• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Mesa 3-D graphics library
3  *
4  * Copyright (C) 1999-2007  Brian Paul   All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included
14  * in all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
17  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  */
24 
25 
26 /**
27  * \file rastpos.c
28  * Raster position operations.
29  */
30 
31 #include "glheader.h"
32 #include "context.h"
33 #include "feedback.h"
34 #include "macros.h"
35 #include "mtypes.h"
36 #include "rastpos.h"
37 #include "state.h"
38 #include "main/dispatch.h"
39 #include "main/viewport.h"
40 #include "util/bitscan.h"
41 
42 
43 
44 /**
45  * Clip a point against the view volume.
46  *
47  * \param v vertex vector describing the point to clip.
48  *
49  * \return zero if outside view volume, or one if inside.
50  */
51 static GLuint
viewclip_point_xy(const GLfloat v[])52 viewclip_point_xy( const GLfloat v[] )
53 {
54    if (   v[0] > v[3] || v[0] < -v[3]
55        || v[1] > v[3] || v[1] < -v[3] ) {
56       return 0;
57    }
58    else {
59       return 1;
60    }
61 }
62 
63 
64 /**
65  * Clip a point against the far/near Z clipping planes.
66  *
67  * \param v vertex vector describing the point to clip.
68  *
69  * \return zero if outside view volume, or one if inside.
70  */
71 static GLuint
viewclip_point_z(const GLfloat v[])72 viewclip_point_z( const GLfloat v[] )
73 {
74    if (v[2] > v[3] || v[2] < -v[3] ) {
75       return 0;
76    }
77    else {
78       return 1;
79    }
80 }
81 
82 
83 /**
84  * Clip a point against the user clipping planes.
85  *
86  * \param ctx GL context.
87  * \param v vertex vector describing the point to clip.
88  *
89  * \return zero if the point was clipped, or one otherwise.
90  */
91 static GLuint
userclip_point(struct gl_context * ctx,const GLfloat v[])92 userclip_point( struct gl_context *ctx, const GLfloat v[] )
93 {
94    GLbitfield mask = ctx->Transform.ClipPlanesEnabled;
95    while (mask) {
96       const int p = u_bit_scan(&mask);
97       GLfloat dot = v[0] * ctx->Transform._ClipUserPlane[p][0]
98          + v[1] * ctx->Transform._ClipUserPlane[p][1]
99          + v[2] * ctx->Transform._ClipUserPlane[p][2]
100          + v[3] * ctx->Transform._ClipUserPlane[p][3];
101 
102       if (dot < 0.0F) {
103          return 0;
104       }
105    }
106 
107    return 1;
108 }
109 
110 
111 /**
112  * Compute lighting for the raster position.  RGB modes computed.
113  * \param ctx the context
114  * \param vertex vertex location
115  * \param normal normal vector
116  * \param Rcolor returned color
117  * \param Rspec returned specular color (if separate specular enabled)
118  */
119 static void
shade_rastpos(struct gl_context * ctx,const GLfloat vertex[4],const GLfloat normal[3],GLfloat Rcolor[4],GLfloat Rspec[4])120 shade_rastpos(struct gl_context *ctx,
121               const GLfloat vertex[4],
122               const GLfloat normal[3],
123               GLfloat Rcolor[4],
124               GLfloat Rspec[4])
125 {
126    /*const*/ GLfloat (*base)[3] = ctx->Light._BaseColor;
127    GLbitfield mask;
128    GLfloat diffuseColor[4], specularColor[4];  /* for RGB mode only */
129 
130    COPY_3V(diffuseColor, base[0]);
131    diffuseColor[3] = CLAMP(
132       ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE][3], 0.0F, 1.0F );
133    ASSIGN_4V(specularColor, 0.0, 0.0, 0.0, 1.0);
134 
135    mask = ctx->Light._EnabledLights;
136    while (mask) {
137       const int i = u_bit_scan(&mask);
138       struct gl_light *light = &ctx->Light.Light[i];
139       GLfloat attenuation = 1.0;
140       GLfloat VP[3]; /* vector from vertex to light pos */
