• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2012 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "art_method-inl.h"
18 #include "base/callee_save_type.h"
19 #include "base/enums.h"
20 #include "callee_save_frame.h"
21 #include "common_throws.h"
22 #include "debugger.h"
23 #include "dex_file-inl.h"
24 #include "dex_instruction-inl.h"
25 #include "entrypoints/entrypoint_utils-inl.h"
26 #include "entrypoints/runtime_asm_entrypoints.h"
27 #include "gc/accounting/card_table-inl.h"
28 #include "imt_conflict_table.h"
29 #include "imtable-inl.h"
30 #include "interpreter/interpreter.h"
31 #include "instrumentation.h"
32 #include "linear_alloc.h"
33 #include "method_bss_mapping.h"
34 #include "method_handles.h"
35 #include "method_reference.h"
36 #include "mirror/class-inl.h"
37 #include "mirror/dex_cache-inl.h"
38 #include "mirror/method.h"
39 #include "mirror/method_handle_impl.h"
40 #include "mirror/object-inl.h"
41 #include "mirror/object_array-inl.h"
42 #include "oat_file.h"
43 #include "oat_quick_method_header.h"
44 #include "quick_exception_handler.h"
45 #include "runtime.h"
46 #include "scoped_thread_state_change-inl.h"
47 #include "stack.h"
48 #include "thread-inl.h"
49 #include "well_known_classes.h"
50 
51 namespace art {
52 
53 // Visits the arguments as saved to the stack by a CalleeSaveType::kRefAndArgs callee save frame.
54 class QuickArgumentVisitor {
55   // Number of bytes for each out register in the caller method's frame.
56   static constexpr size_t kBytesStackArgLocation = 4;
57   // Frame size in bytes of a callee-save frame for RefsAndArgs.
58   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize =
59       GetCalleeSaveFrameSize(kRuntimeISA, CalleeSaveType::kSaveRefsAndArgs);
60 #if defined(__arm__)
61   // The callee save frame is pointed to by SP.
62   // | argN       |  |
63   // | ...        |  |
64   // | arg4       |  |
65   // | arg3 spill |  |  Caller's frame
66   // | arg2 spill |  |
67   // | arg1 spill |  |
68   // | Method*    | ---
69   // | LR         |
70   // | ...        |    4x6 bytes callee saves
71   // | R3         |
72   // | R2         |
73   // | R1         |
74   // | S15        |
75   // | :          |
76   // | S0         |
77   // |            |    4x2 bytes padding
78   // | Method*    |  <- sp
79   static constexpr bool kSplitPairAcrossRegisterAndStack = kArm32QuickCodeUseSoftFloat;
80   static constexpr bool kAlignPairRegister = !kArm32QuickCodeUseSoftFloat;
81   static constexpr bool kQuickSoftFloatAbi = kArm32QuickCodeUseSoftFloat;
82   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = !kArm32QuickCodeUseSoftFloat;
83   static constexpr bool kQuickSkipOddFpRegisters = false;
84   static constexpr size_t kNumQuickGprArgs = 3;
85   static constexpr size_t kNumQuickFprArgs = kArm32QuickCodeUseSoftFloat ? 0 : 16;
86   static constexpr bool kGprFprLockstep = false;
87   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
88       arm::ArmCalleeSaveFpr1Offset(CalleeSaveType::kSaveRefsAndArgs);  // Offset of first FPR arg.
89   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
90       arm::ArmCalleeSaveGpr1Offset(CalleeSaveType::kSaveRefsAndArgs);  // Offset of first GPR arg.
91   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset =
92       arm::ArmCalleeSaveLrOffset(CalleeSaveType::kSaveRefsAndArgs);  // Offset of return address.
GprIndexToGprOffset(uint32_t gpr_index)93   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
94     return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
95   }
96 #elif defined(__aarch64__)
97   // The callee save frame is pointed to by SP.
98   // | argN       |  |
99   // | ...        |  |
100   // | arg4       |  |
101   // | arg3 spill |  |  Caller's frame
102   // | arg2 spill |  |
103   // | arg1 spill |  |
104   // | Method*    | ---
105   // | LR         |
106   // | X29        |
107   // |  :         |
108   // | X20        |
109   // | X7         |
110   // | :          |
111   // | X1         |
112   // | D7         |
113   // |  :         |
114   // | D0         |
115   // |            |    padding
116   // | Method*    |  <- sp
117   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
118   static constexpr bool kAlignPairRegister = false;
119   static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
120   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
121   static constexpr bool kQuickSkipOddFpRegisters = false;
122   static constexpr size_t kNumQuickGprArgs = 7;  // 7 arguments passed in GPRs.
123   static constexpr size_t kNumQuickFprArgs = 8;  // 8 arguments passed in FPRs.
124   static constexpr bool kGprFprLockstep = false;
125   // Offset of first FPR arg.
126   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
127       arm64::Arm64CalleeSaveFpr1Offset(CalleeSaveType::kSaveRefsAndArgs);
128   // Offset of first GPR arg.
129   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
130       arm64::Arm64CalleeSaveGpr1Offset(CalleeSaveType::kSaveRefsAndArgs);
131   // Offset of return address.
132   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset =
133       arm64::Arm64CalleeSaveLrOffset(CalleeSaveType::kSaveRefsAndArgs);
GprIndexToGprOffset(uint32_t gpr_index)134   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
135     return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
136   }
137 #elif defined(__mips__) && !defined(__LP64__)
138   // The callee save frame is pointed to by SP.
139   // | argN       |  |
140   // | ...        |  |
141   // | arg4       |  |
142   // | arg3 spill |  |  Caller's frame
143   // | arg2 spill |  |
144   // | arg1 spill |  |
145   // | Method*    | ---
146   // | RA         |
147   // | ...        |    callee saves
148   // | T1         |    arg5
149   // | T0         |    arg4
150   // | A3         |    arg3
151   // | A2         |    arg2
152   // | A1         |    arg1
153   // | F19        |
154   // | F18        |    f_arg5
155   // | F17        |
156   // | F16        |    f_arg4
157   // | F15        |
158   // | F14        |    f_arg3
159   // | F13        |
160   // | F12        |    f_arg2
161   // | F11        |
162   // | F10        |    f_arg1
163   // | F9         |
164   // | F8         |    f_arg0
165   // |            |    padding
166   // | A0/Method* |  <- sp
167   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
168   static constexpr bool kAlignPairRegister = true;
169   static constexpr bool kQuickSoftFloatAbi = false;
170   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
171   static constexpr bool kQuickSkipOddFpRegisters = true;
172   static constexpr size_t kNumQuickGprArgs = 5;   // 5 arguments passed in GPRs.
173   static constexpr size_t kNumQuickFprArgs = 12;  // 6 arguments passed in FPRs. Floats can be
174                                                   // passed only in even numbered registers and each
175                                                   // double occupies two registers.
176   static constexpr bool kGprFprLockstep = false;
177   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 8;  // Offset of first FPR arg.
178   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 56;  // Offset of first GPR arg.
179   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 108;  // Offset of return address.
GprIndexToGprOffset(uint32_t gpr_index)180   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
181     return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
182   }
183 #elif defined(__mips__) && defined(__LP64__)
184   // The callee save frame is pointed to by SP.
185   // | argN       |  |
186   // | ...        |  |
187   // | arg4       |  |
188   // | arg3 spill |  |  Caller's frame
189   // | arg2 spill |  |
190   // | arg1 spill |  |
191   // | Method*    | ---
192   // | RA         |
193   // | ...        |    callee saves
194   // | A7         |    arg7
195   // | A6         |    arg6
196   // | A5         |    arg5
197   // | A4         |    arg4
198   // | A3         |    arg3
199   // | A2         |    arg2
200   // | A1         |    arg1
201   // | F19        |    f_arg7
202   // | F18        |    f_arg6
203   // | F17        |    f_arg5
204   // | F16        |    f_arg4
205   // | F15        |    f_arg3
206   // | F14        |    f_arg2
207   // | F13        |    f_arg1
208   // | F12        |    f_arg0
209   // |            |    padding
210   // | A0/Method* |  <- sp
211   // NOTE: for Mip64, when A0 is skipped, F12 is also skipped.
212   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
213   static constexpr bool kAlignPairRegister = false;
214   static constexpr bool kQuickSoftFloatAbi = false;
215   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
216   static constexpr bool kQuickSkipOddFpRegisters = false;
217   static constexpr size_t kNumQuickGprArgs = 7;  // 7 arguments passed in GPRs.
218   static constexpr size_t kNumQuickFprArgs = 7;  // 7 arguments passed in FPRs.
219   static constexpr bool kGprFprLockstep = true;
220 
221   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 24;  // Offset of first FPR arg (F13).
222   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80;  // Offset of first GPR arg (A1).
223   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 200;  // Offset of return address.
GprIndexToGprOffset(uint32_t gpr_index)224   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
225     return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
226   }
227 #elif defined(__i386__)
228   // The callee save frame is pointed to by SP.
229   // | argN        |  |
230   // | ...         |  |
231   // | arg4        |  |
232   // | arg3 spill  |  |  Caller's frame
233   // | arg2 spill  |  |
234   // | arg1 spill  |  |
235   // | Method*     | ---
236   // | Return      |
237   // | EBP,ESI,EDI |    callee saves
238   // | EBX         |    arg3
239   // | EDX         |    arg2
240   // | ECX         |    arg1
241   // | XMM3        |    float arg 4
242   // | XMM2        |    float arg 3
243   // | XMM1        |    float arg 2
244   // | XMM0        |    float arg 1
245   // | EAX/Method* |  <- sp
246   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
247   static constexpr bool kAlignPairRegister = false;
248   static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
249   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
250   static constexpr bool kQuickSkipOddFpRegisters = false;
251   static constexpr size_t kNumQuickGprArgs = 3;  // 3 arguments passed in GPRs.
252   static constexpr size_t kNumQuickFprArgs = 4;  // 4 arguments passed in FPRs.
253   static constexpr bool kGprFprLockstep = false;
254   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 4;  // Offset of first FPR arg.
255   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4 + 4*8;  // Offset of first GPR arg.
256   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 28 + 4*8;  // Offset of return address.
GprIndexToGprOffset(uint32_t gpr_index)257   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
258     return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
259   }
260 #elif defined(__x86_64__)
261   // The callee save frame is pointed to by SP.
262   // | argN            |  |
263   // | ...             |  |
264   // | reg. arg spills |  |  Caller's frame
265   // | Method*         | ---
266   // | Return          |
267   // | R15             |    callee save
268   // | R14             |    callee save
269   // | R13             |    callee save
270   // | R12             |    callee save
271   // | R9              |    arg5
272   // | R8              |    arg4
273   // | RSI/R6          |    arg1
274   // | RBP/R5          |    callee save
275   // | RBX/R3          |    callee save
276   // | RDX/R2          |    arg2
277   // | RCX/R1          |    arg3
278   // | XMM7            |    float arg 8
279   // | XMM6            |    float arg 7
280   // | XMM5            |    float arg 6
281   // | XMM4            |    float arg 5
282   // | XMM3            |    float arg 4
283   // | XMM2            |    float arg 3
284   // | XMM1            |    float arg 2
285   // | XMM0            |    float arg 1
286   // | Padding         |
287   // | RDI/Method*     |  <- sp
288   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
289   static constexpr bool kAlignPairRegister = false;
290   static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
291   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
292   static constexpr bool kQuickSkipOddFpRegisters = false;
293   static constexpr size_t kNumQuickGprArgs = 5;  // 5 arguments passed in GPRs.
294   static constexpr size_t kNumQuickFprArgs = 8;  // 8 arguments passed in FPRs.
295   static constexpr bool kGprFprLockstep = false;
296   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 16;  // Offset of first FPR arg.
297   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80 + 4*8;  // Offset of first GPR arg.
298   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 168 + 4*8;  // Offset of return address.
GprIndexToGprOffset(uint32_t gpr_index)299   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
300     switch (gpr_index) {
301       case 0: return (4 * GetBytesPerGprSpillLocation(kRuntimeISA));
302       case 1: return (1 * GetBytesPerGprSpillLocation(kRuntimeISA));
303       case 2: return (0 * GetBytesPerGprSpillLocation(kRuntimeISA));
304       case 3: return (5 * GetBytesPerGprSpillLocation(kRuntimeISA));
305       case 4: return (6 * GetBytesPerGprSpillLocation(kRuntimeISA));
306       default:
307       LOG(FATAL) << "Unexpected GPR index: " << gpr_index;
308       return 0;
309     }
310   }
311 #else
312 #error "Unsupported architecture"
313 #endif
314 
315  public:
316   // Special handling for proxy methods. Proxy methods are instance methods so the
317   // 'this' object is the 1st argument. They also have the same frame layout as the
318   // kRefAndArgs runtime method. Since 'this' is a reference, it is located in the
319   // 1st GPR.
GetProxyThisObject(ArtMethod ** sp)320   static mirror::Object* GetProxyThisObject(ArtMethod** sp)
321       REQUIRES_SHARED(Locks::mutator_lock_) {
322     CHECK((*sp)->IsProxyMethod());
323     CHECK_GT(kNumQuickGprArgs, 0u);
324     constexpr uint32_t kThisGprIndex = 0u;  // 'this' is in the 1st GPR.
325     size_t this_arg_offset = kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset +
326         GprIndexToGprOffset(kThisGprIndex);
327     uint8_t* this_arg_address = reinterpret_cast<uint8_t*>(sp) + this_arg_offset;
328     return reinterpret_cast<StackReference<mirror::Object>*>(this_arg_address)->AsMirrorPtr();
329   }
330 
GetCallingMethod(ArtMethod ** sp)331   static ArtMethod* GetCallingMethod(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
332     DCHECK((*sp)->IsCalleeSaveMethod());
333     return GetCalleeSaveMethodCaller(sp, CalleeSaveType::kSaveRefsAndArgs);
334   }
335 
GetOuterMethod(ArtMethod ** sp)336   static ArtMethod* GetOuterMethod(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
337     DCHECK((*sp)->IsCalleeSaveMethod());
338     uint8_t* previous_sp =
339         reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize;
340     return *reinterpret_cast<ArtMethod**>(previous_sp);
341   }
342 
GetCallingDexPc(ArtMethod ** sp)343   static uint32_t GetCallingDexPc(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
344     DCHECK((*sp)->IsCalleeSaveMethod());
345     const size_t callee_frame_size = GetCalleeSaveFrameSize(kRuntimeISA,
346                                                             CalleeSaveType::kSaveRefsAndArgs);
347     ArtMethod** caller_sp = reinterpret_cast<ArtMethod**>(
348         reinterpret_cast<uintptr_t>(sp) + callee_frame_size);
349     uintptr_t outer_pc = QuickArgumentVisitor::GetCallingPc(sp);
350     const OatQuickMethodHeader* current_code = (*caller_sp)->GetOatQuickMethodHeader(outer_pc);
351     uintptr_t outer_pc_offset = current_code->NativeQuickPcOffset(outer_pc);
352 
353     if (current_code->IsOptimized()) {
354       CodeInfo code_info = current_code->GetOptimizedCodeInfo();
355       CodeInfoEncoding encoding = code_info.ExtractEncoding();
356       StackMap stack_map = code_info.GetStackMapForNativePcOffset(outer_pc_offset, encoding);
357       DCHECK(stack_map.IsValid());
358       if (stack_map.HasInlineInfo(encoding.stack_map.encoding)) {
359         InlineInfo inline_info = code_info.GetInlineInfoOf(stack_map, encoding);
360         return inline_info.GetDexPcAtDepth(encoding.inline_info.encoding,
361                                            inline_info.GetDepth(encoding.inline_info.encoding)-1);
362       } else {
363         return stack_map.GetDexPc(encoding.stack_map.encoding);
364       }
365     } else {
366       return current_code->ToDexPc(*caller_sp, outer_pc);
367     }
368   }
369 
GetInvokeType(ArtMethod ** sp,InvokeType * invoke_type,uint32_t * dex_method_index)370   static bool GetInvokeType(ArtMethod** sp, InvokeType* invoke_type, uint32_t* dex_method_index)
371       REQUIRES_SHARED(Locks::mutator_lock_) {
372     DCHECK((*sp)->IsCalleeSaveMethod());
373     const size_t callee_frame_size = GetCalleeSaveFrameSize(kRuntimeISA,
374                                                             CalleeSaveType::kSaveRefsAndArgs);
375     ArtMethod** caller_sp = reinterpret_cast<ArtMethod**>(
376         reinterpret_cast<uintptr_t>(sp) + callee_frame_size);
377     uintptr_t outer_pc = QuickArgumentVisitor::GetCallingPc(sp);
378     const OatQuickMethodHeader* current_code = (*caller_sp)->GetOatQuickMethodHeader(outer_pc);
379     if (!current_code->IsOptimized()) {
380       return false;
381     }
382     uintptr_t outer_pc_offset = current_code->NativeQuickPcOffset(outer_pc);
383     CodeInfo code_info = current_code->GetOptimizedCodeInfo();
384     CodeInfoEncoding encoding = code_info.ExtractEncoding();
385     MethodInfo method_info = current_code->GetOptimizedMethodInfo();
386     InvokeInfo invoke(code_info.GetInvokeInfoForNativePcOffset(outer_pc_offset, encoding));
387     if (invoke.IsValid()) {
388       *invoke_type = static_cast<InvokeType>(invoke.GetInvokeType(encoding.invoke_info.encoding));
389       *dex_method_index = invoke.GetMethodIndex(encoding.invoke_info.encoding, method_info);
390       return true;
391     }
392     return false;
393   }
394 
395   // For the given quick ref and args quick frame, return the caller's PC.
