, sizeof(Identity) );
691 MAT(out,0,0) = 1.0F / MAT(in,0,0);
692 MAT(out,1,1) = 1.0F / MAT(in,1,1);
693
694 if (mat->flags & MAT_FLAG_TRANSLATION) {
695 MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0));
696 MAT(out,1,3) = - (MAT(in,1,3) * MAT(out,1,1));
697 }
698
699 return GL_TRUE;
700 }
701
702 #if 0
703 /* broken */
704 static GLboolean invert_matrix_perspective( GLmatrix *mat )
705 {
706 const GLfloat *in = mat->m;
707 GLfloat *out = mat->inv;
708
709 if (MAT(in,2,3) == 0)
710 return GL_FALSE;
711
712 memcpy( out, Identity, sizeof(Identity) );
713
714 MAT(out,0,0) = 1.0F / MAT(in,0,0);
715 MAT(out,1,1) = 1.0F / MAT(in,1,1);
716
717 MAT(out,0,3) = MAT(in,0,2);
718 MAT(out,1,3) = MAT(in,1,2);
719
720 MAT(out,2,2) = 0;
721 MAT(out,2,3) = -1;
722
723 MAT(out,3,2) = 1.0F / MAT(in,2,3);
724 MAT(out,3,3) = MAT(in,2,2) * MAT(out,3,2);
725
726 return GL_TRUE;
727 }
728 #endif
729
730 /**
731 * Matrix inversion function pointer type.
732 */
733 typedef GLboolean (*inv_mat_func)( GLmatrix *mat );
734
735 /**
736 * Table of the matrix inversion functions according to the matrix type.
737 */
738 static inv_mat_func inv_mat_tab[7] = {
739 invert_matrix_general,
740 invert_matrix_identity,
741 invert_matrix_3d_no_rot,
742 #if 0
743 /* Don't use this function for now - it fails when the projection matrix
744 * is premultiplied by a translation (ala Chromium's tilesort SPU).
745 */
746 invert_matrix_perspective,
747 #else
748 invert_matrix_general,
749 #endif
750 invert_matrix_3d, /* lazy! */
751 invert_matrix_2d_no_rot,
752 invert_matrix_3d
753 };
754
755 /**
756 * Compute inverse of a transformation matrix.
757 *
758 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
759 * stored in the GLmatrix::inv attribute.
760 *
761 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
762 *
763 * Calls the matrix inversion function in inv_mat_tab corresponding to the
764 * given matrix type. In case of failure, updates the MAT_FLAG_SINGULAR flag,
765 * and copies the identity matrix into GLmatrix::inv.
766 */
matrix_invert(GLmatrix * mat)767 static GLboolean matrix_invert( GLmatrix *mat )
768 {
769 if (inv_mat_tab[mat->type](mat)) {
770 mat->flags &= ~MAT_FLAG_SINGULAR;
771 return GL_TRUE;
772 } else {
773 mat->flags |= MAT_FLAG_SINGULAR;
774 memcpy( mat->inv, Identity, sizeof(Identity) );
775 return GL_FALSE;
776 }
777 }
778
779 /*@}*/
780
781
782 /**********************************************************************/
783 /** \name Matrix generation */
784 /*@{*/
785
786 /**
787 * Generate a 4x4 transformation matrix from glRotate parameters, and
788 * post-multiply the input matrix by it.
789 *
790 * \author
791 * This function was contributed by Erich Boleyn (erich@uruk.org).
792 * Optimizations contributed by Rudolf Opalla (rudi@khm.de).