141       GLfloat n_dot_VP;
142       GLfloat diffuseContrib[3], specularContrib[3];
143 
144       if (!(light->_Flags & LIGHT_POSITIONAL)) {
145          /* light at infinity */
146 	 COPY_3V(VP, light->_VP_inf_norm);
147 	 attenuation = light->_VP_inf_spot_attenuation;
148       }
149       else {
150          /* local/positional light */
151 	 GLfloat d;
152 
153          /* VP = vector from vertex pos to light[i].pos */
154 	 SUB_3V(VP, light->_Position, vertex);
155          /* d = length(VP) */
156 	 d = (GLfloat) LEN_3FV( VP );
157 	 if (d > 1.0e-6F) {
158             /* normalize VP */
159 	    GLfloat invd = 1.0F / d;
160 	    SELF_SCALE_SCALAR_3V(VP, invd);
161 	 }
162 
163          /* atti */
164 	 attenuation = 1.0F / (light->ConstantAttenuation + d *
165 			       (light->LinearAttenuation + d *
166 				light->QuadraticAttenuation));
167 
168 	 if (light->_Flags & LIGHT_SPOT) {
169 	    GLfloat PV_dot_dir = - DOT3(VP, light->_NormSpotDirection);
170 
171 	    if (PV_dot_dir<light->_CosCutoff) {
172 	       continue;
173 	    }
174 	    else {
175                GLfloat spot = powf(PV_dot_dir, light->SpotExponent);
176 	       attenuation *= spot;
177 	    }
178 	 }
179       }
180 
181       if (attenuation < 1e-3F)
182 	 continue;
183 
184       n_dot_VP = DOT3( normal, VP );
185 
186       if (n_dot_VP < 0.0F) {
187 	 ACC_SCALE_SCALAR_3V(diffuseColor, attenuation, light->_MatAmbient[0]);
188 	 continue;
189       }
190 
191       /* Ambient + diffuse */
192       COPY_3V(diffuseContrib, light->_MatAmbient[0]);
193       ACC_SCALE_SCALAR_3V(diffuseContrib, n_dot_VP, light->_MatDiffuse[0]);
194 
195       /* Specular */
196       {
197          const GLfloat *h;
198          GLfloat n_dot_h;
199 
200          ASSIGN_3V(specularContrib, 0.0, 0.0, 0.0);
201 
202 	 if (ctx->Light.Model.LocalViewer) {
203 	    GLfloat v[3];
204 	    COPY_3V(v, vertex);
205 	    NORMALIZE_3FV(v);
206 	    SUB_3V(VP, VP, v);
207             NORMALIZE_3FV(VP);
208 	    h = VP;
209 	 }
210 	 else if (light->_Flags & LIGHT_POSITIONAL) {
211 	    ACC_3V(VP, ctx->_EyeZDir);
212             NORMALIZE_3FV(VP);
213 	    h = VP;
214 	 }
215          else {
216 	    h = light->_h_inf_norm;
217 	 }
218 
219 	 n_dot_h = DOT3(normal, h);
220 
221 	 if (n_dot_h > 0.0F) {
222 	    GLfloat shine;
223 	    GLfloat spec_coef;
224 
225 	    shine = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SHININESS][0];
226 	    spec_coef = powf(n_dot_h, shine);
227 
228 	    if (spec_coef > 1.0e-10F) {
229                if (ctx->Light.Model.ColorControl==GL_SEPARATE_SPECULAR_COLOR) {
230                   ACC_SCALE_SCALAR_3V( specularContrib, spec_coef,
231                                        light->_MatSpecular[0]);
232                }
233                else {
234                   ACC_SCALE_SCALAR_3V( diffuseContrib, spec_coef,
235                                        light->_MatSpecular[0]);
236                }
237 	    }
238 	 }
239       }
240 
241       ACC_SCALE_SCALAR_3V( diffuseColor, attenuation, diffuseContrib );
242       ACC_SCALE_SCALAR_3V( specularColor, attenuation, specularContrib );
243    }
244 
245    Rcolor[0] = CLAMP(diffuseColor[0], 0.0F, 1.0F);
246    Rcolor[1] = CLAMP(diffuseColor[1], 0.0F, 1.0F);
247    Rcolor[2] = CLAMP(diffuseColor[2], 0.0F, 1.0F);
248    Rcolor[3] = CLAMP(diffuseColor[3], 0.0F, 1.0F);
249    Rspec[0] = CLAMP(specularColor[0], 0.0F, 1.0F);
250    Rspec[1] = CLAMP(specularColor[1], 0.0F, 1.0F);
251    Rspec[2] = CLAMP(specularColor[2], 0.0F, 1.0F);
252    Rspec[3] = CLAMP(specularColor[3], 0.0F, 1.0F);
253 }
254 
255 
256 /**
257  * Do texgen needed for glRasterPos.