GetCallingPc(ArtMethod ** sp)396   static uintptr_t GetCallingPc(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
397     DCHECK((*sp)->IsCalleeSaveMethod());
398     uint8_t* lr = reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_LrOffset;
399     return *reinterpret_cast<uintptr_t*>(lr);
400   }
401 
QuickArgumentVisitor(ArtMethod ** sp,bool is_static,const char * shorty,uint32_t shorty_len)402   QuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
403                        uint32_t shorty_len) REQUIRES_SHARED(Locks::mutator_lock_) :
404           is_static_(is_static), shorty_(shorty), shorty_len_(shorty_len),
405           gpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset),
406           fpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset),
407           stack_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize
408               + sizeof(ArtMethod*)),  // Skip ArtMethod*.
409           gpr_index_(0), fpr_index_(0), fpr_double_index_(0), stack_index_(0),
410           cur_type_(Primitive::kPrimVoid), is_split_long_or_double_(false) {
411     static_assert(kQuickSoftFloatAbi == (kNumQuickFprArgs == 0),
412                   "Number of Quick FPR arguments unexpected");
413     static_assert(!(kQuickSoftFloatAbi && kQuickDoubleRegAlignedFloatBackFilled),
414                   "Double alignment unexpected");
415     // For register alignment, we want to assume that counters(fpr_double_index_) are even if the
416     // next register is even.
417     static_assert(!kQuickDoubleRegAlignedFloatBackFilled || kNumQuickFprArgs % 2 == 0,
418                   "Number of Quick FPR arguments not even");
419     DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
420   }
421 
~QuickArgumentVisitor()422   virtual ~QuickArgumentVisitor() {}
423 
424   virtual void Visit() = 0;
425 
GetParamPrimitiveType() const426   Primitive::Type GetParamPrimitiveType() const {
427     return cur_type_;
428   }
429 
GetParamAddress() const430   uint8_t* GetParamAddress() const {
431     if (!kQuickSoftFloatAbi) {
432       Primitive::Type type = GetParamPrimitiveType();
433       if (UNLIKELY((type == Primitive::kPrimDouble) || (type == Primitive::kPrimFloat))) {
434         if (type == Primitive::kPrimDouble && kQuickDoubleRegAlignedFloatBackFilled) {
435           if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
436             return fpr_args_ + (fpr_double_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
437           }
438         } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
439           return fpr_args_ + (fpr_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
440         }
441         return stack_args_ + (stack_index_ * kBytesStackArgLocation);
442       }
443     }
444     if (gpr_index_ < kNumQuickGprArgs) {
445       return gpr_args_ + GprIndexToGprOffset(gpr_index_);
446     }
447     return stack_args_ + (stack_index_ * kBytesStackArgLocation);
448   }
449 
IsSplitLongOrDouble() const450   bool IsSplitLongOrDouble() const {
451     if ((GetBytesPerGprSpillLocation(kRuntimeISA) == 4) ||
452         (GetBytesPerFprSpillLocation(kRuntimeISA) == 4)) {
453       return is_split_long_or_double_;
454     } else {
455       return false;  // An optimization for when GPR and FPRs are 64bit.
456     }
457   }
458 
IsParamAReference() const459   bool IsParamAReference() const {
460     return GetParamPrimitiveType() == Primitive::kPrimNot;
461   }
462 
IsParamALongOrDouble() const463   bool IsParamALongOrDouble() const {
464     Primitive::Type type = GetParamPrimitiveType();
465     return type == Primitive::kPrimLong || type == Primitive::kPrimDouble;
466   }
467 
ReadSplitLongParam() const468   uint64_t ReadSplitLongParam() const {
469     // The splitted long is always available through the stack.
470     return *reinterpret_cast<uint64_t*>(stack_args_
471         + stack_index_ * kBytesStackArgLocation);
472   }
473 
IncGprIndex()474   void IncGprIndex() {
475     gpr_index_++;
476     if (kGprFprLockstep) {
477       fpr_index_++;
478     }
479   }
480 
IncFprIndex()481   void IncFprIndex() {
482     fpr_index_++;
483     if (kGprFprLockstep) {
484       gpr_index_++;
485     }
486   }
487 
VisitArguments()488   void VisitArguments() REQUIRES_SHARED(Locks::mutator_lock_) {
489     // (a) 'stack_args_' should point to the first method's argument
490     // (b) whatever the argument type it is, the 'stack_index_' should
491     //     be moved forward along with every visiting.
492     gpr_index_ = 0;
493     fpr_index_ = 0;
494     if (kQuickDoubleRegAlignedFloatBackFilled) {
495       fpr_double_index_ = 0;
496     }
497     stack_index_ = 0;
498     if (!is_static_) {  // Handle this.
499       cur_type_ = Primitive::kPrimNot;
500       is_split_long_or_double_ = false;
501       Visit();
502       stack_index_++;
503       if (kNumQuickGprArgs > 0) {
504         IncGprIndex();
505       }
506     }
507     for (uint32_t shorty_index = 1; shorty_index < shorty_len_; ++shorty_index) {
508       cur_type_ = Primitive::GetType(shorty_[shorty_index]);
509       switch (cur_type_) {
510         case Primitive::kPrimNot:
511         case Primitive::kPrimBoolean:
512         case Primitive::kPrimByte:
513         case Primitive::kPrimChar:
514         case Primitive::kPrimShort:
515         case Primitive::kPrimInt:
516           is_split_long_or_double_ = false;
517           Visit();
518           stack_index_++;
519           if (gpr_index_ < kNumQuickGprArgs) {
520             IncGprIndex();
521           }
522           break;
523         case Primitive::kPrimFloat:
524           is_split_long_or_double_ = false;
525           Visit();
526           stack_index_++;
527           if (kQuickSoftFloatAbi) {
528             if (gpr_index_ < kNumQuickGprArgs) {
529               IncGprIndex();
530             }
531           } else {
532             if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
533               IncFprIndex();
534               if (kQuickDoubleRegAlignedFloatBackFilled) {
535                 // Double should not overlap with float.
536                 // For example, if fpr_index_ = 3, fpr_double_index_ should be at least 4.
537                 fpr_double_index_ = std::max(fpr_double_index_, RoundUp(fpr_index_, 2));
538                 // Float should not overlap with double.
539                 if (fpr_index_ % 2 == 0) {
540                   fpr_index_ = std::max(fpr_double_index_, fpr_index_);
541                 }
542               } else if (kQuickSkipOddFpRegisters) {
543                 IncFprIndex();
544               }
545             }
546           }
547           break;
548         case Primitive::kPrimDouble:
549         case Primitive::kPrimLong:
550           if (kQuickSoftFloatAbi || (cur_type_ == Primitive::kPrimLong)) {
551             if (cur_type_ == Primitive::kPrimLong &&
552 #if defined(__mips__) && !defined(__LP64__)
553                 (gpr_index_ == 0 || gpr_index_ == 2) &&
554 #else
555                 gpr_index_ == 0 &&
556 #endif
557                 kAlignPairRegister) {
558               // Currently, this is only for ARM and MIPS, where we align long parameters with
559               // even-numbered registers by skipping R1 (on ARM) or A1(A3) (on MIPS) and using
560               // R2 (on ARM) or A2(T0) (on MIPS) instead.
561               IncGprIndex();
562             }
563             is_split_long_or_double_ = (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) &&
564                 ((gpr_index_ + 1) == kNumQuickGprArgs);
565             if (!kSplitPairAcrossRegisterAndStack && is_split_long_or_double_) {
566               // We don't want to split this. Pass over this register.
567               gpr_index_++;
568               is_split_long_or_double_ = false;
569             }
570             Visit();
571             if (kBytesStackArgLocation == 4) {
572               stack_index_+= 2;
573             } else {
574               CHECK_EQ(kBytesStackArgLocation, 8U);
575               stack_index_++;
576             }
577             if (gpr_index_ < kNumQuickGprArgs) {
578               IncGprIndex();
579               if (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) {
580                 if (gpr_index_ < kNumQuickGprArgs) {
581                   IncGprIndex();
582                 }
583               }
584             }
585           } else {
586             is_split_long_or_double_ = (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) &&
587                 ((fpr_index_ + 1) == kNumQuickFprArgs) && !kQuickDoubleRegAlignedFloatBackFilled;
588             Visit();
589             if (kBytesStackArgLocation == 4) {
590               stack_index_+= 2;
591             } else {
592               CHECK_EQ(kBytesStackArgLocation, 8U);
593               stack_index_++;
594             }
595             if (kQuickDoubleRegAlignedFloatBackFilled) {
596               if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
597                 fpr_double_index_ += 2;
598                 // Float should not overlap with double.
599                 if (fpr_index_ % 2 == 0) {
600                   fpr_index_ = std::max(fpr_double_index_, fpr_index_);
601                 }
602               }
603             } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
604               IncFprIndex();
605               if (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) {
606                 if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
607                   IncFprIndex();
608                 }
609               }
610             }
611           }
612           break;
613         default:
614           LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty_;
615       }
616     }
617   }
618 
619  protected:
620   const bool is_static_;
621   const char* const shorty_;
622   const uint32_t shorty_len_;
623 
624  private:
625   uint8_t* const gpr_args_;  // Address of GPR arguments in callee save frame.
626   uint8_t* const fpr_args_;  // Address of FPR arguments in callee save frame.
627   uint8_t* const stack_args_;  // Address of stack arguments in caller's frame.
628   uint32_t gpr_index_;  // Index into spilled GPRs.
629   // Index into spilled FPRs.
630   // In case kQuickDoubleRegAlignedFloatBackFilled, it may index a hole while fpr_double_index_
631   // holds a higher register number.
632   uint32_t fpr_index_;
633   // Index into spilled FPRs for aligned double.
634   // Only used when kQuickDoubleRegAlignedFloatBackFilled. Next available double register indexed in
635   // terms of singles, may be behind fpr_index.
636   uint32_t fpr_double_index_;
637   uint32_t stack_index_;  // Index into arguments on the stack.
638   // The current type of argument during VisitArguments.
639   Primitive::Type cur_type_;
640   // Does a 64bit parameter straddle the register and stack arguments?
641   bool is_split_long_or_double_;
642 };
643 
644 // Returns the 'this' object of a proxy method. This function is only used by StackVisitor. It
645 // allows to use the QuickArgumentVisitor constants without moving all the code in its own module.
artQuickGetProxyThisObject(ArtMethod ** sp)646 extern "C" mirror::Object* artQuickGetProxyThisObject(ArtMethod** sp)
647     REQUIRES_SHARED(Locks::mutator_lock_) {
648   return QuickArgumentVisitor::GetProxyThisObject(sp);
649 }
650 
651 // Visits arguments on the stack placing them into the shadow frame.
652 class BuildQuickShadowFrameVisitor FINAL : public QuickArgumentVisitor {
653  public:
BuildQuickShadowFrameVisitor(ArtMethod ** sp,bool is_static,const char * shorty,uint32_t shorty_len,ShadowFrame * sf,size_t first_arg_reg)654   BuildQuickShadowFrameVisitor(ArtMethod** sp, bool is_static, const char* shorty,
655                                uint32_t shorty_len, ShadowFrame* sf, size_t first_arg_reg) :
656       QuickArgumentVisitor(sp, is_static, shorty, shorty_len), sf_(sf), cur_reg_(first_arg_reg) {}
657 
658   void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE;
659 
660  private:
661   ShadowFrame* const sf_;
662   uint32_t cur_reg_;
663 
664   DISALLOW_COPY_AND_ASSIGN(BuildQuickShadowFrameVisitor);
665 };
666 
Visit()667 void BuildQuickShadowFrameVisitor::Visit() {
668   Primitive::Type type = GetParamPrimitiveType();
669   switch (type) {
670     case Primitive::kPrimLong:  // Fall-through.
671     case Primitive::kPrimDouble:
672       if (IsSplitLongOrDouble()) {
673         sf_->SetVRegLong(cur_reg_, ReadSplitLongParam());
674       } else {
675         sf_->SetVRegLong(cur_reg_, *reinterpret_cast<jlong*>(GetParamAddress()));
676       }
677       ++cur_reg_;
678       break;
679     case Primitive::kPrimNot: {
680         StackReference<mirror::Object>* stack_ref =
681             reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
682         sf_->SetVRegReference(cur_reg_, stack_ref->AsMirrorPtr());
683       }
684       break;
685     case Primitive::kPrimBoolean:  // Fall-through.
686     case Primitive::kPrimByte:     // Fall-through.
687     case Primitive::kPrimChar:     // Fall-through.
688     case Primitive::kPrimShort:    // Fall-through.
689     case Primitive::kPrimInt:      // Fall-through.
690     case Primitive::kPrimFloat:
691       sf_->SetVReg(cur_reg_, *reinterpret_cast<jint*>(GetParamAddress()));
692       break;
693     case Primitive::kPrimVoid:
694       LOG(FATAL) << "UNREACHABLE";
695       UNREACHABLE();
696   }
697   ++cur_reg_;
698 }
699 
artQuickToInterpreterBridge(ArtMethod * method,Thread * self,ArtMethod ** sp)700 extern "C" uint64_t artQuickToInterpreterBridge(ArtMethod* method, Thread* self, ArtMethod** sp)
701     REQUIRES_SHARED(Locks::mutator_lock_) {
702   // Ensure we don't get thread suspension until the object arguments are safely in the shadow
703   // frame.
704   ScopedQuickEntrypointChecks sqec(self);
705 
706   if (UNLIKELY(!method->IsInvokable())) {
707     method->ThrowInvocationTimeError();
708     return 0;
709   }
710 
711   JValue tmp_value;
712   ShadowFrame* deopt_frame = self->PopStackedShadowFrame(
713       StackedShadowFrameType::kDeoptimizationShadowFrame, false);
714   ManagedStack fragment;
715 
716   DCHECK(!method->IsNative()) << method->PrettyMethod();
717   uint32_t shorty_len = 0;
718   ArtMethod* non_proxy_method = method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
719   const DexFile::CodeItem* code_item = non_proxy_method->GetCodeItem();
720   DCHECK(code_item != nullptr) << method->PrettyMethod();
721   const char* shorty = non_proxy_method->GetShorty(&shorty_len);
722 
723   JValue result;
724 
725   if (deopt_frame != nullptr) {
726     // Coming from partial-fragment deopt.