793 */
794 void
_math_matrix_rotate(GLmatrix * mat,GLfloat angle,GLfloat x,GLfloat y,GLfloat z)795 _math_matrix_rotate( GLmatrix *mat,
796 GLfloat angle, GLfloat x, GLfloat y, GLfloat z )
797 {
798 GLfloat xx, yy, zz, xy, yz, zx, xs, ys, zs, one_c, s, c;
799 GLfloat m[16];
800 GLboolean optimized;
801
802 s = sinf( angle * M_PI / 180.0 );
803 c = cosf( angle * M_PI / 180.0 );
804
805 memcpy(m, Identity, sizeof(Identity));
806 optimized = GL_FALSE;
807
808 #define M(row,col) m[col*4+row]
809
810 if (x == 0.0F) {
811 if (y == 0.0F) {
812 if (z != 0.0F) {
813 optimized = GL_TRUE;
814 /* rotate only around z-axis */
815 M(0,0) = c;
816 M(1,1) = c;
817 if (z < 0.0F) {
818 M(0,1) = s;
819 M(1,0) = -s;
820 }
821 else {
822 M(0,1) = -s;
823 M(1,0) = s;
824 }
825 }
826 }
827 else if (z == 0.0F) {
828 optimized = GL_TRUE;
829 /* rotate only around y-axis */
830 M(0,0) = c;
831 M(2,2) = c;
832 if (y < 0.0F) {
833 M(0,2) = -s;
834 M(2,0) = s;
835 }
836 else {
837 M(0,2) = s;
838 M(2,0) = -s;
839 }
840 }
841 }
842 else if (y == 0.0F) {
843 if (z == 0.0F) {
844 optimized = GL_TRUE;
845 /* rotate only around x-axis */
846 M(1,1) = c;
847 M(2,2) = c;
848 if (x < 0.0F) {
849 M(1,2) = s;
850 M(2,1) = -s;
851 }
852 else {
853 M(1,2) = -s;
854 M(2,1) = s;
855 }
856 }
857 }
858
859 if (!optimized) {
860 const GLfloat mag = sqrtf(x * x + y * y + z * z);
861
862 if (mag <= 1.0e-4F) {
863 /* no rotation, leave mat as-is */
864 return;
865 }
866
867 x /= mag;
868 y /= mag;
869 z /= mag;
870
871
872 /*
873 * Arbitrary axis rotation matrix.
874 *
875 * This is composed of 5 matrices, Rz, Ry, T, Ry', Rz', multiplied
876 * like so: Rz * Ry * T * Ry' * Rz'. T is the final rotation
877 * (which is about the X-axis), and the two composite transforms
878 * Ry' * Rz' and Rz * Ry are (respectively) the rotations necessary
879 * from the arbitrary axis to the X-axis then back. They are
880 * all elementary rotations.
881 *
882 * Rz' is a rotation about the Z-axis, to bring the axis vector
883 * into the x-z plane. Then Ry' is applied, rotating about the
884 * Y-axis to bring the axis vector parallel with the X-axis. The
885 * rotation about the X-axis is then performed. Ry and Rz are
886 * simply the respective inverse transforms to bring the arbitrary
887 * axis back to its original orientation. The first transforms
888 * Rz' and Ry' are considered inverses, since the data from the
889 * arbitrary axis gives you info on how to get to it, not how
890 * to get away from it, and an inverse must be applied.
891 *
892 * The basic calculation used is to recognize that the arbitrary
893 * axis vector (x, y, z), since it is of unit length, actually
894 * represents the sines and cosines of the angles to rotate the
895 * X-axis to the same orientation, with theta being the angle about
896 * Z and phi the angle about Y (in the order described above)
897 * as follows:
898 *
899 * cos ( theta ) = x / sqrt ( 1 - z^2 )
900 * sin ( theta ) = y / sqrt ( 1 - z^2 )
901 *
902 * cos ( phi ) = sqrt ( 1 - z^2 )
903 * sin ( phi ) = z
904 *
905 * Note that cos ( phi ) can further be inserted to the above
906 * formulas:
907 *
908 * cos ( theta ) = x / cos ( phi )
909 * sin ( theta ) = y / sin ( phi )
910 *
911 * ...etc. Because of those relations and the standard trigonometric
912 * relations, it is pssible to reduce the transforms down to what
913 * is used below. It may be that any primary axis chosen will give the
914 * same results (modulo a sign convention) using thie method.
915 *
916 * Particularly nice is to notice that all divisions that might
917 * have caused trouble when parallel to certain planes or
918 * axis go away with care paid to reducing the expressions.
919 * After checking, it does perform correctly under all cases, since
920 * in all the cases of division where the denominator would have
921 * been zero, the numerator would have been zero as well, giving
922 * the expected result.
923 */
924
925 xx = x * x;
926 yy = y * y;
927 zz = z * z;
928 xy = x * y;
929 yz = y * z;
930 zx = z * x;
931 xs = x * s;
932 ys = y * s;
933 zs = z * s;
934 one_c = 1.0F - c;
935
936 /* We already hold the identity-matrix so we can skip some statements */
937 M(0,0) = (one_c * xx) + c;
938 M(0,1) = (one_c * xy) - zs;
939 M(0,2) = (one_c * zx) + ys;
940 /* M(0,3) = 0.0F; */
941
942 M(1,0) = (one_c * xy) + zs;
943 M(1,1) = (one_c * yy) + c;
944 M(1,2) = (one_c * yz) - xs;
945 /* M(1,3) = 0.0F; */
946
947 M(2,0) = (one_c * zx) - ys;
948 M(2,1) = (one_c * yz) + xs;
949 M(2,2) = (one_c * zz) + c;
950 /* M(2,3) = 0.0F; */
951
952 /*
953 M(3,0) = 0.0F;
954 M(3,1) = 0.0F;
955 M(3,2) = 0.0F;
956 M(3,3) = 1.0F;
957 */
958 }
959 #undef M
960
961 matrix_multf( mat, m, MAT_FLAG_ROTATION );
962 }
963
964 /**
965 * Apply a perspective projection matrix.