258  * \param ctx  rendering context
259  * \param vObj  object-space vertex coordinate
260  * \param vEye  eye-space vertex coordinate
261  * \param normal  vertex normal
262  * \param unit  texture unit number
263  * \param texcoord  incoming texcoord and resulting texcoord
264  */
265 static void
compute_texgen(struct gl_context * ctx,const GLfloat vObj[4],const GLfloat vEye[4],const GLfloat normal[3],GLuint unit,GLfloat texcoord[4])266 compute_texgen(struct gl_context *ctx, const GLfloat vObj[4], const GLfloat vEye[4],
267                const GLfloat normal[3], GLuint unit, GLfloat texcoord[4])
268 {
269    const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit];
270 
271    /* always compute sphere map terms, just in case */
272    GLfloat u[3], two_nu, rx, ry, rz, m, mInv;
273    COPY_3V(u, vEye);
274    NORMALIZE_3FV(u);
275    two_nu = 2.0F * DOT3(normal, u);
276    rx = u[0] - normal[0] * two_nu;
277    ry = u[1] - normal[1] * two_nu;
278    rz = u[2] - normal[2] * two_nu;
279    m = rx * rx + ry * ry + (rz + 1.0F) * (rz + 1.0F);
280    if (m > 0.0F)
281       mInv = 0.5F * (1.0f / sqrtf(m));
282    else
283       mInv = 0.0F;
284 
285    if (texUnit->TexGenEnabled & S_BIT) {
286       switch (texUnit->GenS.Mode) {
287          case GL_OBJECT_LINEAR:
288             texcoord[0] = DOT4(vObj, texUnit->GenS.ObjectPlane);
289             break;
290          case GL_EYE_LINEAR:
291             texcoord[0] = DOT4(vEye, texUnit->GenS.EyePlane);
292             break;
293          case GL_SPHERE_MAP:
294             texcoord[0] = rx * mInv + 0.5F;
295             break;
296          case GL_REFLECTION_MAP:
297             texcoord[0] = rx;
298             break;
299          case GL_NORMAL_MAP:
300             texcoord[0] = normal[0];
301             break;
302          default:
303             _mesa_problem(ctx, "Bad S texgen in compute_texgen()");
304             return;
305       }
306    }
307 
308    if (texUnit->TexGenEnabled & T_BIT) {
309       switch (texUnit->GenT.Mode) {
310          case GL_OBJECT_LINEAR:
311             texcoord[1] = DOT4(vObj, texUnit->GenT.ObjectPlane);
312             break;
313          case GL_EYE_LINEAR:
314             texcoord[1] = DOT4(vEye, texUnit->GenT.EyePlane);
315             break;
316          case GL_SPHERE_MAP:
317             texcoord[1] = ry * mInv + 0.5F;
318             break;
319          case GL_REFLECTION_MAP:
320             texcoord[1] = ry;
321             break;
322          case GL_NORMAL_MAP:
323             texcoord[1] = normal[1];
324             break;
325          default:
326             _mesa_problem(ctx, "Bad T texgen in compute_texgen()");
327             return;
328       }
329    }
330 
331    if (texUnit->TexGenEnabled & R_BIT) {
332       switch (texUnit->GenR.Mode) {
333          case GL_OBJECT_LINEAR:
334             texcoord[2] = DOT4(vObj, texUnit->GenR.ObjectPlane);
335             break;
336          case GL_EYE_LINEAR:
337             texcoord[2] = DOT4(vEye, texUnit->GenR.EyePlane);
338             break;
339          case GL_REFLECTION_MAP:
340             texcoord[2] = rz;
341             break;
342          case GL_NORMAL_MAP:
343             texcoord[2] = normal[2];
344             break;
345          default:
346             _mesa_problem(ctx, "Bad R texgen in compute_texgen()");
347             return;
348       }
349    }
350 
351    if (texUnit->TexGenEnabled & Q_BIT) {
352       switch (texUnit->GenQ.Mode) {
353          case GL_OBJECT_LINEAR:
354             texcoord[3] = DOT4(vObj, texUnit->GenQ.ObjectPlane);
355             break;
356          case GL_EYE_LINEAR:
357             texcoord[3] = DOT4(vEye, texUnit->GenQ.EyePlane);
358             break;
359          default:
360             _mesa_problem(ctx, "Bad Q texgen in compute_texgen()");
361             return;
362       }
363    }
364 }
365 
366 
367 /**
368  * glRasterPos transformation.  Typically called via ctx->Driver.RasterPos().
