1 /*
2 * Copyright (C) 2015 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define TRACE_TAG SYSDEPS
18
19 #include "sysdeps.h"
20
21 #include <winsock2.h> /* winsock.h *must* be included before windows.h. */
22 #include <windows.h>
23
24 #include <errno.h>
25 #include <stdio.h>
26 #include <stdlib.h>
27
28 #include <algorithm>
29 #include <memory>
30 #include <mutex>
31 #include <string>
32 #include <unordered_map>
33 #include <vector>
34
35 #include <cutils/sockets.h>
36
37 #include <android-base/errors.h>
38 #include <android-base/logging.h>
39 #include <android-base/stringprintf.h>
40 #include <android-base/strings.h>
41 #include <android-base/utf8.h>
42
43 #include "adb.h"
44 #include "adb_utils.h"
45
46 extern void fatal(const char *fmt, ...);
47
48 /* forward declarations */
49
50 typedef const struct FHClassRec_* FHClass;
51 typedef struct FHRec_* FH;
52 typedef struct EventHookRec_* EventHook;
53
54 typedef struct FHClassRec_ {
55 void (*_fh_init)(FH);
56 int (*_fh_close)(FH);
57 int (*_fh_lseek)(FH, int, int);
58 int (*_fh_read)(FH, void*, int);
59 int (*_fh_write)(FH, const void*, int);
60 } FHClassRec;
61
62 static void _fh_file_init(FH);
63 static int _fh_file_close(FH);
64 static int _fh_file_lseek(FH, int, int);
65 static int _fh_file_read(FH, void*, int);
66 static int _fh_file_write(FH, const void*, int);
67
68 static const FHClassRec _fh_file_class = {
69 _fh_file_init,
70 _fh_file_close,
71 _fh_file_lseek,
72 _fh_file_read,
73 _fh_file_write,
74 };
75
76 static void _fh_socket_init(FH);
77 static int _fh_socket_close(FH);
78 static int _fh_socket_lseek(FH, int, int);
79 static int _fh_socket_read(FH, void*, int);
80 static int _fh_socket_write(FH, const void*, int);
81
82 static const FHClassRec _fh_socket_class = {
83 _fh_socket_init,
84 _fh_socket_close,
85 _fh_socket_lseek,
86 _fh_socket_read,
87 _fh_socket_write,
88 };
89
90 #define assert(cond) \
91 do { \
92 if (!(cond)) fatal("assertion failed '%s' on %s:%d\n", #cond, __FILE__, __LINE__); \
93 } while (0)
94
operator ()(HANDLE h)95 void handle_deleter::operator()(HANDLE h) {
96 // CreateFile() is documented to return INVALID_HANDLE_FILE on error,
97 // implying that NULL is a valid handle, but this is probably impossible.
98 // Other APIs like CreateEvent() are documented to return NULL on error,
99 // implying that INVALID_HANDLE_VALUE is a valid handle, but this is also
100 // probably impossible. Thus, consider both NULL and INVALID_HANDLE_VALUE
101 // as invalid handles. std::unique_ptr won't call a deleter with NULL, so we
102 // only need to check for INVALID_HANDLE_VALUE.
103 if (h != INVALID_HANDLE_VALUE) {
104 if (!CloseHandle(h)) {
105 D("CloseHandle(%p) failed: %s", h,
106 android::base::SystemErrorCodeToString(GetLastError()).c_str());
107 }
108 }
109 }
110
111 /**************************************************************************/
112 /**************************************************************************/
113 /***** *****/
114 /***** common file descriptor handling *****/
115 /***** *****/
116 /**************************************************************************/
117 /**************************************************************************/
118
119 typedef struct FHRec_
120 {
121 FHClass clazz;
122 int used;
123 int eof;
124 union {
125 HANDLE handle;
126 SOCKET socket;
127 } u;
128
129 char name[32];
130 } FHRec;
131
132 #define fh_handle u.handle
133 #define fh_socket u.socket
134
135 #define WIN32_FH_BASE 2048
136 #define WIN32_MAX_FHS 2048
137
138 static std::mutex& _win32_lock = *new std::mutex();
139 static FHRec _win32_fhs[ WIN32_MAX_FHS ];
140 static int _win32_fh_next; // where to start search for free FHRec
141
142 static FH
_fh_from_int(int fd,const char * func)143 _fh_from_int( int fd, const char* func )
144 {
145 FH f;
146
147 fd -= WIN32_FH_BASE;
148
149 if (fd < 0 || fd >= WIN32_MAX_FHS) {
150 D( "_fh_from_int: invalid fd %d passed to %s", fd + WIN32_FH_BASE,
151 func );
152 errno = EBADF;
153 return NULL;
154 }
155
156 f = &_win32_fhs[fd];
157
158 if (f->used == 0) {
159 D( "_fh_from_int: invalid fd %d passed to %s", fd + WIN32_FH_BASE,
160 func );
161 errno = EBADF;
162 return NULL;
163 }
164
165 return f;
166 }
167
168
169 static int
_fh_to_int(FH f)170 _fh_to_int( FH f )
171 {
172 if (f && f->used && f >= _win32_fhs && f < _win32_fhs + WIN32_MAX_FHS)
173 return (int)(f - _win32_fhs) + WIN32_FH_BASE;
174
175 return -1;
176 }
177
178 static FH
_fh_alloc(FHClass clazz)179 _fh_alloc( FHClass clazz )
180 {
181 FH f = NULL;
182
183 std::lock_guard<std::mutex> lock(_win32_lock);
184
185 for (int i = _win32_fh_next; i < WIN32_MAX_FHS; ++i) {
186 if (_win32_fhs[i].clazz == NULL) {
187 f = &_win32_fhs[i];
188 _win32_fh_next = i + 1;
189 f->clazz = clazz;
190 f->used = 1;
191 f->eof = 0;
192 f->name[0] = '\0';
193 clazz->_fh_init(f);
194 return f;
195 }
196 }
197
198 D("_fh_alloc: no more free file descriptors");
199 errno = EMFILE; // Too many open files
200 return nullptr;
201 }
202
203
204 static int
_fh_close(FH f)205 _fh_close( FH f )
206 {
207 // Use lock so that closing only happens once and so that _fh_alloc can't
208 // allocate a FH that we're in the middle of closing.
209 std::lock_guard<std::mutex> lock(_win32_lock);
210
211 int offset = f - _win32_fhs;
212 if (_win32_fh_next > offset) {
213 _win32_fh_next = offset;
214 }
215
216 if (f->used) {
217 f->clazz->_fh_close( f );
218 f->name[0] = '\0';
219 f->eof = 0;
220 f->used = 0;
221 f->clazz = NULL;
222 }
223 return 0;
224 }
225
226 // Deleter for unique_fh.
227 class fh_deleter {
228 public:
operator ()(struct FHRec_ * fh)229 void operator()(struct FHRec_* fh) {
230 // We're called from a destructor and destructors should not overwrite
231 // errno because callers may do:
232 // errno = EBLAH;
233 // return -1; // calls destructor, which should not overwrite errno
234 const int saved_errno = errno;
235 _fh_close(fh);
236 errno = saved_errno;
237 }
238 };
239
240 // Like std::unique_ptr, but calls _fh_close() instead of operator delete().
241 typedef std::unique_ptr<struct FHRec_, fh_deleter> unique_fh;
242
243 /**************************************************************************/
244 /**************************************************************************/
245 /***** *****/
246 /***** file-based descriptor handling *****/
247 /***** *****/
248 /**************************************************************************/
249 /**************************************************************************/
250
_fh_file_init(FH f)251 static void _fh_file_init( FH f ) {
252 f->fh_handle = INVALID_HANDLE_VALUE;
253 }
254
_fh_file_close(FH f)255 static int _fh_file_close( FH f ) {
256 CloseHandle( f->fh_handle );
257 f->fh_handle = INVALID_HANDLE_VALUE;
258 return 0;
259 }
260
_fh_file_read(FH f,void * buf,int len)261 static int _fh_file_read( FH f, void* buf, int len ) {
262 DWORD read_bytes;
263
264 if ( !ReadFile( f->fh_handle, buf, (DWORD)len, &read_bytes, NULL ) ) {
265 D( "adb_read: could not read %d bytes from %s", len, f->name );
266 errno = EIO;
267 return -1;
268 } else if (read_bytes < (DWORD)len) {
269 f->eof = 1;
270 }
271 return (int)read_bytes;
272 }
273
_fh_file_write(FH f,const void * buf,int len)274 static int _fh_file_write( FH f, const void* buf, int len ) {
275 DWORD wrote_bytes;
276
277 if ( !WriteFile( f->fh_handle, buf, (DWORD)len, &wrote_bytes, NULL ) ) {
278 D( "adb_file_write: could not write %d bytes from %s", len, f->name );
279 errno = EIO;
280 return -1;
281 } else if (wrote_bytes < (DWORD)len) {
282 f->eof = 1;
283 }
284 return (int)wrote_bytes;
285 }
286
_fh_file_lseek(FH f,int pos,int origin)287 static int _fh_file_lseek( FH f, int pos, int origin ) {
288 DWORD method;
289 DWORD result;
290
291 switch (origin)
292 {
293 case SEEK_SET: method = FILE_BEGIN; break;
294 case SEEK_CUR: method = FILE_CURRENT; break;
295 case SEEK_END: method = FILE_END; break;
296 default:
297 errno = EINVAL;
298 return -1;
299 }
300
301 result = SetFilePointer( f->fh_handle, pos, NULL, method );
302 if (result == INVALID_SET_FILE_POINTER) {
303 errno = EIO;
304 return -1;
305 } else {
306 f->eof = 0;
307 }
308 return (int)result;
309 }
310
311
312 /**************************************************************************/
313 /**************************************************************************/
314 /***** *****/
315 /***** file-based descriptor handling *****/
316 /***** *****/
317 /**************************************************************************/
318 /**************************************************************************/
319
adb_open(const char * path,int options)320 int adb_open(const char* path, int options)
321 {
322 FH f;
323
324 DWORD desiredAccess = 0;
325 DWORD shareMode = FILE_SHARE_READ | FILE_SHARE_WRITE;
326
327 switch (options) {
328 case O_RDONLY:
329 desiredAccess = GENERIC_READ;
330 break;
331 case O_WRONLY:
332 desiredAccess = GENERIC_WRITE;
333 break;
334 case O_RDWR:
335 desiredAccess = GENERIC_READ | GENERIC_WRITE;
336 break;
337 default:
338 D("adb_open: invalid options (0x%0x)", options);
339 errno = EINVAL;
340 return -1;
341 }
342
343 f = _fh_alloc( &_fh_file_class );
344 if ( !f ) {
345 return -1;
346 }
347
348 std::wstring path_wide;
349 if (!android::base::UTF8ToWide(path, &path_wide)) {
350 return -1;
351 }
352 f->fh_handle = CreateFileW( path_wide.c_str(), desiredAccess, shareMode,
353 NULL, OPEN_EXISTING, 0, NULL );
354
355 if ( f->fh_handle == INVALID_HANDLE_VALUE ) {
356 const DWORD err = GetLastError();
357 _fh_close(f);
358 D( "adb_open: could not open '%s': ", path );
359 switch (err) {
360 case ERROR_FILE_NOT_FOUND:
361 D( "file not found" );
362 errno = ENOENT;
363 return -1;
364
365 case ERROR_PATH_NOT_FOUND:
366 D( "path not found" );
367 errno = ENOTDIR;
368 return -1;
369
370 default:
371 D("unknown error: %s", android::base::SystemErrorCodeToString(err).c_str());
372 errno = ENOENT;
373 return -1;
374 }
375 }
376
377 snprintf( f->name, sizeof(f->name), "%d(%s)", _fh_to_int(f), path );
378 D( "adb_open: '%s' => fd %d", path, _fh_to_int(f) );
379 return _fh_to_int(f);
380 }
381
382 /* ignore mode on Win32 */
adb_creat(const char * path,int mode)383 int adb_creat(const char* path, int mode)
384 {
385 FH f;
386
387 f = _fh_alloc( &_fh_file_class );
388 if ( !f ) {
389 return -1;
390 }
391
392 std::wstring path_wide;
393 if (!android::base::UTF8ToWide(path, &path_wide)) {
394 return -1;
395 }
396 f->fh_handle = CreateFileW( path_wide.c_str(), GENERIC_WRITE,
397 FILE_SHARE_READ | FILE_SHARE_WRITE,
398 NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL,
399 NULL );
400
401 if ( f->fh_handle == INVALID_HANDLE_VALUE ) {
402 const DWORD err = GetLastError();
403 _fh_close(f);
404 D( "adb_creat: could not open '%s': ", path );
405 switch (err) {
406 case ERROR_FILE_NOT_FOUND:
407 D( "file not found" );
408 errno = ENOENT;
409 return -1;
410
411 case ERROR_PATH_NOT_FOUND:
412 D( "path not found" );
413 errno = ENOTDIR;
414 return -1;
415
416 default:
417 D("unknown error: %s", android::base::SystemErrorCodeToString(err).c_str());
418 errno = ENOENT;
419 return -1;
420 }
421 }
422 snprintf( f->name, sizeof(f->name), "%d(%s)", _fh_to_int(f), path );
423 D( "adb_creat: '%s' => fd %d", path, _fh_to_int(f) );
424 return _fh_to_int(f);
425 }
426
427
adb_read(int fd,void * buf,int len)428 int adb_read(int fd, void* buf, int len)
429 {
430 FH f = _fh_from_int(fd, __func__);
431
432 if (f == NULL) {
433 return -1;
434 }
435
436 return f->clazz->_fh_read( f, buf, len );
437 }
438
439
adb_write(int fd,const void * buf,int len)440 int adb_write(int fd, const void* buf, int len)
441 {
442 FH f = _fh_from_int(fd, __func__);
443
444 if (f == NULL) {
445 return -1;
446 }
447
448 return f->clazz->_fh_write(f, buf, len);
449 }
450
451
adb_lseek(int fd,int pos,int where)452 int adb_lseek(int fd, int pos, int where)
453 {
454 FH f = _fh_from_int(fd, __func__);
455
456 if (!f) {
457 return -1;
458 }
459
460 return f->clazz->_fh_lseek(f, pos, where);
461 }
462
463
adb_close(int fd)464 int adb_close(int fd)
465 {
466 FH f = _fh_from_int(fd, __func__);
467
468 if (!f) {
469 return -1;
470 }
471
472 D( "adb_close: %s", f->name);
473 _fh_close(f);
474 return 0;
475 }
476
477 /**************************************************************************/
478 /**************************************************************************/
479 /***** *****/
480 /***** socket-based file descriptors *****/
481 /***** *****/
482 /**************************************************************************/
483 /**************************************************************************/
484
485 #undef setsockopt
486
_socket_set_errno(const DWORD err)487 static void _socket_set_errno( const DWORD err ) {
488 // Because the Windows C Runtime (MSVCRT.DLL) strerror() does not support a
489 // lot of POSIX and socket error codes, some of the resulting error codes
490 // are mapped to strings by adb_strerror().