966 *
967 * \param mat matrix to apply the projection.
968 * \param left left clipping plane coordinate.
969 * \param right right clipping plane coordinate.
970 * \param bottom bottom clipping plane coordinate.
971 * \param top top clipping plane coordinate.
972 * \param nearval distance to the near clipping plane.
973 * \param farval distance to the far clipping plane.
974 *
975 * Creates the projection matrix and multiplies it with \p mat, marking the
976 * MAT_FLAG_PERSPECTIVE flag.
977 */
978 void
_math_matrix_frustum(GLmatrix * mat,GLfloat left,GLfloat right,GLfloat bottom,GLfloat top,GLfloat nearval,GLfloat farval)979 _math_matrix_frustum( GLmatrix *mat,
980 GLfloat left, GLfloat right,
981 GLfloat bottom, GLfloat top,
982 GLfloat nearval, GLfloat farval )
983 {
984 GLfloat x, y, a, b, c, d;
985 GLfloat m[16];
986
987 x = (2.0F*nearval) / (right-left);
988 y = (2.0F*nearval) / (top-bottom);
989 a = (right+left) / (right-left);
990 b = (top+bottom) / (top-bottom);
991 c = -(farval+nearval) / ( farval-nearval);
992 d = -(2.0F*farval*nearval) / (farval-nearval); /* error? */
993
994 #define M(row,col) m[col*4+row]
995 M(0,0) = x; M(0,1) = 0.0F; M(0,2) = a; M(0,3) = 0.0F;
996 M(1,0) = 0.0F; M(1,1) = y; M(1,2) = b; M(1,3) = 0.0F;
997 M(2,0) = 0.0F; M(2,1) = 0.0F; M(2,2) = c; M(2,3) = d;
998 M(3,0) = 0.0F; M(3,1) = 0.0F; M(3,2) = -1.0F; M(3,3) = 0.0F;
999 #undef M
1000
1001 matrix_multf( mat, m, MAT_FLAG_PERSPECTIVE );
1002 }
1003
1004 /**
1005 * Apply an orthographic projection matrix.
1006 *
1007 * \param mat matrix to apply the projection.
1008 * \param left left clipping plane coordinate.
1009 * \param right right clipping plane coordinate.
1010 * \param bottom bottom clipping plane coordinate.
1011 * \param top top clipping plane coordinate.
1012 * \param nearval distance to the near clipping plane.
1013 * \param farval distance to the far clipping plane.
1014 *
1015 * Creates the projection matrix and multiplies it with \p mat, marking the
1016 * MAT_FLAG_GENERAL_SCALE and MAT_FLAG_TRANSLATION flags.
1017 */
1018 void
_math_matrix_ortho(GLmatrix * mat,GLfloat left,GLfloat right,GLfloat bottom,GLfloat top,GLfloat nearval,GLfloat farval)1019 _math_matrix_ortho( GLmatrix *mat,
1020 GLfloat left, GLfloat right,
1021 GLfloat bottom, GLfloat top,
1022 GLfloat nearval, GLfloat farval )
1023 {
1024 GLfloat m[16];
1025
1026 #define M(row,col) m[col*4+row]
1027 M(0,0) = 2.0F / (right-left);
1028 M(0,1) = 0.0F;
1029 M(0,2) = 0.0F;
1030 M(0,3) = -(right+left) / (right-left);
1031
1032 M(1,0) = 0.0F;
1033 M(1,1) = 2.0F / (top-bottom);
1034 M(1,2) = 0.0F;
1035 M(1,3) = -(top+bottom) / (top-bottom);
1036
1037 M(2,0) = 0.0F;
1038 M(2,1) = 0.0F;
1039 M(2,2) = -2.0F / (farval-nearval);
1040 M(2,3) = -(farval+nearval) / (farval-nearval);
1041
1042 M(3,0) = 0.0F;
1043 M(3,1) = 0.0F;
1044 M(3,2) = 0.0F;
1045 M(3,3) = 1.0F;
1046 #undef M
1047
1048 matrix_multf( mat, m, (MAT_FLAG_GENERAL_SCALE|MAT_FLAG_TRANSLATION));
1049 }
1050
1051 /**
1052 * Multiply a matrix with a general scaling matrix.
1053 *
1054 * \param mat matrix.
1055 * \param x x axis scale factor.
1056 * \param y y axis scale factor.
1057 * \param z z axis scale factor.