369  *
370  * \param vObj  vertex position in object space
371  */
372 void
_mesa_RasterPos(struct gl_context * ctx,const GLfloat vObj[4])373 _mesa_RasterPos(struct gl_context *ctx, const GLfloat vObj[4])
374 {
375    if (ctx->VertexProgram._Enabled) {
376       /* XXX implement this */
377       _mesa_problem(ctx, "Vertex programs not implemented for glRasterPos");
378       return;
379    }
380    else {
381       GLfloat eye[4], clip[4], ndc[3], d;
382       GLfloat *norm, eyenorm[3];
383       GLfloat *objnorm = ctx->Current.Attrib[VERT_ATTRIB_NORMAL];
384       float scale[3], translate[3];
385 
386       /* apply modelview matrix:  eye = MV * obj */
387       TRANSFORM_POINT( eye, ctx->ModelviewMatrixStack.Top->m, vObj );
388       /* apply projection matrix:  clip = Proj * eye */
389       TRANSFORM_POINT( clip, ctx->ProjectionMatrixStack.Top->m, eye );
390 
391       /* clip to view volume. */
392       if (!ctx->Transform.DepthClamp) {
393          if (viewclip_point_z(clip) == 0) {
394             ctx->Current.RasterPosValid = GL_FALSE;
395             return;
396          }
397       }
398       if (!ctx->Transform.RasterPositionUnclipped) {
399          if (viewclip_point_xy(clip) == 0) {
400             ctx->Current.RasterPosValid = GL_FALSE;
401             return;
402          }
403       }
404 
405       /* clip to user clipping planes */
406       if (ctx->Transform.ClipPlanesEnabled && !userclip_point(ctx, clip)) {
407          ctx->Current.RasterPosValid = GL_FALSE;
408          return;
409       }
410 
411       /* ndc = clip / W */
412       d = (clip[3] == 0.0F) ? 1.0F : 1.0F / clip[3];
413       ndc[0] = clip[0] * d;
414       ndc[1] = clip[1] * d;
415       ndc[2] = clip[2] * d;
416       /* wincoord = viewport_mapping(ndc) */
417       _mesa_get_viewport_xform(ctx, 0, scale, translate);
418       ctx->Current.RasterPos[0] = ndc[0] * scale[0] + translate[0];
419       ctx->Current.RasterPos[1] = ndc[1] * scale[1] + translate[1];
420       ctx->Current.RasterPos[2] = ndc[2] * scale[2] + translate[2];
421       ctx->Current.RasterPos[3] = clip[3];
422 
423       if (ctx->Transform.DepthClamp) {
424 	 ctx->Current.RasterPos[3] = CLAMP(ctx->Current.RasterPos[3],
425 					   ctx->ViewportArray[0].Near,
426 					   ctx->ViewportArray[0].Far);
427       }
428 
429       /* compute raster distance */
430       if (ctx->Fog.FogCoordinateSource == GL_FOG_COORDINATE_EXT)
431          ctx->Current.RasterDistance = ctx->Current.Attrib[VERT_ATTRIB_FOG][0];
432       else
433          ctx->Current.RasterDistance =
434                         sqrtf( eye[0]*eye[0] + eye[1]*eye[1] + eye[2]*eye[2] );
435 
436       /* compute transformed normal vector (for lighting or texgen) */
437       if (ctx->_NeedEyeCoords) {
438          const GLfloat *inv = ctx->ModelviewMatrixStack.Top->inv;
439          TRANSFORM_NORMAL( eyenorm, objnorm, inv );
440          norm = eyenorm;
441       }
442       else {
443          norm = objnorm;
444       }
445 
446       /* update raster color */
447       if (ctx->Light.Enabled) {
448          /* lighting */
449          shade_rastpos( ctx, vObj, norm,
450                         ctx->Current.RasterColor,
451                         ctx->Current.RasterSecondaryColor );
452       }
453       else {
454          /* use current color */
455 	 COPY_4FV(ctx->Current.RasterColor,
456 		  ctx->Current.Attrib[VERT_ATTRIB_COLOR0]);
457 	 COPY_4FV(ctx->Current.RasterSecondaryColor,
458 		  ctx->Current.Attrib[VERT_ATTRIB_COLOR1]);
459       }
460 
461       /* texture coords */
462       {
463          GLuint u;
464          for (u = 0; u < ctx->Const.MaxTextureCoordUnits; u++) {
465             GLfloat tc[4];
466             COPY_4V(tc, ctx->Current.Attrib[VERT_ATTRIB_TEX0 + u]);
467             if (ctx->Texture.Unit[u].TexGenEnabled) {
468                compute_texgen(ctx, vObj, eye, norm, u, tc);
469             }
470             TRANSFORM_POINT(ctx->Current.RasterTexCoords[u],
471                             ctx->TextureMatrixStack[u].Top->m, tc);
472          }
473       }
474 
475       ctx->Current.RasterPosValid = GL_TRUE;
476    }
477 
478    if (ctx->RenderMode == GL_SELECT) {
479       _mesa_update_hitflag( ctx, ctx->Current.RasterPos[2] );
480    }
481 }
482 
483 
484 /**
485  * Helper function for all the RasterPos functions.