727 
728     if (kIsDebugBuild) {
729       // Sanity-check: are the methods as expected? We check that the last shadow frame (the bottom
730       // of the call-stack) corresponds to the called method.
731       ShadowFrame* linked = deopt_frame;
732       while (linked->GetLink() != nullptr) {
733         linked = linked->GetLink();
734       }
735       CHECK_EQ(method, linked->GetMethod()) << method->PrettyMethod() << " "
736           << ArtMethod::PrettyMethod(linked->GetMethod());
737     }
738 
739     if (VLOG_IS_ON(deopt)) {
740       // Print out the stack to verify that it was a partial-fragment deopt.
741       LOG(INFO) << "Continue-ing from deopt. Stack is:";
742       QuickExceptionHandler::DumpFramesWithType(self, true);
743     }
744 
745     ObjPtr<mirror::Throwable> pending_exception;
746     bool from_code = false;
747     self->PopDeoptimizationContext(&result, &pending_exception, /* out */ &from_code);
748 
749     // Push a transition back into managed code onto the linked list in thread.
750     self->PushManagedStackFragment(&fragment);
751 
752     // Ensure that the stack is still in order.
753     if (kIsDebugBuild) {
754       class DummyStackVisitor : public StackVisitor {
755        public:
756         explicit DummyStackVisitor(Thread* self_in) REQUIRES_SHARED(Locks::mutator_lock_)
757             : StackVisitor(self_in, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames) {}
758 
759         bool VisitFrame() OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
760           // Nothing to do here. In a debug build, SanityCheckFrame will do the work in the walking
761           // logic. Just always say we want to continue.
762           return true;
763         }
764       };
765       DummyStackVisitor dsv(self);
766       dsv.WalkStack();
767     }
768 
769     // Restore the exception that was pending before deoptimization then interpret the
770     // deoptimized frames.
771     if (pending_exception != nullptr) {
772       self->SetException(pending_exception);
773     }
774     interpreter::EnterInterpreterFromDeoptimize(self, deopt_frame, from_code, &result);
775   } else {
776     const char* old_cause = self->StartAssertNoThreadSuspension(
777         "Building interpreter shadow frame");
778     uint16_t num_regs = code_item->registers_size_;
779     // No last shadow coming from quick.
780     ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
781         CREATE_SHADOW_FRAME(num_regs, /* link */ nullptr, method, /* dex pc */ 0);
782     ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
783     size_t first_arg_reg = code_item->registers_size_ - code_item->ins_size_;
784     BuildQuickShadowFrameVisitor shadow_frame_builder(sp, method->IsStatic(), shorty, shorty_len,
785                                                       shadow_frame, first_arg_reg);
786     shadow_frame_builder.VisitArguments();
787     const bool needs_initialization =
788         method->IsStatic() && !method->GetDeclaringClass()->IsInitialized();
789     // Push a transition back into managed code onto the linked list in thread.
790     self->PushManagedStackFragment(&fragment);
791     self->PushShadowFrame(shadow_frame);
792     self->EndAssertNoThreadSuspension(old_cause);
793 
794     if (needs_initialization) {
795       // Ensure static method's class is initialized.
796       StackHandleScope<1> hs(self);
797       Handle<mirror::Class> h_class(hs.NewHandle(shadow_frame->GetMethod()->GetDeclaringClass()));
798       if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, h_class, true, true)) {
799         DCHECK(Thread::Current()->IsExceptionPending())
800             << shadow_frame->GetMethod()->PrettyMethod();
801         self->PopManagedStackFragment(fragment);
802         return 0;
803       }
804     }
805 
806     result = interpreter::EnterInterpreterFromEntryPoint(self, code_item, shadow_frame);
807   }
808 
809   // Pop transition.
810   self->PopManagedStackFragment(fragment);
811 
812   // Request a stack deoptimization if needed
813   ArtMethod* caller = QuickArgumentVisitor::GetCallingMethod(sp);
814   uintptr_t caller_pc = QuickArgumentVisitor::GetCallingPc(sp);
815   // If caller_pc is the instrumentation exit stub, the stub will check to see if deoptimization
816   // should be done and it knows the real return pc.
817   if (UNLIKELY(caller_pc != reinterpret_cast<uintptr_t>(GetQuickInstrumentationExitPc()) &&
818                Dbg::IsForcedInterpreterNeededForUpcall(self, caller))) {
819     if (!Runtime::Current()->IsAsyncDeoptimizeable(caller_pc)) {
820       LOG(WARNING) << "Got a deoptimization request on un-deoptimizable method "
821                    << caller->PrettyMethod();
822     } else {
823       // Push the context of the deoptimization stack so we can restore the return value and the
824       // exception before executing the deoptimized frames.
825       self->PushDeoptimizationContext(
826           result, shorty[0] == 'L', /* from_code */ false, self->GetException());
827 
828       // Set special exception to cause deoptimization.
829       self->SetException(Thread::GetDeoptimizationException());
830     }
831   }
832 
833   // No need to restore the args since the method has already been run by the interpreter.
834   return result.GetJ();
835 }
836 
837 // Visits arguments on the stack placing them into the args vector, Object* arguments are converted
838 // to jobjects.
839 class BuildQuickArgumentVisitor FINAL : public QuickArgumentVisitor {
840  public:
BuildQuickArgumentVisitor(ArtMethod ** sp,bool is_static,const char * shorty,uint32_t shorty_len,ScopedObjectAccessUnchecked * soa,std::vector<jvalue> * args)841   BuildQuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty, uint32_t shorty_len,
842                             ScopedObjectAccessUnchecked* soa, std::vector<jvalue>* args) :
843       QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa), args_(args) {}
844 
845   void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE;
846 
847   void FixupReferences() REQUIRES_SHARED(Locks::mutator_lock_);
848 
849  private:
850   ScopedObjectAccessUnchecked* const soa_;
851   std::vector<jvalue>* const args_;
852   // References which we must update when exiting in case the GC moved the objects.
853   std::vector<std::pair<jobject, StackReference<mirror::Object>*>> references_;
854 
855   DISALLOW_COPY_AND_ASSIGN(BuildQuickArgumentVisitor);
856 };
857 
Visit()858 void BuildQuickArgumentVisitor::Visit() {
859   jvalue val;
860   Primitive::Type type = GetParamPrimitiveType();
861   switch (type) {
862     case Primitive::kPrimNot: {
863       StackReference<mirror::Object>* stack_ref =
864           reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
865       val.l = soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
866       references_.push_back(std::make_pair(val.l, stack_ref));
867       break;
868     }
869     case Primitive::kPrimLong:  // Fall-through.
870     case Primitive::kPrimDouble:
871       if (IsSplitLongOrDouble()) {
872         val.j = ReadSplitLongParam();
873       } else {
874         val.j = *reinterpret_cast<jlong*>(GetParamAddress());
875       }
876       break;
877     case Primitive::kPrimBoolean:  // Fall-through.
878     case Primitive::kPrimByte:     // Fall-through.
879     case Primitive::kPrimChar:     // Fall-through.
880     case Primitive::kPrimShort:    // Fall-through.
881     case Primitive::kPrimInt:      // Fall-through.
882     case Primitive::kPrimFloat:
883       val.i = *reinterpret_cast<jint*>(GetParamAddress());
884       break;
885     case Primitive::kPrimVoid:
886       LOG(FATAL) << "UNREACHABLE";
887       UNREACHABLE();
888   }
889   args_->push_back(val);
890 }
891 
FixupReferences()892 void BuildQuickArgumentVisitor::FixupReferences() {
893   // Fixup any references which may have changed.
894   for (const auto& pair : references_) {
895     pair.second->Assign(soa_->Decode<mirror::Object>(pair.first));
896     soa_->Env()->DeleteLocalRef(pair.first);
897   }
898 }
899 // Handler for invocation on proxy methods. On entry a frame will exist for the proxy object method
900 // which is responsible for recording callee save registers. We explicitly place into jobjects the
901 // incoming reference arguments (so they survive GC). We invoke the invocation handler, which is a
902 // field within the proxy object, which will box the primitive arguments and deal with error cases.
artQuickProxyInvokeHandler(ArtMethod * proxy_method,mirror::Object * receiver,Thread * self,ArtMethod ** sp)903 extern "C" uint64_t artQuickProxyInvokeHandler(
904     ArtMethod* proxy_method, mirror::Object* receiver, Thread* self, ArtMethod** sp)
905     REQUIRES_SHARED(Locks::mutator_lock_) {
906   DCHECK(proxy_method->IsProxyMethod()) << proxy_method->PrettyMethod();
907   DCHECK(receiver->GetClass()->IsProxyClass()) << proxy_method->PrettyMethod();
908   // Ensure we don't get thread suspension until the object arguments are safely in jobjects.
909   const char* old_cause =
910       self->StartAssertNoThreadSuspension("Adding to IRT proxy object arguments");
911   // Register the top of the managed stack, making stack crawlable.
912   DCHECK_EQ((*sp), proxy_method) << proxy_method->PrettyMethod();
913   self->VerifyStack();
914   // Start new JNI local reference state.
915   JNIEnvExt* env = self->GetJniEnv();
916   ScopedObjectAccessUnchecked soa(env);
917   ScopedJniEnvLocalRefState env_state(env);
918   // Create local ref. copies of proxy method and the receiver.
919   jobject rcvr_jobj = soa.AddLocalReference<jobject>(receiver);
920 
921   // Placing arguments into args vector and remove the receiver.
922   ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
923   CHECK(!non_proxy_method->IsStatic()) << proxy_method->PrettyMethod() << " "
924                                        << non_proxy_method->PrettyMethod();
925   std::vector<jvalue> args;
926   uint32_t shorty_len = 0;
927   const char* shorty = non_proxy_method->GetShorty(&shorty_len);
928   BuildQuickArgumentVisitor local_ref_visitor(sp, false, shorty, shorty_len, &soa, &args);
929 
930   local_ref_visitor.VisitArguments();
931   DCHECK_GT(args.size(), 0U) << proxy_method->PrettyMethod();
932   args.erase(args.begin());
933 
934   // Convert proxy method into expected interface method.
935   ArtMethod* interface_method = proxy_method->FindOverriddenMethod(kRuntimePointerSize);
936   DCHECK(interface_method != nullptr) << proxy_method->PrettyMethod();
937   DCHECK(!interface_method->IsProxyMethod()) << interface_method->PrettyMethod();
938   self->EndAssertNoThreadSuspension(old_cause);
939   DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
940   DCHECK(!Runtime::Current()->IsActiveTransaction());
941   jobject interface_method_jobj = soa.AddLocalReference<jobject>(
942       mirror::Method::CreateFromArtMethod<kRuntimePointerSize, false>(soa.Self(),
943                                                                       interface_method));
944 
945   // All naked Object*s should now be in jobjects, so its safe to go into the main invoke code
946   // that performs allocations.
947   JValue result = InvokeProxyInvocationHandler(soa, shorty, rcvr_jobj, interface_method_jobj, args);
948   // Restore references which might have moved.
949   local_ref_visitor.FixupReferences();
950   return result.GetJ();
951 }
952 
953 // Read object references held in arguments from quick frames and place in a JNI local references,
954 // so they don't get garbage collected.
955 class RememberForGcArgumentVisitor FINAL : public QuickArgumentVisitor {
956  public:
RememberForGcArgumentVisitor(ArtMethod ** sp,bool is_static,const char * shorty,uint32_t shorty_len,ScopedObjectAccessUnchecked * soa)957   RememberForGcArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
958                                uint32_t shorty_len, ScopedObjectAccessUnchecked* soa) :
959       QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa) {}
960 
961   void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE;
962 
963   void FixupReferences() REQUIRES_SHARED(Locks::mutator_lock_);
964 
965  private:
966   ScopedObjectAccessUnchecked* const soa_;
967   // References which we must update when exiting in case the GC moved the objects.
968   std::vector<std::pair<jobject, StackReference<mirror::Object>*> > references_;
969 
970   DISALLOW_COPY_AND_ASSIGN(RememberForGcArgumentVisitor);
971 };
972 
Visit()973 void RememberForGcArgumentVisitor::Visit() {
974   if (IsParamAReference()) {
975     StackReference<mirror::Object>* stack_ref =
976         reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
977     jobject reference =
978         soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
979     references_.push_back(std::make_pair(reference, stack_ref));
980   }
981 }
982 
FixupReferences()983 void RememberForGcArgumentVisitor::FixupReferences() {
984   // Fixup any references which may have changed.
985   for (const auto& pair : references_) {
986     pair.second->Assign(soa_->Decode<mirror::Object>(pair.first));
987     soa_->Env()->DeleteLocalRef(pair.first);
988   }
989 }
990 
artInstrumentationMethodEntryFromCode(ArtMethod * method,mirror::Object * this_object,Thread * self,ArtMethod ** sp)991 extern "C" const void* artInstrumentationMethodEntryFromCode(ArtMethod* method,
992                                                              mirror::Object* this_object,
993                                                              Thread* self,
994                                                              ArtMethod** sp)
995     REQUIRES_SHARED(Locks::mutator_lock_) {
996   const void* result;
997   // Instrumentation changes the stack. Thus, when exiting, the stack cannot be verified, so skip
998   // that part.
999   ScopedQuickEntrypointChecks sqec(self, kIsDebugBuild, false);
1000   instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
1001   if (instrumentation->IsDeoptimized(method)) {
1002     result = GetQuickToInterpreterBridge();
1003   } else {
1004     result = instrumentation->GetQuickCodeFor(method, kRuntimePointerSize);
1005     DCHECK(!Runtime::Current()->GetClassLinker()->IsQuickToInterpreterBridge(result));
1006   }
1007 
1008   bool interpreter_entry = (result == GetQuickToInterpreterBridge());
1009   bool is_static = method->IsStatic();
1010   uint32_t shorty_len;
1011   const char* shorty =
1012       method->GetInterfaceMethodIfProxy(kRuntimePointerSize)->GetShorty(&shorty_len);
1013 
1014   ScopedObjectAccessUnchecked soa(self);
1015   RememberForGcArgumentVisitor visitor(sp, is_static, shorty, shorty_len, &soa);
1016   visitor.VisitArguments();
1017 
1018   instrumentation->PushInstrumentationStackFrame(self,
1019                                                  is_static ? nullptr : this_object,
1020                                                  method,
1021                                                  QuickArgumentVisitor::GetCallingPc(sp),
1022                                                  interpreter_entry);
1023 
1024   visitor.FixupReferences();
1025   if (UNLIKELY(self->IsExceptionPending())) {
1026     return nullptr;
1027   }
1028   CHECK(result != nullptr) << method->PrettyMethod();
1029   return result;
1030 }
1031 
artInstrumentationMethodExitFromCode(Thread * self,ArtMethod ** sp,uint64_t * gpr_result,uint64_t * fpr_result)1032 extern "C" TwoWordReturn artInstrumentationMethodExitFromCode(Thread* self,
1033                                                               ArtMethod** sp,
1034                                                               uint64_t* gpr_result,
1035                                                               uint64_t* fpr_result)
1036     REQUIRES_SHARED(Locks::mutator_lock_) {
1037   DCHECK_EQ(reinterpret_cast<uintptr_t>(self), reinterpret_cast<uintptr_t>(Thread::Current()));
1038   CHECK(gpr_result != nullptr);
1039   CHECK(fpr_result != nullptr);
1040   // Instrumentation exit stub must not be entered with a pending exception.
1041   CHECK(!self->IsExceptionPending()) << "Enter instrumentation exit stub with pending exception "
1042                                      << self->GetException()->Dump();
1043   // Compute address of return PC and sanity check that it currently holds 0.
