1 //===--- SemaLambda.cpp - Semantic Analysis for C++11 Lambdas -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for C++ lambda expressions.
11 //
12 //===----------------------------------------------------------------------===//
13 #include "clang/Sema/DeclSpec.h"
14 #include "TypeLocBuilder.h"
15 #include "clang/AST/ASTLambda.h"
16 #include "clang/AST/ExprCXX.h"
17 #include "clang/Basic/TargetInfo.h"
18 #include "clang/Sema/Initialization.h"
19 #include "clang/Sema/Lookup.h"
20 #include "clang/Sema/Scope.h"
21 #include "clang/Sema/ScopeInfo.h"
22 #include "clang/Sema/SemaInternal.h"
23 #include "clang/Sema/SemaLambda.h"
24 using namespace clang;
25 using namespace sema;
26
27 /// \brief Examines the FunctionScopeInfo stack to determine the nearest
28 /// enclosing lambda (to the current lambda) that is 'capture-ready' for
29 /// the variable referenced in the current lambda (i.e. \p VarToCapture).
30 /// If successful, returns the index into Sema's FunctionScopeInfo stack
31 /// of the capture-ready lambda's LambdaScopeInfo.
32 ///
33 /// Climbs down the stack of lambdas (deepest nested lambda - i.e. current
34 /// lambda - is on top) to determine the index of the nearest enclosing/outer
35 /// lambda that is ready to capture the \p VarToCapture being referenced in
36 /// the current lambda.
37 /// As we climb down the stack, we want the index of the first such lambda -
38 /// that is the lambda with the highest index that is 'capture-ready'.
39 ///
40 /// A lambda 'L' is capture-ready for 'V' (var or this) if:
41 /// - its enclosing context is non-dependent
42 /// - and if the chain of lambdas between L and the lambda in which
43 /// V is potentially used (i.e. the lambda at the top of the scope info
44 /// stack), can all capture or have already captured V.
45 /// If \p VarToCapture is 'null' then we are trying to capture 'this'.
46 ///
47 /// Note that a lambda that is deemed 'capture-ready' still needs to be checked
48 /// for whether it is 'capture-capable' (see
49 /// getStackIndexOfNearestEnclosingCaptureCapableLambda), before it can truly
50 /// capture.
51 ///
52 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
53 /// LambdaScopeInfo inherits from). The current/deepest/innermost lambda
54 /// is at the top of the stack and has the highest index.
55 /// \param VarToCapture - the variable to capture. If NULL, capture 'this'.
56 ///
57 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains
58 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda
59 /// which is capture-ready. If the return value evaluates to 'false' then
60 /// no lambda is capture-ready for \p VarToCapture.
61
62 static inline Optional<unsigned>
getStackIndexOfNearestEnclosingCaptureReadyLambda(ArrayRef<const clang::sema::FunctionScopeInfo * > FunctionScopes,VarDecl * VarToCapture)63 getStackIndexOfNearestEnclosingCaptureReadyLambda(
64 ArrayRef<const clang::sema::FunctionScopeInfo *> FunctionScopes,
65 VarDecl *VarToCapture) {
66 // Label failure to capture.
67 const Optional<unsigned> NoLambdaIsCaptureReady;
68
69 assert(
70 isa<clang::sema::LambdaScopeInfo>(
71 FunctionScopes[FunctionScopes.size() - 1]) &&
72 "The function on the top of sema's function-info stack must be a lambda");
73
74 // If VarToCapture is null, we are attempting to capture 'this'.
75 const bool IsCapturingThis = !VarToCapture;
76 const bool IsCapturingVariable = !IsCapturingThis;
77
78 // Start with the current lambda at the top of the stack (highest index).
79 unsigned CurScopeIndex = FunctionScopes.size() - 1;
80 DeclContext *EnclosingDC =
81 cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex])->CallOperator;
82
83 do {
84 const clang::sema::LambdaScopeInfo *LSI =
85 cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]);
86 // IF we have climbed down to an intervening enclosing lambda that contains
87 // the variable declaration - it obviously can/must not capture the
88 // variable.
89 // Since its enclosing DC is dependent, all the lambdas between it and the
90 // innermost nested lambda are dependent (otherwise we wouldn't have
91 // arrived here) - so we don't yet have a lambda that can capture the
92 // variable.
93 if (IsCapturingVariable &&
94 VarToCapture->getDeclContext()->Equals(EnclosingDC))
95 return NoLambdaIsCaptureReady;
96
97 // For an enclosing lambda to be capture ready for an entity, all
98 // intervening lambda's have to be able to capture that entity. If even
99 // one of the intervening lambda's is not capable of capturing the entity
100 // then no enclosing lambda can ever capture that entity.
101 // For e.g.
102 // const int x = 10;
103 // [=](auto a) { #1
104 // [](auto b) { #2 <-- an intervening lambda that can never capture 'x'
105 // [=](auto c) { #3
106 // f(x, c); <-- can not lead to x's speculative capture by #1 or #2
107 // }; }; };
108 // If they do not have a default implicit capture, check to see
109 // if the entity has already been explicitly captured.
110 // If even a single dependent enclosing lambda lacks the capability
111 // to ever capture this variable, there is no further enclosing
112 // non-dependent lambda that can capture this variable.
113 if (LSI->ImpCaptureStyle == sema::LambdaScopeInfo::ImpCap_None) {
114 if (IsCapturingVariable && !LSI->isCaptured(VarToCapture))
115 return NoLambdaIsCaptureReady;
116 if (IsCapturingThis && !LSI->isCXXThisCaptured())
117 return NoLambdaIsCaptureReady;
118 }
119 EnclosingDC = getLambdaAwareParentOfDeclContext(EnclosingDC);
120
121 assert(CurScopeIndex);
122 --CurScopeIndex;
123 } while (!EnclosingDC->isTranslationUnit() &&
124 EnclosingDC->isDependentContext() &&
125 isLambdaCallOperator(EnclosingDC));
126
127 assert(CurScopeIndex < (FunctionScopes.size() - 1));
128 // If the enclosingDC is not dependent, then the immediately nested lambda
129 // (one index above) is capture-ready.
130 if (!EnclosingDC->isDependentContext())
131 return CurScopeIndex + 1;
132 return NoLambdaIsCaptureReady;
133 }
134
135 /// \brief Examines the FunctionScopeInfo stack to determine the nearest
136 /// enclosing lambda (to the current lambda) that is 'capture-capable' for
137 /// the variable referenced in the current lambda (i.e. \p VarToCapture).
138 /// If successful, returns the index into Sema's FunctionScopeInfo stack
139 /// of the capture-capable lambda's LambdaScopeInfo.
140 ///
141 /// Given the current stack of lambdas being processed by Sema and
142 /// the variable of interest, to identify the nearest enclosing lambda (to the
143 /// current lambda at the top of the stack) that can truly capture
144 /// a variable, it has to have the following two properties:
145 /// a) 'capture-ready' - be the innermost lambda that is 'capture-ready':
146 /// - climb down the stack (i.e. starting from the innermost and examining
147 /// each outer lambda step by step) checking if each enclosing
148 /// lambda can either implicitly or explicitly capture the variable.
149 /// Record the first such lambda that is enclosed in a non-dependent
150 /// context. If no such lambda currently exists return failure.
151 /// b) 'capture-capable' - make sure the 'capture-ready' lambda can truly
152 /// capture the variable by checking all its enclosing lambdas:
153 /// - check if all outer lambdas enclosing the 'capture-ready' lambda
154 /// identified above in 'a' can also capture the variable (this is done
155 /// via tryCaptureVariable for variables and CheckCXXThisCapture for
156 /// 'this' by passing in the index of the Lambda identified in step 'a')
157 ///
158 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
159 /// LambdaScopeInfo inherits from). The current/deepest/innermost lambda
160 /// is at the top of the stack.
161 ///
162 /// \param VarToCapture - the variable to capture. If NULL, capture 'this'.
163 ///
164 ///
165 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains
166 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda
167 /// which is capture-capable. If the return value evaluates to 'false' then
168 /// no lambda is capture-capable for \p VarToCapture.
169
getStackIndexOfNearestEnclosingCaptureCapableLambda(ArrayRef<const sema::FunctionScopeInfo * > FunctionScopes,VarDecl * VarToCapture,Sema & S)170 Optional<unsigned> clang::getStackIndexOfNearestEnclosingCaptureCapableLambda(
171 ArrayRef<const sema::FunctionScopeInfo *> FunctionScopes,
172 VarDecl *VarToCapture, Sema &S) {
173
174 const Optional<unsigned> NoLambdaIsCaptureCapable;
175
176 const Optional<unsigned> OptionalStackIndex =
177 getStackIndexOfNearestEnclosingCaptureReadyLambda(FunctionScopes,
178 VarToCapture);
179 if (!OptionalStackIndex)
180 return NoLambdaIsCaptureCapable;
181
182 const unsigned IndexOfCaptureReadyLambda = OptionalStackIndex.getValue();
183 assert(((IndexOfCaptureReadyLambda != (FunctionScopes.size() - 1)) ||
184 S.getCurGenericLambda()) &&
185 "The capture ready lambda for a potential capture can only be the "
186 "current lambda if it is a generic lambda");
187
188 const sema::LambdaScopeInfo *const CaptureReadyLambdaLSI =
189 cast<sema::LambdaScopeInfo>(FunctionScopes[IndexOfCaptureReadyLambda]);
190
191 // If VarToCapture is null, we are attempting to capture 'this'
192 const bool IsCapturingThis = !VarToCapture;
193 const bool IsCapturingVariable = !IsCapturingThis;
194
195 if (IsCapturingVariable) {
196 // Check if the capture-ready lambda can truly capture the variable, by
197 // checking whether all enclosing lambdas of the capture-ready lambda allow
198 // the capture - i.e. make sure it is capture-capable.
199 QualType CaptureType, DeclRefType;
200 const bool CanCaptureVariable =
201 !S.tryCaptureVariable(VarToCapture,
202 /*ExprVarIsUsedInLoc*/ SourceLocation(),
203 clang::Sema::TryCapture_Implicit,
204 /*EllipsisLoc*/ SourceLocation(),
205 /*BuildAndDiagnose*/ false, CaptureType,
206 DeclRefType, &IndexOfCaptureReadyLambda);
207 if (!CanCaptureVariable)
208 return NoLambdaIsCaptureCapable;
209 } else {
210 // Check if the capture-ready lambda can truly capture 'this' by checking
211 // whether all enclosing lambdas of the capture-ready lambda can capture
212 // 'this'.