486  */
487 static void
rasterpos(GLfloat x,GLfloat y,GLfloat z,GLfloat w)488 rasterpos(GLfloat x, GLfloat y, GLfloat z, GLfloat w)
489 {
490    GET_CURRENT_CONTEXT(ctx);
491    GLfloat p[4];
492 
493    p[0] = x;
494    p[1] = y;
495    p[2] = z;
496    p[3] = w;
497 
498    FLUSH_VERTICES(ctx, 0);
499    FLUSH_CURRENT(ctx, 0);
500 
501    if (ctx->NewState)
502       _mesa_update_state( ctx );
503 
504    ctx->Driver.RasterPos(ctx, p);
505 }
506 
507 
508 void GLAPIENTRY
_mesa_RasterPos2d(GLdouble x,GLdouble y)509 _mesa_RasterPos2d(GLdouble x, GLdouble y)
510 {
511    rasterpos((GLfloat)x, (GLfloat)y, (GLfloat)0.0, (GLfloat)1.0);
512 }
513 
514 void GLAPIENTRY
_mesa_RasterPos2f(GLfloat x,GLfloat y)515 _mesa_RasterPos2f(GLfloat x, GLfloat y)
516 {
517    rasterpos(x, y, 0.0F, 1.0F);
518 }
519 
520 void GLAPIENTRY
_mesa_RasterPos2i(GLint x,GLint y)521 _mesa_RasterPos2i(GLint x, GLint y)
522 {
523    rasterpos((GLfloat) x, (GLfloat) y, 0.0F, 1.0F);
524 }
525 
526 void GLAPIENTRY
_mesa_RasterPos2s(GLshort x,GLshort y)527 _mesa_RasterPos2s(GLshort x, GLshort y)
528 {
529    rasterpos(x, y, 0.0F, 1.0F);
530 }
531 
532 void GLAPIENTRY
_mesa_RasterPos3d(GLdouble x,GLdouble y,GLdouble z)533 _mesa_RasterPos3d(GLdouble x, GLdouble y, GLdouble z)
534 {
535    rasterpos((GLfloat) x, (GLfloat) y, (GLfloat) z, 1.0F);
536 }
537 
538 void GLAPIENTRY
_mesa_RasterPos3f(GLfloat x,GLfloat y,GLfloat z)539 _mesa_RasterPos3f(GLfloat x, GLfloat y, GLfloat z)
540 {
541    rasterpos(x, y, z, 1.0F);
542 }
543 
544 void GLAPIENTRY
_mesa_RasterPos3i(GLint x,GLint y,GLint z)545 _mesa_RasterPos3i(GLint x, GLint y, GLint z)
546 {
547    rasterpos((GLfloat) x, (GLfloat) y, (GLfloat) z, 1.0F);
548 }
549 
550 void GLAPIENTRY
_mesa_RasterPos3s(GLshort x,GLshort y,GLshort z)551 _mesa_RasterPos3s(GLshort x, GLshort y, GLshort z)
552 {
553    rasterpos(x, y, z, 1.0F);
554 }
555 
556 void GLAPIENTRY
_mesa_RasterPos4d(GLdouble x,GLdouble y,GLdouble z,GLdouble w)557 _mesa_RasterPos4d(GLdouble x, GLdouble y, GLdouble z, GLdouble w)
558 {
559    rasterpos((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w);
560 }
561 
562 void GLAPIENTRY
_mesa_RasterPos4f(GLfloat x,GLfloat y,GLfloat z,GLfloat w)563 _mesa_RasterPos4f(GLfloat x, GLfloat y, GLfloat z, GLfloat w)
564 {
565    rasterpos(x, y, z, w);
566 }
567 
568 void GLAPIENTRY
_mesa_RasterPos4i(GLint x,GLint y,GLint z,GLint w)569 _mesa_RasterPos4i(GLint x, GLint y, GLint z, GLint w)
570 {
571    rasterpos((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w);
572 }
573 
574 void GLAPIENTRY
_mesa_RasterPos4s(GLshort x,GLshort y,GLshort z,GLshort w)575 _mesa_RasterPos4s(GLshort x, GLshort y, GLshort z, GLshort w)
576 {
577    rasterpos(x, y, z, w);
578 }
579 
580 void GLAPIENTRY
_mesa_RasterPos2dv(const GLdouble * v)581 _mesa_RasterPos2dv(const GLdouble *v)
582 {
583    rasterpos((GLfloat) v[0], (GLfloat) v[1], 0.0F, 1.0F);
584 }
585 
586 void GLAPIENTRY
_mesa_RasterPos2fv(const GLfloat * v)587 _mesa_RasterPos2fv(const GLfloat *v)
588 {
589    rasterpos(v[0], v[1], 0.0F, 1.0F);
590 }
591 
592 void GLAPIENTRY
_mesa_RasterPos2iv(const GLint * v)593 _mesa_RasterPos2iv(const GLint *v)
594 {
595    rasterpos((GLfloat) v[0], (GLfloat) v[1], 0.0F, 1.0F);
596 }
597 
598 void GLAPIENTRY
_mesa_RasterPos2sv(const GLshort * v)599 _mesa_RasterPos2sv(const GLshort *v)
600 {
601    rasterpos(v[0], v[1], 0.0F, 1.0F);
602 }
603 
604 void GLAPIENTRY
_mesa_RasterPos3dv(const GLdouble * v)605 _mesa_RasterPos3dv(const GLdouble *v)
606 {
607    rasterpos((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], 1.0F);
608 }
609 
610 void GLAPIENTRY