491 switch ( err ) {
492 case 0: errno = 0; break;
493 // Don't map WSAEINTR since that is only for Winsock 1.1 which we don't use.
494 // case WSAEINTR: errno = EINTR; break;
495 case WSAEFAULT: errno = EFAULT; break;
496 case WSAEINVAL: errno = EINVAL; break;
497 case WSAEMFILE: errno = EMFILE; break;
498 // Mapping WSAEWOULDBLOCK to EAGAIN is absolutely critical because
499 // non-blocking sockets can cause an error code of WSAEWOULDBLOCK and
500 // callers check specifically for EAGAIN.
501 case WSAEWOULDBLOCK: errno = EAGAIN; break;
502 case WSAENOTSOCK: errno = ENOTSOCK; break;
503 case WSAENOPROTOOPT: errno = ENOPROTOOPT; break;
504 case WSAEOPNOTSUPP: errno = EOPNOTSUPP; break;
505 case WSAENETDOWN: errno = ENETDOWN; break;
506 case WSAENETRESET: errno = ENETRESET; break;
507 // Map WSAECONNABORTED to EPIPE instead of ECONNABORTED because POSIX seems
508 // to use EPIPE for these situations and there are some callers that look
509 // for EPIPE.
510 case WSAECONNABORTED: errno = EPIPE; break;
511 case WSAECONNRESET: errno = ECONNRESET; break;
512 case WSAENOBUFS: errno = ENOBUFS; break;
513 case WSAENOTCONN: errno = ENOTCONN; break;
514 // Don't map WSAETIMEDOUT because we don't currently use SO_RCVTIMEO or
515 // SO_SNDTIMEO which would cause WSAETIMEDOUT to be returned. Future
516 // considerations: Reportedly send() can return zero on timeout, and POSIX
517 // code may expect EAGAIN instead of ETIMEDOUT on timeout.
518 // case WSAETIMEDOUT: errno = ETIMEDOUT; break;
519 case WSAEHOSTUNREACH: errno = EHOSTUNREACH; break;
520 default:
521 errno = EINVAL;
522 D( "_socket_set_errno: mapping Windows error code %lu to errno %d",
523 err, errno );
524 }
525 }
526
adb_poll(adb_pollfd * fds,size_t nfds,int timeout)527 extern int adb_poll(adb_pollfd* fds, size_t nfds, int timeout) {
528 // WSAPoll doesn't handle invalid/non-socket handles, so we need to handle them ourselves.
529 int skipped = 0;
530 std::vector<WSAPOLLFD> sockets;
531 std::vector<adb_pollfd*> original;
532 for (size_t i = 0; i < nfds; ++i) {
533 FH fh = _fh_from_int(fds[i].fd, __func__);
534 if (!fh || !fh->used || fh->clazz != &_fh_socket_class) {
535 D("adb_poll received bad FD %d", fds[i].fd);
536 fds[i].revents = POLLNVAL;
537 ++skipped;
538 } else {
539 WSAPOLLFD wsapollfd = {
540 .fd = fh->u.socket,
541 .events = static_cast<short>(fds[i].events)
542 };
543 sockets.push_back(wsapollfd);
544 original.push_back(&fds[i]);
545 }
546 }
547
548 if (sockets.empty()) {
549 return skipped;
550 }
551
552 int result = WSAPoll(sockets.data(), sockets.size(), timeout);
553 if (result == SOCKET_ERROR) {
554 _socket_set_errno(WSAGetLastError());
555 return -1;
556 }
557
558 // Map the results back onto the original set.
559 for (size_t i = 0; i < sockets.size(); ++i) {
560 original[i]->revents = sockets[i].revents;
561 }
562
563 // WSAPoll appears to return the number of unique FDs with avaiable events, instead of how many
564 // of the pollfd elements have a non-zero revents field, which is what it and poll are specified
565 // to do. Ignore its result and calculate the proper return value.
566 result = 0;
567 for (size_t i = 0; i < nfds; ++i) {
568 if (fds[i].revents != 0) {
569 ++result;
570 }
571 }
572 return result;
573 }
574
_fh_socket_init(FH f)575 static void _fh_socket_init(FH f) {
576 f->fh_socket = INVALID_SOCKET;
577 }
578
_fh_socket_close(FH f)579 static int _fh_socket_close( FH f ) {
580 if (f->fh_socket != INVALID_SOCKET) {
581 /* gently tell any peer that we're closing the socket */
582 if (shutdown(f->fh_socket, SD_BOTH) == SOCKET_ERROR) {
583 // If the socket is not connected, this returns an error. We want to
584 // minimize logging spam, so don't log these errors for now.
585 #if 0
586 D("socket shutdown failed: %s",
587 android::base::SystemErrorCodeToString(WSAGetLastError()).c_str());
588 #endif
589 }
590 if (closesocket(f->fh_socket) == SOCKET_ERROR) {
591 // Don't set errno here, since adb_close will ignore it.
592 const DWORD err = WSAGetLastError();
593 D("closesocket failed: %s", android::base::SystemErrorCodeToString(err).c_str());
594 }
595 f->fh_socket = INVALID_SOCKET;
596 }
597 return 0;
598 }
599
_fh_socket_lseek(FH f,int pos,int origin)600 static int _fh_socket_lseek( FH f, int pos, int origin ) {
601 errno = EPIPE;
602 return -1;
603 }
604
_fh_socket_read(FH f,void * buf,int len)605 static int _fh_socket_read(FH f, void* buf, int len) {
606 int result = recv(f->fh_socket, reinterpret_cast<char*>(buf), len, 0);
607 if (result == SOCKET_ERROR) {
608 const DWORD err = WSAGetLastError();
609 // WSAEWOULDBLOCK is normal with a non-blocking socket, so don't trace
610 // that to reduce spam and confusion.
611 if (err != WSAEWOULDBLOCK) {
612 D("recv fd %d failed: %s", _fh_to_int(f),
613 android::base::SystemErrorCodeToString(err).c_str());
614 }
615 _socket_set_errno(err);
616 result = -1;
617 }
618 return result;
619 }
620
_fh_socket_write(FH f,const void * buf,int len)621 static int _fh_socket_write(FH f, const void* buf, int len) {
622 int result = send(f->fh_socket, reinterpret_cast<const char*>(buf), len, 0);
623 if (result == SOCKET_ERROR) {
624 const DWORD err = WSAGetLastError();
625 // WSAEWOULDBLOCK is normal with a non-blocking socket, so don't trace
626 // that to reduce spam and confusion.
627 if (err != WSAEWOULDBLOCK) {
628 D("send fd %d failed: %s", _fh_to_int(f),
629 android::base::SystemErrorCodeToString(err).c_str());
630 }
631 _socket_set_errno(err);
632 result = -1;
633 } else {
634 // According to https://code.google.com/p/chromium/issues/detail?id=27870
635 // Winsock Layered Service Providers may cause this.
636 CHECK_LE(result, len) << "Tried to write " << len << " bytes to "
637 << f->name << ", but " << result
638 << " bytes reportedly written";
639 }
640 return result;
641 }
642
643 /**************************************************************************/
644 /**************************************************************************/
645 /***** *****/
646 /***** replacement for libs/cutils/socket_xxxx.c *****/
647 /***** *****/
648 /**************************************************************************/
649 /**************************************************************************/
650
651 #include <winsock2.h>
652
653 static int _winsock_init;
654
655 static void
_init_winsock(void)656 _init_winsock( void )
657 {
658 // TODO: Multiple threads calling this may potentially cause multiple calls
659 // to WSAStartup() which offers no real benefit.
660 if (!_winsock_init) {
661 WSADATA wsaData;
662 int rc = WSAStartup( MAKEWORD(2,2), &wsaData);
663 if (rc != 0) {
664 fatal("adb: could not initialize Winsock: %s",
665 android::base::SystemErrorCodeToString(rc).c_str());
666 }
667 _winsock_init = 1;
668
669 // Note that we do not call atexit() to register WSACleanup to be called
670 // at normal process termination because:
671 // 1) When exit() is called, there are still threads actively using
672 // Winsock because we don't cleanly shutdown all threads, so it
673 // doesn't make sense to call WSACleanup() and may cause problems
674 // with those threads.
675 // 2) A deadlock can occur when exit() holds a C Runtime lock, then it
676 // calls WSACleanup() which tries to unload a DLL, which tries to
677 // grab the LoaderLock. This conflicts with the device_poll_thread
678 // which holds the LoaderLock because AdbWinApi.dll calls
679 // setupapi.dll which tries to load wintrust.dll which tries to load
680 // crypt32.dll which calls atexit() which tries to acquire the C
681 // Runtime lock that the other thread holds.
682 }
683 }
684
685 // Map a socket type to an explicit socket protocol instead of using the socket
686 // protocol of 0. Explicit socket protocols are used by most apps and we should
687 // do the same to reduce the chance of exercising uncommon code-paths that might
688 // have problems or that might load different Winsock service providers that
689 // have problems.
GetSocketProtocolFromSocketType(int type)690 static int GetSocketProtocolFromSocketType(int type) {
691 switch (type) {
692 case SOCK_STREAM:
693 return IPPROTO_TCP;
694 case SOCK_DGRAM:
695 return IPPROTO_UDP;
696 default:
697 LOG(FATAL) << "Unknown socket type: " << type;
698 return 0;
699 }
700 }
701
network_loopback_client(int port,int type,std::string * error)702 int network_loopback_client(int port, int type, std::string* error) {
703 struct sockaddr_in addr;
704 SOCKET s;
705
706 unique_fh f(_fh_alloc(&_fh_socket_class));
707 if (!f) {
708 *error = strerror(errno);
709 return -1;
710 }
711
712 if (!_winsock_init) _init_winsock();
713
714 memset(&addr, 0, sizeof(addr));
715 addr.sin_family = AF_INET;
716 addr.sin_port = htons(port);
717 addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
718
719 s = socket(AF_INET, type, GetSocketProtocolFromSocketType(type));
720 if (s == INVALID_SOCKET) {
721 const DWORD err = WSAGetLastError();
722 *error = android::base::StringPrintf("cannot create socket: %s",
723 android::base::SystemErrorCodeToString(err).c_str());
724 D("%s", error->c_str());
725 _socket_set_errno(err);
726 return -1;
727 }
728 f->fh_socket = s;
729
730 if (connect(s, (struct sockaddr*)&addr, sizeof(addr)) == SOCKET_ERROR) {
731 // Save err just in case inet_ntoa() or ntohs() changes the last error.
732 const DWORD err = WSAGetLastError();
733 *error = android::base::StringPrintf("cannot connect to %s:%u: %s",
734 inet_ntoa(addr.sin_addr), ntohs(addr.sin_port),
735 android::base::SystemErrorCodeToString(err).c_str());
736 D("could not connect to %s:%d: %s", type != SOCK_STREAM ? "udp" : "tcp", port,
737 error->c_str());
738 _socket_set_errno(err);
739 return -1;
740 }
741
742 const int fd = _fh_to_int(f.get());
743 snprintf(f->name, sizeof(f->name), "%d(lo-client:%s%d)", fd, type != SOCK_STREAM ? "udp:" : "",
744 port);
745 D("port %d type %s => fd %d", port, type != SOCK_STREAM ? "udp" : "tcp", fd);
746 f.release();
747 return fd;
748 }
749
750 #define LISTEN_BACKLOG 4
751
752 // interface_address is INADDR_LOOPBACK or INADDR_ANY.
_network_server(int port,int type,u_long interface_address,std::string * error)753 static int _network_server(int port, int type, u_long interface_address, std::string* error) {
754 struct sockaddr_in addr;
755 SOCKET s;
756 int n;
757
758 unique_fh f(_fh_alloc(&_fh_socket_class));
759 if (!f) {
760 *error = strerror(errno);
761 return -1;
762 }
763
764 if (!_winsock_init) _init_winsock();
765
766 memset(&addr, 0, sizeof(addr));
767 addr.sin_family = AF_INET;
768 addr.sin_port = htons(port);
769 addr.sin_addr.s_addr = htonl(interface_address);
770
771 // TODO: Consider using dual-stack socket that can simultaneously listen on
772 // IPv4 and IPv6.
773 s = socket(AF_INET, type, GetSocketProtocolFromSocketType(type));
774 if (s == INVALID_SOCKET) {
775 const DWORD err = WSAGetLastError();
776 *error = android::base::StringPrintf("cannot create socket: %s",
777 android::base::SystemErrorCodeToString(err).c_str());
778 D("%s", error->c_str());
779 _socket_set_errno(err);
780 return -1;
781 }
782
783 f->fh_socket = s;
784
785 // Note: SO_REUSEADDR on Windows allows multiple processes to bind to the
786 // same port, so instead use SO_EXCLUSIVEADDRUSE.
