1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Collect the sequence of machine instructions for a basic block.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/CodeGen/MachineBasicBlock.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
17 #include "llvm/CodeGen/LiveVariables.h"
18 #include "llvm/CodeGen/MachineDominators.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineLoopInfo.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/SlotIndexes.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/ModuleSlotTracker.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCContext.h"
29 #include "llvm/Support/DataTypes.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include "llvm/Target/TargetInstrInfo.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include "llvm/Target/TargetRegisterInfo.h"
35 #include "llvm/Target/TargetSubtargetInfo.h"
36 #include <algorithm>
37 using namespace llvm;
38
39 #define DEBUG_TYPE "codegen"
40
MachineBasicBlock(MachineFunction & MF,const BasicBlock * B)41 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B)
42 : BB(B), Number(-1), xParent(&MF) {
43 Insts.Parent = this;
44 }
45
~MachineBasicBlock()46 MachineBasicBlock::~MachineBasicBlock() {
47 }
48
49 /// Return the MCSymbol for this basic block.
getSymbol() const50 MCSymbol *MachineBasicBlock::getSymbol() const {
51 if (!CachedMCSymbol) {
52 const MachineFunction *MF = getParent();
53 MCContext &Ctx = MF->getContext();
54 const char *Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
55 assert(getNumber() >= 0 && "cannot get label for unreachable MBB");
56 CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" +
57 Twine(MF->getFunctionNumber()) +
58 "_" + Twine(getNumber()));
59 }
60
61 return CachedMCSymbol;
62 }
63
64
operator <<(raw_ostream & OS,const MachineBasicBlock & MBB)65 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
66 MBB.print(OS);
67 return OS;
68 }
69
70 /// When an MBB is added to an MF, we need to update the parent pointer of the
71 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right
72 /// operand list for registers.
73 ///
74 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
75 /// gets the next available unique MBB number. If it is removed from a
76 /// MachineFunction, it goes back to being #-1.
addNodeToList(MachineBasicBlock * N)77 void ilist_traits<MachineBasicBlock>::addNodeToList(MachineBasicBlock *N) {
78 MachineFunction &MF = *N->getParent();
79 N->Number = MF.addToMBBNumbering(N);
80
81 // Make sure the instructions have their operands in the reginfo lists.
82 MachineRegisterInfo &RegInfo = MF.getRegInfo();
83 for (MachineBasicBlock::instr_iterator
84 I = N->instr_begin(), E = N->instr_end(); I != E; ++I)
85 I->AddRegOperandsToUseLists(RegInfo);
86 }
87
removeNodeFromList(MachineBasicBlock * N)88 void ilist_traits<MachineBasicBlock>::removeNodeFromList(MachineBasicBlock *N) {
89 N->getParent()->removeFromMBBNumbering(N->Number);
90 N->Number = -1;
91 }
92
93 /// When we add an instruction to a basic block list, we update its parent
94 /// pointer and add its operands from reg use/def lists if appropriate.
addNodeToList(MachineInstr * N)95 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
96 assert(!N->getParent() && "machine instruction already in a basic block");
97 N->setParent(Parent);
98
99 // Add the instruction's register operands to their corresponding
100 // use/def lists.
101 MachineFunction *MF = Parent->getParent();
102 N->AddRegOperandsToUseLists(MF->getRegInfo());
103 }
104
105 /// When we remove an instruction from a basic block list, we update its parent
106 /// pointer and remove its operands from reg use/def lists if appropriate.
removeNodeFromList(MachineInstr * N)107 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
108 assert(N->getParent() && "machine instruction not in a basic block");
109
110 // Remove from the use/def lists.
111 if (MachineFunction *MF = N->getParent()->getParent())
112 N->RemoveRegOperandsFromUseLists(MF->getRegInfo());
113
114 N->setParent(nullptr);
115 }
116
117 /// When moving a range of instructions from one MBB list to another, we need to
118 /// update the parent pointers and the use/def lists.