_mesa_RasterPos3fv(const GLfloat * v)611 _mesa_RasterPos3fv(const GLfloat *v)
612 {
613    rasterpos(v[0], v[1], v[2], 1.0F);
614 }
615 
616 void GLAPIENTRY
_mesa_RasterPos3iv(const GLint * v)617 _mesa_RasterPos3iv(const GLint *v)
618 {
619    rasterpos((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], 1.0F);
620 }
621 
622 void GLAPIENTRY
_mesa_RasterPos3sv(const GLshort * v)623 _mesa_RasterPos3sv(const GLshort *v)
624 {
625    rasterpos(v[0], v[1], v[2], 1.0F);
626 }
627 
628 void GLAPIENTRY
_mesa_RasterPos4dv(const GLdouble * v)629 _mesa_RasterPos4dv(const GLdouble *v)
630 {
631    rasterpos((GLfloat) v[0], (GLfloat) v[1],
632 		     (GLfloat) v[2], (GLfloat) v[3]);
633 }
634 
635 void GLAPIENTRY
_mesa_RasterPos4fv(const GLfloat * v)636 _mesa_RasterPos4fv(const GLfloat *v)
637 {
638    rasterpos(v[0], v[1], v[2], v[3]);
639 }
640 
641 void GLAPIENTRY
_mesa_RasterPos4iv(const GLint * v)642 _mesa_RasterPos4iv(const GLint *v)
643 {
644    rasterpos((GLfloat) v[0], (GLfloat) v[1],
645 		     (GLfloat) v[2], (GLfloat) v[3]);
646 }
647 
648 void GLAPIENTRY
_mesa_RasterPos4sv(const GLshort * v)649 _mesa_RasterPos4sv(const GLshort *v)
650 {
651    rasterpos(v[0], v[1], v[2], v[3]);
652 }
653 
654 
655 /**********************************************************************/
656 /***           GL_ARB_window_pos / GL_MESA_window_pos               ***/
657 /**********************************************************************/
658 
659 
660 /**
661  * All glWindowPosMESA and glWindowPosARB commands call this function to
662  * update the current raster position.
663  */
664 static void
window_pos3f(GLfloat x,GLfloat y,GLfloat z)665 window_pos3f(GLfloat x, GLfloat y, GLfloat z)
666 {
667    GET_CURRENT_CONTEXT(ctx);
668    GLfloat z2;
669 
670    FLUSH_VERTICES(ctx, 0);
671    FLUSH_CURRENT(ctx, 0);
672 
673    z2 = CLAMP(z, 0.0F, 1.0F)
674       * (ctx->ViewportArray[0].Far - ctx->ViewportArray[0].Near)
675       + ctx->ViewportArray[0].Near;
676 
677    /* set raster position */
678    ctx->Current.RasterPos[0] = x;
679    ctx->Current.RasterPos[1] = y;
680    ctx->Current.RasterPos[2] = z2;
681    ctx->Current.RasterPos[3] = 1.0F;
682 
683    ctx->Current.RasterPosValid = GL_TRUE;
684 
685    if (ctx->Fog.FogCoordinateSource == GL_FOG_COORDINATE_EXT)
686       ctx->Current.RasterDistance = ctx->Current.Attrib[VERT_ATTRIB_FOG][0];
687    else
688       ctx->Current.RasterDistance = 0.0;
689 
690    /* raster color = current color or index */
691    ctx->Current.RasterColor[0]
692       = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR0][0], 0.0F, 1.0F);
693    ctx->Current.RasterColor[1]
694       = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR0][1], 0.0F, 1.0F);
695    ctx->Current.RasterColor[2]
696       = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR0][2], 0.0F, 1.0F);
697    ctx->Current.RasterColor[3]
698       = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR0][3], 0.0F, 1.0F);
699    ctx->Current.RasterSecondaryColor[0]
700       = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR1][0], 0.0F, 1.0F);
701    ctx->Current.RasterSecondaryColor[1]
702       = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR1][1], 0.0F, 1.0F);
703    ctx->Current.RasterSecondaryColor[2]
704       = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR1][2], 0.0F, 1.0F);
705    ctx->Current.RasterSecondaryColor[3]
706       = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR1][3], 0.0F, 1.0F);
707 
708    /* raster texcoord = current texcoord */
709    {
710       GLuint texSet;
711       for (texSet = 0; texSet < ctx->Const.MaxTextureCoordUnits; texSet++) {