787 n = 1;
788 if (setsockopt(s, SOL_SOCKET, SO_EXCLUSIVEADDRUSE, (const char*)&n, sizeof(n)) == SOCKET_ERROR) {
789 const DWORD err = WSAGetLastError();
790 *error = android::base::StringPrintf("cannot set socket option SO_EXCLUSIVEADDRUSE: %s",
791 android::base::SystemErrorCodeToString(err).c_str());
792 D("%s", error->c_str());
793 _socket_set_errno(err);
794 return -1;
795 }
796
797 if (bind(s, (struct sockaddr*)&addr, sizeof(addr)) == SOCKET_ERROR) {
798 // Save err just in case inet_ntoa() or ntohs() changes the last error.
799 const DWORD err = WSAGetLastError();
800 *error = android::base::StringPrintf("cannot bind to %s:%u: %s", inet_ntoa(addr.sin_addr),
801 ntohs(addr.sin_port),
802 android::base::SystemErrorCodeToString(err).c_str());
803 D("could not bind to %s:%d: %s", type != SOCK_STREAM ? "udp" : "tcp", port, error->c_str());
804 _socket_set_errno(err);
805 return -1;
806 }
807 if (type == SOCK_STREAM) {
808 if (listen(s, LISTEN_BACKLOG) == SOCKET_ERROR) {
809 const DWORD err = WSAGetLastError();
810 *error = android::base::StringPrintf(
811 "cannot listen on socket: %s", android::base::SystemErrorCodeToString(err).c_str());
812 D("could not listen on %s:%d: %s", type != SOCK_STREAM ? "udp" : "tcp", port,
813 error->c_str());
814 _socket_set_errno(err);
815 return -1;
816 }
817 }
818 const int fd = _fh_to_int(f.get());
819 snprintf(f->name, sizeof(f->name), "%d(%s-server:%s%d)", fd,
820 interface_address == INADDR_LOOPBACK ? "lo" : "any", type != SOCK_STREAM ? "udp:" : "",
821 port);
822 D("port %d type %s => fd %d", port, type != SOCK_STREAM ? "udp" : "tcp", fd);
823 f.release();
824 return fd;
825 }
826
network_loopback_server(int port,int type,std::string * error)827 int network_loopback_server(int port, int type, std::string* error) {
828 return _network_server(port, type, INADDR_LOOPBACK, error);
829 }
830
network_inaddr_any_server(int port,int type,std::string * error)831 int network_inaddr_any_server(int port, int type, std::string* error) {
832 return _network_server(port, type, INADDR_ANY, error);
833 }
834
network_connect(const std::string & host,int port,int type,int timeout,std::string * error)835 int network_connect(const std::string& host, int port, int type, int timeout, std::string* error) {
836 unique_fh f(_fh_alloc(&_fh_socket_class));
837 if (!f) {
838 *error = strerror(errno);
839 return -1;
840 }
841
842 if (!_winsock_init) _init_winsock();
843
844 struct addrinfo hints;
845 memset(&hints, 0, sizeof(hints));
846 hints.ai_family = AF_UNSPEC;
847 hints.ai_socktype = type;
848 hints.ai_protocol = GetSocketProtocolFromSocketType(type);
849
850 char port_str[16];
851 snprintf(port_str, sizeof(port_str), "%d", port);
852
853 struct addrinfo* addrinfo_ptr = nullptr;
854
855 #if (NTDDI_VERSION >= NTDDI_WINXPSP2) || (_WIN32_WINNT >= _WIN32_WINNT_WS03)
856 // TODO: When the Android SDK tools increases the Windows system
857 // requirements >= WinXP SP2, switch to android::base::UTF8ToWide() + GetAddrInfoW().
858 #else
859 // Otherwise, keep using getaddrinfo(), or do runtime API detection
860 // with GetProcAddress("GetAddrInfoW").
861 #endif
862 if (getaddrinfo(host.c_str(), port_str, &hints, &addrinfo_ptr) != 0) {
863 const DWORD err = WSAGetLastError();
864 *error = android::base::StringPrintf("cannot resolve host '%s' and port %s: %s",
865 host.c_str(), port_str,
866 android::base::SystemErrorCodeToString(err).c_str());
867
868 D("%s", error->c_str());
869 _socket_set_errno(err);
870 return -1;
871 }
872 std::unique_ptr<struct addrinfo, decltype(&freeaddrinfo)> addrinfo(addrinfo_ptr, freeaddrinfo);
873 addrinfo_ptr = nullptr;
874
875 // TODO: Try all the addresses if there's more than one? This just uses
876 // the first. Or, could call WSAConnectByName() (Windows Vista and newer)
877 // which tries all addresses, takes a timeout and more.
878 SOCKET s = socket(addrinfo->ai_family, addrinfo->ai_socktype, addrinfo->ai_protocol);
879 if (s == INVALID_SOCKET) {
880 const DWORD err = WSAGetLastError();
881 *error = android::base::StringPrintf("cannot create socket: %s",
882 android::base::SystemErrorCodeToString(err).c_str());
883 D("%s", error->c_str());
884 _socket_set_errno(err);
885 return -1;
886 }
887 f->fh_socket = s;
888
889 // TODO: Implement timeouts for Windows. Seems like the default in theory
890 // (according to http://serverfault.com/a/671453) and in practice is 21 sec.
891 if (connect(s, addrinfo->ai_addr, addrinfo->ai_addrlen) == SOCKET_ERROR) {
892 // TODO: Use WSAAddressToString or inet_ntop on address.
893 const DWORD err = WSAGetLastError();
894 *error = android::base::StringPrintf("cannot connect to %s:%s: %s", host.c_str(), port_str,
895 android::base::SystemErrorCodeToString(err).c_str());
896 D("could not connect to %s:%s:%s: %s", type != SOCK_STREAM ? "udp" : "tcp", host.c_str(),
897 port_str, error->c_str());
898 _socket_set_errno(err);
899 return -1;
900 }
901
902 const int fd = _fh_to_int(f.get());
903 snprintf(f->name, sizeof(f->name), "%d(net-client:%s%d)", fd, type != SOCK_STREAM ? "udp:" : "",
904 port);
905 D("host '%s' port %d type %s => fd %d", host.c_str(), port, type != SOCK_STREAM ? "udp" : "tcp",
906 fd);
907 f.release();
908 return fd;
909 }
910
adb_register_socket(SOCKET s)911 int adb_register_socket(SOCKET s) {
912 FH f = _fh_alloc( &_fh_socket_class );
913 f->fh_socket = s;
914 return _fh_to_int(f);
915 }
916
917 #undef accept
adb_socket_accept(int serverfd,struct sockaddr * addr,socklen_t * addrlen)918 int adb_socket_accept(int serverfd, struct sockaddr* addr, socklen_t *addrlen)
919 {
920 FH serverfh = _fh_from_int(serverfd, __func__);
921
922 if ( !serverfh || serverfh->clazz != &_fh_socket_class ) {
923 D("adb_socket_accept: invalid fd %d", serverfd);
924 errno = EBADF;
925 return -1;
926 }
927
928 unique_fh fh(_fh_alloc( &_fh_socket_class ));
929 if (!fh) {
930 PLOG(ERROR) << "adb_socket_accept: failed to allocate accepted socket "
931 "descriptor";
932 return -1;
933 }
934
935 fh->fh_socket = accept( serverfh->fh_socket, addr, addrlen );
936 if (fh->fh_socket == INVALID_SOCKET) {
937 const DWORD err = WSAGetLastError();
938 LOG(ERROR) << "adb_socket_accept: accept on fd " << serverfd <<
939 " failed: " + android::base::SystemErrorCodeToString(err);
940 _socket_set_errno( err );
941 return -1;
942 }
943
944 const int fd = _fh_to_int(fh.get());
945 snprintf( fh->name, sizeof(fh->name), "%d(accept:%s)", fd, serverfh->name );
946 D( "adb_socket_accept on fd %d returns fd %d", serverfd, fd );
947 fh.release();
948 return fd;
949 }
950
951
adb_setsockopt(int fd,int level,int optname,const void * optval,socklen_t optlen)952 int adb_setsockopt( int fd, int level, int optname, const void* optval, socklen_t optlen )
953 {
954 FH fh = _fh_from_int(fd, __func__);
955
956 if ( !fh || fh->clazz != &_fh_socket_class ) {
957 D("adb_setsockopt: invalid fd %d", fd);
958 errno = EBADF;
959 return -1;
960 }
961
962 // TODO: Once we can assume Windows Vista or later, if the caller is trying
963 // to set SOL_SOCKET, SO_SNDBUF/SO_RCVBUF, ignore it since the OS has
964 // auto-tuning.
965
966 int result = setsockopt( fh->fh_socket, level, optname,
967 reinterpret_cast<const char*>(optval), optlen );
968 if ( result == SOCKET_ERROR ) {
969 const DWORD err = WSAGetLastError();
970 D("adb_setsockopt: setsockopt on fd %d level %d optname %d failed: %s\n",
971 fd, level, optname, android::base::SystemErrorCodeToString(err).c_str());
972 _socket_set_errno( err );
973 result = -1;
974 }
975 return result;
976 }
977
adb_getsockname(int fd,struct sockaddr * sockaddr,socklen_t * optlen)978 int adb_getsockname(int fd, struct sockaddr* sockaddr, socklen_t* optlen) {
979 FH fh = _fh_from_int(fd, __func__);
980
981 if (!fh || fh->clazz != &_fh_socket_class) {
982 D("adb_getsockname: invalid fd %d", fd);
983 errno = EBADF;
984 return -1;
985 }
986
987 int result = getsockname(fh->fh_socket, sockaddr, optlen);
988 if (result == SOCKET_ERROR) {
989 const DWORD err = WSAGetLastError();
990 D("adb_getsockname: setsockopt on fd %d failed: %s\n", fd,
991 android::base::SystemErrorCodeToString(err).c_str());
992 _socket_set_errno(err);
993 result = -1;
994 }
995 return result;
996 }
997
adb_socket_get_local_port(int fd)998 int adb_socket_get_local_port(int fd) {
999 sockaddr_storage addr_storage;
1000 socklen_t addr_len = sizeof(addr_storage);
1001
1002 if (adb_getsockname(fd, reinterpret_cast<sockaddr*>(&addr_storage), &addr_len) < 0) {
1003 D("adb_socket_get_local_port: adb_getsockname failed: %s", strerror(errno));
1004 return -1;
1005 }
1006
1007 if (!(addr_storage.ss_family == AF_INET || addr_storage.ss_family == AF_INET6)) {
1008 D("adb_socket_get_local_port: unknown address family received: %d", addr_storage.ss_family);
1009 errno = ECONNABORTED;
1010 return -1;
1011 }
1012
1013 return ntohs(reinterpret_cast<sockaddr_in*>(&addr_storage)->sin_port);
1014 }
1015
adb_shutdown(int fd)1016 int adb_shutdown(int fd)
1017 {
1018 FH f = _fh_from_int(fd, __func__);
1019
1020 if (!f || f->clazz != &_fh_socket_class) {
1021 D("adb_shutdown: invalid fd %d", fd);
1022 errno = EBADF;
1023 return -1;
1024 }
1025
1026 D( "adb_shutdown: %s", f->name);
1027 if (shutdown(f->fh_socket, SD_BOTH) == SOCKET_ERROR) {
1028 const DWORD err = WSAGetLastError();
1029 D("socket shutdown fd %d failed: %s", fd,
1030 android::base::SystemErrorCodeToString(err).c_str());
1031 _socket_set_errno(err);
1032 return -1;
1033 }
1034 return 0;
1035 }
1036
1037 // Emulate socketpair(2) by binding and connecting to a socket.
adb_socketpair(int sv[2])1038 int adb_socketpair(int sv[2]) {
1039 int server = -1;
1040 int client = -1;
1041 int accepted = -1;
1042 int local_port = -1;
1043 std::string error;
1044
1045 server = network_loopback_server(0, SOCK_STREAM, &error);
1046 if (server < 0) {
1047 D("adb_socketpair: failed to create server: %s", error.c_str());
1048 goto fail;
1049 }
1050
1051 local_port = adb_socket_get_local_port(server);
1052 if (local_port < 0) {
1053 D("adb_socketpair: failed to get server port number: %s", error.c_str());
1054 goto fail;
1055 }
1056 D("adb_socketpair: bound on port %d", local_port);
1057
1058 client = network_loopback_client(local_port, SOCK_STREAM, &error);
1059 if (client < 0) {
1060 D("adb_socketpair: failed to connect client: %s", error.c_str());
1061 goto fail;
1062 }
1063
1064 accepted = adb_socket_accept(server, nullptr, nullptr);
1065 if (accepted < 0) {
1066 D("adb_socketpair: failed to accept: %s", strerror(errno));
1067 goto fail;
1068 }
1069 adb_close(server);
1070 sv[0] = client;
1071 sv[1] = accepted;
1072 return 0;
1073
1074 fail:
1075 if (server >= 0) {
1076 adb_close(server);
1077 }
1078 if (client >= 0) {
1079 adb_close(client);
1080 }
1081 if (accepted >= 0) {
1082 adb_close(accepted);
1083 }
1084 return -1;
1085 }
1086
set_file_block_mode(int fd,bool block)1087 bool set_file_block_mode(int fd, bool block) {
1088 FH fh = _fh_from_int(fd, __func__);
1089
1090 if (!fh || !fh->used) {
1091 errno = EBADF;
1092 D("Setting nonblocking on bad file descriptor %d", fd);
1093 return false;
1094 }
1095
1096 if (fh->clazz == &_fh_socket_class) {
1097 u_long x = !block;
1098 if (ioctlsocket(fh->u.socket, FIONBIO, &x) != 0) {
1099 int error = WSAGetLastError();
1100 _socket_set_errno(error);
1101 D("Setting %d nonblocking failed (%d)", fd, error);
1102 return false;
1103 }
1104 return true;
1105 } else {
1106 errno = ENOTSOCK;
1107 D("Setting nonblocking on non-socket %d", fd);
1108 return false;
1109 }
1110 }
1111
set_tcp_keepalive(int fd,int interval_sec)1112 bool set_tcp_keepalive(int fd, int interval_sec) {
1113 FH fh = _fh_from_int(fd, __func__);
1114
1115 if (!fh || fh->clazz != &_fh_socket_class) {
1116 D("set_tcp_keepalive(%d) failed: invalid fd", fd);
1117 errno = EBADF;
1118 return false;
1119 }
1120
1121 tcp_keepalive keepalive;
1122 keepalive.onoff = (interval_sec > 0);
1123 keepalive.keepalivetime = interval_sec * 1000;
1124 keepalive.keepaliveinterval = interval_sec * 1000;
1125
1126 DWORD bytes_returned = 0;
1127 if (WSAIoctl(fh->fh_socket, SIO_KEEPALIVE_VALS, &keepalive, sizeof(keepalive), nullptr, 0,
1128 &bytes_returned, nullptr, nullptr) != 0) {
1129 const DWORD err = WSAGetLastError();
1130 D("set_tcp_keepalive(%d) failed: %s", fd,
1131 android::base::SystemErrorCodeToString(err).c_str());
1132 _socket_set_errno(err);
1133 return false;
1134 }
1135
1136 return true;
1137 }
1138
1139 /**************************************************************************/
1140 /**************************************************************************/
1141 /***** *****/
1142 /***** Console Window Terminal Emulation *****/
1143 /***** *****/
1144 /**************************************************************************/
1145 /**************************************************************************/
1146
1147 // This reads input from a Win32 console window and translates it into Unix
1148 // terminal-style sequences. This emulates mostly Gnome Terminal (in Normal
1149 // mode, not Application mode), which itself emulates xterm. Gnome Terminal
1150 // is emulated instead of xterm because it is probably more popular than xterm:
1151 // Ubuntu's default Ctrl-Alt-T shortcut opens Gnome Terminal, Gnome Terminal
1152 // supports modern fonts, etc. It seems best to emulate the terminal that most
1153 // Android developers use because they'll fix apps (the shell, etc.) to keep
1154 // working with that terminal's emulation.