1044   size_t return_pc_offset = GetCalleeSaveReturnPcOffset(kRuntimeISA, CalleeSaveType::kSaveRefsOnly);
1045   uintptr_t* return_pc = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(sp) +
1046                                                       return_pc_offset);
1047   CHECK_EQ(*return_pc, 0U);
1048 
1049   // Pop the frame filling in the return pc. The low half of the return value is 0 when
1050   // deoptimization shouldn't be performed with the high-half having the return address. When
1051   // deoptimization should be performed the low half is zero and the high-half the address of the
1052   // deoptimization entry point.
1053   instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
1054   TwoWordReturn return_or_deoptimize_pc = instrumentation->PopInstrumentationStackFrame(
1055       self, return_pc, gpr_result, fpr_result);
1056   if (self->IsExceptionPending()) {
1057     return GetTwoWordFailureValue();
1058   }
1059   return return_or_deoptimize_pc;
1060 }
1061 
1062 // Lazily resolve a method for quick. Called by stub code.
artQuickResolutionTrampoline(ArtMethod * called,mirror::Object * receiver,Thread * self,ArtMethod ** sp)1063 extern "C" const void* artQuickResolutionTrampoline(
1064     ArtMethod* called, mirror::Object* receiver, Thread* self, ArtMethod** sp)
1065     REQUIRES_SHARED(Locks::mutator_lock_) {
1066   // The resolution trampoline stashes the resolved method into the callee-save frame to transport
1067   // it. Thus, when exiting, the stack cannot be verified (as the resolved method most likely
1068   // does not have the same stack layout as the callee-save method).
1069   ScopedQuickEntrypointChecks sqec(self, kIsDebugBuild, false);
1070   // Start new JNI local reference state
1071   JNIEnvExt* env = self->GetJniEnv();
1072   ScopedObjectAccessUnchecked soa(env);
1073   ScopedJniEnvLocalRefState env_state(env);
1074   const char* old_cause = self->StartAssertNoThreadSuspension("Quick method resolution set up");
1075 
1076   // Compute details about the called method (avoid GCs)
1077   ClassLinker* linker = Runtime::Current()->GetClassLinker();
1078   InvokeType invoke_type;
1079   MethodReference called_method(nullptr, 0);
1080   const bool called_method_known_on_entry = !called->IsRuntimeMethod();
1081   ArtMethod* caller = nullptr;
1082   if (!called_method_known_on_entry) {
1083     caller = QuickArgumentVisitor::GetCallingMethod(sp);
1084     called_method.dex_file = caller->GetDexFile();
1085 
1086     InvokeType stack_map_invoke_type;
1087     uint32_t stack_map_dex_method_idx;
1088     const bool found_stack_map = QuickArgumentVisitor::GetInvokeType(sp,
1089                                                                      &stack_map_invoke_type,
1090                                                                      &stack_map_dex_method_idx);
1091     // For debug builds, we make sure both of the paths are consistent by also looking at the dex
1092     // code.
1093     if (!found_stack_map || kIsDebugBuild) {
1094       uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
1095       const DexFile::CodeItem* code;
1096       code = caller->GetCodeItem();
1097       CHECK_LT(dex_pc, code->insns_size_in_code_units_);
1098       const Instruction* instr = Instruction::At(&code->insns_[dex_pc]);
1099       Instruction::Code instr_code = instr->Opcode();
1100       bool is_range;
1101       switch (instr_code) {
1102         case Instruction::INVOKE_DIRECT:
1103           invoke_type = kDirect;
1104           is_range = false;
1105           break;
1106         case Instruction::INVOKE_DIRECT_RANGE:
1107           invoke_type = kDirect;
1108           is_range = true;
1109           break;
1110         case Instruction::INVOKE_STATIC:
1111           invoke_type = kStatic;
1112           is_range = false;
1113           break;
1114         case Instruction::INVOKE_STATIC_RANGE:
1115           invoke_type = kStatic;
1116           is_range = true;
1117           break;
1118         case Instruction::INVOKE_SUPER:
1119           invoke_type = kSuper;
1120           is_range = false;
1121           break;
1122         case Instruction::INVOKE_SUPER_RANGE:
1123           invoke_type = kSuper;
1124           is_range = true;
1125           break;
1126         case Instruction::INVOKE_VIRTUAL:
1127           invoke_type = kVirtual;
1128           is_range = false;
1129           break;
1130         case Instruction::INVOKE_VIRTUAL_RANGE:
1131           invoke_type = kVirtual;
1132           is_range = true;
1133           break;
1134         case Instruction::INVOKE_INTERFACE:
1135           invoke_type = kInterface;
1136           is_range = false;
1137           break;
1138         case Instruction::INVOKE_INTERFACE_RANGE:
1139           invoke_type = kInterface;
1140           is_range = true;
1141           break;
1142         default:
1143           LOG(FATAL) << "Unexpected call into trampoline: " << instr->DumpString(nullptr);
1144           UNREACHABLE();
1145       }
1146       called_method.dex_method_index = (is_range) ? instr->VRegB_3rc() : instr->VRegB_35c();
1147       // Check that the invoke matches what we expected, note that this path only happens for debug
1148       // builds.
1149       if (found_stack_map) {
1150         DCHECK_EQ(stack_map_invoke_type, invoke_type);
1151         if (invoke_type != kSuper) {
1152           // Super may be sharpened.
1153           DCHECK_EQ(stack_map_dex_method_idx, called_method.dex_method_index)
1154               << called_method.dex_file->PrettyMethod(stack_map_dex_method_idx) << " "
1155               << called_method.dex_file->PrettyMethod(called_method.dex_method_index);
1156         }
1157       } else {
1158         VLOG(dex) << "Accessed dex file for invoke " << invoke_type << " "
1159                   << called_method.dex_method_index;
1160       }
1161     } else {
1162       invoke_type = stack_map_invoke_type;
1163       called_method.dex_method_index = stack_map_dex_method_idx;
1164     }
1165   } else {
1166     invoke_type = kStatic;
1167     called_method.dex_file = called->GetDexFile();
1168     called_method.dex_method_index = called->GetDexMethodIndex();
1169   }
1170   uint32_t shorty_len;
1171   const char* shorty =
1172       called_method.dex_file->GetMethodShorty(
1173           called_method.dex_file->GetMethodId(called_method.dex_method_index), &shorty_len);
1174   RememberForGcArgumentVisitor visitor(sp, invoke_type == kStatic, shorty, shorty_len, &soa);
1175   visitor.VisitArguments();
1176   self->EndAssertNoThreadSuspension(old_cause);
1177   const bool virtual_or_interface = invoke_type == kVirtual || invoke_type == kInterface;
1178   // Resolve method filling in dex cache.
1179   if (!called_method_known_on_entry) {
1180     StackHandleScope<1> hs(self);
1181     mirror::Object* dummy = nullptr;
1182     HandleWrapper<mirror::Object> h_receiver(
1183         hs.NewHandleWrapper(virtual_or_interface ? &receiver : &dummy));
1184     DCHECK_EQ(caller->GetDexFile(), called_method.dex_file);
1185     called = linker->ResolveMethod<ClassLinker::ResolveMode::kCheckICCEAndIAE>(
1186         self, called_method.dex_method_index, caller, invoke_type);
1187 
1188     // Update .bss entry in oat file if any.
1189     if (called != nullptr && called_method.dex_file->GetOatDexFile() != nullptr) {
1190       const MethodBssMapping* mapping =
1191           called_method.dex_file->GetOatDexFile()->GetMethodBssMapping();
1192       if (mapping != nullptr) {
1193         auto pp = std::partition_point(
1194             mapping->begin(),
1195             mapping->end(),
1196             [called_method](const MethodBssMappingEntry& entry) {
1197               return entry.method_index < called_method.dex_method_index;
1198             });
1199         if (pp != mapping->end() && pp->CoversIndex(called_method.dex_method_index)) {
1200           size_t bss_offset = pp->GetBssOffset(called_method.dex_method_index,
1201                                                static_cast<size_t>(kRuntimePointerSize));
1202           DCHECK_ALIGNED(bss_offset, static_cast<size_t>(kRuntimePointerSize));
1203           const OatFile* oat_file = called_method.dex_file->GetOatDexFile()->GetOatFile();
1204           ArtMethod** method_entry = reinterpret_cast<ArtMethod**>(const_cast<uint8_t*>(
1205               oat_file->BssBegin() + bss_offset));
1206           DCHECK_GE(method_entry, oat_file->GetBssMethods().data());
1207           DCHECK_LT(method_entry,
1208                     oat_file->GetBssMethods().data() + oat_file->GetBssMethods().size());
1209           *method_entry = called;
1210         }
1211       }
1212     }
1213   }
1214   const void* code = nullptr;
1215   if (LIKELY(!self->IsExceptionPending())) {
1216     // Incompatible class change should have been handled in resolve method.
1217     CHECK(!called->CheckIncompatibleClassChange(invoke_type))
1218         << called->PrettyMethod() << " " << invoke_type;
1219     if (virtual_or_interface || invoke_type == kSuper) {
1220       // Refine called method based on receiver for kVirtual/kInterface, and
1221       // caller for kSuper.
1222       ArtMethod* orig_called = called;
1223       if (invoke_type == kVirtual) {
1224         CHECK(receiver != nullptr) << invoke_type;
1225         called = receiver->GetClass()->FindVirtualMethodForVirtual(called, kRuntimePointerSize);
1226       } else if (invoke_type == kInterface) {
1227         CHECK(receiver != nullptr) << invoke_type;
1228         called = receiver->GetClass()->FindVirtualMethodForInterface(called, kRuntimePointerSize);
1229       } else {
1230         DCHECK_EQ(invoke_type, kSuper);
1231         CHECK(caller != nullptr) << invoke_type;
1232         StackHandleScope<2> hs(self);
1233         Handle<mirror::DexCache> dex_cache(
1234             hs.NewHandle(caller->GetDeclaringClass()->GetDexCache()));
1235         Handle<mirror::ClassLoader> class_loader(
1236             hs.NewHandle(caller->GetDeclaringClass()->GetClassLoader()));
1237         // TODO Maybe put this into a mirror::Class function.
1238         ObjPtr<mirror::Class> ref_class = linker->LookupResolvedType(
1239             *dex_cache->GetDexFile(),
1240             dex_cache->GetDexFile()->GetMethodId(called_method.dex_method_index).class_idx_,
1241             dex_cache.Get(),
1242             class_loader.Get());
1243         if (ref_class->IsInterface()) {
1244           called = ref_class->FindVirtualMethodForInterfaceSuper(called, kRuntimePointerSize);
1245         } else {
1246           called = caller->GetDeclaringClass()->GetSuperClass()->GetVTableEntry(
1247               called->GetMethodIndex(), kRuntimePointerSize);
1248         }
1249       }
1250 
1251       CHECK(called != nullptr) << orig_called->PrettyMethod() << " "
1252                                << mirror::Object::PrettyTypeOf(receiver) << " "
1253                                << invoke_type << " " << orig_called->GetVtableIndex();
1254     }
1255 
1256     // Ensure that the called method's class is initialized.
1257     StackHandleScope<1> hs(soa.Self());
1258     Handle<mirror::Class> called_class(hs.NewHandle(called->GetDeclaringClass()));
1259     linker->EnsureInitialized(soa.Self(), called_class, true, true);
1260     if (LIKELY(called_class->IsInitialized())) {
1261       if (UNLIKELY(Dbg::IsForcedInterpreterNeededForResolution(self, called))) {
1262         // If we are single-stepping or the called method is deoptimized (by a
1263         // breakpoint, for example), then we have to execute the called method
1264         // with the interpreter.
1265         code = GetQuickToInterpreterBridge();
1266       } else if (UNLIKELY(Dbg::IsForcedInstrumentationNeededForResolution(self, caller))) {
1267         // If the caller is deoptimized (by a breakpoint, for example), we have to
1268         // continue its execution with interpreter when returning from the called
1269         // method. Because we do not want to execute the called method with the
1270         // interpreter, we wrap its execution into the instrumentation stubs.
1271         // When the called method returns, it will execute the instrumentation
1272         // exit hook that will determine the need of the interpreter with a call
1273         // to Dbg::IsForcedInterpreterNeededForUpcall and deoptimize the stack if
1274         // it is needed.
1275         code = GetQuickInstrumentationEntryPoint();
1276       } else {
1277         code = called->GetEntryPointFromQuickCompiledCode();
1278       }
1279     } else if (called_class->IsInitializing()) {
1280       if (UNLIKELY(Dbg::IsForcedInterpreterNeededForResolution(self, called))) {
1281         // If we are single-stepping or the called method is deoptimized (by a
1282         // breakpoint, for example), then we have to execute the called method
1283         // with the interpreter.
1284         code = GetQuickToInterpreterBridge();
1285       } else if (invoke_type == kStatic) {
1286         // Class is still initializing, go to oat and grab code (trampoline must be left in place
1287         // until class is initialized to stop races between threads).
1288         code = linker->GetQuickOatCodeFor(called);
1289       } else {
1290         // No trampoline for non-static methods.
1291         code = called->GetEntryPointFromQuickCompiledCode();
1292       }
1293     } else {
1294       DCHECK(called_class->IsErroneous());
1295     }
1296   }
1297   CHECK_EQ(code == nullptr, self->IsExceptionPending());
1298   // Fixup any locally saved objects may have moved during a GC.
1299   visitor.FixupReferences();
1300   // Place called method in callee-save frame to be placed as first argument to quick method.
1301   *sp = called;
1302 
1303   return code;
1304 }
1305 
1306 /*
1307  * This class uses a couple of observations to unite the different calling conventions through
1308  * a few constants.
1309  *
1310  * 1) Number of registers used for passing is normally even, so counting down has no penalty for
1311  *    possible alignment.
1312  * 2) Known 64b architectures store 8B units on the stack, both for integral and floating point
1313  *    types, so using uintptr_t is OK. Also means that we can use kRegistersNeededX to denote
1314  *    when we have to split things
1315  * 3) The only soft-float, Arm, is 32b, so no widening needs to be taken into account for floats
1316  *    and we can use Int handling directly.
1317  * 4) Only 64b architectures widen, and their stack is aligned 8B anyways, so no padding code
1318  *    necessary when widening. Also, widening of Ints will take place implicitly, and the
1319  *    extension should be compatible with Aarch64, which mandates copying the available bits
1320  *    into LSB and leaving the rest unspecified.
1321  * 5) Aligning longs and doubles is necessary on arm only, and it's the same in registers and on
1322  *    the stack.
1323  * 6) There is only little endian.
1324  *
1325  *
1326  * Actual work is supposed to be done in a delegate of the template type. The interface is as
1327  * follows:
1328  *
1329  * void PushGpr(uintptr_t):   Add a value for the next GPR
1330  *
1331  * void PushFpr4(float):      Add a value for the next FPR of size 32b. Is only called if we need
1332  *                            padding, that is, think the architecture is 32b and aligns 64b.
1333  *
1334  * void PushFpr8(uint64_t):   Push a double. We _will_ call this on 32b, it's the callee's job to
1335  *                            split this if necessary. The current state will have aligned, if
1336  *                            necessary.
1337  *
1338  * void PushStack(uintptr_t): Push a value to the stack.
1339  *
1340  * uintptr_t PushHandleScope(mirror::Object* ref): Add a reference to the HandleScope. This _will_ have nullptr,
1341  *                                          as this might be important for null initialization.
1342  *                                          Must return the jobject, that is, the reference to the
1343  *                                          entry in the HandleScope (nullptr if necessary).
1344  *
1345  */
1346 template<class T> class BuildNativeCallFrameStateMachine {
1347  public:
1348 #if defined(__arm__)
1349   // TODO: These are all dummy values!