1058 *
1059 * Multiplies in-place the elements of \p mat by the scale factors. Checks if
1060 * the scales factors are roughly the same, marking the MAT_FLAG_UNIFORM_SCALE
1061 * flag, or MAT_FLAG_GENERAL_SCALE. Marks the MAT_DIRTY_TYPE and
1062 * MAT_DIRTY_INVERSE dirty flags.
1063 */
1064 void
_math_matrix_scale(GLmatrix * mat,GLfloat x,GLfloat y,GLfloat z)1065 _math_matrix_scale( GLmatrix *mat, GLfloat x, GLfloat y, GLfloat z )
1066 {
1067 GLfloat *m = mat->m;
1068 m[0] *= x; m[4] *= y; m[8] *= z;
1069 m[1] *= x; m[5] *= y; m[9] *= z;
1070 m[2] *= x; m[6] *= y; m[10] *= z;
1071 m[3] *= x; m[7] *= y; m[11] *= z;
1072
1073 if (fabsf(x - y) < 1e-8F && fabsf(x - z) < 1e-8F)
1074 mat->flags |= MAT_FLAG_UNIFORM_SCALE;
1075 else
1076 mat->flags |= MAT_FLAG_GENERAL_SCALE;
1077
1078 mat->flags |= (MAT_DIRTY_TYPE |
1079 MAT_DIRTY_INVERSE);
1080 }
1081
1082 /**
1083 * Multiply a matrix with a translation matrix.
1084 *
1085 * \param mat matrix.
1086 * \param x translation vector x coordinate.
1087 * \param y translation vector y coordinate.
1088 * \param z translation vector z coordinate.
1089 *
1090 * Adds the translation coordinates to the elements of \p mat in-place. Marks
1091 * the MAT_FLAG_TRANSLATION flag, and the MAT_DIRTY_TYPE and MAT_DIRTY_INVERSE
1092 * dirty flags.
1093 */
1094 void
_math_matrix_translate(GLmatrix * mat,GLfloat x,GLfloat y,GLfloat z)1095 _math_matrix_translate( GLmatrix *mat, GLfloat x, GLfloat y, GLfloat z )
1096 {
1097 GLfloat *m = mat->m;
1098 m[12] = m[0] * x + m[4] * y + m[8] * z + m[12];
1099 m[13] = m[1] * x + m[5] * y + m[9] * z + m[13];
1100 m[14] = m[2] * x + m[6] * y + m[10] * z + m[14];
1101 m[15] = m[3] * x + m[7] * y + m[11] * z + m[15];
1102
1103 mat->flags |= (MAT_FLAG_TRANSLATION |
1104 MAT_DIRTY_TYPE |
1105 MAT_DIRTY_INVERSE);
1106 }
1107
1108
1109 /**
1110 * Set matrix to do viewport and depthrange mapping.
1111 * Transforms Normalized Device Coords to window/Z values.
1112 */
1113 void
_math_matrix_viewport(GLmatrix * m,const float scale[3],const float translate[3],double depthMax)1114 _math_matrix_viewport(GLmatrix *m, const float scale[3],
1115 const float translate[3], double depthMax)
1116 {
1117 m->m[MAT_SX] = scale[0];
1118 m->m[MAT_TX] = translate[0];
1119 m->m[MAT_SY] = scale[1];
1120 m->m[MAT_TY] = translate[1];
1121 m->m[MAT_SZ] = depthMax*scale[2];
1122 m->m[MAT_TZ] = depthMax*translate[2];
1123 m->flags = MAT_FLAG_GENERAL_SCALE | MAT_FLAG_TRANSLATION;
1124 m->type = MATRIX_3D_NO_ROT;
1125 }
1126
1127
1128 /**
1129 * Set a matrix to the identity matrix.
1130 *
1131 * \param mat matrix.
1132 *
1133 * Copies ::Identity into \p GLmatrix::m, and into GLmatrix::inv if not NULL.
1134 * Sets the matrix type to identity, and clear the dirty flags.