213 const bool CanCaptureThis =
214 !S.CheckCXXThisCapture(
215 CaptureReadyLambdaLSI->PotentialThisCaptureLocation,
216 /*Explicit*/ false, /*BuildAndDiagnose*/ false,
217 &IndexOfCaptureReadyLambda);
218 if (!CanCaptureThis)
219 return NoLambdaIsCaptureCapable;
220 }
221 return IndexOfCaptureReadyLambda;
222 }
223
224 static inline TemplateParameterList *
getGenericLambdaTemplateParameterList(LambdaScopeInfo * LSI,Sema & SemaRef)225 getGenericLambdaTemplateParameterList(LambdaScopeInfo *LSI, Sema &SemaRef) {
226 if (LSI->GLTemplateParameterList)
227 return LSI->GLTemplateParameterList;
228
229 if (!LSI->AutoTemplateParams.empty()) {
230 SourceRange IntroRange = LSI->IntroducerRange;
231 SourceLocation LAngleLoc = IntroRange.getBegin();
232 SourceLocation RAngleLoc = IntroRange.getEnd();
233 LSI->GLTemplateParameterList = TemplateParameterList::Create(
234 SemaRef.Context,
235 /*Template kw loc*/ SourceLocation(), LAngleLoc,
236 llvm::makeArrayRef((NamedDecl *const *)LSI->AutoTemplateParams.data(),
237 LSI->AutoTemplateParams.size()),
238 RAngleLoc);
239 }
240 return LSI->GLTemplateParameterList;
241 }
242
createLambdaClosureType(SourceRange IntroducerRange,TypeSourceInfo * Info,bool KnownDependent,LambdaCaptureDefault CaptureDefault)243 CXXRecordDecl *Sema::createLambdaClosureType(SourceRange IntroducerRange,
244 TypeSourceInfo *Info,
245 bool KnownDependent,
246 LambdaCaptureDefault CaptureDefault) {
247 DeclContext *DC = CurContext;
248 while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
249 DC = DC->getParent();
250 bool IsGenericLambda = getGenericLambdaTemplateParameterList(getCurLambda(),
251 *this);
252 // Start constructing the lambda class.
253 CXXRecordDecl *Class = CXXRecordDecl::CreateLambda(Context, DC, Info,
254 IntroducerRange.getBegin(),
255 KnownDependent,
256 IsGenericLambda,
257 CaptureDefault);
258 DC->addDecl(Class);
259
260 return Class;
261 }
262
263 /// \brief Determine whether the given context is or is enclosed in an inline
264 /// function.
isInInlineFunction(const DeclContext * DC)265 static bool isInInlineFunction(const DeclContext *DC) {
266 while (!DC->isFileContext()) {
267 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
268 if (FD->isInlined())
269 return true;
270
271 DC = DC->getLexicalParent();
272 }
273
274 return false;
275 }
276
277 MangleNumberingContext *
getCurrentMangleNumberContext(const DeclContext * DC,Decl * & ManglingContextDecl)278 Sema::getCurrentMangleNumberContext(const DeclContext *DC,
279 Decl *&ManglingContextDecl) {
280 // Compute the context for allocating mangling numbers in the current
281 // expression, if the ABI requires them.
282 ManglingContextDecl = ExprEvalContexts.back().ManglingContextDecl;
283
284 enum ContextKind {
285 Normal,
286 DefaultArgument,
287 DataMember,
288 StaticDataMember
289 } Kind = Normal;
290
291 // Default arguments of member function parameters that appear in a class
292 // definition, as well as the initializers of data members, receive special
293 // treatment. Identify them.
294 if (ManglingContextDecl) {
295 if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(ManglingContextDecl)) {
296 if (const DeclContext *LexicalDC
297 = Param->getDeclContext()->getLexicalParent())
298 if (LexicalDC->isRecord())
299 Kind = DefaultArgument;
300 } else if (VarDecl *Var = dyn_cast<VarDecl>(ManglingContextDecl)) {
301 if (Var->getDeclContext()->isRecord())
302 Kind = StaticDataMember;
303 } else if (isa<FieldDecl>(ManglingContextDecl)) {
304 Kind = DataMember;
305 }
306 }
307
308 // Itanium ABI [5.1.7]:
309 // In the following contexts [...] the one-definition rule requires closure
310 // types in different translation units to "correspond":
311 bool IsInNonspecializedTemplate =
312 !ActiveTemplateInstantiations.empty() || CurContext->isDependentContext();
313 switch (Kind) {
314 case Normal:
315 // -- the bodies of non-exported nonspecialized template functions
316 // -- the bodies of inline functions
317 if ((IsInNonspecializedTemplate &&
318 !(ManglingContextDecl && isa<ParmVarDecl>(ManglingContextDecl))) ||
319 isInInlineFunction(CurContext)) {
320 ManglingContextDecl = nullptr;
321 return &Context.getManglingNumberContext(DC);
322 }
323
324 ManglingContextDecl = nullptr;
325 return nullptr;
326
327 case StaticDataMember:
328 // -- the initializers of nonspecialized static members of template classes
329 if (!IsInNonspecializedTemplate) {
330 ManglingContextDecl = nullptr;
331 return nullptr;
332 }
333 // Fall through to get the current context.
334
335 case DataMember:
336 // -- the in-class initializers of class members
337 case DefaultArgument:
338 // -- default arguments appearing in class definitions
339 return &ExprEvalContexts.back().getMangleNumberingContext(Context);
340 }
341
342 llvm_unreachable("unexpected context");
343 }
344
345 MangleNumberingContext &
getMangleNumberingContext(ASTContext & Ctx)346 Sema::ExpressionEvaluationContextRecord::getMangleNumberingContext(
347 ASTContext &Ctx) {
348 assert(ManglingContextDecl && "Need to have a context declaration");
349 if (!MangleNumbering)
350 MangleNumbering = Ctx.createMangleNumberingContext();
351 return *MangleNumbering;
352 }
353
startLambdaDefinition(CXXRecordDecl * Class,SourceRange IntroducerRange,TypeSourceInfo * MethodTypeInfo,SourceLocation EndLoc,ArrayRef<ParmVarDecl * > Params,const bool IsConstexprSpecified)354 CXXMethodDecl *Sema::startLambdaDefinition(CXXRecordDecl *Class,
355 SourceRange IntroducerRange,
356 TypeSourceInfo *MethodTypeInfo,
357 SourceLocation EndLoc,
358 ArrayRef<ParmVarDecl *> Params,
359 const bool IsConstexprSpecified) {
360 QualType MethodType = MethodTypeInfo->getType();
361 TemplateParameterList *TemplateParams =
362 getGenericLambdaTemplateParameterList(getCurLambda(), *this);
363 // If a lambda appears in a dependent context or is a generic lambda (has
364 // template parameters) and has an 'auto' return type, deduce it to a
365 // dependent type.
366 if (Class->isDependentContext() || TemplateParams) {
367 const FunctionProtoType *FPT = MethodType->castAs<FunctionProtoType>();
368 QualType Result = FPT->getReturnType();
369 if (Result->isUndeducedType()) {
370 Result = SubstAutoType(Result, Context.DependentTy);
371 MethodType = Context.getFunctionType(Result, FPT->getParamTypes(),
372 FPT->getExtProtoInfo());
373 }
374 }
375
376 // C++11 [expr.prim.lambda]p5:
377 // The closure type for a lambda-expression has a public inline function
378 // call operator (13.5.4) whose parameters and return type are described by
379 // the lambda-expression's parameter-declaration-clause and
380 // trailing-return-type respectively.
381 DeclarationName MethodName
382 = Context.DeclarationNames.getCXXOperatorName(OO_Call);
383 DeclarationNameLoc MethodNameLoc;
384 MethodNameLoc.CXXOperatorName.BeginOpNameLoc
385 = IntroducerRange.getBegin().getRawEncoding();
386 MethodNameLoc.CXXOperatorName.EndOpNameLoc
387 = IntroducerRange.getEnd().getRawEncoding();
388 CXXMethodDecl *Method
389 = CXXMethodDecl::Create(Context, Class, EndLoc,
390 DeclarationNameInfo(MethodName,
391 IntroducerRange.getBegin(),
392 MethodNameLoc),
393 MethodType, MethodTypeInfo,
394 SC_None,
395 /*isInline=*/true,
396 IsConstexprSpecified,
397 EndLoc);
398 Method->setAccess(AS_public);
399
400 // Temporarily set the lexical declaration context to the current
401 // context, so that the Scope stack matches the lexical nesting.
402 Method->setLexicalDeclContext(CurContext);
403 // Create a function template if we have a template parameter list
404 FunctionTemplateDecl *const TemplateMethod = TemplateParams ?
405 FunctionTemplateDecl::Create(Context, Class,
406 Method->getLocation(), MethodName,
407 TemplateParams,
408 Method) : nullptr;
409 if (TemplateMethod) {
410 TemplateMethod->setLexicalDeclContext(CurContext);
411 TemplateMethod->setAccess(AS_public);
412 Method->setDescribedFunctionTemplate(TemplateMethod);
413 }
414
415 // Add parameters.