1155 //
1156 // The point of this emulation is not to be perfect or to solve all issues with
1157 // console windows on Windows, but to be better than the original code which
1158 // just called read() (which called ReadFile(), which called ReadConsoleA())
1159 // which did not support Ctrl-C, tab completion, shell input line editing
1160 // keys, server echo, and more.
1161 //
1162 // This implementation reconfigures the console with SetConsoleMode(), then
1163 // calls ReadConsoleInput() to get raw input which it remaps to Unix
1164 // terminal-style sequences which is returned via unix_read() which is used
1165 // by the 'adb shell' command.
1166 //
1167 // Code organization:
1168 //
1169 // * _get_console_handle() and unix_isatty() provide console information.
1170 // * stdin_raw_init() and stdin_raw_restore() reconfigure the console.
1171 // * unix_read() detects console windows (as opposed to pipes, files, etc.).
1172 // * _console_read() is the main code of the emulation.
1173
1174 // Returns a console HANDLE if |fd| is a console, otherwise returns nullptr.
1175 // If a valid HANDLE is returned and |mode| is not null, |mode| is also filled
1176 // with the console mode. Requires GENERIC_READ access to the underlying HANDLE.
_get_console_handle(int fd,DWORD * mode=nullptr)1177 static HANDLE _get_console_handle(int fd, DWORD* mode=nullptr) {
1178 // First check isatty(); this is very fast and eliminates most non-console
1179 // FDs, but returns 1 for both consoles and character devices like NUL.
1180 #pragma push_macro("isatty")
1181 #undef isatty
1182 if (!isatty(fd)) {
1183 return nullptr;
1184 }
1185 #pragma pop_macro("isatty")
1186
1187 // To differentiate between character devices and consoles we need to get
1188 // the underlying HANDLE and use GetConsoleMode(), which is what requires
1189 // GENERIC_READ permissions.
1190 const intptr_t intptr_handle = _get_osfhandle(fd);
1191 if (intptr_handle == -1) {
1192 return nullptr;
1193 }
1194 const HANDLE handle = reinterpret_cast<const HANDLE>(intptr_handle);
1195 DWORD temp_mode = 0;
1196 if (!GetConsoleMode(handle, mode ? mode : &temp_mode)) {
1197 return nullptr;
1198 }
1199
1200 return handle;
1201 }
1202
1203 // Returns a console handle if |stream| is a console, otherwise returns nullptr.
_get_console_handle(FILE * const stream)1204 static HANDLE _get_console_handle(FILE* const stream) {
1205 // Save and restore errno to make it easier for callers to prevent from overwriting errno.
1206 android::base::ErrnoRestorer er;
1207 const int fd = fileno(stream);
1208 if (fd < 0) {
1209 return nullptr;
1210 }
1211 return _get_console_handle(fd);
1212 }
1213
unix_isatty(int fd)1214 int unix_isatty(int fd) {
1215 return _get_console_handle(fd) ? 1 : 0;
1216 }
1217
1218 // Get the next KEY_EVENT_RECORD that should be processed.
_get_key_event_record(const HANDLE console,INPUT_RECORD * const input_record)1219 static bool _get_key_event_record(const HANDLE console, INPUT_RECORD* const input_record) {
1220 for (;;) {
1221 DWORD read_count = 0;
1222 memset(input_record, 0, sizeof(*input_record));
1223 if (!ReadConsoleInputA(console, input_record, 1, &read_count)) {
1224 D("_get_key_event_record: ReadConsoleInputA() failed: %s\n",
1225 android::base::SystemErrorCodeToString(GetLastError()).c_str());
1226 errno = EIO;
1227 return false;
1228 }
1229
1230 if (read_count == 0) { // should be impossible
1231 fatal("ReadConsoleInputA returned 0");
1232 }
1233
1234 if (read_count != 1) { // should be impossible
1235 fatal("ReadConsoleInputA did not return one input record");
1236 }
1237
1238 // If the console window is resized, emulate SIGWINCH by breaking out
1239 // of read() with errno == EINTR. Note that there is no event on
1240 // vertical resize because we don't give the console our own custom
1241 // screen buffer (with CreateConsoleScreenBuffer() +
1242 // SetConsoleActiveScreenBuffer()). Instead, we use the default which
1243 // supports scrollback, but doesn't seem to raise an event for vertical
1244 // window resize.
1245 if (input_record->EventType == WINDOW_BUFFER_SIZE_EVENT) {
1246 errno = EINTR;
1247 return false;
1248 }
1249
1250 if ((input_record->EventType == KEY_EVENT) &&
1251 (input_record->Event.KeyEvent.bKeyDown)) {
1252 if (input_record->Event.KeyEvent.wRepeatCount == 0) {
1253 fatal("ReadConsoleInputA returned a key event with zero repeat"
1254 " count");
1255 }
1256
1257 // Got an interesting INPUT_RECORD, so return
1258 return true;
1259 }
1260 }
1261 }
1262
_is_shift_pressed(const DWORD control_key_state)1263 static __inline__ bool _is_shift_pressed(const DWORD control_key_state) {
1264 return (control_key_state & SHIFT_PRESSED) != 0;
1265 }
1266
_is_ctrl_pressed(const DWORD control_key_state)1267 static __inline__ bool _is_ctrl_pressed(const DWORD control_key_state) {
1268 return (control_key_state & (LEFT_CTRL_PRESSED | RIGHT_CTRL_PRESSED)) != 0;
1269 }
1270
_is_alt_pressed(const DWORD control_key_state)1271 static __inline__ bool _is_alt_pressed(const DWORD control_key_state) {
1272 return (control_key_state & (LEFT_ALT_PRESSED | RIGHT_ALT_PRESSED)) != 0;
1273 }
1274
_is_numlock_on(const DWORD control_key_state)1275 static __inline__ bool _is_numlock_on(const DWORD control_key_state) {
1276 return (control_key_state & NUMLOCK_ON) != 0;
1277 }
1278
_is_capslock_on(const DWORD control_key_state)1279 static __inline__ bool _is_capslock_on(const DWORD control_key_state) {
1280 return (control_key_state & CAPSLOCK_ON) != 0;
1281 }
1282
_is_enhanced_key(const DWORD control_key_state)1283 static __inline__ bool _is_enhanced_key(const DWORD control_key_state) {
1284 return (control_key_state & ENHANCED_KEY) != 0;
1285 }
1286
1287 // Constants from MSDN for ToAscii().
1288 static const BYTE TOASCII_KEY_OFF = 0x00;
1289 static const BYTE TOASCII_KEY_DOWN = 0x80;
1290 static const BYTE TOASCII_KEY_TOGGLED_ON = 0x01; // for CapsLock
1291
1292 // Given a key event, ignore a modifier key and return the character that was
1293 // entered without the modifier. Writes to *ch and returns the number of bytes
1294 // written.
_get_char_ignoring_modifier(char * const ch,const KEY_EVENT_RECORD * const key_event,const DWORD control_key_state,const WORD modifier)1295 static size_t _get_char_ignoring_modifier(char* const ch,
1296 const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state,
1297 const WORD modifier) {
1298 // If there is no character from Windows, try ignoring the specified
1299 // modifier and look for a character. Note that if AltGr is being used,
1300 // there will be a character from Windows.
1301 if (key_event->uChar.AsciiChar == '\0') {
1302 // Note that we read the control key state from the passed in argument
1303 // instead of from key_event since the argument has been normalized.
1304 if (((modifier == VK_SHIFT) &&
1305 _is_shift_pressed(control_key_state)) ||
1306 ((modifier == VK_CONTROL) &&
1307 _is_ctrl_pressed(control_key_state)) ||
1308 ((modifier == VK_MENU) && _is_alt_pressed(control_key_state))) {
1309
1310 BYTE key_state[256] = {0};
1311 key_state[VK_SHIFT] = _is_shift_pressed(control_key_state) ?
1312 TOASCII_KEY_DOWN : TOASCII_KEY_OFF;
1313 key_state[VK_CONTROL] = _is_ctrl_pressed(control_key_state) ?
1314 TOASCII_KEY_DOWN : TOASCII_KEY_OFF;
1315 key_state[VK_MENU] = _is_alt_pressed(control_key_state) ?
1316 TOASCII_KEY_DOWN : TOASCII_KEY_OFF;
1317 key_state[VK_CAPITAL] = _is_capslock_on(control_key_state) ?
1318 TOASCII_KEY_TOGGLED_ON : TOASCII_KEY_OFF;
1319
1320 // cause this modifier to be ignored
1321 key_state[modifier] = TOASCII_KEY_OFF;
1322
1323 WORD translated = 0;
1324 if (ToAscii(key_event->wVirtualKeyCode,
1325 key_event->wVirtualScanCode, key_state, &translated, 0) == 1) {
1326 // Ignoring the modifier, we found a character.
1327 *ch = (CHAR)translated;
1328 return 1;
1329 }
1330 }
1331 }
1332
1333 // Just use whatever Windows told us originally.
1334 *ch = key_event->uChar.AsciiChar;
1335
1336 // If the character from Windows is NULL, return a size of zero.
1337 return (*ch == '\0') ? 0 : 1;
1338 }
1339
1340 // If a Ctrl key is pressed, lookup the character, ignoring the Ctrl key,
1341 // but taking into account the shift key. This is because for a sequence like
1342 // Ctrl-Alt-0, we want to find the character '0' and for Ctrl-Alt-Shift-0,
1343 // we want to find the character ')'.
1344 //
1345 // Note that Windows doesn't seem to pass bKeyDown for Ctrl-Shift-NoAlt-0
1346 // because it is the default key-sequence to switch the input language.
1347 // This is configurable in the Region and Language control panel.
_get_non_control_char(char * const ch,const KEY_EVENT_RECORD * const key_event,const DWORD control_key_state)1348 static __inline__ size_t _get_non_control_char(char* const ch,
1349 const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) {
1350 return _get_char_ignoring_modifier(ch, key_event, control_key_state,
1351 VK_CONTROL);
1352 }
1353
1354 // Get without Alt.
_get_non_alt_char(char * const ch,const KEY_EVENT_RECORD * const key_event,const DWORD control_key_state)1355 static __inline__ size_t _get_non_alt_char(char* const ch,
1356 const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) {
1357 return _get_char_ignoring_modifier(ch, key_event, control_key_state,
1358 VK_MENU);
1359 }
1360
1361 // Ignore the control key, find the character from Windows, and apply any
1362 // Control key mappings (for example, Ctrl-2 is a NULL character). Writes to
1363 // *pch and returns number of bytes written.
_get_control_character(char * const pch,const KEY_EVENT_RECORD * const key_event,const DWORD control_key_state)1364 static size_t _get_control_character(char* const pch,
1365 const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) {
1366 const size_t len = _get_non_control_char(pch, key_event,
1367 control_key_state);
1368
1369 if ((len == 1) && _is_ctrl_pressed(control_key_state)) {
1370 char ch = *pch;
1371 switch (ch) {
1372 case '2':
1373 case '@':
1374 case '`':
1375 ch = '\0';
1376 break;
1377 case '3':
1378 case '[':
1379 case '{':
1380 ch = '\x1b';
1381 break;
1382 case '4':
1383 case '\\':
1384 case '|':
1385 ch = '\x1c';
1386 break;
1387 case '5':
1388 case ']':
1389 case '}':
1390 ch = '\x1d';
1391 break;
1392 case '6':
1393 case '^':
1394 case '~':
1395 ch = '\x1e';
1396 break;
1397 case '7':
1398 case '-':
1399 case '_':
1400 ch = '\x1f';
1401 break;
1402 case '8':
1403 ch = '\x7f';
1404 break;
1405 case '/':
1406 if (!_is_alt_pressed(control_key_state)) {
1407 ch = '\x1f';
1408 }
1409 break;
1410 case '?':
1411 if (!_is_alt_pressed(control_key_state)) {
1412 ch = '\x7f';
1413 }
1414 break;
1415 }
1416 *pch = ch;
1417 }
1418
1419 return len;
1420 }
1421
_normalize_altgr_control_key_state(const KEY_EVENT_RECORD * const key_event)1422 static DWORD _normalize_altgr_control_key_state(
1423 const KEY_EVENT_RECORD* const key_event) {
1424 DWORD control_key_state = key_event->dwControlKeyState;
1425
1426 // If we're in an AltGr situation where the AltGr key is down (depending on
1427 // the keyboard layout, that might be the physical right alt key which
1428 // produces a control_key_state where Right-Alt and Left-Ctrl are down) or
1429 // AltGr-equivalent keys are down (any Ctrl key + any Alt key), and we have
1430 // a character (which indicates that there was an AltGr mapping), then act
1431 // as if alt and control are not really down for the purposes of modifiers.