1135 */
1136 void
_math_matrix_set_identity(GLmatrix * mat)1137 _math_matrix_set_identity( GLmatrix *mat )
1138 {
1139 memcpy( mat->m, Identity, sizeof(Identity) );
1140 memcpy( mat->inv, Identity, sizeof(Identity) );
1141
1142 mat->type = MATRIX_IDENTITY;
1143 mat->flags &= ~(MAT_DIRTY_FLAGS|
1144 MAT_DIRTY_TYPE|
1145 MAT_DIRTY_INVERSE);
1146 }
1147
1148 /*@}*/
1149
1150
1151 /**********************************************************************/
1152 /** \name Matrix analysis */
1153 /*@{*/
1154
1155 #define ZERO(x) (1<<x)
1156 #define ONE(x) (1<<(x+16))
1157
1158 #define MASK_NO_TRX (ZERO(12) | ZERO(13) | ZERO(14))
1159 #define MASK_NO_2D_SCALE ( ONE(0) | ONE(5))
1160
1161 #define MASK_IDENTITY ( ONE(0) | ZERO(4) | ZERO(8) | ZERO(12) |\
1162 ZERO(1) | ONE(5) | ZERO(9) | ZERO(13) |\
1163 ZERO(2) | ZERO(6) | ONE(10) | ZERO(14) |\
1164 ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) )
1165
1166 #define MASK_2D_NO_ROT ( ZERO(4) | ZERO(8) | \
1167 ZERO(1) | ZERO(9) | \
1168 ZERO(2) | ZERO(6) | ONE(10) | ZERO(14) |\
1169 ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) )
1170
1171 #define MASK_2D ( ZERO(8) | \
1172 ZERO(9) | \
1173 ZERO(2) | ZERO(6) | ONE(10) | ZERO(14) |\
1174 ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) )
1175
1176
1177 #define MASK_3D_NO_ROT ( ZERO(4) | ZERO(8) | \
1178 ZERO(1) | ZERO(9) | \
1179 ZERO(2) | ZERO(6) | \
1180 ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) )
1181
1182 #define MASK_3D ( \
1183 \
1184 \
1185 ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) )
1186
1187
1188 #define MASK_PERSPECTIVE ( ZERO(4) | ZERO(12) |\
1189 ZERO(1) | ZERO(13) |\
1190 ZERO(2) | ZERO(6) | \
1191 ZERO(3) | ZERO(7) | ZERO(15) )
1192
1193 #define SQ(x) ((x)*(x))
1194
1195 /**
1196 * Determine type and flags from scratch.
1197 *
1198 * \param mat matrix.
1199 *
1200 * This is expensive enough to only want to do it once.
1201 */
analyse_from_scratch(GLmatrix * mat)1202 static void analyse_from_scratch( GLmatrix *mat )
1203 {
1204 const GLfloat *m = mat->m;
1205 GLuint mask = 0;
1206 GLuint i;
1207
1208 for (i = 0 ; i < 16 ; i++) {
1209 if (m[i] == 0.0F) mask |= (1<<i);
1210 }
1211
1212 if (m[0] == 1.0F) mask |= (1<<16);
1213 if (m[5] == 1.0F) mask |= (1<<21);
1214 if (m[10] == 1.0F) mask |= (1<<26);
1215 if (m[15] == 1.0F) mask |= (1<<31);
1216
1217 mat->flags &= ~MAT_FLAGS_GEOMETRY;
1218
1219 /* Check for translation - no-one really cares
1220 */
1221 if ((mask & MASK_NO_TRX) != MASK_NO_TRX)
1222 mat->flags |= MAT_FLAG_TRANSLATION;
1223
1224 /* Do the real work
1225 */
1226 if (mask == (GLuint) MASK_IDENTITY) {
1227 mat->type = MATRIX_IDENTITY;
1228 }
1229 else if ((mask & MASK_2D_NO_ROT) == (GLuint) MASK_2D_NO_ROT) {
1230 mat->type = MATRIX_2D_NO_ROT;
1231
1232 if ((mask & MASK_NO_2D_SCALE) != MASK_NO_2D_SCALE)
1233 mat->flags |= MAT_FLAG_GENERAL_SCALE;
1234 }
1235 else if ((mask & MASK_2D) == (GLuint) MASK_2D) {
1236 GLfloat mm = DOT2(m, m);
1237 GLfloat m4m4 = DOT2(m+4,m+4);
1238 GLfloat mm4 = DOT2(m,m+4);
1239
1240 mat->type = MATRIX_2D;
1241
1242 /* Check for scale */
1243 if (SQ(mm-1) > SQ(1e-6F) ||
1244 SQ(m4m4-1) > SQ(1e-6F))
1245 mat->flags |= MAT_FLAG_GENERAL_SCALE;