416 if (!Params.empty()) {
417 Method->setParams(Params);
418 CheckParmsForFunctionDef(Params,
419 /*CheckParameterNames=*/false);
420
421 for (auto P : Method->parameters())
422 P->setOwningFunction(Method);
423 }
424
425 Decl *ManglingContextDecl;
426 if (MangleNumberingContext *MCtx =
427 getCurrentMangleNumberContext(Class->getDeclContext(),
428 ManglingContextDecl)) {
429 unsigned ManglingNumber = MCtx->getManglingNumber(Method);
430 Class->setLambdaMangling(ManglingNumber, ManglingContextDecl);
431 }
432
433 return Method;
434 }
435
buildLambdaScope(LambdaScopeInfo * LSI,CXXMethodDecl * CallOperator,SourceRange IntroducerRange,LambdaCaptureDefault CaptureDefault,SourceLocation CaptureDefaultLoc,bool ExplicitParams,bool ExplicitResultType,bool Mutable)436 void Sema::buildLambdaScope(LambdaScopeInfo *LSI,
437 CXXMethodDecl *CallOperator,
438 SourceRange IntroducerRange,
439 LambdaCaptureDefault CaptureDefault,
440 SourceLocation CaptureDefaultLoc,
441 bool ExplicitParams,
442 bool ExplicitResultType,
443 bool Mutable) {
444 LSI->CallOperator = CallOperator;
445 CXXRecordDecl *LambdaClass = CallOperator->getParent();
446 LSI->Lambda = LambdaClass;
447 if (CaptureDefault == LCD_ByCopy)
448 LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByval;
449 else if (CaptureDefault == LCD_ByRef)
450 LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByref;
451 LSI->CaptureDefaultLoc = CaptureDefaultLoc;
452 LSI->IntroducerRange = IntroducerRange;
453 LSI->ExplicitParams = ExplicitParams;
454 LSI->Mutable = Mutable;
455
456 if (ExplicitResultType) {
457 LSI->ReturnType = CallOperator->getReturnType();
458
459 if (!LSI->ReturnType->isDependentType() &&
460 !LSI->ReturnType->isVoidType()) {
461 if (RequireCompleteType(CallOperator->getLocStart(), LSI->ReturnType,
462 diag::err_lambda_incomplete_result)) {
463 // Do nothing.
464 }
465 }
466 } else {
467 LSI->HasImplicitReturnType = true;
468 }
469 }
470
finishLambdaExplicitCaptures(LambdaScopeInfo * LSI)471 void Sema::finishLambdaExplicitCaptures(LambdaScopeInfo *LSI) {
472 LSI->finishedExplicitCaptures();
473 }
474
addLambdaParameters(CXXMethodDecl * CallOperator,Scope * CurScope)475 void Sema::addLambdaParameters(CXXMethodDecl *CallOperator, Scope *CurScope) {
476 // Introduce our parameters into the function scope
477 for (unsigned p = 0, NumParams = CallOperator->getNumParams();
478 p < NumParams; ++p) {
479 ParmVarDecl *Param = CallOperator->getParamDecl(p);
480
481 // If this has an identifier, add it to the scope stack.
482 if (CurScope && Param->getIdentifier()) {
483 CheckShadow(CurScope, Param);
484
485 PushOnScopeChains(Param, CurScope);
486 }
487 }
488 }
489
490 /// If this expression is an enumerator-like expression of some type
491 /// T, return the type T; otherwise, return null.
492 ///
493 /// Pointer comparisons on the result here should always work because
494 /// it's derived from either the parent of an EnumConstantDecl
495 /// (i.e. the definition) or the declaration returned by
496 /// EnumType::getDecl() (i.e. the definition).
findEnumForBlockReturn(Expr * E)497 static EnumDecl *findEnumForBlockReturn(Expr *E) {
498 // An expression is an enumerator-like expression of type T if,
499 // ignoring parens and parens-like expressions:
500 E = E->IgnoreParens();
501
502 // - it is an enumerator whose enum type is T or
503 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
504 if (EnumConstantDecl *D
505 = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
506 return cast<EnumDecl>(D->getDeclContext());
507 }
508 return nullptr;
509 }
510
511 // - it is a comma expression whose RHS is an enumerator-like
512 // expression of type T or
513 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
514 if (BO->getOpcode() == BO_Comma)
515 return findEnumForBlockReturn(BO->getRHS());
516 return nullptr;
517 }
518
519 // - it is a statement-expression whose value expression is an
520 // enumerator-like expression of type T or
521 if (StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
522 if (Expr *last = dyn_cast_or_null<Expr>(SE->getSubStmt()->body_back()))
523 return findEnumForBlockReturn(last);
524 return nullptr;
525 }
526
527 // - it is a ternary conditional operator (not the GNU ?:
528 // extension) whose second and third operands are
529 // enumerator-like expressions of type T or
530 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
531 if (EnumDecl *ED = findEnumForBlockReturn(CO->getTrueExpr()))
532 if (ED == findEnumForBlockReturn(CO->getFalseExpr()))
533 return ED;
534 return nullptr;
535 }
536
537 // (implicitly:)
538 // - it is an implicit integral conversion applied to an
539 // enumerator-like expression of type T or
540 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
541 // We can sometimes see integral conversions in valid
542 // enumerator-like expressions.
543 if (ICE->getCastKind() == CK_IntegralCast)
544 return findEnumForBlockReturn(ICE->getSubExpr());
545
546 // Otherwise, just rely on the type.
547 }
548
549 // - it is an expression of that formal enum type.
550 if (const EnumType *ET = E->getType()->getAs<EnumType>()) {
551 return ET->getDecl();
552 }
553
554 // Otherwise, nope.
555 return nullptr;
556 }
557
558 /// Attempt to find a type T for which the returned expression of the
559 /// given statement is an enumerator-like expression of that type.
findEnumForBlockReturn(ReturnStmt * ret)560 static EnumDecl *findEnumForBlockReturn(ReturnStmt *ret) {
561 if (Expr *retValue = ret->getRetValue())
562 return findEnumForBlockReturn(retValue);
563 return nullptr;
564 }
565
566 /// Attempt to find a common type T for which all of the returned
567 /// expressions in a block are enumerator-like expressions of that
568 /// type.
findCommonEnumForBlockReturns(ArrayRef<ReturnStmt * > returns)569 static EnumDecl *findCommonEnumForBlockReturns(ArrayRef<ReturnStmt*> returns) {
570 ArrayRef<ReturnStmt*>::iterator i = returns.begin(), e = returns.end();
571
572 // Try to find one for the first return.
573 EnumDecl *ED = findEnumForBlockReturn(*i);
574 if (!ED) return nullptr;
575
576 // Check that the rest of the returns have the same enum.
577 for (++i; i != e; ++i) {
578 if (findEnumForBlockReturn(*i) != ED)
579 return nullptr;
580 }
581
582 // Never infer an anonymous enum type.
583 if (!ED->hasNameForLinkage()) return nullptr;
584
585 return ED;
586 }
587
588 /// Adjust the given return statements so that they formally return
589 /// the given type. It should require, at most, an IntegralCast.
adjustBlockReturnsToEnum(Sema & S,ArrayRef<ReturnStmt * > returns,QualType returnType)590 static void adjustBlockReturnsToEnum(Sema &S, ArrayRef<ReturnStmt*> returns,
591 QualType returnType) {
592 for (ArrayRef<ReturnStmt*>::iterator
593 i = returns.begin(), e = returns.end(); i != e; ++i) {
594 ReturnStmt *ret = *i;
595 Expr *retValue = ret->getRetValue();
596 if (S.Context.hasSameType(retValue->getType(), returnType))
597 continue;
598
599 // Right now we only support integral fixup casts.
600 assert(returnType->isIntegralOrUnscopedEnumerationType());
601 assert(retValue->getType()->isIntegralOrUnscopedEnumerationType());
602
603 ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(retValue);
604
605 Expr *E = (cleanups ? cleanups->getSubExpr() : retValue);
606 E = ImplicitCastExpr::Create(S.Context, returnType, CK_IntegralCast,
607 E, /*base path*/ nullptr, VK_RValue);
608 if (cleanups) {
609 cleanups->setSubExpr(E);
610 } else {
611 ret->setRetValue(E);
612 }
613 }
614 }
615
deduceClosureReturnType(CapturingScopeInfo & CSI)616 void Sema::deduceClosureReturnType(CapturingScopeInfo &CSI) {
617 assert(CSI.HasImplicitReturnType);
618 // If it was ever a placeholder, it had to been deduced to DependentTy.
619 assert(CSI.ReturnType.isNull() || !CSI.ReturnType->isUndeducedType());
620 assert((!isa<LambdaScopeInfo>(CSI) || !getLangOpts().CPlusPlus14) &&
621 "lambda expressions use auto deduction in C++14 onwards");
622
623 // C++ core issue 975:
624 // If a lambda-expression does not include a trailing-return-type,
625 // it is as if the trailing-return-type denotes the following type:
626 // - if there are no return statements in the compound-statement,
627 // or all return statements return either an expression of type
628 // void or no expression or braced-init-list, the type void;
629 // - otherwise, if all return statements return an expression
630 // and the types of the returned expressions after
631 // lvalue-to-rvalue conversion (4.1 [conv.lval]),
632 // array-to-pointer conversion (4.2 [conv.array]), and
633 // function-to-pointer conversion (4.3 [conv.func]) are the
634 // same, that common type;
635 // - otherwise, the program is ill-formed.
636 //
637 // C++ core issue 1048 additionally removes top-level cv-qualifiers
638 // from the types of returned expressions to match the C++14 auto
639 // deduction rules.
640 //
641 // In addition, in blocks in non-C++ modes, if all of the return
642 // statements are enumerator-like expressions of some type T, where
643 // T has a name for linkage, then we infer the return type of the
644 // block to be that type.
645
646 // First case: no return statements, implicit void return type.
647 ASTContext &Ctx = getASTContext();
648 if (CSI.Returns.empty()) {
649 // It's possible there were simply no /valid/ return statements.
650 // In this case, the first one we found may have at least given us a type.
651 if (CSI.ReturnType.isNull())
652 CSI.ReturnType = Ctx.VoidTy;
653 return;
654 }
655
656 // Second case: at least one return statement has dependent type.
657 // Delay type checking until instantiation.
658 assert(!CSI.ReturnType.isNull() && "We should have a tentative return type.");
659 if (CSI.ReturnType->isDependentType())
660 return;
661
662 // Try to apply the enum-fuzz rule.
663 if (!getLangOpts().CPlusPlus) {
664 assert(isa<BlockScopeInfo>(CSI));
665 const EnumDecl *ED = findCommonEnumForBlockReturns(CSI.Returns);
666 if (ED) {
667 CSI.ReturnType = Context.getTypeDeclType(ED);
668 adjustBlockReturnsToEnum(*this, CSI.Returns, CSI.ReturnType);
669 return;
670 }
671 }
672
673 // Third case: only one return statement. Don't bother doing extra work!
674 SmallVectorImpl<ReturnStmt*>::iterator I = CSI.Returns.begin(),
675 E = CSI.Returns.end();
676 if (I+1 == E)
677 return;
678
679 // General case: many return statements.