1350   static constexpr bool kNativeSoftFloatAbi = true;
1351   static constexpr size_t kNumNativeGprArgs = 4;  // 4 arguments passed in GPRs, r0-r3
1352   static constexpr size_t kNumNativeFprArgs = 0;  // 0 arguments passed in FPRs.
1353 
1354   static constexpr size_t kRegistersNeededForLong = 2;
1355   static constexpr size_t kRegistersNeededForDouble = 2;
1356   static constexpr bool kMultiRegistersAligned = true;
1357   static constexpr bool kMultiFPRegistersWidened = false;
1358   static constexpr bool kMultiGPRegistersWidened = false;
1359   static constexpr bool kAlignLongOnStack = true;
1360   static constexpr bool kAlignDoubleOnStack = true;
1361 #elif defined(__aarch64__)
1362   static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
1363   static constexpr size_t kNumNativeGprArgs = 8;  // 6 arguments passed in GPRs.
1364   static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
1365 
1366   static constexpr size_t kRegistersNeededForLong = 1;
1367   static constexpr size_t kRegistersNeededForDouble = 1;
1368   static constexpr bool kMultiRegistersAligned = false;
1369   static constexpr bool kMultiFPRegistersWidened = false;
1370   static constexpr bool kMultiGPRegistersWidened = false;
1371   static constexpr bool kAlignLongOnStack = false;
1372   static constexpr bool kAlignDoubleOnStack = false;
1373 #elif defined(__mips__) && !defined(__LP64__)
1374   static constexpr bool kNativeSoftFloatAbi = true;  // This is a hard float ABI.
1375   static constexpr size_t kNumNativeGprArgs = 4;  // 4 arguments passed in GPRs.
1376   static constexpr size_t kNumNativeFprArgs = 0;  // 0 arguments passed in FPRs.
1377 
1378   static constexpr size_t kRegistersNeededForLong = 2;
1379   static constexpr size_t kRegistersNeededForDouble = 2;
1380   static constexpr bool kMultiRegistersAligned = true;
1381   static constexpr bool kMultiFPRegistersWidened = true;
1382   static constexpr bool kMultiGPRegistersWidened = false;
1383   static constexpr bool kAlignLongOnStack = true;
1384   static constexpr bool kAlignDoubleOnStack = true;
1385 #elif defined(__mips__) && defined(__LP64__)
1386   // Let the code prepare GPRs only and we will load the FPRs with same data.
1387   static constexpr bool kNativeSoftFloatAbi = true;
1388   static constexpr size_t kNumNativeGprArgs = 8;
1389   static constexpr size_t kNumNativeFprArgs = 0;
1390 
1391   static constexpr size_t kRegistersNeededForLong = 1;
1392   static constexpr size_t kRegistersNeededForDouble = 1;
1393   static constexpr bool kMultiRegistersAligned = false;
1394   static constexpr bool kMultiFPRegistersWidened = false;
1395   static constexpr bool kMultiGPRegistersWidened = true;
1396   static constexpr bool kAlignLongOnStack = false;
1397   static constexpr bool kAlignDoubleOnStack = false;
1398 #elif defined(__i386__)
1399   // TODO: Check these!
1400   static constexpr bool kNativeSoftFloatAbi = false;  // Not using int registers for fp
1401   static constexpr size_t kNumNativeGprArgs = 0;  // 6 arguments passed in GPRs.
1402   static constexpr size_t kNumNativeFprArgs = 0;  // 8 arguments passed in FPRs.
1403 
1404   static constexpr size_t kRegistersNeededForLong = 2;
1405   static constexpr size_t kRegistersNeededForDouble = 2;
1406   static constexpr bool kMultiRegistersAligned = false;  // x86 not using regs, anyways
1407   static constexpr bool kMultiFPRegistersWidened = false;
1408   static constexpr bool kMultiGPRegistersWidened = false;
1409   static constexpr bool kAlignLongOnStack = false;
1410   static constexpr bool kAlignDoubleOnStack = false;
1411 #elif defined(__x86_64__)
1412   static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
1413   static constexpr size_t kNumNativeGprArgs = 6;  // 6 arguments passed in GPRs.
1414   static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
1415 
1416   static constexpr size_t kRegistersNeededForLong = 1;
1417   static constexpr size_t kRegistersNeededForDouble = 1;
1418   static constexpr bool kMultiRegistersAligned = false;
1419   static constexpr bool kMultiFPRegistersWidened = false;
1420   static constexpr bool kMultiGPRegistersWidened = false;
1421   static constexpr bool kAlignLongOnStack = false;
1422   static constexpr bool kAlignDoubleOnStack = false;
1423 #else
1424 #error "Unsupported architecture"
1425 #endif
1426 
1427  public:
BuildNativeCallFrameStateMachine(T * delegate)1428   explicit BuildNativeCallFrameStateMachine(T* delegate)
1429       : gpr_index_(kNumNativeGprArgs),
1430         fpr_index_(kNumNativeFprArgs),
1431         stack_entries_(0),
1432         delegate_(delegate) {
1433     // For register alignment, we want to assume that counters (gpr_index_, fpr_index_) are even iff
1434     // the next register is even; counting down is just to make the compiler happy...
1435     static_assert(kNumNativeGprArgs % 2 == 0U, "Number of native GPR arguments not even");
1436     static_assert(kNumNativeFprArgs % 2 == 0U, "Number of native FPR arguments not even");
1437   }
1438 
~BuildNativeCallFrameStateMachine()1439   virtual ~BuildNativeCallFrameStateMachine() {}
1440 
HavePointerGpr() const1441   bool HavePointerGpr() const {
1442     return gpr_index_ > 0;
1443   }
1444 
AdvancePointer(const void * val)1445   void AdvancePointer(const void* val) {
1446     if (HavePointerGpr()) {
1447       gpr_index_--;
1448       PushGpr(reinterpret_cast<uintptr_t>(val));
1449     } else {
1450       stack_entries_++;  // TODO: have a field for pointer length as multiple of 32b
1451       PushStack(reinterpret_cast<uintptr_t>(val));
1452       gpr_index_ = 0;
1453     }
1454   }
1455 
HaveHandleScopeGpr() const1456   bool HaveHandleScopeGpr() const {
1457     return gpr_index_ > 0;
1458   }
1459 
AdvanceHandleScope(mirror::Object * ptr)1460   void AdvanceHandleScope(mirror::Object* ptr) REQUIRES_SHARED(Locks::mutator_lock_) {
1461     uintptr_t handle = PushHandle(ptr);
1462     if (HaveHandleScopeGpr()) {
1463       gpr_index_--;
1464       PushGpr(handle);
1465     } else {
1466       stack_entries_++;
1467       PushStack(handle);
1468       gpr_index_ = 0;
1469     }
1470   }
1471 
HaveIntGpr() const1472   bool HaveIntGpr() const {
1473     return gpr_index_ > 0;
1474   }
1475 
AdvanceInt(uint32_t val)1476   void AdvanceInt(uint32_t val) {
1477     if (HaveIntGpr()) {
1478       gpr_index_--;
1479       if (kMultiGPRegistersWidened) {
1480         DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
1481         PushGpr(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
1482       } else {
1483         PushGpr(val);
1484       }
1485     } else {
1486       stack_entries_++;
1487       if (kMultiGPRegistersWidened) {
1488         DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
1489         PushStack(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
1490       } else {
1491         PushStack(val);
1492       }
1493       gpr_index_ = 0;
1494     }
1495   }
1496 
HaveLongGpr() const1497   bool HaveLongGpr() const {
1498     return gpr_index_ >= kRegistersNeededForLong + (LongGprNeedsPadding() ? 1 : 0);
1499   }
1500 
LongGprNeedsPadding() const1501   bool LongGprNeedsPadding() const {
1502     return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
1503         kAlignLongOnStack &&                  // and when it needs alignment
1504         (gpr_index_ & 1) == 1;                // counter is odd, see constructor
1505   }
1506 
LongStackNeedsPadding() const1507   bool LongStackNeedsPadding() const {
1508     return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
1509         kAlignLongOnStack &&                  // and when it needs 8B alignment
1510         (stack_entries_ & 1) == 1;            // counter is odd
1511   }
1512 
AdvanceLong(uint64_t val)1513   void AdvanceLong(uint64_t val) {
1514     if (HaveLongGpr()) {
1515       if (LongGprNeedsPadding()) {
1516         PushGpr(0);
1517         gpr_index_--;
1518       }
1519       if (kRegistersNeededForLong == 1) {
1520         PushGpr(static_cast<uintptr_t>(val));
1521       } else {
1522         PushGpr(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1523         PushGpr(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1524       }
1525       gpr_index_ -= kRegistersNeededForLong;
1526     } else {
1527       if (LongStackNeedsPadding()) {
1528         PushStack(0);
1529         stack_entries_++;
1530       }
1531       if (kRegistersNeededForLong == 1) {
1532         PushStack(static_cast<uintptr_t>(val));
1533         stack_entries_++;
1534       } else {
1535         PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1536         PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1537         stack_entries_ += 2;
1538       }
1539       gpr_index_ = 0;
1540     }
1541   }
1542 
HaveFloatFpr() const1543   bool HaveFloatFpr() const {
1544     return fpr_index_ > 0;
1545   }
1546 
AdvanceFloat(float val)1547   void AdvanceFloat(float val) {
1548     if (kNativeSoftFloatAbi) {
1549       AdvanceInt(bit_cast<uint32_t, float>(val));
1550     } else {
1551       if (HaveFloatFpr()) {
1552         fpr_index_--;
1553         if (kRegistersNeededForDouble == 1) {
1554           if (kMultiFPRegistersWidened) {
1555             PushFpr8(bit_cast<uint64_t, double>(val));
1556           } else {
1557             // No widening, just use the bits.
1558             PushFpr8(static_cast<uint64_t>(bit_cast<uint32_t, float>(val)));
1559           }
1560         } else {
1561           PushFpr4(val);
1562         }
1563       } else {
1564         stack_entries_++;
1565         if (kRegistersNeededForDouble == 1 && kMultiFPRegistersWidened) {
1566           // Need to widen before storing: Note the "double" in the template instantiation.
1567           // Note: We need to jump through those hoops to make the compiler happy.
1568           DCHECK_EQ(sizeof(uintptr_t), sizeof(uint64_t));
1569           PushStack(static_cast<uintptr_t>(bit_cast<uint64_t, double>(val)));
1570         } else {
1571           PushStack(static_cast<uintptr_t>(bit_cast<uint32_t, float>(val)));
1572         }
1573         fpr_index_ = 0;
1574       }
1575     }
1576   }
1577 
HaveDoubleFpr() const1578   bool HaveDoubleFpr() const {
1579     return fpr_index_ >= kRegistersNeededForDouble + (DoubleFprNeedsPadding() ? 1 : 0);
1580   }
1581 
DoubleFprNeedsPadding() const1582   bool DoubleFprNeedsPadding() const {
1583     return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
1584         kAlignDoubleOnStack &&                  // and when it needs alignment
1585         (fpr_index_ & 1) == 1;                  // counter is odd, see constructor
1586   }
1587 
DoubleStackNeedsPadding() const1588   bool DoubleStackNeedsPadding() const {
1589     return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
1590         kAlignDoubleOnStack &&                  // and when it needs 8B alignment
1591         (stack_entries_ & 1) == 1;              // counter is odd
1592   }
1593 
AdvanceDouble(uint64_t val)1594   void AdvanceDouble(uint64_t val) {
1595     if (kNativeSoftFloatAbi) {
1596       AdvanceLong(val);
1597     } else {
1598       if (HaveDoubleFpr()) {
1599         if (DoubleFprNeedsPadding()) {
1600           PushFpr4(0);
1601           fpr_index_--;
1602         }
1603         PushFpr8(val);
1604         fpr_index_ -= kRegistersNeededForDouble;
1605       } else {
1606         if (DoubleStackNeedsPadding()) {
1607           PushStack(0);
1608           stack_entries_++;
1609         }
1610         if (kRegistersNeededForDouble == 1) {
1611           PushStack(static_cast<uintptr_t>(val));
1612           stack_entries_++;
1613         } else {
1614           PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1615           PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1616           stack_entries_ += 2;
1617         }
1618         fpr_index_ = 0;
1619       }
1620     }
1621   }
1622 
GetStackEntries() const1623   uint32_t GetStackEntries() const {
1624     return stack_entries_;
1625   }
1626 
GetNumberOfUsedGprs() const1627   uint32_t GetNumberOfUsedGprs() const {
1628     return kNumNativeGprArgs - gpr_index_;
1629   }
1630 
GetNumberOfUsedFprs() const1631   uint32_t GetNumberOfUsedFprs() const {
1632     return kNumNativeFprArgs - fpr_index_;
1633   }
1634 
1635  private:
PushGpr(uintptr_t val)1636   void PushGpr(uintptr_t val) {
1637     delegate_->PushGpr(val);
1638   }
PushFpr4(float val)1639   void PushFpr4(float val) {
1640     delegate_->PushFpr4(val);
1641   }
PushFpr8(uint64_t val)1642   void PushFpr8(uint64_t val) {
1643     delegate_->PushFpr8(val);
1644   }
PushStack(uintptr_t val)1645   void PushStack(uintptr_t val) {
1646     delegate_->PushStack(val);
1647   }
PushHandle(mirror::Object * ref)1648   uintptr_t PushHandle(mirror::Object* ref) REQUIRES_SHARED(Locks::mutator_lock_) {
1649     return delegate_->PushHandle(ref);
1650   }
1651 
1652   uint32_t gpr_index_;      // Number of free GPRs
1653   uint32_t fpr_index_;      // Number of free FPRs
1654   uint32_t stack_entries_;  // Stack entries are in multiples of 32b, as floats are usually not
1655                             // extended
1656   T* const delegate_;             // What Push implementation gets called
1657 };
1658 
1659 // Computes the sizes of register stacks and call stack area. Handling of references can be extended
1660 // in subclasses.
1661 //
1662 // To handle native pointers, use "L" in the shorty for an object reference, which simulates
1663 // them with handles.
1664 class ComputeNativeCallFrameSize {
1665  public:
ComputeNativeCallFrameSize()1666   ComputeNativeCallFrameSize() : num_stack_entries_(0) {}
1667 
~ComputeNativeCallFrameSize()1668   virtual ~ComputeNativeCallFrameSize() {}
1669 
GetStackSize() const1670   uint32_t GetStackSize() const {
1671     return num_stack_entries_ * sizeof(uintptr_t);
1672   }
1673 
LayoutCallStack(uint8_t * sp8) const1674   uint8_t* LayoutCallStack(uint8_t* sp8) const {
1675     sp8 -= GetStackSize();
1676     // Align by kStackAlignment.
1677     sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
1678     return sp8;
1679   }
1680 
LayoutCallRegisterStacks(uint8_t * sp8,uintptr_t ** start_gpr,uint32_t ** start_fpr) const1681   uint8_t* LayoutCallRegisterStacks(uint8_t* sp8, uintptr_t** start_gpr, uint32_t** start_fpr)
1682       const {
1683     // Assumption is OK right now, as we have soft-float arm
1684     size_t fregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeFprArgs;
1685     sp8 -= fregs * sizeof(uintptr_t);
1686     *start_fpr = reinterpret_cast<uint32_t*>(sp8);
1687     size_t iregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeGprArgs;
1688     sp8 -= iregs * sizeof(uintptr_t);
1689     *start_gpr = reinterpret_cast<uintptr_t*>(sp8);
1690     return sp8;
1691   }
1692 
LayoutNativeCall(uint8_t * sp8,uintptr_t ** start_stack,uintptr_t ** start_gpr,uint32_t ** start_fpr) const1693   uint8_t* LayoutNativeCall(uint8_t* sp8, uintptr_t** start_stack, uintptr_t** start_gpr,
1694                             uint32_t** start_fpr) const {
1695     // Native call stack.
1696     sp8 = LayoutCallStack(sp8);
1697     *start_stack = reinterpret_cast<uintptr_t*>(sp8);
1698 
1699     // Put fprs and gprs below.