119 void ilist_traits<MachineInstr>::
transferNodesFromList(ilist_traits<MachineInstr> & FromList,ilist_iterator<MachineInstr> First,ilist_iterator<MachineInstr> Last)120 transferNodesFromList(ilist_traits<MachineInstr> &FromList,
121 ilist_iterator<MachineInstr> First,
122 ilist_iterator<MachineInstr> Last) {
123 assert(Parent->getParent() == FromList.Parent->getParent() &&
124 "MachineInstr parent mismatch!");
125
126 // Splice within the same MBB -> no change.
127 if (Parent == FromList.Parent) return;
128
129 // If splicing between two blocks within the same function, just update the
130 // parent pointers.
131 for (; First != Last; ++First)
132 First->setParent(Parent);
133 }
134
deleteNode(MachineInstr * MI)135 void ilist_traits<MachineInstr>::deleteNode(MachineInstr* MI) {
136 assert(!MI->getParent() && "MI is still in a block!");
137 Parent->getParent()->DeleteMachineInstr(MI);
138 }
139
getFirstNonPHI()140 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
141 instr_iterator I = instr_begin(), E = instr_end();
142 while (I != E && I->isPHI())
143 ++I;
144 assert((I == E || !I->isInsideBundle()) &&
145 "First non-phi MI cannot be inside a bundle!");
146 return I;
147 }
148
149 MachineBasicBlock::iterator
SkipPHIsAndLabels(MachineBasicBlock::iterator I)150 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
151 iterator E = end();
152 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugValue()))
153 ++I;
154 // FIXME: This needs to change if we wish to bundle labels / dbg_values
155 // inside the bundle.
156 assert((I == E || !I->isInsideBundle()) &&
157 "First non-phi / non-label instruction is inside a bundle!");
158 return I;
159 }
160
getFirstTerminator()161 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
162 iterator B = begin(), E = end(), I = E;
163 while (I != B && ((--I)->isTerminator() || I->isDebugValue()))
164 ; /*noop */
165 while (I != E && !I->isTerminator())
166 ++I;
167 return I;
168 }
169
getFirstInstrTerminator()170 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
171 instr_iterator B = instr_begin(), E = instr_end(), I = E;
172 while (I != B && ((--I)->isTerminator() || I->isDebugValue()))
173 ; /*noop */
174 while (I != E && !I->isTerminator())
175 ++I;
176 return I;
177 }
178
getFirstNonDebugInstr()179 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() {
180 // Skip over begin-of-block dbg_value instructions.
181 iterator I = begin(), E = end();
182 while (I != E && I->isDebugValue())
183 ++I;
184 return I;
185 }
186
getLastNonDebugInstr()187 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() {
188 // Skip over end-of-block dbg_value instructions.
189 instr_iterator B = instr_begin(), I = instr_end();
190 while (I != B) {
191 --I;
192 // Return instruction that starts a bundle.
193 if (I->isDebugValue() || I->isInsideBundle())
194 continue;
195 return I;
196 }
197 // The block is all debug values.
198 return end();
199 }
200
hasEHPadSuccessor() const201 bool MachineBasicBlock::hasEHPadSuccessor() const {
202 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I)
203 if ((*I)->isEHPad())
204 return true;
205 return false;
206 }
207
208 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const209 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const {
210 print(dbgs());
211 }
212 #endif
213
getName() const214 StringRef MachineBasicBlock::getName() const {
215 if (const BasicBlock *LBB = getBasicBlock())
216 return LBB->getName();
217 else
218 return "(null)";
219 }
220
221 /// Return a hopefully unique identifier for this block.