680 // Check that they all have compatible return types.
681
682 // We require the return types to strictly match here.
683 // Note that we've already done the required promotions as part of
684 // processing the return statement.
685 for (; I != E; ++I) {
686 const ReturnStmt *RS = *I;
687 const Expr *RetE = RS->getRetValue();
688
689 QualType ReturnType =
690 (RetE ? RetE->getType() : Context.VoidTy).getUnqualifiedType();
691 if (Context.getCanonicalFunctionResultType(ReturnType) ==
692 Context.getCanonicalFunctionResultType(CSI.ReturnType))
693 continue;
694
695 // FIXME: This is a poor diagnostic for ReturnStmts without expressions.
696 // TODO: It's possible that the *first* return is the divergent one.
697 Diag(RS->getLocStart(),
698 diag::err_typecheck_missing_return_type_incompatible)
699 << ReturnType << CSI.ReturnType
700 << isa<LambdaScopeInfo>(CSI);
701 // Continue iterating so that we keep emitting diagnostics.
702 }
703 }
704
buildLambdaInitCaptureInitialization(SourceLocation Loc,bool ByRef,IdentifierInfo * Id,bool IsDirectInit,Expr * & Init)705 QualType Sema::buildLambdaInitCaptureInitialization(SourceLocation Loc,
706 bool ByRef,
707 IdentifierInfo *Id,
708 bool IsDirectInit,
709 Expr *&Init) {
710 // Create an 'auto' or 'auto&' TypeSourceInfo that we can use to
711 // deduce against.
712 QualType DeductType = Context.getAutoDeductType();
713 TypeLocBuilder TLB;
714 TLB.pushTypeSpec(DeductType).setNameLoc(Loc);
715 if (ByRef) {
716 DeductType = BuildReferenceType(DeductType, true, Loc, Id);
717 assert(!DeductType.isNull() && "can't build reference to auto");
718 TLB.push<ReferenceTypeLoc>(DeductType).setSigilLoc(Loc);
719 }
720 TypeSourceInfo *TSI = TLB.getTypeSourceInfo(Context, DeductType);
721
722 // Deduce the type of the init capture.
723 QualType DeducedType = deduceVarTypeFromInitializer(
724 /*VarDecl*/nullptr, DeclarationName(Id), DeductType, TSI,
725 SourceRange(Loc, Loc), IsDirectInit, Init);
726 if (DeducedType.isNull())
727 return QualType();
728
729 // Are we a non-list direct initialization?
730 ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
731
732 // Perform initialization analysis and ensure any implicit conversions
733 // (such as lvalue-to-rvalue) are enforced.
734 InitializedEntity Entity =
735 InitializedEntity::InitializeLambdaCapture(Id, DeducedType, Loc);
736 InitializationKind Kind =
737 IsDirectInit
738 ? (CXXDirectInit ? InitializationKind::CreateDirect(
739 Loc, Init->getLocStart(), Init->getLocEnd())
740 : InitializationKind::CreateDirectList(Loc))
741 : InitializationKind::CreateCopy(Loc, Init->getLocStart());
742
743 MultiExprArg Args = Init;
744 if (CXXDirectInit)
745 Args =
746 MultiExprArg(CXXDirectInit->getExprs(), CXXDirectInit->getNumExprs());
747 QualType DclT;
748 InitializationSequence InitSeq(*this, Entity, Kind, Args);
749 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
750
751 if (Result.isInvalid())
752 return QualType();
753 Init = Result.getAs<Expr>();
754
755 // The init-capture initialization is a full-expression that must be
756 // processed as one before we enter the declcontext of the lambda's
757 // call-operator.
758 Result = ActOnFinishFullExpr(Init, Loc, /*DiscardedValue*/ false,
759 /*IsConstexpr*/ false,
760 /*IsLambdaInitCaptureInitalizer*/ true);
761 if (Result.isInvalid())
762 return QualType();
763
764 Init = Result.getAs<Expr>();
765 return DeducedType;
766 }
767
createLambdaInitCaptureVarDecl(SourceLocation Loc,QualType InitCaptureType,IdentifierInfo * Id,unsigned InitStyle,Expr * Init)768 VarDecl *Sema::createLambdaInitCaptureVarDecl(SourceLocation Loc,
769 QualType InitCaptureType,
770 IdentifierInfo *Id,
771 unsigned InitStyle, Expr *Init) {
772 TypeSourceInfo *TSI = Context.getTrivialTypeSourceInfo(InitCaptureType,
773 Loc);
774 // Create a dummy variable representing the init-capture. This is not actually
775 // used as a variable, and only exists as a way to name and refer to the
776 // init-capture.
777 // FIXME: Pass in separate source locations for '&' and identifier.
778 VarDecl *NewVD = VarDecl::Create(Context, CurContext, Loc,
779 Loc, Id, InitCaptureType, TSI, SC_Auto);
780 NewVD->setInitCapture(true);
781 NewVD->setReferenced(true);
782 // FIXME: Pass in a VarDecl::InitializationStyle.
783 NewVD->setInitStyle(static_cast<VarDecl::InitializationStyle>(InitStyle));
784 NewVD->markUsed(Context);
785 NewVD->setInit(Init);
786 return NewVD;
787 }
788
buildInitCaptureField(LambdaScopeInfo * LSI,VarDecl * Var)789 FieldDecl *Sema::buildInitCaptureField(LambdaScopeInfo *LSI, VarDecl *Var) {
790 FieldDecl *Field = FieldDecl::Create(
791 Context, LSI->Lambda, Var->getLocation(), Var->getLocation(),
792 nullptr, Var->getType(), Var->getTypeSourceInfo(), nullptr, false,
793 ICIS_NoInit);
794 Field->setImplicit(true);
795 Field->setAccess(AS_private);
796 LSI->Lambda->addDecl(Field);
797
798 LSI->addCapture(Var, /*isBlock*/false, Var->getType()->isReferenceType(),
799 /*isNested*/false, Var->getLocation(), SourceLocation(),
800 Var->getType(), Var->getInit());
801 return Field;
802 }
803
ActOnStartOfLambdaDefinition(LambdaIntroducer & Intro,Declarator & ParamInfo,Scope * CurScope)804 void Sema::ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro,
805 Declarator &ParamInfo,
806 Scope *CurScope) {
807 // Determine if we're within a context where we know that the lambda will
808 // be dependent, because there are template parameters in scope.
809 bool KnownDependent = false;
810 LambdaScopeInfo *const LSI = getCurLambda();
811 assert(LSI && "LambdaScopeInfo should be on stack!");
812
813 // The lambda-expression's closure type might be dependent even if its
814 // semantic context isn't, if it appears within a default argument of a
815 // function template.
816 if (CurScope->getTemplateParamParent())
817 KnownDependent = true;
818
819 // Determine the signature of the call operator.
820 TypeSourceInfo *MethodTyInfo;
821 bool ExplicitParams = true;
822 bool ExplicitResultType = true;
823 bool ContainsUnexpandedParameterPack = false;
824 SourceLocation EndLoc;
825 SmallVector<ParmVarDecl *, 8> Params;
826 if (ParamInfo.getNumTypeObjects() == 0) {
827 // C++11 [expr.prim.lambda]p4:
828 // If a lambda-expression does not include a lambda-declarator, it is as
829 // if the lambda-declarator were ().
830 FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention(
831 /*IsVariadic=*/false, /*IsCXXMethod=*/true));
832 EPI.HasTrailingReturn = true;
833 EPI.TypeQuals |= DeclSpec::TQ_const;
834 // C++1y [expr.prim.lambda]:
835 // The lambda return type is 'auto', which is replaced by the
836 // trailing-return type if provided and/or deduced from 'return'
837 // statements
838 // We don't do this before C++1y, because we don't support deduced return
839 // types there.
840 QualType DefaultTypeForNoTrailingReturn =
841 getLangOpts().CPlusPlus14 ? Context.getAutoDeductType()
842 : Context.DependentTy;
843 QualType MethodTy =
844 Context.getFunctionType(DefaultTypeForNoTrailingReturn, None, EPI);
845 MethodTyInfo = Context.getTrivialTypeSourceInfo(MethodTy);
846 ExplicitParams = false;
847 ExplicitResultType = false;
848 EndLoc = Intro.Range.getEnd();
849 } else {
850 assert(ParamInfo.isFunctionDeclarator() &&
851 "lambda-declarator is a function");
852 DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getFunctionTypeInfo();
853
854 // C++11 [expr.prim.lambda]p5:
855 // This function call operator is declared const (9.3.1) if and only if
856 // the lambda-expression's parameter-declaration-clause is not followed
857 // by mutable. It is neither virtual nor declared volatile. [...]
858 if (!FTI.hasMutableQualifier())
859 FTI.TypeQuals |= DeclSpec::TQ_const;
860
861 MethodTyInfo = GetTypeForDeclarator(ParamInfo, CurScope);
862 assert(MethodTyInfo && "no type from lambda-declarator");
863 EndLoc = ParamInfo.getSourceRange().getEnd();
864
865 ExplicitResultType = FTI.hasTrailingReturnType();
866
867 if (FTIHasNonVoidParameters(FTI)) {
868 Params.reserve(FTI.NumParams);
869 for (unsigned i = 0, e = FTI.NumParams; i != e; ++i)
870 Params.push_back(cast<ParmVarDecl>(FTI.Params[i].Param));
871 }
872
873 // Check for unexpanded parameter packs in the method type.
874 if (MethodTyInfo->getType()->containsUnexpandedParameterPack())
875 ContainsUnexpandedParameterPack = true;
876 }
877
878 CXXRecordDecl *Class = createLambdaClosureType(Intro.Range, MethodTyInfo,
879 KnownDependent, Intro.Default);
880
881 CXXMethodDecl *Method =
882 startLambdaDefinition(Class, Intro.Range, MethodTyInfo, EndLoc, Params,
883 ParamInfo.getDeclSpec().isConstexprSpecified());
884 if (ExplicitParams)
885 CheckCXXDefaultArguments(Method);
886
887 // Attributes on the lambda apply to the method.
888 ProcessDeclAttributes(CurScope, Method, ParamInfo);
889
890 // Introduce the function call operator as the current declaration context.