1700     sp8 = LayoutCallRegisterStacks(sp8, start_gpr, start_fpr);
1701 
1702     // Return the new bottom.
1703     return sp8;
1704   }
1705 
WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> * sm ATTRIBUTE_UNUSED)1706   virtual void WalkHeader(
1707       BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm ATTRIBUTE_UNUSED)
1708       REQUIRES_SHARED(Locks::mutator_lock_) {
1709   }
1710 
Walk(const char * shorty,uint32_t shorty_len)1711   void Walk(const char* shorty, uint32_t shorty_len) REQUIRES_SHARED(Locks::mutator_lock_) {
1712     BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> sm(this);
1713 
1714     WalkHeader(&sm);
1715 
1716     for (uint32_t i = 1; i < shorty_len; ++i) {
1717       Primitive::Type cur_type_ = Primitive::GetType(shorty[i]);
1718       switch (cur_type_) {
1719         case Primitive::kPrimNot:
1720           // TODO: fix abuse of mirror types.
1721           sm.AdvanceHandleScope(
1722               reinterpret_cast<mirror::Object*>(0x12345678));
1723           break;
1724 
1725         case Primitive::kPrimBoolean:
1726         case Primitive::kPrimByte:
1727         case Primitive::kPrimChar:
1728         case Primitive::kPrimShort:
1729         case Primitive::kPrimInt:
1730           sm.AdvanceInt(0);
1731           break;
1732         case Primitive::kPrimFloat:
1733           sm.AdvanceFloat(0);
1734           break;
1735         case Primitive::kPrimDouble:
1736           sm.AdvanceDouble(0);
1737           break;
1738         case Primitive::kPrimLong:
1739           sm.AdvanceLong(0);
1740           break;
1741         default:
1742           LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty;
1743           UNREACHABLE();
1744       }
1745     }
1746 
1747     num_stack_entries_ = sm.GetStackEntries();
1748   }
1749 
PushGpr(uintptr_t)1750   void PushGpr(uintptr_t /* val */) {
1751     // not optimizing registers, yet
1752   }
1753 
PushFpr4(float)1754   void PushFpr4(float /* val */) {
1755     // not optimizing registers, yet
1756   }
1757 
PushFpr8(uint64_t)1758   void PushFpr8(uint64_t /* val */) {
1759     // not optimizing registers, yet
1760   }
1761 
PushStack(uintptr_t)1762   void PushStack(uintptr_t /* val */) {
1763     // counting is already done in the superclass
1764   }
1765 
PushHandle(mirror::Object *)1766   virtual uintptr_t PushHandle(mirror::Object* /* ptr */) {
1767     return reinterpret_cast<uintptr_t>(nullptr);
1768   }
1769 
1770  protected:
1771   uint32_t num_stack_entries_;
1772 };
1773 
1774 class ComputeGenericJniFrameSize FINAL : public ComputeNativeCallFrameSize {
1775  public:
ComputeGenericJniFrameSize(bool critical_native)1776   explicit ComputeGenericJniFrameSize(bool critical_native)
1777     : num_handle_scope_references_(0), critical_native_(critical_native) {}
1778 
1779   // Lays out the callee-save frame. Assumes that the incorrect frame corresponding to RefsAndArgs
1780   // is at *m = sp. Will update to point to the bottom of the save frame.
1781   //
1782   // Note: assumes ComputeAll() has been run before.
LayoutCalleeSaveFrame(Thread * self,ArtMethod *** m,void * sp,HandleScope ** handle_scope)1783   void LayoutCalleeSaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope)
1784       REQUIRES_SHARED(Locks::mutator_lock_) {
1785     ArtMethod* method = **m;
1786 
1787     DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
1788 
1789     uint8_t* sp8 = reinterpret_cast<uint8_t*>(sp);
1790 
1791     // First, fix up the layout of the callee-save frame.
1792     // We have to squeeze in the HandleScope, and relocate the method pointer.
1793 
1794     // "Free" the slot for the method.
1795     sp8 += sizeof(void*);  // In the callee-save frame we use a full pointer.
1796 
1797     // Under the callee saves put handle scope and new method stack reference.
1798     size_t handle_scope_size = HandleScope::SizeOf(num_handle_scope_references_);
1799     size_t scope_and_method = handle_scope_size + sizeof(ArtMethod*);
1800 
1801     sp8 -= scope_and_method;
1802     // Align by kStackAlignment.
1803     sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
1804 
1805     uint8_t* sp8_table = sp8 + sizeof(ArtMethod*);
1806     *handle_scope = HandleScope::Create(sp8_table, self->GetTopHandleScope(),
1807                                         num_handle_scope_references_);
1808 
1809     // Add a slot for the method pointer, and fill it. Fix the pointer-pointer given to us.
1810     uint8_t* method_pointer = sp8;
1811     auto** new_method_ref = reinterpret_cast<ArtMethod**>(method_pointer);
1812     *new_method_ref = method;
1813     *m = new_method_ref;
1814   }
1815 
1816   // Adds space for the cookie. Note: may leave stack unaligned.
LayoutCookie(uint8_t ** sp) const1817   void LayoutCookie(uint8_t** sp) const {
1818     // Reference cookie and padding
1819     *sp -= 8;
1820   }
1821 
1822   // Re-layout the callee-save frame (insert a handle-scope). Then add space for the cookie.
1823   // Returns the new bottom. Note: this may be unaligned.
LayoutJNISaveFrame(Thread * self,ArtMethod *** m,void * sp,HandleScope ** handle_scope)1824   uint8_t* LayoutJNISaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope)
1825       REQUIRES_SHARED(Locks::mutator_lock_) {
1826     // First, fix up the layout of the callee-save frame.
1827     // We have to squeeze in the HandleScope, and relocate the method pointer.
1828     LayoutCalleeSaveFrame(self, m, sp, handle_scope);
1829 
1830     // The bottom of the callee-save frame is now where the method is, *m.
1831     uint8_t* sp8 = reinterpret_cast<uint8_t*>(*m);
1832 
1833     // Add space for cookie.
1834     LayoutCookie(&sp8);
1835 
1836     return sp8;
1837   }
1838 
1839   // WARNING: After this, *sp won't be pointing to the method anymore!
ComputeLayout(Thread * self,ArtMethod *** m,const char * shorty,uint32_t shorty_len,HandleScope ** handle_scope,uintptr_t ** start_stack,uintptr_t ** start_gpr,uint32_t ** start_fpr)1840   uint8_t* ComputeLayout(Thread* self, ArtMethod*** m, const char* shorty, uint32_t shorty_len,
1841                          HandleScope** handle_scope, uintptr_t** start_stack, uintptr_t** start_gpr,
1842                          uint32_t** start_fpr)
1843       REQUIRES_SHARED(Locks::mutator_lock_) {
1844     Walk(shorty, shorty_len);
1845 
1846     // JNI part.
1847     uint8_t* sp8 = LayoutJNISaveFrame(self, m, reinterpret_cast<void*>(*m), handle_scope);
1848 
1849     sp8 = LayoutNativeCall(sp8, start_stack, start_gpr, start_fpr);
1850 
1851     // Return the new bottom.
1852     return sp8;
1853   }
1854 
1855   uintptr_t PushHandle(mirror::Object* /* ptr */) OVERRIDE;
1856 
1857   // Add JNIEnv* and jobj/jclass before the shorty-derived elements.
1858   void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) OVERRIDE
1859       REQUIRES_SHARED(Locks::mutator_lock_);
1860 
1861  private:
1862   uint32_t num_handle_scope_references_;
1863   const bool critical_native_;
1864 };
1865 
PushHandle(mirror::Object *)1866 uintptr_t ComputeGenericJniFrameSize::PushHandle(mirror::Object* /* ptr */) {
1867   num_handle_scope_references_++;
1868   return reinterpret_cast<uintptr_t>(nullptr);
1869 }
1870 
WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> * sm)1871 void ComputeGenericJniFrameSize::WalkHeader(
1872     BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) {
1873   // First 2 parameters are always excluded for @CriticalNative.
1874   if (UNLIKELY(critical_native_)) {
1875     return;
1876   }
1877 
1878   // JNIEnv
1879   sm->AdvancePointer(nullptr);
1880 
1881   // Class object or this as first argument
1882   sm->AdvanceHandleScope(reinterpret_cast<mirror::Object*>(0x12345678));
1883 }
1884 
1885 // Class to push values to three separate regions. Used to fill the native call part. Adheres to
1886 // the template requirements of BuildGenericJniFrameStateMachine.
1887 class FillNativeCall {
1888  public:
FillNativeCall(uintptr_t * gpr_regs,uint32_t * fpr_regs,uintptr_t * stack_args)1889   FillNativeCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) :
1890       cur_gpr_reg_(gpr_regs), cur_fpr_reg_(fpr_regs), cur_stack_arg_(stack_args) {}
1891 
~FillNativeCall()1892   virtual ~FillNativeCall() {}
1893 
Reset(uintptr_t * gpr_regs,uint32_t * fpr_regs,uintptr_t * stack_args)1894   void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) {
1895     cur_gpr_reg_ = gpr_regs;
1896     cur_fpr_reg_ = fpr_regs;
1897     cur_stack_arg_ = stack_args;
1898   }
1899 
PushGpr(uintptr_t val)1900   void PushGpr(uintptr_t val) {
1901     *cur_gpr_reg_ = val;
1902     cur_gpr_reg_++;
1903   }
1904 
PushFpr4(float val)1905   void PushFpr4(float val) {
1906     *cur_fpr_reg_ = val;
1907     cur_fpr_reg_++;
1908   }
1909 
PushFpr8(uint64_t val)1910   void PushFpr8(uint64_t val) {
1911     uint64_t* tmp = reinterpret_cast<uint64_t*>(cur_fpr_reg_);
1912     *tmp = val;
1913     cur_fpr_reg_ += 2;
1914   }
1915 
PushStack(uintptr_t val)1916   void PushStack(uintptr_t val) {
1917     *cur_stack_arg_ = val;
1918     cur_stack_arg_++;
1919   }
1920 
PushHandle(mirror::Object *)1921   virtual uintptr_t PushHandle(mirror::Object*) REQUIRES_SHARED(Locks::mutator_lock_) {
1922     LOG(FATAL) << "(Non-JNI) Native call does not use handles.";
1923     UNREACHABLE();
1924   }
1925 
1926  private:
1927   uintptr_t* cur_gpr_reg_;
1928   uint32_t* cur_fpr_reg_;
1929   uintptr_t* cur_stack_arg_;
1930 };
1931 
1932 // Visits arguments on the stack placing them into a region lower down the stack for the benefit
1933 // of transitioning into native code.
1934 class BuildGenericJniFrameVisitor FINAL : public QuickArgumentVisitor {
1935  public:
BuildGenericJniFrameVisitor(Thread * self,bool is_static,bool critical_native,const char * shorty,uint32_t shorty_len,ArtMethod *** sp)1936   BuildGenericJniFrameVisitor(Thread* self,
1937                               bool is_static,
1938                               bool critical_native,
1939                               const char* shorty,
1940                               uint32_t shorty_len,
1941                               ArtMethod*** sp)
1942      : QuickArgumentVisitor(*sp, is_static, shorty, shorty_len),
1943        jni_call_(nullptr, nullptr, nullptr, nullptr, critical_native),
1944        sm_(&jni_call_) {
1945     ComputeGenericJniFrameSize fsc(critical_native);
1946     uintptr_t* start_gpr_reg;
1947     uint32_t* start_fpr_reg;
1948     uintptr_t* start_stack_arg;
1949     bottom_of_used_area_ = fsc.ComputeLayout(self, sp, shorty, shorty_len,
1950                                              &handle_scope_,
1951                                              &start_stack_arg,
1952                                              &start_gpr_reg, &start_fpr_reg);
1953 
1954     jni_call_.Reset(start_gpr_reg, start_fpr_reg, start_stack_arg, handle_scope_);
1955 
1956     // First 2 parameters are always excluded for CriticalNative methods.
1957     if (LIKELY(!critical_native)) {
1958       // jni environment is always first argument
1959       sm_.AdvancePointer(self->GetJniEnv());
1960 
1961       if (is_static) {
1962         sm_.AdvanceHandleScope((**sp)->GetDeclaringClass());
1963       }  // else "this" reference is already handled by QuickArgumentVisitor.
1964     }
1965   }
1966 
1967   void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE;
1968 
1969   void FinalizeHandleScope(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_);
1970 
GetFirstHandleScopeEntry()1971   StackReference<mirror::Object>* GetFirstHandleScopeEntry() {
1972     return handle_scope_->GetHandle(0).GetReference();
1973   }
1974 
GetFirstHandleScopeJObject() const1975   jobject GetFirstHandleScopeJObject() const REQUIRES_SHARED(Locks::mutator_lock_) {
1976     return handle_scope_->GetHandle(0).ToJObject();
1977   }
1978 
GetBottomOfUsedArea() const1979   void* GetBottomOfUsedArea() const {
1980     return bottom_of_used_area_;
1981   }
1982 
1983  private:
1984   // A class to fill a JNI call. Adds reference/handle-scope management to FillNativeCall.
1985   class FillJniCall FINAL : public FillNativeCall {
1986    public:
FillJniCall(uintptr_t * gpr_regs,uint32_t * fpr_regs,uintptr_t * stack_args,HandleScope * handle_scope,bool critical_native)1987     FillJniCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args,
1988                 HandleScope* handle_scope, bool critical_native)
1989       : FillNativeCall(gpr_regs, fpr_regs, stack_args),
1990                        handle_scope_(handle_scope),
1991         cur_entry_(0),
1992         critical_native_(critical_native) {}
1993 
1994     uintptr_t PushHandle(mirror::Object* ref) OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_);
1995 
Reset(uintptr_t * gpr_regs,uint32_t * fpr_regs,uintptr_t * stack_args,HandleScope * scope)1996     void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args, HandleScope* scope) {
1997       FillNativeCall::Reset(gpr_regs, fpr_regs, stack_args);
1998       handle_scope_ = scope;
1999       cur_entry_ = 0U;
2000     }
2001 
ResetRemainingScopeSlots()2002     void ResetRemainingScopeSlots() REQUIRES_SHARED(Locks::mutator_lock_) {
2003       // Initialize padding entries.
2004       size_t expected_slots = handle_scope_->NumberOfReferences();
2005       while (cur_entry_ < expected_slots) {
2006         handle_scope_->GetMutableHandle(cur_entry_++).Assign(nullptr);
2007       }
2008 
2009       if (!critical_native_) {
2010         // Non-critical natives have at least the self class (jclass) or this (jobject).
2011         DCHECK_NE(cur_entry_, 0U);
2012       }
2013     }
2014 
CriticalNative() const2015     bool CriticalNative() const {
2016       return critical_native_;
2017     }
2018 
2019    private:
2020     HandleScope* handle_scope_;
2021     size_t cur_entry_;
2022     const bool critical_native_;
2023   };
2024 
2025   HandleScope* handle_scope_;
2026   FillJniCall jni_call_;
2027   void* bottom_of_used_area_;
2028 
2029   BuildNativeCallFrameStateMachine<FillJniCall> sm_;
2030 
2031   DISALLOW_COPY_AND_ASSIGN(BuildGenericJniFrameVisitor);
2032 };
2033 
PushHandle(mirror::Object * ref)2034 uintptr_t BuildGenericJniFrameVisitor::FillJniCall::PushHandle(mirror::Object* ref) {
2035   uintptr_t tmp;
2036   MutableHandle<mirror::Object> h = handle_scope_->GetMutableHandle(cur_entry_);
2037   h.Assign(ref);
2038   tmp = reinterpret_cast<uintptr_t>(h.ToJObject());
2039   cur_entry_++;
2040   return tmp;
2041 }
2042 
Visit()2043 void BuildGenericJniFrameVisitor::Visit() {
2044   Primitive::Type type = GetParamPrimitiveType();
2045   switch (type) {
2046     case Primitive::kPrimLong: {
2047       jlong long_arg;
2048       if (IsSplitLongOrDouble()) {
2049         long_arg = ReadSplitLongParam();
2050       } else {
2051         long_arg = *reinterpret_cast<jlong*>(GetParamAddress());
2052       }
2053       sm_.AdvanceLong(long_arg);
2054       break;
2055     }
2056     case Primitive::kPrimDouble: {
2057       uint64_t double_arg;
2058       if (IsSplitLongOrDouble()) {
2059         // Read into union so that we don't case to a double.