getFullName() const222 std::string MachineBasicBlock::getFullName() const {
223 std::string Name;
224 if (getParent())
225 Name = (getParent()->getName() + ":").str();
226 if (getBasicBlock())
227 Name += getBasicBlock()->getName();
228 else
229 Name += ("BB" + Twine(getNumber())).str();
230 return Name;
231 }
232
print(raw_ostream & OS,const SlotIndexes * Indexes) const233 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes)
234 const {
235 const MachineFunction *MF = getParent();
236 if (!MF) {
237 OS << "Can't print out MachineBasicBlock because parent MachineFunction"
238 << " is null\n";
239 return;
240 }
241 const Function *F = MF->getFunction();
242 const Module *M = F ? F->getParent() : nullptr;
243 ModuleSlotTracker MST(M);
244 print(OS, MST, Indexes);
245 }
246
print(raw_ostream & OS,ModuleSlotTracker & MST,const SlotIndexes * Indexes) const247 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST,
248 const SlotIndexes *Indexes) const {
249 const MachineFunction *MF = getParent();
250 if (!MF) {
251 OS << "Can't print out MachineBasicBlock because parent MachineFunction"
252 << " is null\n";
253 return;
254 }
255
256 if (Indexes)
257 OS << Indexes->getMBBStartIdx(this) << '\t';
258
259 OS << "BB#" << getNumber() << ": ";
260
261 const char *Comma = "";
262 if (const BasicBlock *LBB = getBasicBlock()) {
263 OS << Comma << "derived from LLVM BB ";
264 LBB->printAsOperand(OS, /*PrintType=*/false, MST);
265 Comma = ", ";
266 }
267 if (isEHPad()) { OS << Comma << "EH LANDING PAD"; Comma = ", "; }
268 if (hasAddressTaken()) { OS << Comma << "ADDRESS TAKEN"; Comma = ", "; }
269 if (Alignment)
270 OS << Comma << "Align " << Alignment << " (" << (1u << Alignment)
271 << " bytes)";
272
273 OS << '\n';
274
275 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
276 if (!livein_empty()) {
277 if (Indexes) OS << '\t';
278 OS << " Live Ins:";
279 for (const auto &LI : make_range(livein_begin(), livein_end())) {
280 OS << ' ' << PrintReg(LI.PhysReg, TRI);
281 if (LI.LaneMask != ~0u)
282 OS << ':' << PrintLaneMask(LI.LaneMask);
283 }
284 OS << '\n';
285 }
286 // Print the preds of this block according to the CFG.
287 if (!pred_empty()) {
288 if (Indexes) OS << '\t';
289 OS << " Predecessors according to CFG:";
290 for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI)
291 OS << " BB#" << (*PI)->getNumber();
292 OS << '\n';
293 }
294
295 for (auto &I : instrs()) {
296 if (Indexes) {
297 if (Indexes->hasIndex(I))
298 OS << Indexes->getInstructionIndex(I);
299 OS << '\t';
300 }
301 OS << '\t';
302 if (I.isInsideBundle())
303 OS << " * ";
304 I.print(OS, MST);
305 }
306
307 // Print the successors of this block according to the CFG.
308 if (!succ_empty()) {
309 if (Indexes) OS << '\t';
310 OS << " Successors according to CFG:";
311 for (const_succ_iterator SI = succ_begin(), E = succ_end(); SI != E; ++SI) {
312 OS << " BB#" << (*SI)->getNumber();
313 if (!Probs.empty())
314 OS << '(' << *getProbabilityIterator(SI) << ')';
315 }
316 OS << '\n';
317 }
318 }
319
printAsOperand(raw_ostream & OS,bool) const320 void MachineBasicBlock::printAsOperand(raw_ostream &OS,
321 bool /*PrintType*/) const {
322 OS << "BB#" << getNumber();
323 }
324
removeLiveIn(MCPhysReg Reg,LaneBitmask LaneMask)325 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) {
326 LiveInVector::iterator I = std::find_if(
327 LiveIns.begin(), LiveIns.end(),
328 [Reg] (const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
329 if (I == LiveIns.end())
330 return;
331
332 I->LaneMask &= ~LaneMask;
333 if (I->LaneMask == 0)
334 LiveIns.erase(I);
335 }
336
isLiveIn(MCPhysReg Reg,LaneBitmask LaneMask) const337 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const {
338 livein_iterator I = std::find_if(
339 LiveIns.begin(), LiveIns.end(),
340 [Reg] (const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
341 return I != livein_end() && (I->LaneMask & LaneMask) != 0;
342 }
343
sortUniqueLiveIns()344 void MachineBasicBlock::sortUniqueLiveIns() {
345 std::sort(LiveIns.begin(), LiveIns.end(),
346 [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) {
347 return LI0.PhysReg < LI1.PhysReg;
348 });
349 // Liveins are sorted by physreg now we can merge their lanemasks.