891 PushDeclContext(CurScope, Method);
892
893 // Build the lambda scope.
894 buildLambdaScope(LSI, Method, Intro.Range, Intro.Default, Intro.DefaultLoc,
895 ExplicitParams, ExplicitResultType, !Method->isConst());
896
897 // C++11 [expr.prim.lambda]p9:
898 // A lambda-expression whose smallest enclosing scope is a block scope is a
899 // local lambda expression; any other lambda expression shall not have a
900 // capture-default or simple-capture in its lambda-introducer.
901 //
902 // For simple-captures, this is covered by the check below that any named
903 // entity is a variable that can be captured.
904 //
905 // For DR1632, we also allow a capture-default in any context where we can
906 // odr-use 'this' (in particular, in a default initializer for a non-static
907 // data member).
908 if (Intro.Default != LCD_None && !Class->getParent()->isFunctionOrMethod() &&
909 (getCurrentThisType().isNull() ||
910 CheckCXXThisCapture(SourceLocation(), /*Explicit*/true,
911 /*BuildAndDiagnose*/false)))
912 Diag(Intro.DefaultLoc, diag::err_capture_default_non_local);
913
914 // Distinct capture names, for diagnostics.
915 llvm::SmallSet<IdentifierInfo*, 8> CaptureNames;
916
917 // Handle explicit captures.
918 SourceLocation PrevCaptureLoc
919 = Intro.Default == LCD_None? Intro.Range.getBegin() : Intro.DefaultLoc;
920 for (auto C = Intro.Captures.begin(), E = Intro.Captures.end(); C != E;
921 PrevCaptureLoc = C->Loc, ++C) {
922 if (C->Kind == LCK_This || C->Kind == LCK_StarThis) {
923 if (C->Kind == LCK_StarThis)
924 Diag(C->Loc, !getLangOpts().CPlusPlus1z
925 ? diag::ext_star_this_lambda_capture_cxx1z
926 : diag::warn_cxx14_compat_star_this_lambda_capture);
927
928 // C++11 [expr.prim.lambda]p8:
929 // An identifier or this shall not appear more than once in a
930 // lambda-capture.
931 if (LSI->isCXXThisCaptured()) {
932 Diag(C->Loc, diag::err_capture_more_than_once)
933 << "'this'" << SourceRange(LSI->getCXXThisCapture().getLocation())
934 << FixItHint::CreateRemoval(
935 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
936 continue;
937 }
938
939 // C++1z [expr.prim.lambda]p8:
940 // If a lambda-capture includes a capture-default that is =, each
941 // simple-capture of that lambda-capture shall be of the form "&
942 // identifier" or "* this". [ Note: The form [&,this] is redundant but
943 // accepted for compatibility with ISO C++14. --end note ]
944 if (Intro.Default == LCD_ByCopy && C->Kind != LCK_StarThis) {
945 Diag(C->Loc, diag::err_this_capture_with_copy_default)
946 << FixItHint::CreateRemoval(
947 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
948 continue;
949 }
950
951 // C++11 [expr.prim.lambda]p12:
952 // If this is captured by a local lambda expression, its nearest
953 // enclosing function shall be a non-static member function.
954 QualType ThisCaptureType = getCurrentThisType();
955 if (ThisCaptureType.isNull()) {
956 Diag(C->Loc, diag::err_this_capture) << true;
957 continue;
958 }
959
960 CheckCXXThisCapture(C->Loc, /*Explicit=*/true, /*BuildAndDiagnose*/ true,
961 /*FunctionScopeIndexToStopAtPtr*/ nullptr,
962 C->Kind == LCK_StarThis);
963 continue;
964 }
965
966 assert(C->Id && "missing identifier for capture");
967
968 if (C->Init.isInvalid())
969 continue;
970
971 VarDecl *Var = nullptr;
972 if (C->Init.isUsable()) {
973 Diag(C->Loc, getLangOpts().CPlusPlus14
974 ? diag::warn_cxx11_compat_init_capture
975 : diag::ext_init_capture);
976
977 if (C->Init.get()->containsUnexpandedParameterPack())
978 ContainsUnexpandedParameterPack = true;
979 // If the initializer expression is usable, but the InitCaptureType
980 // is not, then an error has occurred - so ignore the capture for now.
981 // for e.g., [n{0}] { }; <-- if no <initializer_list> is included.
982 // FIXME: we should create the init capture variable and mark it invalid
983 // in this case.
984 if (C->InitCaptureType.get().isNull())
985 continue;
986
987 unsigned InitStyle;
988 switch (C->InitKind) {
989 case LambdaCaptureInitKind::NoInit:
990 llvm_unreachable("not an init-capture?");
991 case LambdaCaptureInitKind::CopyInit:
992 InitStyle = VarDecl::CInit;
993 break;
994 case LambdaCaptureInitKind::DirectInit:
995 InitStyle = VarDecl::CallInit;
996 break;
997 case LambdaCaptureInitKind::ListInit:
998 InitStyle = VarDecl::ListInit;
999 break;
1000 }
1001 Var = createLambdaInitCaptureVarDecl(C->Loc, C->InitCaptureType.get(),
1002 C->Id, InitStyle, C->Init.get());
1003 // C++1y [expr.prim.lambda]p11:
1004 // An init-capture behaves as if it declares and explicitly
1005 // captures a variable [...] whose declarative region is the
1006 // lambda-expression's compound-statement
1007 if (Var)
1008 PushOnScopeChains(Var, CurScope, false);
1009 } else {
1010 assert(C->InitKind == LambdaCaptureInitKind::NoInit &&
1011 "init capture has valid but null init?");
1012
1013 // C++11 [expr.prim.lambda]p8:
1014 // If a lambda-capture includes a capture-default that is &, the
1015 // identifiers in the lambda-capture shall not be preceded by &.
1016 // If a lambda-capture includes a capture-default that is =, [...]
1017 // each identifier it contains shall be preceded by &.
1018 if (C->Kind == LCK_ByRef && Intro.Default == LCD_ByRef) {
1019 Diag(C->Loc, diag::err_reference_capture_with_reference_default)
1020 << FixItHint::CreateRemoval(
1021 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1022 continue;
1023 } else if (C->Kind == LCK_ByCopy && Intro.Default == LCD_ByCopy) {
1024 Diag(C->Loc, diag::err_copy_capture_with_copy_default)
1025 << FixItHint::CreateRemoval(
1026 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1027 continue;
1028 }
1029
1030 // C++11 [expr.prim.lambda]p10:
1031 // The identifiers in a capture-list are looked up using the usual
1032 // rules for unqualified name lookup (3.4.1)
1033 DeclarationNameInfo Name(C->Id, C->Loc);
1034 LookupResult R(*this, Name, LookupOrdinaryName);
1035 LookupName(R, CurScope);
1036 if (R.isAmbiguous())
1037 continue;
1038 if (R.empty()) {
1039 // FIXME: Disable corrections that would add qualification?
1040 CXXScopeSpec ScopeSpec;
1041 if (DiagnoseEmptyLookup(CurScope, ScopeSpec, R,
1042 llvm::make_unique<DeclFilterCCC<VarDecl>>()))
1043 continue;
1044 }
1045
1046 Var = R.getAsSingle<VarDecl>();
1047 if (Var && DiagnoseUseOfDecl(Var, C->Loc))
1048 continue;
1049 }
1050
1051 // C++11 [expr.prim.lambda]p8:
1052 // An identifier or this shall not appear more than once in a
1053 // lambda-capture.
1054 if (!CaptureNames.insert(C->Id).second) {
1055 if (Var && LSI->isCaptured(Var)) {
1056 Diag(C->Loc, diag::err_capture_more_than_once)
1057 << C->Id << SourceRange(LSI->getCapture(Var).getLocation())
1058 << FixItHint::CreateRemoval(
1059 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1060 } else
1061 // Previous capture captured something different (one or both was
1062 // an init-cpature): no fixit.
1063 Diag(C->Loc, diag::err_capture_more_than_once) << C->Id;
1064 continue;
1065 }
1066
1067 // C++11 [expr.prim.lambda]p10:
1068 // [...] each such lookup shall find a variable with automatic storage
1069 // duration declared in the reaching scope of the local lambda expression.
1070 // Note that the 'reaching scope' check happens in tryCaptureVariable().
1071 if (!Var) {
1072 Diag(C->Loc, diag::err_capture_does_not_name_variable) << C->Id;
1073 continue;
1074 }
1075
1076 // Ignore invalid decls; they'll just confuse the code later.
1077 if (Var->isInvalidDecl())
1078 continue;
1079
1080 if (!Var->hasLocalStorage()) {
1081 Diag(C->Loc, diag::err_capture_non_automatic_variable) << C->Id;
1082 Diag(Var->getLocation(), diag::note_previous_decl) << C->Id;
1083 continue;
1084 }
1085
1086 // C++11 [expr.prim.lambda]p23:
1087 // A capture followed by an ellipsis is a pack expansion (14.5.3).
1088 SourceLocation EllipsisLoc;
1089 if (C->EllipsisLoc.isValid()) {
1090 if (Var->isParameterPack()) {
1091 EllipsisLoc = C->EllipsisLoc;
1092 } else {
1093 Diag(C->EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1094 << SourceRange(C->Loc);
1095
1096 // Just ignore the ellipsis.
1097 }
1098 } else if (Var->isParameterPack()) {
1099 ContainsUnexpandedParameterPack = true;
1100 }
1101
1102 if (C->Init.isUsable()) {
1103 buildInitCaptureField(LSI, Var);
1104 } else {
1105 TryCaptureKind Kind = C->Kind == LCK_ByRef ? TryCapture_ExplicitByRef :
1106 TryCapture_ExplicitByVal;
1107 tryCaptureVariable(Var, C->Loc, Kind, EllipsisLoc);
1108 }
1109 }
1110 finishLambdaExplicitCaptures(LSI);
1111
1112 LSI->ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
1113
1114 // Add lambda parameters into scope.
1115 addLambdaParameters(Method, CurScope);
1116
1117 // Enter a new evaluation context to insulate the lambda from any
1118 // cleanups from the enclosing full-expression.