1432 // This makes it so that if the user with, say, a German keyboard layout
1433 // presses AltGr-] (which we see as Right-Alt + Left-Ctrl + key), we just
1434 // output the key and we don't see the Alt and Ctrl keys.
1435 if (_is_ctrl_pressed(control_key_state) &&
1436 _is_alt_pressed(control_key_state)
1437 && (key_event->uChar.AsciiChar != '\0')) {
1438 // Try to remove as few bits as possible to improve our chances of
1439 // detecting combinations like Left-Alt + AltGr, Right-Ctrl + AltGr, or
1440 // Left-Alt + Right-Ctrl + AltGr.
1441 if ((control_key_state & RIGHT_ALT_PRESSED) != 0) {
1442 // Remove Right-Alt.
1443 control_key_state &= ~RIGHT_ALT_PRESSED;
1444 // If uChar is set, a Ctrl key is pressed, and Right-Alt is
1445 // pressed, Left-Ctrl is almost always set, except if the user
1446 // presses Right-Ctrl, then AltGr (in that specific order) for
1447 // whatever reason. At any rate, make sure the bit is not set.
1448 control_key_state &= ~LEFT_CTRL_PRESSED;
1449 } else if ((control_key_state & LEFT_ALT_PRESSED) != 0) {
1450 // Remove Left-Alt.
1451 control_key_state &= ~LEFT_ALT_PRESSED;
1452 // Whichever Ctrl key is down, remove it from the state. We only
1453 // remove one key, to improve our chances of detecting the
1454 // corner-case of Left-Ctrl + Left-Alt + Right-Ctrl.
1455 if ((control_key_state & LEFT_CTRL_PRESSED) != 0) {
1456 // Remove Left-Ctrl.
1457 control_key_state &= ~LEFT_CTRL_PRESSED;
1458 } else if ((control_key_state & RIGHT_CTRL_PRESSED) != 0) {
1459 // Remove Right-Ctrl.
1460 control_key_state &= ~RIGHT_CTRL_PRESSED;
1461 }
1462 }
1463
1464 // Note that this logic isn't 100% perfect because Windows doesn't
1465 // allow us to detect all combinations because a physical AltGr key
1466 // press shows up as two bits, plus some combinations are ambiguous
1467 // about what is actually physically pressed.
1468 }
1469
1470 return control_key_state;
1471 }
1472
1473 // If NumLock is on and Shift is pressed, SHIFT_PRESSED is not set in
1474 // dwControlKeyState for the following keypad keys: period, 0-9. If we detect
1475 // this scenario, set the SHIFT_PRESSED bit so we can add modifiers
1476 // appropriately.
_normalize_keypad_control_key_state(const WORD vk,const DWORD control_key_state)1477 static DWORD _normalize_keypad_control_key_state(const WORD vk,
1478 const DWORD control_key_state) {
1479 if (!_is_numlock_on(control_key_state)) {
1480 return control_key_state;
1481 }
1482 if (!_is_enhanced_key(control_key_state)) {
1483 switch (vk) {
1484 case VK_INSERT: // 0
1485 case VK_DELETE: // .
1486 case VK_END: // 1
1487 case VK_DOWN: // 2
1488 case VK_NEXT: // 3
1489 case VK_LEFT: // 4
1490 case VK_CLEAR: // 5
1491 case VK_RIGHT: // 6
1492 case VK_HOME: // 7
1493 case VK_UP: // 8
1494 case VK_PRIOR: // 9
1495 return control_key_state | SHIFT_PRESSED;
1496 }
1497 }
1498
1499 return control_key_state;
1500 }
1501
_get_keypad_sequence(const DWORD control_key_state,const char * const normal,const char * const shifted)1502 static const char* _get_keypad_sequence(const DWORD control_key_state,
1503 const char* const normal, const char* const shifted) {
1504 if (_is_shift_pressed(control_key_state)) {
1505 // Shift is pressed and NumLock is off
1506 return shifted;
1507 } else {
1508 // Shift is not pressed and NumLock is off, or,
1509 // Shift is pressed and NumLock is on, in which case we want the
1510 // NumLock and Shift to neutralize each other, thus, we want the normal
1511 // sequence.
1512 return normal;
1513 }
1514 // If Shift is not pressed and NumLock is on, a different virtual key code
1515 // is returned by Windows, which can be taken care of by a different case
1516 // statement in _console_read().
1517 }
1518
1519 // Write sequence to buf and return the number of bytes written.
_get_modifier_sequence(char * const buf,const WORD vk,DWORD control_key_state,const char * const normal)1520 static size_t _get_modifier_sequence(char* const buf, const WORD vk,
1521 DWORD control_key_state, const char* const normal) {
1522 // Copy the base sequence into buf.
1523 const size_t len = strlen(normal);
1524 memcpy(buf, normal, len);
1525
1526 int code = 0;
1527
1528 control_key_state = _normalize_keypad_control_key_state(vk,
1529 control_key_state);
1530
1531 if (_is_shift_pressed(control_key_state)) {
1532 code |= 0x1;
1533 }
1534 if (_is_alt_pressed(control_key_state)) { // any alt key pressed
1535 code |= 0x2;
1536 }
1537 if (_is_ctrl_pressed(control_key_state)) { // any control key pressed
1538 code |= 0x4;
1539 }
1540 // If some modifier was held down, then we need to insert the modifier code
1541 if (code != 0) {
1542 if (len == 0) {
1543 // Should be impossible because caller should pass a string of
1544 // non-zero length.
1545 return 0;
1546 }
1547 size_t index = len - 1;
1548 const char lastChar = buf[index];
1549 if (lastChar != '~') {
1550 buf[index++] = '1';
1551 }
1552 buf[index++] = ';'; // modifier separator
1553 // 2 = shift, 3 = alt, 4 = shift & alt, 5 = control,
1554 // 6 = shift & control, 7 = alt & control, 8 = shift & alt & control
1555 buf[index++] = '1' + code;
1556 buf[index++] = lastChar; // move ~ (or other last char) to the end
1557 return index;
1558 }
1559 return len;
1560 }
1561
1562 // Write sequence to buf and return the number of bytes written.
_get_modifier_keypad_sequence(char * const buf,const WORD vk,const DWORD control_key_state,const char * const normal,const char shifted)1563 static size_t _get_modifier_keypad_sequence(char* const buf, const WORD vk,
1564 const DWORD control_key_state, const char* const normal,
1565 const char shifted) {
1566 if (_is_shift_pressed(control_key_state)) {
1567 // Shift is pressed and NumLock is off
1568 if (shifted != '\0') {
1569 buf[0] = shifted;
1570 return sizeof(buf[0]);
1571 } else {
1572 return 0;
1573 }
1574 } else {
1575 // Shift is not pressed and NumLock is off, or,
1576 // Shift is pressed and NumLock is on, in which case we want the
1577 // NumLock and Shift to neutralize each other, thus, we want the normal
1578 // sequence.
1579 return _get_modifier_sequence(buf, vk, control_key_state, normal);
1580 }
1581 // If Shift is not pressed and NumLock is on, a different virtual key code
1582 // is returned by Windows, which can be taken care of by a different case
1583 // statement in _console_read().
1584 }
1585
1586 // The decimal key on the keypad produces a '.' for U.S. English and a ',' for
1587 // Standard German. Figure this out at runtime so we know what to output for
1588 // Shift-VK_DELETE.
_get_decimal_char()1589 static char _get_decimal_char() {
1590 return (char)MapVirtualKeyA(VK_DECIMAL, MAPVK_VK_TO_CHAR);
1591 }
1592
1593 // Prefix the len bytes in buf with the escape character, and then return the
1594 // new buffer length.
_escape_prefix(char * const buf,const size_t len)1595 size_t _escape_prefix(char* const buf, const size_t len) {
1596 // If nothing to prefix, don't do anything. We might be called with
1597 // len == 0, if alt was held down with a dead key which produced nothing.
1598 if (len == 0) {
1599 return 0;
1600 }
1601
1602 memmove(&buf[1], buf, len);
1603 buf[0] = '\x1b';
1604 return len + 1;
1605 }
1606
1607 // Internal buffer to satisfy future _console_read() calls.
1608 static auto& g_console_input_buffer = *new std::vector<char>();
1609
1610 // Writes to buffer buf (of length len), returning number of bytes written or -1 on error. Never
1611 // returns zero on console closure because Win32 consoles are never 'closed' (as far as I can tell).
_console_read(const HANDLE console,void * buf,size_t len)1612 static int _console_read(const HANDLE console, void* buf, size_t len) {
1613 for (;;) {
1614 // Read of zero bytes should not block waiting for something from the console.
1615 if (len == 0) {
1616 return 0;
1617 }
1618
1619 // Flush as much as possible from input buffer.
1620 if (!g_console_input_buffer.empty()) {
1621 const int bytes_read = std::min(len, g_console_input_buffer.size());
1622 memcpy(buf, g_console_input_buffer.data(), bytes_read);
1623 const auto begin = g_console_input_buffer.begin();
1624 g_console_input_buffer.erase(begin, begin + bytes_read);
1625 return bytes_read;
1626 }
1627
1628 // Read from the actual console. This may block until input.
1629 INPUT_RECORD input_record;
1630 if (!_get_key_event_record(console, &input_record)) {
1631 return -1;
1632 }
1633
1634 KEY_EVENT_RECORD* const key_event = &input_record.Event.KeyEvent;
1635 const WORD vk = key_event->wVirtualKeyCode;
1636 const CHAR ch = key_event->uChar.AsciiChar;
1637 const DWORD control_key_state = _normalize_altgr_control_key_state(
1638 key_event);
1639
1640 // The following emulation code should write the output sequence to
1641 // either seqstr or to seqbuf and seqbuflen.
1642 const char* seqstr = NULL; // NULL terminated C-string
1643 // Enough space for max sequence string below, plus modifiers and/or
1644 // escape prefix.
1645 char seqbuf[16];
1646 size_t seqbuflen = 0; // Space used in seqbuf.
1647
1648 #define MATCH(vk, normal) \
1649 case (vk): \
1650 { \
1651 seqstr = (normal); \
1652 } \
1653 break;
1654
1655 // Modifier keys should affect the output sequence.
1656 #define MATCH_MODIFIER(vk, normal) \
1657 case (vk): \
1658 { \
1659 seqbuflen = _get_modifier_sequence(seqbuf, (vk), \
1660 control_key_state, (normal)); \
1661 } \
1662 break;
1663
1664 // The shift key should affect the output sequence.
1665 #define MATCH_KEYPAD(vk, normal, shifted) \
1666 case (vk): \
1667 { \
1668 seqstr = _get_keypad_sequence(control_key_state, (normal), \
1669 (shifted)); \
1670 } \
1671 break;
1672
1673 // The shift key and other modifier keys should affect the output
1674 // sequence.
1675 #define MATCH_MODIFIER_KEYPAD(vk, normal, shifted) \
1676 case (vk): \
1677 { \
1678 seqbuflen = _get_modifier_keypad_sequence(seqbuf, (vk), \
1679 control_key_state, (normal), (shifted)); \
1680 } \
1681 break;
1682
1683 #define ESC "\x1b"
1684 #define CSI ESC "["
1685 #define SS3 ESC "O"
1686
1687 // Only support normal mode, not application mode.
1688
1689 // Enhanced keys:
1690 // * 6-pack: insert, delete, home, end, page up, page down
1691 // * cursor keys: up, down, right, left
1692 // * keypad: divide, enter
1693 // * Undocumented: VK_PAUSE (Ctrl-NumLock), VK_SNAPSHOT,
1694 // VK_CANCEL (Ctrl-Pause/Break), VK_NUMLOCK
1695 if (_is_enhanced_key(control_key_state)) {
1696 switch (vk) {
1697 case VK_RETURN: // Enter key on keypad
1698 if (_is_ctrl_pressed(control_key_state)) {
1699 seqstr = "\n";
1700 } else {
1701 seqstr = "\r";
1702 }
1703 break;
1704
1705 MATCH_MODIFIER(VK_PRIOR, CSI "5~"); // Page Up
1706 MATCH_MODIFIER(VK_NEXT, CSI "6~"); // Page Down
1707
1708 // gnome-terminal currently sends SS3 "F" and SS3 "H", but that
1709 // will be fixed soon to match xterm which sends CSI "F" and
1710 // CSI "H". https://bugzilla.redhat.com/show_bug.cgi?id=1119764
1711 MATCH(VK_END, CSI "F");
1712 MATCH(VK_HOME, CSI "H");
1713
1714 MATCH_MODIFIER(VK_LEFT, CSI "D");
1715 MATCH_MODIFIER(VK_UP, CSI "A");
1716 MATCH_MODIFIER(VK_RIGHT, CSI "C");
1717 MATCH_MODIFIER(VK_DOWN, CSI "B");
1718
1719 MATCH_MODIFIER(VK_INSERT, CSI "2~");
1720 MATCH_MODIFIER(VK_DELETE, CSI "3~");
1721
1722 MATCH(VK_DIVIDE, "/");
1723 }
1724 } else { // Non-enhanced keys:
1725 switch (vk) {
1726 case VK_BACK: // backspace
1727 if (_is_alt_pressed(control_key_state)) {
1728 seqstr = ESC "\x7f";
1729 } else {
1730 seqstr = "\x7f";
1731 }
1732 break;
1733
1734 case VK_TAB:
1735 if (_is_shift_pressed(control_key_state)) {
1736 seqstr = CSI "Z";
1737 } else {
1738 seqstr = "\t";
1739 }
1740 break;
1741
1742 // Number 5 key in keypad when NumLock is off, or if NumLock is
1743 // on and Shift is down.