350 LiveInVector::const_iterator I = LiveIns.begin();
351 LiveInVector::const_iterator J;
352 LiveInVector::iterator Out = LiveIns.begin();
353 for (; I != LiveIns.end(); ++Out, I = J) {
354 unsigned PhysReg = I->PhysReg;
355 LaneBitmask LaneMask = I->LaneMask;
356 for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J)
357 LaneMask |= J->LaneMask;
358 Out->PhysReg = PhysReg;
359 Out->LaneMask = LaneMask;
360 }
361 LiveIns.erase(Out, LiveIns.end());
362 }
363
364 unsigned
addLiveIn(MCPhysReg PhysReg,const TargetRegisterClass * RC)365 MachineBasicBlock::addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC) {
366 assert(getParent() && "MBB must be inserted in function");
367 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg");
368 assert(RC && "Register class is required");
369 assert((isEHPad() || this == &getParent()->front()) &&
370 "Only the entry block and landing pads can have physreg live ins");
371
372 bool LiveIn = isLiveIn(PhysReg);
373 iterator I = SkipPHIsAndLabels(begin()), E = end();
374 MachineRegisterInfo &MRI = getParent()->getRegInfo();
375 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
376
377 // Look for an existing copy.
378 if (LiveIn)
379 for (;I != E && I->isCopy(); ++I)
380 if (I->getOperand(1).getReg() == PhysReg) {
381 unsigned VirtReg = I->getOperand(0).getReg();
382 if (!MRI.constrainRegClass(VirtReg, RC))
383 llvm_unreachable("Incompatible live-in register class.");
384 return VirtReg;
385 }
386
387 // No luck, create a virtual register.
388 unsigned VirtReg = MRI.createVirtualRegister(RC);
389 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg)
390 .addReg(PhysReg, RegState::Kill);
391 if (!LiveIn)
392 addLiveIn(PhysReg);
393 return VirtReg;
394 }
395
moveBefore(MachineBasicBlock * NewAfter)396 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
397 getParent()->splice(NewAfter->getIterator(), getIterator());
398 }
399
moveAfter(MachineBasicBlock * NewBefore)400 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
401 getParent()->splice(++NewBefore->getIterator(), getIterator());
402 }
403
updateTerminator()404 void MachineBasicBlock::updateTerminator() {
405 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
406 // A block with no successors has no concerns with fall-through edges.
407 if (this->succ_empty())
408 return;
409
410 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
411 SmallVector<MachineOperand, 4> Cond;
412 DebugLoc DL; // FIXME: this is nowhere
413 bool B = TII->analyzeBranch(*this, TBB, FBB, Cond);
414 (void) B;
415 assert(!B && "UpdateTerminators requires analyzable predecessors!");
416 if (Cond.empty()) {
417 if (TBB) {
418 // The block has an unconditional branch. If its successor is now its
419 // layout successor, delete the branch.
420 if (isLayoutSuccessor(TBB))
421 TII->RemoveBranch(*this);
422 } else {
423 // The block has an unconditional fallthrough. If its successor is not its
424 // layout successor, insert a branch. First we have to locate the only
425 // non-landing-pad successor, as that is the fallthrough block.
426 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
427 if ((*SI)->isEHPad())
428 continue;
429 assert(!TBB && "Found more than one non-landing-pad successor!");
430 TBB = *SI;
431 }
432
433 // If there is no non-landing-pad successor, the block has no fall-through
434 // edges to be concerned with.
435 if (!TBB)
436 return;
437
438 // Finally update the unconditional successor to be reached via a branch
439 // if it would not be reached by fallthrough.
440 if (!isLayoutSuccessor(TBB))
441 TII->InsertBranch(*this, TBB, nullptr, Cond, DL);
442 }
443 return;
444 }
445
446 if (FBB) {
447 // The block has a non-fallthrough conditional branch. If one of its
448 // successors is its layout successor, rewrite it to a fallthrough
449 // conditional branch.