1119 PushExpressionEvaluationContext(PotentiallyEvaluated);
1120 }
1121
ActOnLambdaError(SourceLocation StartLoc,Scope * CurScope,bool IsInstantiation)1122 void Sema::ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope,
1123 bool IsInstantiation) {
1124 LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(FunctionScopes.back());
1125
1126 // Leave the expression-evaluation context.
1127 DiscardCleanupsInEvaluationContext();
1128 PopExpressionEvaluationContext();
1129
1130 // Leave the context of the lambda.
1131 if (!IsInstantiation)
1132 PopDeclContext();
1133
1134 // Finalize the lambda.
1135 CXXRecordDecl *Class = LSI->Lambda;
1136 Class->setInvalidDecl();
1137 SmallVector<Decl*, 4> Fields(Class->fields());
1138 ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
1139 SourceLocation(), nullptr);
1140 CheckCompletedCXXClass(Class);
1141
1142 PopFunctionScopeInfo();
1143 }
1144
1145 /// \brief Add a lambda's conversion to function pointer, as described in
1146 /// C++11 [expr.prim.lambda]p6.
addFunctionPointerConversion(Sema & S,SourceRange IntroducerRange,CXXRecordDecl * Class,CXXMethodDecl * CallOperator)1147 static void addFunctionPointerConversion(Sema &S,
1148 SourceRange IntroducerRange,
1149 CXXRecordDecl *Class,
1150 CXXMethodDecl *CallOperator) {
1151 // This conversion is explicitly disabled if the lambda's function has
1152 // pass_object_size attributes on any of its parameters.
1153 if (llvm::any_of(CallOperator->parameters(),
1154 std::mem_fn(&ParmVarDecl::hasAttr<PassObjectSizeAttr>)))
1155 return;
1156
1157 // Add the conversion to function pointer.
1158 const FunctionProtoType *CallOpProto =
1159 CallOperator->getType()->getAs<FunctionProtoType>();
1160 const FunctionProtoType::ExtProtoInfo CallOpExtInfo =
1161 CallOpProto->getExtProtoInfo();
1162 QualType PtrToFunctionTy;
1163 QualType InvokerFunctionTy;
1164 {
1165 FunctionProtoType::ExtProtoInfo InvokerExtInfo = CallOpExtInfo;
1166 CallingConv CC = S.Context.getDefaultCallingConvention(
1167 CallOpProto->isVariadic(), /*IsCXXMethod=*/false);
1168 InvokerExtInfo.ExtInfo = InvokerExtInfo.ExtInfo.withCallingConv(CC);
1169 InvokerExtInfo.TypeQuals = 0;
1170 assert(InvokerExtInfo.RefQualifier == RQ_None &&
1171 "Lambda's call operator should not have a reference qualifier");
1172 InvokerFunctionTy =
1173 S.Context.getFunctionType(CallOpProto->getReturnType(),
1174 CallOpProto->getParamTypes(), InvokerExtInfo);
1175 PtrToFunctionTy = S.Context.getPointerType(InvokerFunctionTy);
1176 }
1177
1178 // Create the type of the conversion function.
1179 FunctionProtoType::ExtProtoInfo ConvExtInfo(
1180 S.Context.getDefaultCallingConvention(
1181 /*IsVariadic=*/false, /*IsCXXMethod=*/true));
1182 // The conversion function is always const.
1183 ConvExtInfo.TypeQuals = Qualifiers::Const;
1184 QualType ConvTy =
1185 S.Context.getFunctionType(PtrToFunctionTy, None, ConvExtInfo);
1186
1187 SourceLocation Loc = IntroducerRange.getBegin();
1188 DeclarationName ConversionName
1189 = S.Context.DeclarationNames.getCXXConversionFunctionName(
1190 S.Context.getCanonicalType(PtrToFunctionTy));
1191 DeclarationNameLoc ConvNameLoc;
1192 // Construct a TypeSourceInfo for the conversion function, and wire
1193 // all the parameters appropriately for the FunctionProtoTypeLoc
1194 // so that everything works during transformation/instantiation of
1195 // generic lambdas.
1196 // The main reason for wiring up the parameters of the conversion
1197 // function with that of the call operator is so that constructs
1198 // like the following work:
1199 // auto L = [](auto b) { <-- 1
1200 // return [](auto a) -> decltype(a) { <-- 2
1201 // return a;
1202 // };
1203 // };
1204 // int (*fp)(int) = L(5);
1205 // Because the trailing return type can contain DeclRefExprs that refer
1206 // to the original call operator's variables, we hijack the call
1207 // operators ParmVarDecls below.
1208 TypeSourceInfo *ConvNamePtrToFunctionTSI =
1209 S.Context.getTrivialTypeSourceInfo(PtrToFunctionTy, Loc);
1210 ConvNameLoc.NamedType.TInfo = ConvNamePtrToFunctionTSI;
1211
1212 // The conversion function is a conversion to a pointer-to-function.
1213 TypeSourceInfo *ConvTSI = S.Context.getTrivialTypeSourceInfo(ConvTy, Loc);
1214 FunctionProtoTypeLoc ConvTL =
1215 ConvTSI->getTypeLoc().getAs<FunctionProtoTypeLoc>();
1216 // Get the result of the conversion function which is a pointer-to-function.
1217 PointerTypeLoc PtrToFunctionTL =
1218 ConvTL.getReturnLoc().getAs<PointerTypeLoc>();
1219 // Do the same for the TypeSourceInfo that is used to name the conversion
1220 // operator.
1221 PointerTypeLoc ConvNamePtrToFunctionTL =
1222 ConvNamePtrToFunctionTSI->getTypeLoc().getAs<PointerTypeLoc>();
1223
1224 // Get the underlying function types that the conversion function will
1225 // be converting to (should match the type of the call operator).
1226 FunctionProtoTypeLoc CallOpConvTL =
1227 PtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
1228 FunctionProtoTypeLoc CallOpConvNameTL =
1229 ConvNamePtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
1230
1231 // Wire up the FunctionProtoTypeLocs with the call operator's parameters.
1232 // These parameter's are essentially used to transform the name and
1233 // the type of the conversion operator. By using the same parameters
1234 // as the call operator's we don't have to fix any back references that
1235 // the trailing return type of the call operator's uses (such as
1236 // decltype(some_type<decltype(a)>::type{} + decltype(a){}) etc.)
1237 // - we can simply use the return type of the call operator, and
1238 // everything should work.
1239 SmallVector<ParmVarDecl *, 4> InvokerParams;
1240 for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
1241 ParmVarDecl *From = CallOperator->getParamDecl(I);
1242
1243 InvokerParams.push_back(ParmVarDecl::Create(S.Context,
1244 // Temporarily add to the TU. This is set to the invoker below.
1245 S.Context.getTranslationUnitDecl(),
1246 From->getLocStart(),
1247 From->getLocation(),
1248 From->getIdentifier(),
1249 From->getType(),
1250 From->getTypeSourceInfo(),
1251 From->getStorageClass(),
1252 /*DefaultArg=*/nullptr));
1253 CallOpConvTL.setParam(I, From);
1254 CallOpConvNameTL.setParam(I, From);
1255 }
1256
1257 CXXConversionDecl *Conversion
1258 = CXXConversionDecl::Create(S.Context, Class, Loc,
1259 DeclarationNameInfo(ConversionName,
1260 Loc, ConvNameLoc),
1261 ConvTy,
1262 ConvTSI,
1263 /*isInline=*/true, /*isExplicit=*/false,
1264 /*isConstexpr=*/false,
1265 CallOperator->getBody()->getLocEnd());
1266 Conversion->setAccess(AS_public);
1267 Conversion->setImplicit(true);
1268
1269 if (Class->isGenericLambda()) {
1270 // Create a template version of the conversion operator, using the template
1271 // parameter list of the function call operator.
1272 FunctionTemplateDecl *TemplateCallOperator =
1273 CallOperator->getDescribedFunctionTemplate();
1274 FunctionTemplateDecl *ConversionTemplate =
1275 FunctionTemplateDecl::Create(S.Context, Class,
1276 Loc, ConversionName,
1277 TemplateCallOperator->getTemplateParameters(),
1278 Conversion);
1279 ConversionTemplate->setAccess(AS_public);
1280 ConversionTemplate->setImplicit(true);
1281 Conversion->setDescribedFunctionTemplate(ConversionTemplate);
1282 Class->addDecl(ConversionTemplate);
1283 } else
1284 Class->addDecl(Conversion);
1285 // Add a non-static member function that will be the result of
1286 // the conversion with a certain unique ID.
1287 DeclarationName InvokerName = &S.Context.Idents.get(
1288 getLambdaStaticInvokerName());
1289 // FIXME: Instead of passing in the CallOperator->getTypeSourceInfo()
1290 // we should get a prebuilt TrivialTypeSourceInfo from Context
1291 // using FunctionTy & Loc and get its TypeLoc as a FunctionProtoTypeLoc
1292 // then rewire the parameters accordingly, by hoisting up the InvokeParams
1293 // loop below and then use its Params to set Invoke->setParams(...) below.
1294 // This would avoid the 'const' qualifier of the calloperator from
1295 // contaminating the type of the invoker, which is currently adjusted
1296 // in SemaTemplateDeduction.cpp:DeduceTemplateArguments. Fixing the
1297 // trailing return type of the invoker would require a visitor to rebuild
1298 // the trailing return type and adjusting all back DeclRefExpr's to refer
1299 // to the new static invoker parameters - not the call operator's.