1246
1247 /* Check for rotation */
1248 if (SQ(mm4) > SQ(1e-6F))
1249 mat->flags |= MAT_FLAG_GENERAL_3D;
1250 else
1251 mat->flags |= MAT_FLAG_ROTATION;
1252
1253 }
1254 else if ((mask & MASK_3D_NO_ROT) == (GLuint) MASK_3D_NO_ROT) {
1255 mat->type = MATRIX_3D_NO_ROT;
1256
1257 /* Check for scale */
1258 if (SQ(m[0]-m[5]) < SQ(1e-6F) &&
1259 SQ(m[0]-m[10]) < SQ(1e-6F)) {
1260 if (SQ(m[0]-1.0F) > SQ(1e-6F)) {
1261 mat->flags |= MAT_FLAG_UNIFORM_SCALE;
1262 }
1263 }
1264 else {
1265 mat->flags |= MAT_FLAG_GENERAL_SCALE;
1266 }
1267 }
1268 else if ((mask & MASK_3D) == (GLuint) MASK_3D) {
1269 GLfloat c1 = DOT3(m,m);
1270 GLfloat c2 = DOT3(m+4,m+4);
1271 GLfloat c3 = DOT3(m+8,m+8);
1272 GLfloat d1 = DOT3(m, m+4);
1273 GLfloat cp[3];
1274
1275 mat->type = MATRIX_3D;
1276
1277 /* Check for scale */
1278 if (SQ(c1-c2) < SQ(1e-6F) && SQ(c1-c3) < SQ(1e-6F)) {
1279 if (SQ(c1-1.0F) > SQ(1e-6F))
1280 mat->flags |= MAT_FLAG_UNIFORM_SCALE;
1281 /* else no scale at all */
1282 }
1283 else {
1284 mat->flags |= MAT_FLAG_GENERAL_SCALE;
1285 }
1286
1287 /* Check for rotation */
1288 if (SQ(d1) < SQ(1e-6F)) {
1289 CROSS3( cp, m, m+4 );
1290 SUB_3V( cp, cp, (m+8) );
1291 if (LEN_SQUARED_3FV(cp) < SQ(1e-6F))
1292 mat->flags |= MAT_FLAG_ROTATION;
1293 else
1294 mat->flags |= MAT_FLAG_GENERAL_3D;
1295 }
1296 else {
1297 mat->flags |= MAT_FLAG_GENERAL_3D; /* shear, etc */
1298 }
1299 }
1300 else if ((mask & MASK_PERSPECTIVE) == MASK_PERSPECTIVE && m[11]==-1.0F) {
1301 mat->type = MATRIX_PERSPECTIVE;
1302 mat->flags |= MAT_FLAG_GENERAL;
1303 }
1304 else {
1305 mat->type = MATRIX_GENERAL;
1306 mat->flags |= MAT_FLAG_GENERAL;
1307 }
1308 }
1309
1310 /**
1311 * Analyze a matrix given that its flags are accurate.
1312 *
1313 * This is the more common operation, hopefully.
1314 */
analyse_from_flags(GLmatrix * mat)1315 static void analyse_from_flags( GLmatrix *mat )
1316 {
1317 const GLfloat *m = mat->m;
1318
1319 if (TEST_MAT_FLAGS(mat, 0)) {
1320 mat->type = MATRIX_IDENTITY;
1321 }
1322 else if (TEST_MAT_FLAGS(mat, (MAT_FLAG_TRANSLATION |
1323 MAT_FLAG_UNIFORM_SCALE |
1324 MAT_FLAG_GENERAL_SCALE))) {
1325 if ( m[10]==1.0F && m[14]==0.0F ) {
1326 mat->type = MATRIX_2D_NO_ROT;
1327 }
1328 else {
1329 mat->type = MATRIX_3D_NO_ROT;
1330 }
1331 }
1332 else if (TEST_MAT_FLAGS(mat, MAT_FLAGS_3D)) {
1333 if ( m[ 8]==0.0F
1334 && m[ 9]==0.0F
1335 && m[2]==0.0F && m[6]==0.0F && m[10]==1.0F && m[14]==0.0F) {
1336 mat->type = MATRIX_2D;
1337 }
1338 else {
1339 mat->type = MATRIX_3D;
1340 }
1341 }
1342 else if ( m[4]==0.0F && m[12]==0.0F
1343 && m[1]==0.0F && m[13]==0.0F
1344 && m[2]==0.0F && m[6]==0.0F
1345 && m[3]==0.0F && m[7]==0.0F && m[11]==-1.0F && m[15]==0.0F) {
1346 mat->type = MATRIX_PERSPECTIVE;
1347 }
1348 else {
1349 mat->type = MATRIX_GENERAL;
1350 }
1351 }
1352
1353 /**
1354 * Analyze and update a matrix.
1355 *
1356 * \param mat matrix.
1357 *
1358 * If the matrix type is dirty then calls either analyse_from_scratch() or
1359 * analyse_from_flags() to determine its type, according to whether the flags
1360 * are dirty or not, respectively. If the matrix has an inverse and it's dirty
1361 * then calls matrix_invert(). Finally clears the dirty flags.