2060         double_arg = ReadSplitLongParam();
2061       } else {
2062         double_arg = *reinterpret_cast<uint64_t*>(GetParamAddress());
2063       }
2064       sm_.AdvanceDouble(double_arg);
2065       break;
2066     }
2067     case Primitive::kPrimNot: {
2068       StackReference<mirror::Object>* stack_ref =
2069           reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
2070       sm_.AdvanceHandleScope(stack_ref->AsMirrorPtr());
2071       break;
2072     }
2073     case Primitive::kPrimFloat:
2074       sm_.AdvanceFloat(*reinterpret_cast<float*>(GetParamAddress()));
2075       break;
2076     case Primitive::kPrimBoolean:  // Fall-through.
2077     case Primitive::kPrimByte:     // Fall-through.
2078     case Primitive::kPrimChar:     // Fall-through.
2079     case Primitive::kPrimShort:    // Fall-through.
2080     case Primitive::kPrimInt:      // Fall-through.
2081       sm_.AdvanceInt(*reinterpret_cast<jint*>(GetParamAddress()));
2082       break;
2083     case Primitive::kPrimVoid:
2084       LOG(FATAL) << "UNREACHABLE";
2085       UNREACHABLE();
2086   }
2087 }
2088 
FinalizeHandleScope(Thread * self)2089 void BuildGenericJniFrameVisitor::FinalizeHandleScope(Thread* self) {
2090   // Clear out rest of the scope.
2091   jni_call_.ResetRemainingScopeSlots();
2092   if (!jni_call_.CriticalNative()) {
2093     // Install HandleScope.
2094     self->PushHandleScope(handle_scope_);
2095   }
2096 }
2097 
2098 #if defined(__arm__) || defined(__aarch64__)
2099 extern "C" const void* artFindNativeMethod();
2100 #else
2101 extern "C" const void* artFindNativeMethod(Thread* self);
2102 #endif
2103 
artQuickGenericJniEndJNIRef(Thread * self,uint32_t cookie,bool fast_native ATTRIBUTE_UNUSED,jobject l,jobject lock)2104 static uint64_t artQuickGenericJniEndJNIRef(Thread* self,
2105                                             uint32_t cookie,
2106                                             bool fast_native ATTRIBUTE_UNUSED,
2107                                             jobject l,
2108                                             jobject lock) {
2109   // TODO: add entrypoints for @FastNative returning objects.
2110   if (lock != nullptr) {
2111     return reinterpret_cast<uint64_t>(JniMethodEndWithReferenceSynchronized(l, cookie, lock, self));
2112   } else {
2113     return reinterpret_cast<uint64_t>(JniMethodEndWithReference(l, cookie, self));
2114   }
2115 }
2116 
artQuickGenericJniEndJNINonRef(Thread * self,uint32_t cookie,bool fast_native,jobject lock)2117 static void artQuickGenericJniEndJNINonRef(Thread* self,
2118                                            uint32_t cookie,
2119                                            bool fast_native,
2120                                            jobject lock) {
2121   if (lock != nullptr) {
2122     JniMethodEndSynchronized(cookie, lock, self);
2123     // Ignore "fast_native" here because synchronized functions aren't very fast.
2124   } else {
2125     if (UNLIKELY(fast_native)) {
2126       JniMethodFastEnd(cookie, self);
2127     } else {
2128       JniMethodEnd(cookie, self);
2129     }
2130   }
2131 }
2132 
2133 /*
2134  * Initializes an alloca region assumed to be directly below sp for a native call:
2135  * Create a HandleScope and call stack and fill a mini stack with values to be pushed to registers.
2136  * The final element on the stack is a pointer to the native code.
2137  *
2138  * On entry, the stack has a standard callee-save frame above sp, and an alloca below it.
2139  * We need to fix this, as the handle scope needs to go into the callee-save frame.
2140  *
2141  * The return of this function denotes:
2142  * 1) How many bytes of the alloca can be released, if the value is non-negative.
2143  * 2) An error, if the value is negative.
2144  */
artQuickGenericJniTrampoline(Thread * self,ArtMethod ** sp)2145 extern "C" TwoWordReturn artQuickGenericJniTrampoline(Thread* self, ArtMethod** sp)
2146     REQUIRES_SHARED(Locks::mutator_lock_) {
2147   ArtMethod* called = *sp;
2148   DCHECK(called->IsNative()) << called->PrettyMethod(true);
2149   // Fix up a callee-save frame at the bottom of the stack (at `*sp`,
2150   // above the alloca region) while we check for optimization
2151   // annotations, thus allowing stack walking until the completion of
2152   // the JNI frame creation.
2153   //
2154   // Note however that the Generic JNI trampoline does not expect
2155   // exception being thrown at that stage.
2156   *sp = Runtime::Current()->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs);
2157   self->SetTopOfStack(sp);
2158   uint32_t shorty_len = 0;
2159   const char* shorty = called->GetShorty(&shorty_len);
2160   // Optimization annotations lookup does not try to resolve classes,
2161   // as this may throw an exception, which is not supported by the
2162   // Generic JNI trampoline at this stage; instead, method's
2163   // annotations' classes are looked up in the bootstrap class
2164   // loader's resolved types (which won't trigger an exception).
2165   bool critical_native = called->IsAnnotatedWithCriticalNative();
2166   // ArtMethod::IsAnnotatedWithCriticalNative should not throw
2167   // an exception; clear it if it happened anyway.
2168   // TODO: Revisit this code path and turn this into a CHECK(!self->IsExceptionPending()).
2169   if (self->IsExceptionPending()) {
2170     self->ClearException();
2171   }
2172   bool fast_native = called->IsAnnotatedWithFastNative();
2173   // ArtMethod::IsAnnotatedWithFastNative should not throw
2174   // an exception; clear it if it happened anyway.
2175   // TODO: Revisit this code path and turn this into a CHECK(!self->IsExceptionPending()).
2176   if (self->IsExceptionPending()) {
2177     self->ClearException();
2178   }
2179   bool normal_native = !critical_native && !fast_native;
2180   // Restore the initial ArtMethod pointer at `*sp`.
2181   *sp = called;
2182 
2183   // Run the visitor and update sp.
2184   BuildGenericJniFrameVisitor visitor(self,
2185                                       called->IsStatic(),
2186                                       critical_native,
2187                                       shorty,
2188                                       shorty_len,
2189                                       &sp);
2190   {
2191     ScopedAssertNoThreadSuspension sants(__FUNCTION__);
2192     visitor.VisitArguments();
2193     // FinalizeHandleScope pushes the handle scope on the thread.
2194     visitor.FinalizeHandleScope(self);
2195   }
2196 
2197   // Fix up managed-stack things in Thread.
2198   self->SetTopOfStack(sp);
2199 
2200   self->VerifyStack();
2201 
2202   uint32_t cookie;
2203   uint32_t* sp32;
2204   // Skip calling JniMethodStart for @CriticalNative.
2205   if (LIKELY(!critical_native)) {
2206     // Start JNI, save the cookie.
2207     if (called->IsSynchronized()) {
2208       DCHECK(normal_native) << " @FastNative and synchronize is not supported";
2209       cookie = JniMethodStartSynchronized(visitor.GetFirstHandleScopeJObject(), self);
2210       if (self->IsExceptionPending()) {
2211         self->PopHandleScope();
2212         // A negative value denotes an error.
2213         return GetTwoWordFailureValue();
2214       }
2215     } else {
2216       if (fast_native) {
2217         cookie = JniMethodFastStart(self);
2218       } else {
2219         DCHECK(normal_native);
2220         cookie = JniMethodStart(self);
2221       }
2222     }
2223     sp32 = reinterpret_cast<uint32_t*>(sp);
2224     *(sp32 - 1) = cookie;
2225   }
2226 
2227   // Retrieve the stored native code.
2228   void const* nativeCode = called->GetEntryPointFromJni();
2229 
2230   // There are two cases for the content of nativeCode:
2231   // 1) Pointer to the native function.
2232   // 2) Pointer to the trampoline for native code binding.
2233   // In the second case, we need to execute the binding and continue with the actual native function
2234   // pointer.
2235   DCHECK(nativeCode != nullptr);
2236   if (nativeCode == GetJniDlsymLookupStub()) {
2237 #if defined(__arm__) || defined(__aarch64__)
2238     nativeCode = artFindNativeMethod();
2239 #else
2240     nativeCode = artFindNativeMethod(self);
2241 #endif
2242 
2243     if (nativeCode == nullptr) {
2244       DCHECK(self->IsExceptionPending());    // There should be an exception pending now.
2245 
2246       // @CriticalNative calls do not need to call back into JniMethodEnd.
2247       if (LIKELY(!critical_native)) {
2248         // End JNI, as the assembly will move to deliver the exception.
2249         jobject lock = called->IsSynchronized() ? visitor.GetFirstHandleScopeJObject() : nullptr;
2250         if (shorty[0] == 'L') {
2251           artQuickGenericJniEndJNIRef(self, cookie, fast_native, nullptr, lock);
2252         } else {
2253           artQuickGenericJniEndJNINonRef(self, cookie, fast_native, lock);
2254         }
2255       }
2256 
2257       return GetTwoWordFailureValue();
2258     }
2259     // Note that the native code pointer will be automatically set by artFindNativeMethod().
2260   }
2261 
2262 #if defined(__mips__) && !defined(__LP64__)
2263   // On MIPS32 if the first two arguments are floating-point, we need to know their types
2264   // so that art_quick_generic_jni_trampoline can correctly extract them from the stack
2265   // and load into floating-point registers.
2266   // Possible arrangements of first two floating-point arguments on the stack (32-bit FPU
2267   // view):
2268   // (1)
2269   //  |     DOUBLE    |     DOUBLE    | other args, if any
2270   //  |  F12  |  F13  |  F14  |  F15  |
2271   //  |  SP+0 |  SP+4 |  SP+8 | SP+12 | SP+16
2272   // (2)
2273   //  |     DOUBLE    | FLOAT | (PAD) | other args, if any
2274   //  |  F12  |  F13  |  F14  |       |
2275   //  |  SP+0 |  SP+4 |  SP+8 | SP+12 | SP+16
2276   // (3)
2277   //  | FLOAT | (PAD) |     DOUBLE    | other args, if any
2278   //  |  F12  |       |  F14  |  F15  |
2279   //  |  SP+0 |  SP+4 |  SP+8 | SP+12 | SP+16
2280   // (4)
2281   //  | FLOAT | FLOAT | other args, if any
2282   //  |  F12  |  F14  |
2283   //  |  SP+0 |  SP+4 | SP+8
2284   // As you can see, only the last case (4) is special. In all others we can just
2285   // load F12/F13 and F14/F15 in the same manner.
2286   // Set bit 0 of the native code address to 1 in this case (valid code addresses
2287   // are always a multiple of 4 on MIPS32, so we have 2 spare bits available).
2288   if (nativeCode != nullptr &&
2289       shorty != nullptr &&
2290       shorty_len >= 3 &&
2291       shorty[1] == 'F' &&
2292       shorty[2] == 'F') {
2293     nativeCode = reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(nativeCode) | 1);
2294   }
2295 #endif
2296 
2297   // Return native code addr(lo) and bottom of alloca address(hi).
2298   return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(visitor.GetBottomOfUsedArea()),
2299                                 reinterpret_cast<uintptr_t>(nativeCode));
2300 }
2301 
2302 // Defined in quick_jni_entrypoints.cc.
2303 extern uint64_t GenericJniMethodEnd(Thread* self, uint32_t saved_local_ref_cookie,
2304                                     jvalue result, uint64_t result_f, ArtMethod* called,
2305                                     HandleScope* handle_scope);
2306 /*
2307  * Is called after the native JNI code. Responsible for cleanup (handle scope, saved state) and
2308  * unlocking.
2309  */
artQuickGenericJniEndTrampoline(Thread * self,jvalue result,uint64_t result_f)2310 extern "C" uint64_t artQuickGenericJniEndTrampoline(Thread* self,
2311                                                     jvalue result,
2312                                                     uint64_t result_f) {
2313   // We're here just back from a native call. We don't have the shared mutator lock at this point
2314   // yet until we call GoToRunnable() later in GenericJniMethodEnd(). Accessing objects or doing
2315   // anything that requires a mutator lock before that would cause problems as GC may have the
2316   // exclusive mutator lock and may be moving objects, etc.
2317   ArtMethod** sp = self->GetManagedStack()->GetTopQuickFrame();
2318   uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp);
2319   ArtMethod* called = *sp;
2320   uint32_t cookie = *(sp32 - 1);
2321   HandleScope* table = reinterpret_cast<HandleScope*>(reinterpret_cast<uint8_t*>(sp) + sizeof(*sp));
2322   return GenericJniMethodEnd(self, cookie, result, result_f, called, table);
2323 }
2324 
2325 // We use TwoWordReturn to optimize scalar returns. We use the hi value for code, and the lo value
2326 // for the method pointer.
2327 //
2328 // It is valid to use this, as at the usage points here (returns from C functions) we are assuming
2329 // to hold the mutator lock (see REQUIRES_SHARED(Locks::mutator_lock_) annotations).
2330 
2331 template <InvokeType type, bool access_check>
artInvokeCommon(uint32_t method_idx,ObjPtr<mirror::Object> this_object,Thread * self,ArtMethod ** sp)2332 static TwoWordReturn artInvokeCommon(uint32_t method_idx,
2333                                      ObjPtr<mirror::Object> this_object,
2334                                      Thread* self,
2335                                      ArtMethod** sp) {
2336   ScopedQuickEntrypointChecks sqec(self);
2337   DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs));
2338   ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
2339   ArtMethod* method = FindMethodFast<type, access_check>(method_idx, this_object, caller_method);
2340   if (UNLIKELY(method == nullptr)) {
2341     const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()->GetDexFile();
2342     uint32_t shorty_len;
2343     const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(method_idx), &shorty_len);
2344     {
2345       // Remember the args in case a GC happens in FindMethodFromCode.
2346       ScopedObjectAccessUnchecked soa(self->GetJniEnv());
2347       RememberForGcArgumentVisitor visitor(sp, type == kStatic, shorty, shorty_len, &soa);
2348       visitor.VisitArguments();
2349       method = FindMethodFromCode<type, access_check>(method_idx,
2350                                                       &this_object,
2351                                                       caller_method,
2352                                                       self);
2353       visitor.FixupReferences();
2354     }
2355 
2356     if (UNLIKELY(method == nullptr)) {
2357       CHECK(self->IsExceptionPending());
2358       return GetTwoWordFailureValue();  // Failure.
2359     }
2360   }
2361   DCHECK(!self->IsExceptionPending());
2362   const void* code = method->GetEntryPointFromQuickCompiledCode();
2363 
2364   // When we return, the caller will branch to this address, so it had better not be 0!
2365   DCHECK(code != nullptr) << "Code was null in method: " << method->PrettyMethod()
2366                           << " location: "
2367                           << method->GetDexFile()->GetLocation();
2368 
2369   return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
2370                                 reinterpret_cast<uintptr_t>(method));
2371 }
2372 
2373 // Explicit artInvokeCommon template function declarations to please analysis tool.