1300 CXXMethodDecl *Invoke
1301 = CXXMethodDecl::Create(S.Context, Class, Loc,
1302 DeclarationNameInfo(InvokerName, Loc),
1303 InvokerFunctionTy,
1304 CallOperator->getTypeSourceInfo(),
1305 SC_Static, /*IsInline=*/true,
1306 /*IsConstexpr=*/false,
1307 CallOperator->getBody()->getLocEnd());
1308 for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I)
1309 InvokerParams[I]->setOwningFunction(Invoke);
1310 Invoke->setParams(InvokerParams);
1311 Invoke->setAccess(AS_private);
1312 Invoke->setImplicit(true);
1313 if (Class->isGenericLambda()) {
1314 FunctionTemplateDecl *TemplateCallOperator =
1315 CallOperator->getDescribedFunctionTemplate();
1316 FunctionTemplateDecl *StaticInvokerTemplate = FunctionTemplateDecl::Create(
1317 S.Context, Class, Loc, InvokerName,
1318 TemplateCallOperator->getTemplateParameters(),
1319 Invoke);
1320 StaticInvokerTemplate->setAccess(AS_private);
1321 StaticInvokerTemplate->setImplicit(true);
1322 Invoke->setDescribedFunctionTemplate(StaticInvokerTemplate);
1323 Class->addDecl(StaticInvokerTemplate);
1324 } else
1325 Class->addDecl(Invoke);
1326 }
1327
1328 /// \brief Add a lambda's conversion to block pointer.
addBlockPointerConversion(Sema & S,SourceRange IntroducerRange,CXXRecordDecl * Class,CXXMethodDecl * CallOperator)1329 static void addBlockPointerConversion(Sema &S,
1330 SourceRange IntroducerRange,
1331 CXXRecordDecl *Class,
1332 CXXMethodDecl *CallOperator) {
1333 const FunctionProtoType *Proto =
1334 CallOperator->getType()->getAs<FunctionProtoType>();
1335
1336 // The function type inside the block pointer type is the same as the call
1337 // operator with some tweaks. The calling convention is the default free
1338 // function convention, and the type qualifications are lost.
1339 FunctionProtoType::ExtProtoInfo BlockEPI = Proto->getExtProtoInfo();
1340 BlockEPI.ExtInfo =
1341 BlockEPI.ExtInfo.withCallingConv(S.Context.getDefaultCallingConvention(
1342 Proto->isVariadic(), /*IsCXXMethod=*/false));
1343 BlockEPI.TypeQuals = 0;
1344 QualType FunctionTy = S.Context.getFunctionType(
1345 Proto->getReturnType(), Proto->getParamTypes(), BlockEPI);
1346 QualType BlockPtrTy = S.Context.getBlockPointerType(FunctionTy);
1347
1348 FunctionProtoType::ExtProtoInfo ConversionEPI(
1349 S.Context.getDefaultCallingConvention(
1350 /*IsVariadic=*/false, /*IsCXXMethod=*/true));
1351 ConversionEPI.TypeQuals = Qualifiers::Const;
1352 QualType ConvTy = S.Context.getFunctionType(BlockPtrTy, None, ConversionEPI);
1353
1354 SourceLocation Loc = IntroducerRange.getBegin();
1355 DeclarationName Name
1356 = S.Context.DeclarationNames.getCXXConversionFunctionName(
1357 S.Context.getCanonicalType(BlockPtrTy));
1358 DeclarationNameLoc NameLoc;
1359 NameLoc.NamedType.TInfo = S.Context.getTrivialTypeSourceInfo(BlockPtrTy, Loc);
1360 CXXConversionDecl *Conversion
1361 = CXXConversionDecl::Create(S.Context, Class, Loc,
1362 DeclarationNameInfo(Name, Loc, NameLoc),
1363 ConvTy,
1364 S.Context.getTrivialTypeSourceInfo(ConvTy, Loc),
1365 /*isInline=*/true, /*isExplicit=*/false,
1366 /*isConstexpr=*/false,
1367 CallOperator->getBody()->getLocEnd());
1368 Conversion->setAccess(AS_public);
1369 Conversion->setImplicit(true);
1370 Class->addDecl(Conversion);
1371 }
1372
performLambdaVarCaptureInitialization(Sema & S,LambdaScopeInfo::Capture & Capture,FieldDecl * Field,SmallVectorImpl<VarDecl * > & ArrayIndexVars,SmallVectorImpl<unsigned> & ArrayIndexStarts)1373 static ExprResult performLambdaVarCaptureInitialization(
1374 Sema &S, LambdaScopeInfo::Capture &Capture,
1375 FieldDecl *Field,
1376 SmallVectorImpl<VarDecl *> &ArrayIndexVars,
1377 SmallVectorImpl<unsigned> &ArrayIndexStarts) {
1378 assert(Capture.isVariableCapture() && "not a variable capture");
1379
1380 auto *Var = Capture.getVariable();
1381 SourceLocation Loc = Capture.getLocation();
1382
1383 // C++11 [expr.prim.lambda]p21:
1384 // When the lambda-expression is evaluated, the entities that
1385 // are captured by copy are used to direct-initialize each
1386 // corresponding non-static data member of the resulting closure
1387 // object. (For array members, the array elements are
1388 // direct-initialized in increasing subscript order.) These
1389 // initializations are performed in the (unspecified) order in
1390 // which the non-static data members are declared.
1391
1392 // C++ [expr.prim.lambda]p12:
1393 // An entity captured by a lambda-expression is odr-used (3.2) in
1394 // the scope containing the lambda-expression.
1395 ExprResult RefResult = S.BuildDeclarationNameExpr(
1396 CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var);
1397 if (RefResult.isInvalid())
1398 return ExprError();
1399 Expr *Ref = RefResult.get();
1400
1401 QualType FieldType = Field->getType();
1402
1403 // When the variable has array type, create index variables for each
1404 // dimension of the array. We use these index variables to subscript
1405 // the source array, and other clients (e.g., CodeGen) will perform
1406 // the necessary iteration with these index variables.
1407 //
1408 // FIXME: This is dumb. Add a proper AST representation for array
1409 // copy-construction and use it here.
1410 SmallVector<VarDecl *, 4> IndexVariables;
1411 QualType BaseType = FieldType;
1412 QualType SizeType = S.Context.getSizeType();
1413 ArrayIndexStarts.push_back(ArrayIndexVars.size());
1414 while (const ConstantArrayType *Array
1415 = S.Context.getAsConstantArrayType(BaseType)) {
1416 // Create the iteration variable for this array index.
1417 IdentifierInfo *IterationVarName = nullptr;
1418 {
1419 SmallString<8> Str;
1420 llvm::raw_svector_ostream OS(Str);
1421 OS << "__i" << IndexVariables.size();
1422 IterationVarName = &S.Context.Idents.get(OS.str());
1423 }
1424 VarDecl *IterationVar = VarDecl::Create(
1425 S.Context, S.CurContext, Loc, Loc, IterationVarName, SizeType,
1426 S.Context.getTrivialTypeSourceInfo(SizeType, Loc), SC_None);
1427 IterationVar->setImplicit();
1428 IndexVariables.push_back(IterationVar);
1429 ArrayIndexVars.push_back(IterationVar);
1430
1431 // Create a reference to the iteration variable.
1432 ExprResult IterationVarRef =
1433 S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
1434 assert(!IterationVarRef.isInvalid() &&
1435 "Reference to invented variable cannot fail!");
1436 IterationVarRef = S.DefaultLvalueConversion(IterationVarRef.get());
1437 assert(!IterationVarRef.isInvalid() &&
1438 "Conversion of invented variable cannot fail!");
1439
1440 // Subscript the array with this iteration variable.
1441 ExprResult Subscript =
1442 S.CreateBuiltinArraySubscriptExpr(Ref, Loc, IterationVarRef.get(), Loc);
1443 if (Subscript.isInvalid())
1444 return ExprError();
1445
1446 Ref = Subscript.get();
1447 BaseType = Array->getElementType();
1448 }
1449
1450 // Construct the entity that we will be initializing. For an array, this
1451 // will be first element in the array, which may require several levels
1452 // of array-subscript entities.
1453 SmallVector<InitializedEntity, 4> Entities;
1454 Entities.reserve(1 + IndexVariables.size());
1455 Entities.push_back(InitializedEntity::InitializeLambdaCapture(
1456 Var->getIdentifier(), FieldType, Loc));
1457 for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
1458 Entities.push_back(
1459 InitializedEntity::InitializeElement(S.Context, 0, Entities.back()));
1460
1461 InitializationKind InitKind = InitializationKind::CreateDirect(Loc, Loc, Loc);
1462 InitializationSequence Init(S, Entities.back(), InitKind, Ref);
1463 return Init.Perform(S, Entities.back(), InitKind, Ref);
1464 }
1465
ActOnLambdaExpr(SourceLocation StartLoc,Stmt * Body,Scope * CurScope)1466 ExprResult Sema::ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body,
1467 Scope *CurScope) {
1468 LambdaScopeInfo LSI = *cast<LambdaScopeInfo>(FunctionScopes.back());
1469 ActOnFinishFunctionBody(LSI.CallOperator, Body);
1470 return BuildLambdaExpr(StartLoc, Body->getLocEnd(), &LSI);
1471 }
1472
1473 static LambdaCaptureDefault
mapImplicitCaptureStyle(CapturingScopeInfo::ImplicitCaptureStyle ICS)1474 mapImplicitCaptureStyle(CapturingScopeInfo::ImplicitCaptureStyle ICS) {
1475 switch (ICS) {
1476 case CapturingScopeInfo::ImpCap_None:
1477 return LCD_None;
1478 case CapturingScopeInfo::ImpCap_LambdaByval:
1479 return LCD_ByCopy;
1480 case CapturingScopeInfo::ImpCap_CapturedRegion:
1481 case CapturingScopeInfo::ImpCap_LambdaByref:
1482 return LCD_ByRef;
1483 case CapturingScopeInfo::ImpCap_Block:
1484 llvm_unreachable("block capture in lambda");
1485 }
1486 llvm_unreachable("Unknown implicit capture style");
1487 }
1488
BuildLambdaExpr(SourceLocation StartLoc,SourceLocation EndLoc,LambdaScopeInfo * LSI)1489 ExprResult Sema::BuildLambdaExpr(SourceLocation StartLoc, SourceLocation EndLoc,
1490 LambdaScopeInfo *LSI) {
1491 // Collect information from the lambda scope.