1362 */
1363 void
_math_matrix_analyse(GLmatrix * mat)1364 _math_matrix_analyse( GLmatrix *mat )
1365 {
1366 if (mat->flags & MAT_DIRTY_TYPE) {
1367 if (mat->flags & MAT_DIRTY_FLAGS)
1368 analyse_from_scratch( mat );
1369 else
1370 analyse_from_flags( mat );
1371 }
1372
1373 if (mat->inv && (mat->flags & MAT_DIRTY_INVERSE)) {
1374 matrix_invert( mat );
1375 mat->flags &= ~MAT_DIRTY_INVERSE;
1376 }
1377
1378 mat->flags &= ~(MAT_DIRTY_FLAGS | MAT_DIRTY_TYPE);
1379 }
1380
1381 /*@}*/
1382
1383
1384 /**
1385 * Test if the given matrix preserves vector lengths.
1386 */
1387 GLboolean
_math_matrix_is_length_preserving(const GLmatrix * m)1388 _math_matrix_is_length_preserving( const GLmatrix *m )
1389 {
1390 return TEST_MAT_FLAGS( m, MAT_FLAGS_LENGTH_PRESERVING);
1391 }
1392
1393
1394 /**
1395 * Test if the given matrix does any rotation.
1396 * (or perhaps if the upper-left 3x3 is non-identity)
1397 */
1398 GLboolean
_math_matrix_has_rotation(const GLmatrix * m)1399 _math_matrix_has_rotation( const GLmatrix *m )
1400 {
1401 if (m->flags & (MAT_FLAG_GENERAL |
1402 MAT_FLAG_ROTATION |
1403 MAT_FLAG_GENERAL_3D |
1404 MAT_FLAG_PERSPECTIVE))
1405 return GL_TRUE;
1406 else
1407 return GL_FALSE;
1408 }
1409
1410
1411 GLboolean
_math_matrix_is_general_scale(const GLmatrix * m)1412 _math_matrix_is_general_scale( const GLmatrix *m )
1413 {
1414 return (m->flags & MAT_FLAG_GENERAL_SCALE) ? GL_TRUE : GL_FALSE;
1415 }
1416
1417
1418 GLboolean
_math_matrix_is_dirty(const GLmatrix * m)1419 _math_matrix_is_dirty( const GLmatrix *m )
1420 {
1421 return (m->flags & MAT_DIRTY) ? GL_TRUE : GL_FALSE;
1422 }
1423
1424
1425 /**********************************************************************/
1426 /** \name Matrix setup */
1427 /*@{*/
1428
1429 /**
1430 * Copy a matrix.
1431 *
1432 * \param to destination matrix.
1433 * \param from source matrix.
1434 *
1435 * Copies all fields in GLmatrix, creating an inverse array if necessary.
1436 */
1437 void
_math_matrix_copy(GLmatrix * to,const GLmatrix * from)1438 _math_matrix_copy( GLmatrix *to, const GLmatrix *from )
1439 {
1440 memcpy(to->m, from->m, 16 * sizeof(GLfloat));
1441 memcpy(to->inv, from->inv, 16 * sizeof(GLfloat));
1442 to->flags = from->flags;
1443 to->type = from->type;
1444 }
1445
1446 /**
1447 * Loads a matrix array into GLmatrix.
1448 *
1449 * \param m matrix array.
1450 * \param mat matrix.
1451 *
1452 * Copies \p m into GLmatrix::m and marks the MAT_FLAG_GENERAL and MAT_DIRTY
1453 * flags.
1454 */
1455 void
_math_matrix_loadf(GLmatrix * mat,const GLfloat * m)1456 _math_matrix_loadf( GLmatrix *mat, const GLfloat *m )
1457 {
1458 memcpy( mat->m, m, 16*sizeof(GLfloat) );
1459 mat->flags = (MAT_FLAG_GENERAL | MAT_DIRTY);
1460 }
1461
1462 /**
1463 * Matrix constructor.
1464 *
1465 * \param m matrix.
1466 *
1467 * Initialize the GLmatrix fields.
1468 */
1469 void
_math_matrix_ctr(GLmatrix * m)1470 _math_matrix_ctr( GLmatrix *m )
1471 {
1472 m->m = _mesa_align_malloc( 16 * sizeof(GLfloat), 16 );
1473 if (m->m)
1474 memcpy( m->m, Identity, sizeof(Identity) );
1475 m->inv = _mesa_align_malloc( 16 * sizeof(GLfloat), 16 );
1476 if (m->inv)
1477 memcpy( m->inv, Identity, sizeof(Identity) );
1478 m->type = MATRIX_IDENTITY;
1479 m->flags = 0;
1480 }
1481
1482 /**
1483 * Matrix destructor.
1484 *
1485 * \param m matrix.
1486 *
1487 * Frees the data in a GLmatrix.