450 if (isLayoutSuccessor(TBB)) {
451 if (TII->ReverseBranchCondition(Cond))
452 return;
453 TII->RemoveBranch(*this);
454 TII->InsertBranch(*this, FBB, nullptr, Cond, DL);
455 } else if (isLayoutSuccessor(FBB)) {
456 TII->RemoveBranch(*this);
457 TII->InsertBranch(*this, TBB, nullptr, Cond, DL);
458 }
459 return;
460 }
461
462 // Walk through the successors and find the successor which is not a landing
463 // pad and is not the conditional branch destination (in TBB) as the
464 // fallthrough successor.
465 MachineBasicBlock *FallthroughBB = nullptr;
466 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
467 if ((*SI)->isEHPad() || *SI == TBB)
468 continue;
469 assert(!FallthroughBB && "Found more than one fallthrough successor.");
470 FallthroughBB = *SI;
471 }
472
473 if (!FallthroughBB) {
474 if (canFallThrough()) {
475 // We fallthrough to the same basic block as the conditional jump targets.
476 // Remove the conditional jump, leaving unconditional fallthrough.
477 // FIXME: This does not seem like a reasonable pattern to support, but it
478 // has been seen in the wild coming out of degenerate ARM test cases.
479 TII->RemoveBranch(*this);
480
481 // Finally update the unconditional successor to be reached via a branch if
482 // it would not be reached by fallthrough.
483 if (!isLayoutSuccessor(TBB))
484 TII->InsertBranch(*this, TBB, nullptr, Cond, DL);
485 return;
486 }
487
488 // We enter here iff exactly one successor is TBB which cannot fallthrough
489 // and the rest successors if any are EHPads. In this case, we need to
490 // change the conditional branch into unconditional branch.
491 TII->RemoveBranch(*this);
492 Cond.clear();
493 TII->InsertBranch(*this, TBB, nullptr, Cond, DL);
494 return;
495 }
496
497 // The block has a fallthrough conditional branch.
498 if (isLayoutSuccessor(TBB)) {
499 if (TII->ReverseBranchCondition(Cond)) {
500 // We can't reverse the condition, add an unconditional branch.
501 Cond.clear();
502 TII->InsertBranch(*this, FallthroughBB, nullptr, Cond, DL);
503 return;
504 }
505 TII->RemoveBranch(*this);
506 TII->InsertBranch(*this, FallthroughBB, nullptr, Cond, DL);
507 } else if (!isLayoutSuccessor(FallthroughBB)) {
508 TII->RemoveBranch(*this);
509 TII->InsertBranch(*this, TBB, FallthroughBB, Cond, DL);
510 }
511 }
512
validateSuccProbs() const513 void MachineBasicBlock::validateSuccProbs() const {
514 #ifndef NDEBUG
515 int64_t Sum = 0;
516 for (auto Prob : Probs)
517 Sum += Prob.getNumerator();
518 // Due to precision issue, we assume that the sum of probabilities is one if
519 // the difference between the sum of their numerators and the denominator is
520 // no greater than the number of successors.
521 assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <=
522 Probs.size() &&
523 "The sum of successors's probabilities exceeds one.");
524 #endif // NDEBUG
525 }
526
addSuccessor(MachineBasicBlock * Succ,BranchProbability Prob)527 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ,
528 BranchProbability Prob) {
529 // Probability list is either empty (if successor list isn't empty, this means
530 // disabled optimization) or has the same size as successor list.
531 if (!(Probs.empty() && !Successors.empty()))
532 Probs.push_back(Prob);
533 Successors.push_back(Succ);
534 Succ->addPredecessor(this);
535 }
536
addSuccessorWithoutProb(MachineBasicBlock * Succ)537 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) {
538 // We need to make sure probability list is either empty or has the same size
539 // of successor list. When this function is called, we can safely delete all
540 // probability in the list.
541 Probs.clear();
542 Successors.push_back(Succ);
543 Succ->addPredecessor(this);
544 }
545
removeSuccessor(MachineBasicBlock * Succ,bool NormalizeSuccProbs)546 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ,
547 bool NormalizeSuccProbs) {
548 succ_iterator I = std::find(Successors.begin(), Successors.end(), Succ);
549 removeSuccessor(I, NormalizeSuccProbs);
550 }
551
552 MachineBasicBlock::succ_iterator
removeSuccessor(succ_iterator I,bool NormalizeSuccProbs)553 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) {
554 assert(I != Successors.end() && "Not a current successor!");
555
556 // If probability list is empty it means we don't use it (disabled
557 // optimization).