712          assert(texSet < ARRAY_SIZE(ctx->Current.RasterTexCoords));
713          COPY_4FV( ctx->Current.RasterTexCoords[texSet],
714                   ctx->Current.Attrib[VERT_ATTRIB_TEX0 + texSet] );
715       }
716    }
717 
718    if (ctx->RenderMode==GL_SELECT) {
719       _mesa_update_hitflag( ctx, ctx->Current.RasterPos[2] );
720    }
721 }
722 
723 
724 /* This is just to support the GL_MESA_window_pos version */
725 static void
window_pos4f(GLfloat x,GLfloat y,GLfloat z,GLfloat w)726 window_pos4f(GLfloat x, GLfloat y, GLfloat z, GLfloat w)
727 {
728    GET_CURRENT_CONTEXT(ctx);
729    window_pos3f(x, y, z);
730    ctx->Current.RasterPos[3] = w;
731 }
732 
733 
734 void GLAPIENTRY
_mesa_WindowPos2d(GLdouble x,GLdouble y)735 _mesa_WindowPos2d(GLdouble x, GLdouble y)
736 {
737    window_pos4f((GLfloat) x, (GLfloat) y, 0.0F, 1.0F);
738 }
739 
740 void GLAPIENTRY
_mesa_WindowPos2f(GLfloat x,GLfloat y)741 _mesa_WindowPos2f(GLfloat x, GLfloat y)
742 {
743    window_pos4f(x, y, 0.0F, 1.0F);
744 }
745 
746 void GLAPIENTRY
_mesa_WindowPos2i(GLint x,GLint y)747 _mesa_WindowPos2i(GLint x, GLint y)
748 {
749    window_pos4f((GLfloat) x, (GLfloat) y, 0.0F, 1.0F);
750 }
751 
752 void GLAPIENTRY
_mesa_WindowPos2s(GLshort x,GLshort y)753 _mesa_WindowPos2s(GLshort x, GLshort y)
754 {
755    window_pos4f(x, y, 0.0F, 1.0F);
756 }
757 
758 void GLAPIENTRY
_mesa_WindowPos3d(GLdouble x,GLdouble y,GLdouble z)759 _mesa_WindowPos3d(GLdouble x, GLdouble y, GLdouble z)
760 {
761    window_pos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, 1.0F);
762 }
763 
764 void GLAPIENTRY
_mesa_WindowPos3f(GLfloat x,GLfloat y,GLfloat z)765 _mesa_WindowPos3f(GLfloat x, GLfloat y, GLfloat z)
766 {
767    window_pos4f(x, y, z, 1.0F);
768 }
769 
770 void GLAPIENTRY
_mesa_WindowPos3i(GLint x,GLint y,GLint z)771 _mesa_WindowPos3i(GLint x, GLint y, GLint z)
772 {
773    window_pos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, 1.0F);
774 }
775 
776 void GLAPIENTRY
_mesa_WindowPos3s(GLshort x,GLshort y,GLshort z)777 _mesa_WindowPos3s(GLshort x, GLshort y, GLshort z)
778 {
779    window_pos4f(x, y, z, 1.0F);
780 }
781 
782 void GLAPIENTRY
_mesa_WindowPos4dMESA(GLdouble x,GLdouble y,GLdouble z,GLdouble w)783 _mesa_WindowPos4dMESA(GLdouble x, GLdouble y, GLdouble z, GLdouble w)
784 {
785    window_pos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w);
786 }
787 
788 void GLAPIENTRY
_mesa_WindowPos4fMESA(GLfloat x,GLfloat y,GLfloat z,GLfloat w)789 _mesa_WindowPos4fMESA(GLfloat x, GLfloat y, GLfloat z, GLfloat w)
790 {
791    window_pos4f(x, y, z, w);
792 }
793 
794 void GLAPIENTRY
_mesa_WindowPos4iMESA(GLint x,GLint y,GLint z,GLint w)795 _mesa_WindowPos4iMESA(GLint x, GLint y, GLint z, GLint w)
796 {
797    window_pos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w);
798 }
799 
800 void GLAPIENTRY
_mesa_WindowPos4sMESA(GLshort x,GLshort y,GLshort z,GLshort w)801 _mesa_WindowPos4sMESA(GLshort x, GLshort y, GLshort z, GLshort w)
802 {
803    window_pos4f(x, y, z, w);
804 }
805 
806 void GLAPIENTRY
_mesa_WindowPos2dv(const GLdouble * v)807 _mesa_WindowPos2dv(const GLdouble *v)
808 {
809    window_pos4f((GLfloat) v[0], (GLfloat) v[1], 0.0F, 1.0F);
810 }
811 
812 void GLAPIENTRY
_mesa_WindowPos2fv(const GLfloat * v)813 _mesa_WindowPos2fv(const GLfloat *v)
814 {
815    window_pos4f(v[0], v[1], 0.0F, 1.0F);
816 }
817 
818 void GLAPIENTRY
_mesa_WindowPos2iv(const GLint * v)819 _mesa_WindowPos2iv(const GLint *v)
820 {
821    window_pos4f((GLfloat) v[0], (GLfloat) v[1], 0.0F, 1.0F);
822 }
823 
824 void GLAPIENTRY
_mesa_WindowPos2sv(const GLshort * v)825 _mesa_WindowPos2sv(const GLshort *v)
826 {