2374 #define EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(type, access_check)                                \
2375   template REQUIRES_SHARED(Locks::mutator_lock_)                                          \
2376   TwoWordReturn artInvokeCommon<type, access_check>(                                            \
2377       uint32_t method_idx, ObjPtr<mirror::Object> his_object, Thread* self, ArtMethod** sp)
2378 
2379 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, false);
2380 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, true);
2381 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, false);
2382 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, true);
2383 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, false);
2384 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, true);
2385 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, false);
2386 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, true);
2387 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, false);
2388 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, true);
2389 #undef EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL
2390 
2391 // See comments in runtime_support_asm.S
artInvokeInterfaceTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,Thread * self,ArtMethod ** sp)2392 extern "C" TwoWordReturn artInvokeInterfaceTrampolineWithAccessCheck(
2393     uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2394     REQUIRES_SHARED(Locks::mutator_lock_) {
2395   return artInvokeCommon<kInterface, true>(method_idx, this_object, self, sp);
2396 }
2397 
artInvokeDirectTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,Thread * self,ArtMethod ** sp)2398 extern "C" TwoWordReturn artInvokeDirectTrampolineWithAccessCheck(
2399     uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2400     REQUIRES_SHARED(Locks::mutator_lock_) {
2401   return artInvokeCommon<kDirect, true>(method_idx, this_object, self, sp);
2402 }
2403 
artInvokeStaticTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object ATTRIBUTE_UNUSED,Thread * self,ArtMethod ** sp)2404 extern "C" TwoWordReturn artInvokeStaticTrampolineWithAccessCheck(
2405     uint32_t method_idx,
2406     mirror::Object* this_object ATTRIBUTE_UNUSED,
2407     Thread* self,
2408     ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
2409   // For static, this_object is not required and may be random garbage. Don't pass it down so that
2410   // it doesn't cause ObjPtr alignment failure check.
2411   return artInvokeCommon<kStatic, true>(method_idx, nullptr, self, sp);
2412 }
2413 
artInvokeSuperTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,Thread * self,ArtMethod ** sp)2414 extern "C" TwoWordReturn artInvokeSuperTrampolineWithAccessCheck(
2415     uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2416     REQUIRES_SHARED(Locks::mutator_lock_) {
2417   return artInvokeCommon<kSuper, true>(method_idx, this_object, self, sp);
2418 }
2419 
artInvokeVirtualTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,Thread * self,ArtMethod ** sp)2420 extern "C" TwoWordReturn artInvokeVirtualTrampolineWithAccessCheck(
2421     uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2422     REQUIRES_SHARED(Locks::mutator_lock_) {
2423   return artInvokeCommon<kVirtual, true>(method_idx, this_object, self, sp);
2424 }
2425 
2426 // Helper function for art_quick_imt_conflict_trampoline to look up the interface method.
artLookupResolvedMethod(uint32_t method_index,ArtMethod * referrer)2427 extern "C" ArtMethod* artLookupResolvedMethod(uint32_t method_index, ArtMethod* referrer)
2428     REQUIRES_SHARED(Locks::mutator_lock_) {
2429   ScopedAssertNoThreadSuspension ants(__FUNCTION__);
2430   DCHECK(!referrer->IsProxyMethod());
2431   ArtMethod* result = Runtime::Current()->GetClassLinker()->LookupResolvedMethod(
2432       method_index, referrer->GetDexCache(), referrer->GetClassLoader());
2433   DCHECK(result == nullptr ||
2434          result->GetDeclaringClass()->IsInterface() ||
2435          result->GetDeclaringClass() ==
2436              WellKnownClasses::ToClass(WellKnownClasses::java_lang_Object))
2437       << result->PrettyMethod();
2438   return result;
2439 }
2440 
2441 // Determine target of interface dispatch. The interface method and this object are known non-null.
2442 // The interface method is the method returned by the dex cache in the conflict trampoline.
artInvokeInterfaceTrampoline(ArtMethod * interface_method,mirror::Object * raw_this_object,Thread * self,ArtMethod ** sp)2443 extern "C" TwoWordReturn artInvokeInterfaceTrampoline(ArtMethod* interface_method,
2444                                                       mirror::Object* raw_this_object,
2445                                                       Thread* self,
2446                                                       ArtMethod** sp)
2447     REQUIRES_SHARED(Locks::mutator_lock_) {
2448   ScopedQuickEntrypointChecks sqec(self);
2449   StackHandleScope<2> hs(self);
2450   Handle<mirror::Object> this_object = hs.NewHandle(raw_this_object);
2451   Handle<mirror::Class> cls = hs.NewHandle(this_object->GetClass());
2452 
2453   ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
2454   ArtMethod* method = nullptr;
2455   ImTable* imt = cls->GetImt(kRuntimePointerSize);
2456 
2457   if (UNLIKELY(interface_method == nullptr)) {
2458     // The interface method is unresolved, so resolve it in the dex file of the caller.
2459     // Fetch the dex_method_idx of the target interface method from the caller.
2460     uint32_t dex_method_idx;
2461     uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
2462     const DexFile::CodeItem* code_item = caller_method->GetCodeItem();
2463     DCHECK_LT(dex_pc, code_item->insns_size_in_code_units_);
2464     const Instruction* instr = Instruction::At(&code_item->insns_[dex_pc]);
2465     Instruction::Code instr_code = instr->Opcode();
2466     DCHECK(instr_code == Instruction::INVOKE_INTERFACE ||
2467            instr_code == Instruction::INVOKE_INTERFACE_RANGE)
2468         << "Unexpected call into interface trampoline: " << instr->DumpString(nullptr);
2469     if (instr_code == Instruction::INVOKE_INTERFACE) {
2470       dex_method_idx = instr->VRegB_35c();
2471     } else {
2472       DCHECK_EQ(instr_code, Instruction::INVOKE_INTERFACE_RANGE);
2473       dex_method_idx = instr->VRegB_3rc();
2474     }
2475 
2476     const DexFile& dex_file = caller_method->GetDeclaringClass()->GetDexFile();
2477     uint32_t shorty_len;
2478     const char* shorty = dex_file.GetMethodShorty(dex_file.GetMethodId(dex_method_idx),
2479                                                   &shorty_len);
2480     {
2481       // Remember the args in case a GC happens in ClassLinker::ResolveMethod().
2482       ScopedObjectAccessUnchecked soa(self->GetJniEnv());
2483       RememberForGcArgumentVisitor visitor(sp, false, shorty, shorty_len, &soa);
2484       visitor.VisitArguments();
2485       ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
2486       interface_method = class_linker->ResolveMethod<ClassLinker::ResolveMode::kNoChecks>(
2487           self, dex_method_idx, caller_method, kInterface);
2488       visitor.FixupReferences();
2489     }
2490 
2491     if (UNLIKELY(interface_method == nullptr)) {
2492       CHECK(self->IsExceptionPending());
2493       return GetTwoWordFailureValue();  // Failure.
2494     }
2495   }
2496 
2497   DCHECK(!interface_method->IsRuntimeMethod());
2498   // Look whether we have a match in the ImtConflictTable.
2499   uint32_t imt_index = ImTable::GetImtIndex(interface_method);
2500   ArtMethod* conflict_method = imt->Get(imt_index, kRuntimePointerSize);
2501   if (LIKELY(conflict_method->IsRuntimeMethod())) {
2502     ImtConflictTable* current_table = conflict_method->GetImtConflictTable(kRuntimePointerSize);
2503     DCHECK(current_table != nullptr);
2504     method = current_table->Lookup(interface_method, kRuntimePointerSize);
2505   } else {
2506     // It seems we aren't really a conflict method!
2507     if (kIsDebugBuild) {
2508       ArtMethod* m = cls->FindVirtualMethodForInterface(interface_method, kRuntimePointerSize);
2509       CHECK_EQ(conflict_method, m)
2510           << interface_method->PrettyMethod() << " / " << conflict_method->PrettyMethod() << " / "
2511           << " / " << ArtMethod::PrettyMethod(m) << " / " << cls->PrettyClass();
2512     }
2513     method = conflict_method;
2514   }
2515   if (method != nullptr) {
2516     return GetTwoWordSuccessValue(
2517         reinterpret_cast<uintptr_t>(method->GetEntryPointFromQuickCompiledCode()),
2518         reinterpret_cast<uintptr_t>(method));
2519   }
2520 
2521   // No match, use the IfTable.
2522   method = cls->FindVirtualMethodForInterface(interface_method, kRuntimePointerSize);
2523   if (UNLIKELY(method == nullptr)) {
2524     ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch(
2525         interface_method, this_object.Get(), caller_method);
2526     return GetTwoWordFailureValue();  // Failure.
2527   }
2528 
2529   // We arrive here if we have found an implementation, and it is not in the ImtConflictTable.
2530   // We create a new table with the new pair { interface_method, method }.
2531   DCHECK(conflict_method->IsRuntimeMethod());
2532   ArtMethod* new_conflict_method = Runtime::Current()->GetClassLinker()->AddMethodToConflictTable(
2533       cls.Get(),
2534       conflict_method,
2535       interface_method,
2536       method,
2537       /*force_new_conflict_method*/false);
2538   if (new_conflict_method != conflict_method) {
2539     // Update the IMT if we create a new conflict method. No fence needed here, as the
2540     // data is consistent.
2541     imt->Set(imt_index,
2542              new_conflict_method,
2543              kRuntimePointerSize);
2544   }
2545 
2546   const void* code = method->GetEntryPointFromQuickCompiledCode();
2547 
2548   // When we return, the caller will branch to this address, so it had better not be 0!
2549   DCHECK(code != nullptr) << "Code was null in method: " << method->PrettyMethod()
2550                           << " location: " << method->GetDexFile()->GetLocation();
2551 
2552   return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
2553                                 reinterpret_cast<uintptr_t>(method));
2554 }
2555 
2556 // Returns shorty type so the caller can determine how to put |result|
2557 // into expected registers. The shorty type is static so the compiler
2558 // could call different flavors of this code path depending on the
2559 // shorty type though this would require different entry points for
2560 // each type.
artInvokePolymorphic(JValue * result,mirror::Object * raw_method_handle,Thread * self,ArtMethod ** sp)2561 extern "C" uintptr_t artInvokePolymorphic(
2562     JValue* result,
2563     mirror::Object* raw_method_handle,
2564     Thread* self,
2565     ArtMethod** sp)
2566     REQUIRES_SHARED(Locks::mutator_lock_) {
2567   ScopedQuickEntrypointChecks sqec(self);
2568   DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs));
2569 
2570   // Start new JNI local reference state
2571   JNIEnvExt* env = self->GetJniEnv();
2572   ScopedObjectAccessUnchecked soa(env);
2573   ScopedJniEnvLocalRefState env_state(env);
2574   const char* old_cause = self->StartAssertNoThreadSuspension("Making stack arguments safe.");
2575 
2576   // From the instruction, get the |callsite_shorty| and expose arguments on the stack to the GC.
2577   ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
2578   uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
2579   const DexFile::CodeItem* code = caller_method->GetCodeItem();
2580   const Instruction* inst = Instruction::At(&code->insns_[dex_pc]);
2581   DCHECK(inst->Opcode() == Instruction::INVOKE_POLYMORPHIC ||
2582          inst->Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE);
2583   const DexFile* dex_file = caller_method->GetDexFile();
2584   const uint32_t proto_idx = inst->VRegH();
2585   const char* shorty = dex_file->GetShorty(proto_idx);
2586   const size_t shorty_length = strlen(shorty);
2587   static const bool kMethodIsStatic = false;  // invoke() and invokeExact() are not static.
2588   RememberForGcArgumentVisitor gc_visitor(sp, kMethodIsStatic, shorty, shorty_length, &soa);
2589   gc_visitor.VisitArguments();
2590 
2591   // Wrap raw_method_handle in a Handle for safety.
2592   StackHandleScope<5> hs(self);
2593   Handle<mirror::MethodHandle> method_handle(
2594       hs.NewHandle(ObjPtr<mirror::MethodHandle>::DownCast(MakeObjPtr(raw_method_handle))));
2595   raw_method_handle = nullptr;
2596   self->EndAssertNoThreadSuspension(old_cause);
2597 
2598   // Resolve method - it's either MethodHandle.invoke() or MethodHandle.invokeExact().
2599   ClassLinker* linker = Runtime::Current()->GetClassLinker();
2600   ArtMethod* resolved_method = linker->ResolveMethod<ClassLinker::ResolveMode::kCheckICCEAndIAE>(
2601       self, inst->VRegB(), caller_method, kVirtual);
2602   DCHECK((resolved_method ==
2603           jni::DecodeArtMethod(WellKnownClasses::java_lang_invoke_MethodHandle_invokeExact)) ||
2604          (resolved_method ==
2605           jni::DecodeArtMethod(WellKnownClasses::java_lang_invoke_MethodHandle_invoke)));
2606   if (UNLIKELY(method_handle.IsNull())) {
2607     ThrowNullPointerExceptionForMethodAccess(resolved_method, InvokeType::kVirtual);
2608     return static_cast<uintptr_t>('V');
2609   }
2610 
2611   Handle<mirror::Class> caller_class(hs.NewHandle(caller_method->GetDeclaringClass()));
2612   Handle<mirror::MethodType> method_type(hs.NewHandle(linker->ResolveMethodType(
2613       *dex_file, proto_idx,
2614       hs.NewHandle<mirror::DexCache>(caller_class->GetDexCache()),
2615       hs.NewHandle<mirror::ClassLoader>(caller_class->GetClassLoader()))));
2616   // This implies we couldn't resolve one or more types in this method handle.
2617   if (UNLIKELY(method_type.IsNull())) {
2618     CHECK(self->IsExceptionPending());
2619     return static_cast<uintptr_t>('V');
2620   }
2621 
2622   DCHECK_EQ(ArtMethod::NumArgRegisters(shorty) + 1u, (uint32_t)inst->VRegA());
2623   DCHECK_EQ(resolved_method->IsStatic(), kMethodIsStatic);
2624 
2625   // Fix references before constructing the shadow frame.
2626   gc_visitor.FixupReferences();
2627 
2628   // Construct shadow frame placing arguments consecutively from |first_arg|.
2629   const bool is_range = (inst->Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE);
2630   const size_t num_vregs = is_range ? inst->VRegA_4rcc() : inst->VRegA_45cc();
2631   const size_t first_arg = 0;
2632   ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
2633       CREATE_SHADOW_FRAME(num_vregs, /* link */ nullptr, resolved_method, dex_pc);
2634   ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
2635   ScopedStackedShadowFramePusher
2636       frame_pusher(self, shadow_frame, StackedShadowFrameType::kShadowFrameUnderConstruction);
2637   BuildQuickShadowFrameVisitor shadow_frame_builder(sp,
2638                                                     kMethodIsStatic,
2639                                                     shorty,
2640                                                     strlen(shorty),
2641                                                     shadow_frame,
2642                                                     first_arg);
2643   shadow_frame_builder.VisitArguments();
2644 
2645   // Push a transition back into managed code onto the linked list in thread.
2646   ManagedStack fragment;
2647   self->PushManagedStackFragment(&fragment);
2648 
2649   // Call DoInvokePolymorphic with |is_range| = true, as shadow frame has argument registers in
2650   // consecutive order.
2651   uint32_t unused_args[Instruction::kMaxVarArgRegs] = {};
2652   uint32_t first_callee_arg = first_arg + 1;
2653   if (!DoInvokePolymorphic<true /* is_range */>(self,
2654                                                 resolved_method,
2655                                                 *shadow_frame,
2656                                                 method_handle,
2657                                                 method_type,
2658                                                 unused_args,
2659                                                 first_callee_arg,
2660                                                 result)) {
2661     DCHECK(self->IsExceptionPending());
2662   }
2663 
2664   // Pop transition record.
2665   self->PopManagedStackFragment(fragment);
2666 
2667   return static_cast<uintptr_t>(shorty[0]);
2668 }
2669 
2670 }  // namespace art
2671