1744 MATCH_KEYPAD(VK_CLEAR, CSI "E", "5");
1745
1746 case VK_RETURN: // Enter key on main keyboard
1747 if (_is_alt_pressed(control_key_state)) {
1748 seqstr = ESC "\n";
1749 } else if (_is_ctrl_pressed(control_key_state)) {
1750 seqstr = "\n";
1751 } else {
1752 seqstr = "\r";
1753 }
1754 break;
1755
1756 // VK_ESCAPE: Don't do any special handling. The OS uses many
1757 // of the sequences with Escape and many of the remaining
1758 // sequences don't produce bKeyDown messages, only !bKeyDown
1759 // for whatever reason.
1760
1761 case VK_SPACE:
1762 if (_is_alt_pressed(control_key_state)) {
1763 seqstr = ESC " ";
1764 } else if (_is_ctrl_pressed(control_key_state)) {
1765 seqbuf[0] = '\0'; // NULL char
1766 seqbuflen = 1;
1767 } else {
1768 seqstr = " ";
1769 }
1770 break;
1771
1772 MATCH_MODIFIER_KEYPAD(VK_PRIOR, CSI "5~", '9'); // Page Up
1773 MATCH_MODIFIER_KEYPAD(VK_NEXT, CSI "6~", '3'); // Page Down
1774
1775 MATCH_KEYPAD(VK_END, CSI "4~", "1");
1776 MATCH_KEYPAD(VK_HOME, CSI "1~", "7");
1777
1778 MATCH_MODIFIER_KEYPAD(VK_LEFT, CSI "D", '4');
1779 MATCH_MODIFIER_KEYPAD(VK_UP, CSI "A", '8');
1780 MATCH_MODIFIER_KEYPAD(VK_RIGHT, CSI "C", '6');
1781 MATCH_MODIFIER_KEYPAD(VK_DOWN, CSI "B", '2');
1782
1783 MATCH_MODIFIER_KEYPAD(VK_INSERT, CSI "2~", '0');
1784 MATCH_MODIFIER_KEYPAD(VK_DELETE, CSI "3~",
1785 _get_decimal_char());
1786
1787 case 0x30: // 0
1788 case 0x31: // 1
1789 case 0x39: // 9
1790 case VK_OEM_1: // ;:
1791 case VK_OEM_PLUS: // =+
1792 case VK_OEM_COMMA: // ,<
1793 case VK_OEM_PERIOD: // .>
1794 case VK_OEM_7: // '"
1795 case VK_OEM_102: // depends on keyboard, could be <> or \|
1796 case VK_OEM_2: // /?
1797 case VK_OEM_3: // `~
1798 case VK_OEM_4: // [{
1799 case VK_OEM_5: // \|
1800 case VK_OEM_6: // ]}
1801 {
1802 seqbuflen = _get_control_character(seqbuf, key_event,
1803 control_key_state);
1804
1805 if (_is_alt_pressed(control_key_state)) {
1806 seqbuflen = _escape_prefix(seqbuf, seqbuflen);
1807 }
1808 }
1809 break;
1810
1811 case 0x32: // 2
1812 case 0x33: // 3
1813 case 0x34: // 4
1814 case 0x35: // 5
1815 case 0x36: // 6
1816 case 0x37: // 7
1817 case 0x38: // 8
1818 case VK_OEM_MINUS: // -_
1819 {
1820 seqbuflen = _get_control_character(seqbuf, key_event,
1821 control_key_state);
1822
1823 // If Alt is pressed and it isn't Ctrl-Alt-ShiftUp, then
1824 // prefix with escape.
1825 if (_is_alt_pressed(control_key_state) &&
1826 !(_is_ctrl_pressed(control_key_state) &&
1827 !_is_shift_pressed(control_key_state))) {
1828 seqbuflen = _escape_prefix(seqbuf, seqbuflen);
1829 }
1830 }
1831 break;
1832
1833 case 0x41: // a
1834 case 0x42: // b
1835 case 0x43: // c
1836 case 0x44: // d
1837 case 0x45: // e
1838 case 0x46: // f
1839 case 0x47: // g
1840 case 0x48: // h
1841 case 0x49: // i
1842 case 0x4a: // j
1843 case 0x4b: // k
1844 case 0x4c: // l
1845 case 0x4d: // m
1846 case 0x4e: // n
1847 case 0x4f: // o
1848 case 0x50: // p
1849 case 0x51: // q
1850 case 0x52: // r
1851 case 0x53: // s
1852 case 0x54: // t
1853 case 0x55: // u
1854 case 0x56: // v
1855 case 0x57: // w
1856 case 0x58: // x
1857 case 0x59: // y
1858 case 0x5a: // z
1859 {
1860 seqbuflen = _get_non_alt_char(seqbuf, key_event,
1861 control_key_state);
1862
1863 // If Alt is pressed, then prefix with escape.
1864 if (_is_alt_pressed(control_key_state)) {
1865 seqbuflen = _escape_prefix(seqbuf, seqbuflen);
1866 }
1867 }
1868 break;
1869
1870 // These virtual key codes are generated by the keys on the
1871 // keypad *when NumLock is on* and *Shift is up*.
1872 MATCH(VK_NUMPAD0, "0");
1873 MATCH(VK_NUMPAD1, "1");
1874 MATCH(VK_NUMPAD2, "2");
1875 MATCH(VK_NUMPAD3, "3");
1876 MATCH(VK_NUMPAD4, "4");
1877 MATCH(VK_NUMPAD5, "5");
1878 MATCH(VK_NUMPAD6, "6");
1879 MATCH(VK_NUMPAD7, "7");
1880 MATCH(VK_NUMPAD8, "8");
1881 MATCH(VK_NUMPAD9, "9");
1882
1883 MATCH(VK_MULTIPLY, "*");
1884 MATCH(VK_ADD, "+");
1885 MATCH(VK_SUBTRACT, "-");
1886 // VK_DECIMAL is generated by the . key on the keypad *when
1887 // NumLock is on* and *Shift is up* and the sequence is not
1888 // Ctrl-Alt-NoShift-. (which causes Ctrl-Alt-Del and the
1889 // Windows Security screen to come up).
1890 case VK_DECIMAL:
1891 // U.S. English uses '.', Germany German uses ','.
1892 seqbuflen = _get_non_control_char(seqbuf, key_event,
1893 control_key_state);
1894 break;
1895
1896 MATCH_MODIFIER(VK_F1, SS3 "P");
1897 MATCH_MODIFIER(VK_F2, SS3 "Q");
1898 MATCH_MODIFIER(VK_F3, SS3 "R");
1899 MATCH_MODIFIER(VK_F4, SS3 "S");
1900 MATCH_MODIFIER(VK_F5, CSI "15~");
1901 MATCH_MODIFIER(VK_F6, CSI "17~");
1902 MATCH_MODIFIER(VK_F7, CSI "18~");
1903 MATCH_MODIFIER(VK_F8, CSI "19~");
1904 MATCH_MODIFIER(VK_F9, CSI "20~");
1905 MATCH_MODIFIER(VK_F10, CSI "21~");
1906 MATCH_MODIFIER(VK_F11, CSI "23~");
1907 MATCH_MODIFIER(VK_F12, CSI "24~");
1908
1909 MATCH_MODIFIER(VK_F13, CSI "25~");
1910 MATCH_MODIFIER(VK_F14, CSI "26~");
1911 MATCH_MODIFIER(VK_F15, CSI "28~");
1912 MATCH_MODIFIER(VK_F16, CSI "29~");
1913 MATCH_MODIFIER(VK_F17, CSI "31~");
1914 MATCH_MODIFIER(VK_F18, CSI "32~");
1915 MATCH_MODIFIER(VK_F19, CSI "33~");
1916 MATCH_MODIFIER(VK_F20, CSI "34~");
1917
1918 // MATCH_MODIFIER(VK_F21, ???);
1919 // MATCH_MODIFIER(VK_F22, ???);
1920 // MATCH_MODIFIER(VK_F23, ???);
1921 // MATCH_MODIFIER(VK_F24, ???);
1922 }
1923 }
1924
1925 #undef MATCH
1926 #undef MATCH_MODIFIER
1927 #undef MATCH_KEYPAD
1928 #undef MATCH_MODIFIER_KEYPAD
1929 #undef ESC
1930 #undef CSI
1931 #undef SS3
1932
1933 const char* out;
1934 size_t outlen;
1935
1936 // Check for output in any of:
1937 // * seqstr is set (and strlen can be used to determine the length).
1938 // * seqbuf and seqbuflen are set
1939 // Fallback to ch from Windows.
1940 if (seqstr != NULL) {
1941 out = seqstr;
1942 outlen = strlen(seqstr);
1943 } else if (seqbuflen > 0) {
1944 out = seqbuf;
1945 outlen = seqbuflen;
1946 } else if (ch != '\0') {
1947 // Use whatever Windows told us it is.
1948 seqbuf[0] = ch;
1949 seqbuflen = 1;
1950 out = seqbuf;
1951 outlen = seqbuflen;
1952 } else {
1953 // No special handling for the virtual key code and Windows isn't
1954 // telling us a character code, then we don't know how to translate
1955 // the key press.
1956 //
1957 // Consume the input and 'continue' to cause us to get a new key
1958 // event.
1959 D("_console_read: unknown virtual key code: %d, enhanced: %s",
1960 vk, _is_enhanced_key(control_key_state) ? "true" : "false");
1961 continue;
1962 }
1963
1964 // put output wRepeatCount times into g_console_input_buffer
1965 while (key_event->wRepeatCount-- > 0) {
1966 g_console_input_buffer.insert(g_console_input_buffer.end(), out, out + outlen);
1967 }
1968
1969 // Loop around and try to flush g_console_input_buffer
1970 }
1971 }
1972
1973 static DWORD _old_console_mode; // previous GetConsoleMode() result
1974 static HANDLE _console_handle; // when set, console mode should be restored
1975
stdin_raw_init()1976 void stdin_raw_init() {
1977 const HANDLE in = _get_console_handle(STDIN_FILENO, &_old_console_mode);
1978 if (in == nullptr) {
1979 return;
1980 }
1981
1982 // Disable ENABLE_PROCESSED_INPUT so that Ctrl-C is read instead of
1983 // calling the process Ctrl-C routine (configured by
1984 // SetConsoleCtrlHandler()).
1985 // Disable ENABLE_LINE_INPUT so that input is immediately sent.
1986 // Disable ENABLE_ECHO_INPUT to disable local echo. Disabling this
1987 // flag also seems necessary to have proper line-ending processing.
1988 DWORD new_console_mode = _old_console_mode & ~(ENABLE_PROCESSED_INPUT |
1989 ENABLE_LINE_INPUT |
1990 ENABLE_ECHO_INPUT);
1991 // Enable ENABLE_WINDOW_INPUT to get window resizes.
1992 new_console_mode |= ENABLE_WINDOW_INPUT;
1993
1994 if (!SetConsoleMode(in, new_console_mode)) {
1995 // This really should not fail.
1996 D("stdin_raw_init: SetConsoleMode() failed: %s",
1997 android::base::SystemErrorCodeToString(GetLastError()).c_str());
1998 }
1999
2000 // Once this is set, it means that stdin has been configured for
2001 // reading from and that the old console mode should be restored later.
2002 _console_handle = in;
2003
2004 // Note that we don't need to configure C Runtime line-ending
2005 // translation because _console_read() does not call the C Runtime to
2006 // read from the console.
2007 }
2008
stdin_raw_restore()2009 void stdin_raw_restore() {
2010 if (_console_handle != NULL) {
2011 const HANDLE in = _console_handle;
2012 _console_handle = NULL; // clear state
2013
2014 if (!SetConsoleMode(in, _old_console_mode)) {
2015 // This really should not fail.
2016 D("stdin_raw_restore: SetConsoleMode() failed: %s",
2017 android::base::SystemErrorCodeToString(GetLastError()).c_str());
2018 }
2019 }
2020 }
2021
2022 // Called by 'adb shell' and 'adb exec-in' (via unix_read()) to read from stdin.
unix_read_interruptible(int fd,void * buf,size_t len)2023 int unix_read_interruptible(int fd, void* buf, size_t len) {
2024 if ((fd == STDIN_FILENO) && (_console_handle != NULL)) {
2025 // If it is a request to read from stdin, and stdin_raw_init() has been
2026 // called, and it successfully configured the console, then read from
2027 // the console using Win32 console APIs and partially emulate a unix
2028 // terminal.
2029 return _console_read(_console_handle, buf, len);
2030 } else {
2031 // On older versions of Windows (definitely 7, definitely not 10),
2032 // ReadConsole() with a size >= 31367 fails, so if |fd| is a console
2033 // we need to limit the read size.
2034 if (len > 4096 && unix_isatty(fd)) {
2035 len = 4096;
2036 }
2037 // Just call into C Runtime which can read from pipes/files and which
2038 // can do LF/CR translation (which is overridable with _setmode()).
2039 // Undefine the macro that is set in sysdeps.h which bans calls to
2040 // plain read() in favor of unix_read() or adb_read().
2041 #pragma push_macro("read")
2042 #undef read
2043 return read(fd, buf, len);
2044 #pragma pop_macro("read")
2045 }
2046 }
2047
2048 /**************************************************************************/
2049 /**************************************************************************/
2050 /***** *****/
2051 /***** Unicode support *****/
2052 /***** *****/
2053 /**************************************************************************/
2054 /**************************************************************************/
2055
2056 // This implements support for using files with Unicode filenames and for
2057 // outputting Unicode text to a Win32 console window. This is inspired from
2058 // http://utf8everywhere.org/.