827    window_pos4f(v[0], v[1], 0.0F, 1.0F);
828 }
829 
830 void GLAPIENTRY
_mesa_WindowPos3dv(const GLdouble * v)831 _mesa_WindowPos3dv(const GLdouble *v)
832 {
833    window_pos4f((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], 1.0F);
834 }
835 
836 void GLAPIENTRY
_mesa_WindowPos3fv(const GLfloat * v)837 _mesa_WindowPos3fv(const GLfloat *v)
838 {
839    window_pos4f(v[0], v[1], v[2], 1.0);
840 }
841 
842 void GLAPIENTRY
_mesa_WindowPos3iv(const GLint * v)843 _mesa_WindowPos3iv(const GLint *v)
844 {
845    window_pos4f((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], 1.0F);
846 }
847 
848 void GLAPIENTRY
_mesa_WindowPos3sv(const GLshort * v)849 _mesa_WindowPos3sv(const GLshort *v)
850 {
851    window_pos4f(v[0], v[1], v[2], 1.0F);
852 }
853 
854 void GLAPIENTRY
_mesa_WindowPos4dvMESA(const GLdouble * v)855 _mesa_WindowPos4dvMESA(const GLdouble *v)
856 {
857    window_pos4f((GLfloat) v[0], (GLfloat) v[1],
858 			 (GLfloat) v[2], (GLfloat) v[3]);
859 }
860 
861 void GLAPIENTRY
_mesa_WindowPos4fvMESA(const GLfloat * v)862 _mesa_WindowPos4fvMESA(const GLfloat *v)
863 {
864    window_pos4f(v[0], v[1], v[2], v[3]);
865 }
866 
867 void GLAPIENTRY
_mesa_WindowPos4ivMESA(const GLint * v)868 _mesa_WindowPos4ivMESA(const GLint *v)
869 {
870    window_pos4f((GLfloat) v[0], (GLfloat) v[1],
871 			 (GLfloat) v[2], (GLfloat) v[3]);
872 }
873 
874 void GLAPIENTRY
_mesa_WindowPos4svMESA(const GLshort * v)875 _mesa_WindowPos4svMESA(const GLshort *v)
876 {
877    window_pos4f(v[0], v[1], v[2], v[3]);
878 }
879 
880 
881 #if 0
882 
883 /*
884  * OpenGL implementation of glWindowPos*MESA()
885  */
886 void glWindowPos4fMESA( GLfloat x, GLfloat y, GLfloat z, GLfloat w )
887 {
888    GLfloat fx, fy;
889 
890    /* Push current matrix mode and viewport attributes */
891    glPushAttrib( GL_TRANSFORM_BIT | GL_VIEWPORT_BIT );
892 
893    /* Setup projection parameters */
894    glMatrixMode( GL_PROJECTION );
895    glPushMatrix();
896    glLoadIdentity();
897    glMatrixMode( GL_MODELVIEW );
898    glPushMatrix();
899    glLoadIdentity();
900 
901    glDepthRange( z, z );
902    glViewport( (int) x - 1, (int) y - 1, 2, 2 );
903 
904    /* set the raster (window) position */
905    fx = x - (int) x;
906    fy = y - (int) y;
907    glRasterPos4f( fx, fy, 0.0, w );
908 
909    /* restore matrices, viewport and matrix mode */
910    glPopMatrix();
911    glMatrixMode( GL_PROJECTION );
912    glPopMatrix();
913 
914    glPopAttrib();
915 }
916 
917 #endif
918 
919 
920 /**********************************************************************/
921 /** \name Initialization                                              */
922 /**********************************************************************/
923 /*@{*/
924 
925 /**
926  * Initialize the context current raster position information.
927  *
928  * \param ctx GL context.
929  *
930  * Initialize the current raster position information in
931  * __struct gl_contextRec::Current, and adds the extension entry points to the
932  * dispatcher.
933  */
_mesa_init_rastpos(struct gl_context * ctx)934 void _mesa_init_rastpos( struct gl_context * ctx )
935 {
936    unsigned i;
937 
938    ASSIGN_4V( ctx->Current.RasterPos, 0.0, 0.0, 0.0, 1.0 );
939    ctx->Current.RasterDistance = 0.0;
940    ASSIGN_4V( ctx->Current.RasterColor, 1.0, 1.0, 1.0, 1.0 );
941    ASSIGN_4V( ctx->Current.RasterSecondaryColor, 0.0, 0.0, 0.0, 1.0 );
942    for (i = 0; i < ARRAY_SIZE(ctx->Current.RasterTexCoords); i++)
943       ASSIGN_4V( ctx->Current.RasterTexCoords[i], 0.0, 0.0, 0.0, 1.0 );
944    ctx->Current.RasterPosValid = GL_TRUE;
945 }
946 
947 /*@}*/
948