1488 */
1489 void
_math_matrix_dtr(GLmatrix * m)1490 _math_matrix_dtr( GLmatrix *m )
1491 {
1492 _mesa_align_free( m->m );
1493 m->m = NULL;
1494
1495 _mesa_align_free( m->inv );
1496 m->inv = NULL;
1497 }
1498
1499 /*@}*/
1500
1501
1502 /**********************************************************************/
1503 /** \name Matrix transpose */
1504 /*@{*/
1505
1506 /**
1507 * Transpose a GLfloat matrix.
1508 *
1509 * \param to destination array.
1510 * \param from source array.
1511 */
1512 void
_math_transposef(GLfloat to[16],const GLfloat from[16])1513 _math_transposef( GLfloat to[16], const GLfloat from[16] )
1514 {
1515 to[0] = from[0];
1516 to[1] = from[4];
1517 to[2] = from[8];
1518 to[3] = from[12];
1519 to[4] = from[1];
1520 to[5] = from[5];
1521 to[6] = from[9];
1522 to[7] = from[13];
1523 to[8] = from[2];
1524 to[9] = from[6];
1525 to[10] = from[10];
1526 to[11] = from[14];
1527 to[12] = from[3];
1528 to[13] = from[7];
1529 to[14] = from[11];
1530 to[15] = from[15];
1531 }
1532
1533 /**
1534 * Transpose a GLdouble matrix.
1535 *
1536 * \param to destination array.
1537 * \param from source array.
1538 */
1539 void
_math_transposed(GLdouble to[16],const GLdouble from[16])1540 _math_transposed( GLdouble to[16], const GLdouble from[16] )
1541 {
1542 to[0] = from[0];
1543 to[1] = from[4];
1544 to[2] = from[8];
1545 to[3] = from[12];
1546 to[4] = from[1];
1547 to[5] = from[5];
1548 to[6] = from[9];
1549 to[7] = from[13];
1550 to[8] = from[2];
1551 to[9] = from[6];
1552 to[10] = from[10];
1553 to[11] = from[14];
1554 to[12] = from[3];
1555 to[13] = from[7];
1556 to[14] = from[11];
1557 to[15] = from[15];
1558 }
1559
1560 /**
1561 * Transpose a GLdouble matrix and convert to GLfloat.
1562 *
1563 * \param to destination array.
1564 * \param from source array.
1565 */
1566 void
_math_transposefd(GLfloat to[16],const GLdouble from[16])1567 _math_transposefd( GLfloat to[16], const GLdouble from[16] )
1568 {
1569 to[0] = (GLfloat) from[0];
1570 to[1] = (GLfloat) from[4];
1571 to[2] = (GLfloat) from[8];
1572 to[3] = (GLfloat) from[12];
1573 to[4] = (GLfloat) from[1];
1574 to[5] = (GLfloat) from[5];
1575 to[6] = (GLfloat) from[9];
1576 to[7] = (GLfloat) from[13];
1577 to[8] = (GLfloat) from[2];
1578 to[9] = (GLfloat) from[6];
1579 to[10] = (GLfloat) from[10];
1580 to[11] = (GLfloat) from[14];
1581 to[12] = (GLfloat) from[3];
1582 to[13] = (GLfloat) from[7];
1583 to[14] = (GLfloat) from[11];
1584 to[15] = (GLfloat) from[15];
1585 }
1586
1587 /*@}*/
1588
1589
1590 /**
1591 * Transform a 4-element row vector (1x4 matrix) by a 4x4 matrix. This
1592 * function is used for transforming clipping plane equations and spotlight
1593 * directions.
1594 * Mathematically, u = v * m.
1595 * Input: v - input vector
1596 * m - transformation matrix
1597 * Output: u - transformed vector
1598 */
1599 void
_mesa_transform_vector(GLfloat u[4],const GLfloat v[4],const GLfloat m[16])1600 _mesa_transform_vector( GLfloat u[4], const GLfloat v[4], const GLfloat m[16] )
1601 {
1602 const GLfloat v0 = v[0], v1 = v[1], v2 = v[2], v3 = v[3];
1603 #define M(row,col) m[row + col*4]
1604 u[0] = v0 * M(0,0) + v1 * M(1,0) + v2 * M(2,0) + v3 * M(3,0);
1605 u[1] = v0 * M(0,1) + v1 * M(1,1) + v2 * M(2,1) + v3 * M(3,1);
1606 u[2] = v0 * M(0,2) + v1 * M(1,2) + v2 * M(2,2) + v3 * M(3,2);
1607 u[3] = v0 * M(0,3) + v1 * M(1,3) + v2 * M(2,3) + v3 * M(3,3);
1608 #undef M
1609 }
1610