2059 //
2060 // Background
2061 // ----------
2062 //
2063 // On POSIX systems, to deal with files with Unicode filenames, just pass UTF-8
2064 // filenames to APIs such as open(). This works because filenames are largely
2065 // opaque 'cookies' (perhaps excluding path separators).
2066 //
2067 // On Windows, the native file APIs such as CreateFileW() take 2-byte wchar_t
2068 // UTF-16 strings. There is an API, CreateFileA() that takes 1-byte char
2069 // strings, but the strings are in the ANSI codepage and not UTF-8. (The
2070 // CreateFile() API is really just a macro that adds the W/A based on whether
2071 // the UNICODE preprocessor symbol is defined).
2072 //
2073 // Options
2074 // -------
2075 //
2076 // Thus, to write a portable program, there are a few options:
2077 //
2078 // 1. Write the program with wchar_t filenames (wchar_t path[256];).
2079 // For Windows, just call CreateFileW(). For POSIX, write a wrapper openW()
2080 // that takes a wchar_t string, converts it to UTF-8 and then calls the real
2081 // open() API.
2082 //
2083 // 2. Write the program with a TCHAR typedef that is 2 bytes on Windows and
2084 // 1 byte on POSIX. Make T-* wrappers for various OS APIs and call those,
2085 // potentially touching a lot of code.
2086 //
2087 // 3. Write the program with a 1-byte char filenames (char path[256];) that are
2088 // UTF-8. For POSIX, just call open(). For Windows, write a wrapper that
2089 // takes a UTF-8 string, converts it to UTF-16 and then calls the real OS
2090 // or C Runtime API.
2091 //
2092 // The Choice
2093 // ----------
2094 //
2095 // The code below chooses option 3, the UTF-8 everywhere strategy. It uses
2096 // android::base::WideToUTF8() which converts UTF-16 to UTF-8. This is used by the
2097 // NarrowArgs helper class that is used to convert wmain() args into UTF-8
2098 // args that are passed to main() at the beginning of program startup. We also use
2099 // android::base::UTF8ToWide() which converts from UTF-8 to UTF-16. This is used to
2100 // implement wrappers below that call UTF-16 OS and C Runtime APIs.
2101 //
2102 // Unicode console output
2103 // ----------------------
2104 //
2105 // The way to output Unicode to a Win32 console window is to call
2106 // WriteConsoleW() with UTF-16 text. (The user must also choose a proper font
2107 // such as Lucida Console or Consolas, and in the case of East Asian languages
2108 // (such as Chinese, Japanese, Korean), the user must go to the Control Panel
2109 // and change the "system locale" to Chinese, etc., which allows a Chinese, etc.
2110 // font to be used in console windows.)
2111 //
2112 // The problem is getting the C Runtime to make fprintf and related APIs call
2113 // WriteConsoleW() under the covers. The C Runtime API, _setmode() sounds
2114 // promising, but the various modes have issues:
2115 //
2116 // 1. _setmode(_O_TEXT) (the default) does not use WriteConsoleW() so UTF-8 and
2117 // UTF-16 do not display properly.
2118 // 2. _setmode(_O_BINARY) does not use WriteConsoleW() and the text comes out
2119 // totally wrong.
2120 // 3. _setmode(_O_U8TEXT) seems to cause the C Runtime _invalid_parameter
2121 // handler to be called (upon a later I/O call), aborting the process.
2122 // 4. _setmode(_O_U16TEXT) and _setmode(_O_WTEXT) cause non-wide printf/fprintf
2123 // to output nothing.
2124 //
2125 // So the only solution is to write our own adb_fprintf() that converts UTF-8
2126 // to UTF-16 and then calls WriteConsoleW().
2127
2128
2129 // Constructor for helper class to convert wmain() UTF-16 args to UTF-8 to
2130 // be passed to main().
NarrowArgs(const int argc,wchar_t ** const argv)2131 NarrowArgs::NarrowArgs(const int argc, wchar_t** const argv) {
2132 narrow_args = new char*[argc + 1];
2133
2134 for (int i = 0; i < argc; ++i) {
2135 std::string arg_narrow;
2136 if (!android::base::WideToUTF8(argv[i], &arg_narrow)) {
2137 fatal_errno("cannot convert argument from UTF-16 to UTF-8");
2138 }
2139 narrow_args[i] = strdup(arg_narrow.c_str());
2140 }
2141 narrow_args[argc] = nullptr; // terminate
2142 }
2143
~NarrowArgs()2144 NarrowArgs::~NarrowArgs() {
2145 if (narrow_args != nullptr) {
2146 for (char** argp = narrow_args; *argp != nullptr; ++argp) {
2147 free(*argp);
2148 }
2149 delete[] narrow_args;
2150 narrow_args = nullptr;
2151 }
2152 }
2153
unix_open(const char * path,int options,...)2154 int unix_open(const char* path, int options, ...) {
2155 std::wstring path_wide;
2156 if (!android::base::UTF8ToWide(path, &path_wide)) {
2157 return -1;
2158 }
2159 if ((options & O_CREAT) == 0) {
2160 return _wopen(path_wide.c_str(), options);
2161 } else {
2162 int mode;
2163 va_list args;
2164 va_start(args, options);
2165 mode = va_arg(args, int);
2166 va_end(args);
2167 return _wopen(path_wide.c_str(), options, mode);
2168 }
2169 }
2170
2171 // Version of opendir() that takes a UTF-8 path.
adb_opendir(const char * path)2172 DIR* adb_opendir(const char* path) {
2173 std::wstring path_wide;
2174 if (!android::base::UTF8ToWide(path, &path_wide)) {
2175 return nullptr;
2176 }
2177
2178 // Just cast _WDIR* to DIR*. This doesn't work if the caller reads any of
2179 // the fields, but right now all the callers treat the structure as
2180 // opaque.
2181 return reinterpret_cast<DIR*>(_wopendir(path_wide.c_str()));
2182 }
2183
2184 // Version of readdir() that returns UTF-8 paths.
adb_readdir(DIR * dir)2185 struct dirent* adb_readdir(DIR* dir) {
2186 _WDIR* const wdir = reinterpret_cast<_WDIR*>(dir);
2187 struct _wdirent* const went = _wreaddir(wdir);
2188 if (went == nullptr) {
2189 return nullptr;
2190 }
2191
2192 // Convert from UTF-16 to UTF-8.
2193 std::string name_utf8;
2194 if (!android::base::WideToUTF8(went->d_name, &name_utf8)) {
2195 return nullptr;
2196 }
2197
2198 // Cast the _wdirent* to dirent* and overwrite the d_name field (which has
2199 // space for UTF-16 wchar_t's) with UTF-8 char's.
2200 struct dirent* ent = reinterpret_cast<struct dirent*>(went);
2201
2202 if (name_utf8.length() + 1 > sizeof(went->d_name)) {
2203 // Name too big to fit in existing buffer.
2204 errno = ENOMEM;
2205 return nullptr;
2206 }
2207
2208 // Note that sizeof(_wdirent::d_name) is bigger than sizeof(dirent::d_name)
2209 // because _wdirent contains wchar_t instead of char. So even if name_utf8
2210 // can fit in _wdirent::d_name, the resulting dirent::d_name field may be
2211 // bigger than the caller expects because they expect a dirent structure
2212 // which has a smaller d_name field. Ignore this since the caller should be
2213 // resilient.
2214
2215 // Rewrite the UTF-16 d_name field to UTF-8.
2216 strcpy(ent->d_name, name_utf8.c_str());
2217
2218 return ent;
2219 }
2220
2221 // Version of closedir() to go with our version of adb_opendir().
adb_closedir(DIR * dir)2222 int adb_closedir(DIR* dir) {
2223 return _wclosedir(reinterpret_cast<_WDIR*>(dir));
2224 }
2225
2226 // Version of unlink() that takes a UTF-8 path.
adb_unlink(const char * path)2227 int adb_unlink(const char* path) {
2228 std::wstring wpath;
2229 if (!android::base::UTF8ToWide(path, &wpath)) {
2230 return -1;
2231 }
2232
2233 int rc = _wunlink(wpath.c_str());
2234
2235 if (rc == -1 && errno == EACCES) {
2236 /* unlink returns EACCES when the file is read-only, so we first */
2237 /* try to make it writable, then unlink again... */
2238 rc = _wchmod(wpath.c_str(), _S_IREAD | _S_IWRITE);
2239 if (rc == 0)
2240 rc = _wunlink(wpath.c_str());
2241 }
2242 return rc;
2243 }
2244
2245 // Version of mkdir() that takes a UTF-8 path.
adb_mkdir(const std::string & path,int mode)2246 int adb_mkdir(const std::string& path, int mode) {
2247 std::wstring path_wide;
2248 if (!android::base::UTF8ToWide(path, &path_wide)) {
2249 return -1;
2250 }
2251
2252 return _wmkdir(path_wide.c_str());
2253 }
2254
2255 // Version of utime() that takes a UTF-8 path.
adb_utime(const char * path,struct utimbuf * u)2256 int adb_utime(const char* path, struct utimbuf* u) {
2257 std::wstring path_wide;
2258 if (!android::base::UTF8ToWide(path, &path_wide)) {
2259 return -1;
2260 }
2261
2262 static_assert(sizeof(struct utimbuf) == sizeof(struct _utimbuf),
2263 "utimbuf and _utimbuf should be the same size because they both "
2264 "contain the same types, namely time_t");
2265 return _wutime(path_wide.c_str(), reinterpret_cast<struct _utimbuf*>(u));
2266 }
2267
2268 // Version of chmod() that takes a UTF-8 path.
adb_chmod(const char * path,int mode)2269 int adb_chmod(const char* path, int mode) {
2270 std::wstring path_wide;
2271 if (!android::base::UTF8ToWide(path, &path_wide)) {
2272 return -1;
2273 }
2274
2275 return _wchmod(path_wide.c_str(), mode);
2276 }
2277
2278 // From libutils/Unicode.cpp, get the length of a UTF-8 sequence given the lead byte.
utf8_codepoint_len(uint8_t ch)2279 static inline size_t utf8_codepoint_len(uint8_t ch) {
2280 return ((0xe5000000 >> ((ch >> 3) & 0x1e)) & 3) + 1;
2281 }
2282
2283 namespace internal {
2284
2285 // Given a sequence of UTF-8 bytes (denoted by the range [first, last)), return the number of bytes
2286 // (from the beginning) that are complete UTF-8 sequences and append the remaining bytes to
2287 // remaining_bytes.
ParseCompleteUTF8(const char * const first,const char * const last,std::vector<char> * const remaining_bytes)2288 size_t ParseCompleteUTF8(const char* const first, const char* const last,
2289 std::vector<char>* const remaining_bytes) {
2290 // Walk backwards from the end of the sequence looking for the beginning of a UTF-8 sequence.
2291 // Current_after points one byte past the current byte to be examined.
2292 for (const char* current_after = last; current_after != first; --current_after) {
2293 const char* const current = current_after - 1;
2294 const char ch = *current;
2295 const char kHighBit = 0x80u;
2296 const char kTwoHighestBits = 0xC0u;
2297 if ((ch & kHighBit) == 0) { // high bit not set
2298 // The buffer ends with a one-byte UTF-8 sequence, possibly followed by invalid trailing
2299 // bytes with no leading byte, so return the entire buffer.
2300 break;
2301 } else if ((ch & kTwoHighestBits) == kTwoHighestBits) { // top two highest bits set
2302 // Lead byte in UTF-8 sequence, so check if we have all the bytes in the sequence.
2303 const size_t bytes_available = last - current;
2304 if (bytes_available < utf8_codepoint_len(ch)) {
2305 // We don't have all the bytes in the UTF-8 sequence, so return all the bytes
2306 // preceding the current incomplete UTF-8 sequence and append the remaining bytes
2307 // to remaining_bytes.
2308 remaining_bytes->insert(remaining_bytes->end(), current, last);
2309 return current - first;
2310 } else {
2311 // The buffer ends with a complete UTF-8 sequence, possibly followed by invalid
2312 // trailing bytes with no lead byte, so return the entire buffer.
2313 break;
2314 }
2315 } else {
2316 // Trailing byte, so keep going backwards looking for the lead byte.
2317 }
2318 }
2319
2320 // Return the size of the entire buffer. It is possible that we walked backward past invalid
2321 // trailing bytes with no lead byte, in which case we want to return all those invalid bytes
2322 // so that they can be processed.
2323 return last - first;
2324 }
2325
2326 }
2327
2328 // Bytes that have not yet been output to the console because they are incomplete UTF-8 sequences.
2329 // Note that we use only one buffer even though stderr and stdout are logically separate streams.
2330 // This matches the behavior of Linux.
2331
2332 // Internal helper function to write UTF-8 bytes to a console. Returns -1 on error.
_console_write_utf8(const char * const buf,const size_t buf_size,FILE * stream,HANDLE console)2333 static int _console_write_utf8(const char* const buf, const size_t buf_size, FILE* stream,
2334 HANDLE console) {
2335 static std::mutex& console_output_buffer_lock = *new std::mutex();
2336 static auto& console_output_buffer = *new std::vector<char>();
2337
2338 const int saved_errno = errno;
2339 std::vector<char> combined_buffer;
2340
2341 // Complete UTF-8 sequences that should be immediately written to the console.
2342 const char* utf8;
2343 size_t utf8_size;
2344
2345 {
2346 std::lock_guard<std::mutex> lock(console_output_buffer_lock);
2347 if (console_output_buffer.empty()) {
2348 // If console_output_buffer doesn't have a buffered up incomplete UTF-8 sequence (the
2349 // common case with plain ASCII), parse buf directly.
2350 utf8 = buf;
2351 utf8_size = internal::ParseCompleteUTF8(buf, buf + buf_size, &console_output_buffer);
2352 } else {
2353 // If console_output_buffer has a buffered up incomplete UTF-8 sequence, move it to
2354 // combined_buffer (and effectively clear console_output_buffer) and append buf to
2355 // combined_buffer, then parse it all together.