1492 SmallVector<LambdaCapture, 4> Captures;
1493 SmallVector<Expr *, 4> CaptureInits;
1494 SourceLocation CaptureDefaultLoc = LSI->CaptureDefaultLoc;
1495 LambdaCaptureDefault CaptureDefault =
1496 mapImplicitCaptureStyle(LSI->ImpCaptureStyle);
1497 CXXRecordDecl *Class;
1498 CXXMethodDecl *CallOperator;
1499 SourceRange IntroducerRange;
1500 bool ExplicitParams;
1501 bool ExplicitResultType;
1502 CleanupInfo LambdaCleanup;
1503 bool ContainsUnexpandedParameterPack;
1504 SmallVector<VarDecl *, 4> ArrayIndexVars;
1505 SmallVector<unsigned, 4> ArrayIndexStarts;
1506 {
1507 CallOperator = LSI->CallOperator;
1508 Class = LSI->Lambda;
1509 IntroducerRange = LSI->IntroducerRange;
1510 ExplicitParams = LSI->ExplicitParams;
1511 ExplicitResultType = !LSI->HasImplicitReturnType;
1512 LambdaCleanup = LSI->Cleanup;
1513 ContainsUnexpandedParameterPack = LSI->ContainsUnexpandedParameterPack;
1514
1515 CallOperator->setLexicalDeclContext(Class);
1516 Decl *TemplateOrNonTemplateCallOperatorDecl =
1517 CallOperator->getDescribedFunctionTemplate()
1518 ? CallOperator->getDescribedFunctionTemplate()
1519 : cast<Decl>(CallOperator);
1520
1521 TemplateOrNonTemplateCallOperatorDecl->setLexicalDeclContext(Class);
1522 Class->addDecl(TemplateOrNonTemplateCallOperatorDecl);
1523
1524 PopExpressionEvaluationContext();
1525
1526 // Translate captures.
1527 auto CurField = Class->field_begin();
1528 for (unsigned I = 0, N = LSI->Captures.size(); I != N; ++I, ++CurField) {
1529 LambdaScopeInfo::Capture From = LSI->Captures[I];
1530 assert(!From.isBlockCapture() && "Cannot capture __block variables");
1531 bool IsImplicit = I >= LSI->NumExplicitCaptures;
1532
1533 // Handle 'this' capture.
1534 if (From.isThisCapture()) {
1535 Captures.push_back(
1536 LambdaCapture(From.getLocation(), IsImplicit,
1537 From.isCopyCapture() ? LCK_StarThis : LCK_This));
1538 CaptureInits.push_back(From.getInitExpr());
1539 ArrayIndexStarts.push_back(ArrayIndexVars.size());
1540 continue;
1541 }
1542 if (From.isVLATypeCapture()) {
1543 Captures.push_back(
1544 LambdaCapture(From.getLocation(), IsImplicit, LCK_VLAType));
1545 CaptureInits.push_back(nullptr);
1546 ArrayIndexStarts.push_back(ArrayIndexVars.size());
1547 continue;
1548 }
1549
1550 VarDecl *Var = From.getVariable();
1551 LambdaCaptureKind Kind = From.isCopyCapture() ? LCK_ByCopy : LCK_ByRef;
1552 Captures.push_back(LambdaCapture(From.getLocation(), IsImplicit, Kind,
1553 Var, From.getEllipsisLoc()));
1554 Expr *Init = From.getInitExpr();
1555 if (!Init) {
1556 auto InitResult = performLambdaVarCaptureInitialization(
1557 *this, From, *CurField, ArrayIndexVars, ArrayIndexStarts);
1558 if (InitResult.isInvalid())
1559 return ExprError();
1560 Init = InitResult.get();
1561 } else {
1562 ArrayIndexStarts.push_back(ArrayIndexVars.size());
1563 }
1564 CaptureInits.push_back(Init);
1565 }
1566
1567 // C++11 [expr.prim.lambda]p6:
1568 // The closure type for a lambda-expression with no lambda-capture
1569 // has a public non-virtual non-explicit const conversion function
1570 // to pointer to function having the same parameter and return
1571 // types as the closure type's function call operator.
1572 if (Captures.empty() && CaptureDefault == LCD_None)
1573 addFunctionPointerConversion(*this, IntroducerRange, Class,
1574 CallOperator);
1575
1576 // Objective-C++:
1577 // The closure type for a lambda-expression has a public non-virtual
1578 // non-explicit const conversion function to a block pointer having the
1579 // same parameter and return types as the closure type's function call
1580 // operator.
1581 // FIXME: Fix generic lambda to block conversions.
1582 if (getLangOpts().Blocks && getLangOpts().ObjC1 &&
1583 !Class->isGenericLambda())
1584 addBlockPointerConversion(*this, IntroducerRange, Class, CallOperator);
1585
1586 // Finalize the lambda class.
1587 SmallVector<Decl*, 4> Fields(Class->fields());
1588 ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
1589 SourceLocation(), nullptr);
1590 CheckCompletedCXXClass(Class);
1591 }
1592
1593 Cleanup.mergeFrom(LambdaCleanup);
1594
1595 LambdaExpr *Lambda = LambdaExpr::Create(Context, Class, IntroducerRange,
1596 CaptureDefault, CaptureDefaultLoc,
1597 Captures,
1598 ExplicitParams, ExplicitResultType,
1599 CaptureInits, ArrayIndexVars,
1600 ArrayIndexStarts, EndLoc,
1601 ContainsUnexpandedParameterPack);
1602 // If the lambda expression's call operator is not explicitly marked constexpr
1603 // and we are not in a dependent context, analyze the call operator to infer
1604 // its constexpr-ness, supressing diagnostics while doing so.
1605 if (getLangOpts().CPlusPlus1z && !CallOperator->isInvalidDecl() &&
1606 !CallOperator->isConstexpr() &&
1607 !Class->getDeclContext()->isDependentContext()) {
1608 TentativeAnalysisScope DiagnosticScopeGuard(*this);
1609 CallOperator->setConstexpr(
1610 CheckConstexprFunctionDecl(CallOperator) &&
1611 CheckConstexprFunctionBody(CallOperator, CallOperator->getBody()));
1612 }
1613
1614 if (!CurContext->isDependentContext()) {
1615 switch (ExprEvalContexts.back().Context) {
1616 // C++11 [expr.prim.lambda]p2:
1617 // A lambda-expression shall not appear in an unevaluated operand
1618 // (Clause 5).
1619 case Unevaluated:
1620 case UnevaluatedAbstract:
1621 // C++1y [expr.const]p2:
1622 // A conditional-expression e is a core constant expression unless the
1623 // evaluation of e, following the rules of the abstract machine, would
1624 // evaluate [...] a lambda-expression.
1625 //
1626 // This is technically incorrect, there are some constant evaluated contexts
1627 // where this should be allowed. We should probably fix this when DR1607 is
1628 // ratified, it lays out the exact set of conditions where we shouldn't
1629 // allow a lambda-expression.
1630 case ConstantEvaluated:
1631 // We don't actually diagnose this case immediately, because we
1632 // could be within a context where we might find out later that
1633 // the expression is potentially evaluated (e.g., for typeid).
1634 ExprEvalContexts.back().Lambdas.push_back(Lambda);
1635 break;
1636
1637 case DiscardedStatement:
1638 case PotentiallyEvaluated:
1639 case PotentiallyEvaluatedIfUsed:
1640 break;
1641 }
1642 }
1643
1644 return MaybeBindToTemporary(Lambda);
1645 }
1646
BuildBlockForLambdaConversion(SourceLocation CurrentLocation,SourceLocation ConvLocation,CXXConversionDecl * Conv,Expr * Src)1647 ExprResult Sema::BuildBlockForLambdaConversion(SourceLocation CurrentLocation,
1648 SourceLocation ConvLocation,
1649 CXXConversionDecl *Conv,
1650 Expr *Src) {
1651 // Make sure that the lambda call operator is marked used.
1652 CXXRecordDecl *Lambda = Conv->getParent();
1653 CXXMethodDecl *CallOperator
1654 = cast<CXXMethodDecl>(
1655 Lambda->lookup(
1656 Context.DeclarationNames.getCXXOperatorName(OO_Call)).front());
1657 CallOperator->setReferenced();
1658 CallOperator->markUsed(Context);
1659
1660 ExprResult Init = PerformCopyInitialization(
1661 InitializedEntity::InitializeBlock(ConvLocation,
1662 Src->getType(),
1663 /*NRVO=*/false),
1664 CurrentLocation, Src);
1665 if (!Init.isInvalid())
1666 Init = ActOnFinishFullExpr(Init.get());
1667
1668 if (Init.isInvalid())
1669 return ExprError();
1670
1671 // Create the new block to be returned.
1672 BlockDecl *Block = BlockDecl::Create(Context, CurContext, ConvLocation);
1673
1674 // Set the type information.
1675 Block->setSignatureAsWritten(CallOperator->getTypeSourceInfo());
1676 Block->setIsVariadic(CallOperator->isVariadic());
1677 Block->setBlockMissingReturnType(false);
1678
1679 // Add parameters.
1680 SmallVector<ParmVarDecl *, 4> BlockParams;
1681 for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
1682 ParmVarDecl *From = CallOperator->getParamDecl(I);
1683 BlockParams.push_back(ParmVarDecl::Create(Context, Block,
1684 From->getLocStart(),
1685 From->getLocation(),
1686 From->getIdentifier(),
1687 From->getType(),
1688 From->getTypeSourceInfo(),
1689 From->getStorageClass(),
1690 /*DefaultArg=*/nullptr));
1691 }
1692 Block->setParams(BlockParams);
1693
1694 Block->setIsConversionFromLambda(true);
1695
1696 // Add capture. The capture uses a fake variable, which doesn't correspond
1697 // to any actual memory location. However, the initializer copy-initializes
1698 // the lambda object.
1699 TypeSourceInfo *CapVarTSI =
1700 Context.getTrivialTypeSourceInfo(Src->getType());
1701 VarDecl *CapVar = VarDecl::Create(Context, Block, ConvLocation,
1702 ConvLocation, nullptr,
1703 Src->getType(), CapVarTSI,
1704 SC_None);
1705 BlockDecl::Capture Capture(/*Variable=*/CapVar, /*ByRef=*/false,
1706 /*Nested=*/false, /*Copy=*/Init.get());
1707 Block->setCaptures(Context, Capture, /*CapturesCXXThis=*/false);
1708
1709 // Add a fake function body to the block. IR generation is responsible
1710 // for filling in the actual body, which cannot be expressed as an AST.
1711 Block->setBody(new (Context) CompoundStmt(ConvLocation));
1712
1713 // Create the block literal expression.
1714 Expr *BuildBlock = new (Context) BlockExpr(Block, Conv->getConversionType());
1715 ExprCleanupObjects.push_back(Block);
1716 Cleanup.setExprNeedsCleanups(true);
1717
1718 return BuildBlock;
1719 }
1720