2356 combined_buffer.swap(console_output_buffer);
2357 combined_buffer.insert(combined_buffer.end(), buf, buf + buf_size);
2358
2359 utf8 = combined_buffer.data();
2360 utf8_size = internal::ParseCompleteUTF8(utf8, utf8 + combined_buffer.size(),
2361 &console_output_buffer);
2362 }
2363 }
2364
2365 std::wstring utf16;
2366
2367 // Try to convert from data that might be UTF-8 to UTF-16, ignoring errors (just like Linux
2368 // which does not return an error on bad UTF-8). Data might not be UTF-8 if the user cat's
2369 // random data, runs dmesg (which might have non-UTF-8), etc.
2370 // This could throw std::bad_alloc.
2371 (void)android::base::UTF8ToWide(utf8, utf8_size, &utf16);
2372
2373 // Note that this does not do \n => \r\n translation because that
2374 // doesn't seem necessary for the Windows console. For the Windows
2375 // console \r moves to the beginning of the line and \n moves to a new
2376 // line.
2377
2378 // Flush any stream buffering so that our output is afterwards which
2379 // makes sense because our call is afterwards.
2380 (void)fflush(stream);
2381
2382 // Write UTF-16 to the console.
2383 DWORD written = 0;
2384 if (!WriteConsoleW(console, utf16.c_str(), utf16.length(), &written, NULL)) {
2385 errno = EIO;
2386 return -1;
2387 }
2388
2389 // Return the size of the original buffer passed in, signifying that we consumed it all, even
2390 // if nothing was displayed, in the case of being passed an incomplete UTF-8 sequence. This
2391 // matches the Linux behavior.
2392 errno = saved_errno;
2393 return buf_size;
2394 }
2395
2396 // Function prototype because attributes cannot be placed on func definitions.
2397 static int _console_vfprintf(const HANDLE console, FILE* stream,
2398 const char *format, va_list ap)
2399 __attribute__((__format__(ADB_FORMAT_ARCHETYPE, 3, 0)));
2400
2401 // Internal function to format a UTF-8 string and write it to a Win32 console.
2402 // Returns -1 on error.
_console_vfprintf(const HANDLE console,FILE * stream,const char * format,va_list ap)2403 static int _console_vfprintf(const HANDLE console, FILE* stream,
2404 const char *format, va_list ap) {
2405 const int saved_errno = errno;
2406 std::string output_utf8;
2407
2408 // Format the string.
2409 // This could throw std::bad_alloc.
2410 android::base::StringAppendV(&output_utf8, format, ap);
2411
2412 const int result = _console_write_utf8(output_utf8.c_str(), output_utf8.length(), stream,
2413 console);
2414 if (result != -1) {
2415 errno = saved_errno;
2416 } else {
2417 // If -1 was returned, errno has been set.
2418 }
2419 return result;
2420 }
2421
2422 // Version of vfprintf() that takes UTF-8 and can write Unicode to a
2423 // Windows console.
adb_vfprintf(FILE * stream,const char * format,va_list ap)2424 int adb_vfprintf(FILE *stream, const char *format, va_list ap) {
2425 const HANDLE console = _get_console_handle(stream);
2426
2427 // If there is an associated Win32 console, write to it specially,
2428 // otherwise defer to the regular C Runtime, passing it UTF-8.
2429 if (console != NULL) {
2430 return _console_vfprintf(console, stream, format, ap);
2431 } else {
2432 // If vfprintf is a macro, undefine it, so we can call the real
2433 // C Runtime API.
2434 #pragma push_macro("vfprintf")
2435 #undef vfprintf
2436 return vfprintf(stream, format, ap);
2437 #pragma pop_macro("vfprintf")
2438 }
2439 }
2440
2441 // Version of vprintf() that takes UTF-8 and can write Unicode to a Windows console.
adb_vprintf(const char * format,va_list ap)2442 int adb_vprintf(const char *format, va_list ap) {
2443 return adb_vfprintf(stdout, format, ap);
2444 }
2445
2446 // Version of fprintf() that takes UTF-8 and can write Unicode to a
2447 // Windows console.
adb_fprintf(FILE * stream,const char * format,...)2448 int adb_fprintf(FILE *stream, const char *format, ...) {
2449 va_list ap;
2450 va_start(ap, format);
2451 const int result = adb_vfprintf(stream, format, ap);
2452 va_end(ap);
2453
2454 return result;
2455 }
2456
2457 // Version of printf() that takes UTF-8 and can write Unicode to a
2458 // Windows console.
adb_printf(const char * format,...)2459 int adb_printf(const char *format, ...) {
2460 va_list ap;
2461 va_start(ap, format);
2462 const int result = adb_vfprintf(stdout, format, ap);
2463 va_end(ap);
2464
2465 return result;
2466 }
2467
2468 // Version of fputs() that takes UTF-8 and can write Unicode to a
2469 // Windows console.
adb_fputs(const char * buf,FILE * stream)2470 int adb_fputs(const char* buf, FILE* stream) {
2471 // adb_fprintf returns -1 on error, which is conveniently the same as EOF
2472 // which fputs (and hence adb_fputs) should return on error.
2473 static_assert(EOF == -1, "EOF is not -1, so this code needs to be fixed");
2474 return adb_fprintf(stream, "%s", buf);
2475 }
2476
2477 // Version of fputc() that takes UTF-8 and can write Unicode to a
2478 // Windows console.
adb_fputc(int ch,FILE * stream)2479 int adb_fputc(int ch, FILE* stream) {
2480 const int result = adb_fprintf(stream, "%c", ch);
2481 if (result == -1) {
2482 return EOF;
2483 }
2484 // For success, fputc returns the char, cast to unsigned char, then to int.
2485 return static_cast<unsigned char>(ch);
2486 }
2487
2488 // Version of putchar() that takes UTF-8 and can write Unicode to a Windows console.
adb_putchar(int ch)2489 int adb_putchar(int ch) {
2490 return adb_fputc(ch, stdout);
2491 }
2492
2493 // Version of puts() that takes UTF-8 and can write Unicode to a Windows console.
adb_puts(const char * buf)2494 int adb_puts(const char* buf) {
2495 // adb_printf returns -1 on error, which is conveniently the same as EOF
2496 // which puts (and hence adb_puts) should return on error.
2497 static_assert(EOF == -1, "EOF is not -1, so this code needs to be fixed");
2498 return adb_printf("%s\n", buf);
2499 }
2500
2501 // Internal function to write UTF-8 to a Win32 console. Returns the number of
2502 // items (of length size) written. On error, returns a short item count or 0.
_console_fwrite(const void * ptr,size_t size,size_t nmemb,FILE * stream,HANDLE console)2503 static size_t _console_fwrite(const void* ptr, size_t size, size_t nmemb,
2504 FILE* stream, HANDLE console) {
2505 const int result = _console_write_utf8(reinterpret_cast<const char*>(ptr), size * nmemb, stream,
2506 console);
2507 if (result == -1) {
2508 return 0;
2509 }
2510 return result / size;
2511 }
2512
2513 // Version of fwrite() that takes UTF-8 and can write Unicode to a
2514 // Windows console.
adb_fwrite(const void * ptr,size_t size,size_t nmemb,FILE * stream)2515 size_t adb_fwrite(const void* ptr, size_t size, size_t nmemb, FILE* stream) {
2516 const HANDLE console = _get_console_handle(stream);
2517
2518 // If there is an associated Win32 console, write to it specially,
2519 // otherwise defer to the regular C Runtime, passing it UTF-8.
2520 if (console != NULL) {
2521 return _console_fwrite(ptr, size, nmemb, stream, console);
2522 } else {
2523 // If fwrite is a macro, undefine it, so we can call the real
2524 // C Runtime API.
2525 #pragma push_macro("fwrite")
2526 #undef fwrite
2527 return fwrite(ptr, size, nmemb, stream);
2528 #pragma pop_macro("fwrite")
2529 }
2530 }
2531
2532 // Version of fopen() that takes a UTF-8 filename and can access a file with
2533 // a Unicode filename.
adb_fopen(const char * path,const char * mode)2534 FILE* adb_fopen(const char* path, const char* mode) {
2535 std::wstring path_wide;
2536 if (!android::base::UTF8ToWide(path, &path_wide)) {
2537 return nullptr;
2538 }
2539
2540 std::wstring mode_wide;
2541 if (!android::base::UTF8ToWide(mode, &mode_wide)) {
2542 return nullptr;
2543 }
2544
2545 return _wfopen(path_wide.c_str(), mode_wide.c_str());
2546 }
2547
2548 // Return a lowercase version of the argument. Uses C Runtime tolower() on
2549 // each byte which is not UTF-8 aware, and theoretically uses the current C
2550 // Runtime locale (which in practice is not changed, so this becomes a ASCII
2551 // conversion).
ToLower(const std::string & anycase)2552 static std::string ToLower(const std::string& anycase) {
2553 // copy string
2554 std::string str(anycase);
2555 // transform the copy
2556 std::transform(str.begin(), str.end(), str.begin(), tolower);
2557 return str;
2558 }
2559
2560 extern "C" int main(int argc, char** argv);
2561
2562 // Link with -municode to cause this wmain() to be used as the program
2563 // entrypoint. It will convert the args from UTF-16 to UTF-8 and call the
2564 // regular main() with UTF-8 args.
wmain(int argc,wchar_t ** argv)2565 extern "C" int wmain(int argc, wchar_t **argv) {
2566 // Convert args from UTF-16 to UTF-8 and pass that to main().
2567 NarrowArgs narrow_args(argc, argv);
2568 return main(argc, narrow_args.data());
2569 }
2570
2571 // Shadow UTF-8 environment variable name/value pairs that are created from
2572 // _wenviron the first time that adb_getenv() is called. Note that this is not
2573 // currently updated if putenv, setenv, unsetenv are called. Note that no
2574 // thread synchronization is done, but we're called early enough in
2575 // single-threaded startup that things work ok.
2576 static auto& g_environ_utf8 = *new std::unordered_map<std::string, char*>();
2577
2578 // Make sure that shadow UTF-8 environment variables are setup.
_ensure_env_setup()2579 static void _ensure_env_setup() {
2580 // If some name/value pairs exist, then we've already done the setup below.
2581 if (g_environ_utf8.size() != 0) {
2582 return;
2583 }
2584
2585 if (_wenviron == nullptr) {
2586 // If _wenviron is null, then -municode probably wasn't used. That
2587 // linker flag will cause the entry point to setup _wenviron. It will
2588 // also require an implementation of wmain() (which we provide above).
2589 fatal("_wenviron is not set, did you link with -municode?");
2590 }
2591
2592 // Read name/value pairs from UTF-16 _wenviron and write new name/value
2593 // pairs to UTF-8 g_environ_utf8. Note that it probably does not make sense
2594 // to use the D() macro here because that tracing only works if the
2595 // ADB_TRACE environment variable is setup, but that env var can't be read
2596 // until this code completes.
2597 for (wchar_t** env = _wenviron; *env != nullptr; ++env) {
2598 wchar_t* const equal = wcschr(*env, L'=');
2599 if (equal == nullptr) {
2600 // Malformed environment variable with no equal sign. Shouldn't
2601 // really happen, but we should be resilient to this.
2602 continue;
2603 }
2604
2605 // If we encounter an error converting UTF-16, don't error-out on account of a single env
2606 // var because the program might never even read this particular variable.
2607 std::string name_utf8;
2608 if (!android::base::WideToUTF8(*env, equal - *env, &name_utf8)) {
2609 continue;
2610 }
2611
2612 // Store lowercase name so that we can do case-insensitive searches.
2613 name_utf8 = ToLower(name_utf8);
2614
2615 std::string value_utf8;
2616 if (!android::base::WideToUTF8(equal + 1, &value_utf8)) {
2617 continue;
2618 }
2619
2620 char* const value_dup = strdup(value_utf8.c_str());
2621
2622 // Don't overwrite a previus env var with the same name. In reality,
2623 // the system probably won't let two env vars with the same name exist
2624 // in _wenviron.
2625 g_environ_utf8.insert({name_utf8, value_dup});
2626 }
2627 }
2628
2629 // Version of getenv() that takes a UTF-8 environment variable name and
2630 // retrieves a UTF-8 value. Case-insensitive to match getenv() on Windows.
adb_getenv(const char * name)2631 char* adb_getenv(const char* name) {
2632 _ensure_env_setup();
2633
2634 // Case-insensitive search by searching for lowercase name in a map of
2635 // lowercase names.
2636 const auto it = g_environ_utf8.find(ToLower(std::string(name)));
2637 if (it == g_environ_utf8.end()) {
2638 return nullptr;
2639 }
2640
2641 return it->second;
2642 }
2643
2644 // Version of getcwd() that returns the current working directory in UTF-8.
adb_getcwd(char * buf,int size)2645 char* adb_getcwd(char* buf, int size) {
2646 wchar_t* wbuf = _wgetcwd(nullptr, 0);
2647 if (wbuf == nullptr) {
2648 return nullptr;
2649 }
2650
2651 std::string buf_utf8;
2652 const bool narrow_result = android::base::WideToUTF8(wbuf, &buf_utf8);
2653 free(wbuf);
2654 wbuf = nullptr;
2655
2656 if (!narrow_result) {
2657 return nullptr;
2658 }
2659
2660 // If size was specified, make sure all the chars will fit.
2661 if (size != 0) {
2662 if (size < static_cast<int>(buf_utf8.length() + 1)) {
2663 errno = ERANGE;
2664 return nullptr;
2665 }
2666 }
2667
2668 // If buf was not specified, allocate storage.
2669 if (buf == nullptr) {
2670 if (size == 0) {
2671 size = buf_utf8.length() + 1;
2672 }
2673 buf = reinterpret_cast<char*>(malloc(size));
2674 if (buf == nullptr) {
2675 return nullptr;
2676 }
2677 }
2678
2679 // Destination buffer was allocated with enough space, or we've already
2680 // checked an existing buffer size for enough space.
2681 strcpy(buf, buf_utf8.c_str());
2682
2683 return buf;
2684 }
2685