558 if (!Probs.empty()) {
559 probability_iterator WI = getProbabilityIterator(I);
560 Probs.erase(WI);
561 if (NormalizeSuccProbs)
562 normalizeSuccProbs();
563 }
564
565 (*I)->removePredecessor(this);
566 return Successors.erase(I);
567 }
568
replaceSuccessor(MachineBasicBlock * Old,MachineBasicBlock * New)569 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
570 MachineBasicBlock *New) {
571 if (Old == New)
572 return;
573
574 succ_iterator E = succ_end();
575 succ_iterator NewI = E;
576 succ_iterator OldI = E;
577 for (succ_iterator I = succ_begin(); I != E; ++I) {
578 if (*I == Old) {
579 OldI = I;
580 if (NewI != E)
581 break;
582 }
583 if (*I == New) {
584 NewI = I;
585 if (OldI != E)
586 break;
587 }
588 }
589 assert(OldI != E && "Old is not a successor of this block");
590
591 // If New isn't already a successor, let it take Old's place.
592 if (NewI == E) {
593 Old->removePredecessor(this);
594 New->addPredecessor(this);
595 *OldI = New;
596 return;
597 }
598
599 // New is already a successor.
600 // Update its probability instead of adding a duplicate edge.
601 if (!Probs.empty()) {
602 auto ProbIter = getProbabilityIterator(NewI);
603 if (!ProbIter->isUnknown())
604 *ProbIter += *getProbabilityIterator(OldI);
605 }
606 removeSuccessor(OldI);
607 }
608
addPredecessor(MachineBasicBlock * Pred)609 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) {
610 Predecessors.push_back(Pred);
611 }
612
removePredecessor(MachineBasicBlock * Pred)613 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) {
614 pred_iterator I = std::find(Predecessors.begin(), Predecessors.end(), Pred);
615 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
616 Predecessors.erase(I);
617 }
618
transferSuccessors(MachineBasicBlock * FromMBB)619 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) {
620 if (this == FromMBB)
621 return;
622
623 while (!FromMBB->succ_empty()) {
624 MachineBasicBlock *Succ = *FromMBB->succ_begin();
625
626 // If probability list is empty it means we don't use it (disabled optimization).
627 if (!FromMBB->Probs.empty()) {
628 auto Prob = *FromMBB->Probs.begin();
629 addSuccessor(Succ, Prob);
630 } else
631 addSuccessorWithoutProb(Succ);
632
633 FromMBB->removeSuccessor(Succ);
634 }
635 }
636
637 void
transferSuccessorsAndUpdatePHIs(MachineBasicBlock * FromMBB)638 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) {
639 if (this == FromMBB)
640 return;
641
642 while (!FromMBB->succ_empty()) {
643 MachineBasicBlock *Succ = *FromMBB->succ_begin();
644 if (!FromMBB->Probs.empty()) {
645 auto Prob = *FromMBB->Probs.begin();
646 addSuccessor(Succ, Prob);
647 } else
648 addSuccessorWithoutProb(Succ);
649 FromMBB->removeSuccessor(Succ);
650
651 // Fix up any PHI nodes in the successor.
652 for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(),
653 ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI)
654 for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) {
655 MachineOperand &MO = MI->getOperand(i);
656 if (MO.getMBB() == FromMBB)
657 MO.setMBB(this);
658 }
659 }
660 normalizeSuccProbs();
661 }
662
isPredecessor(const MachineBasicBlock * MBB) const663 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
664 return std::find(pred_begin(), pred_end(), MBB) != pred_end();
665 }
666
isSuccessor(const MachineBasicBlock * MBB) const667 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
668 return std::find(succ_begin(), succ_end(), MBB) != succ_end();
669 }
670
isLayoutSuccessor(const MachineBasicBlock * MBB) const671 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
672 MachineFunction::const_iterator I(this);
673 return std::next(I) == MachineFunction::const_iterator(MBB);
674 }
675
canFallThrough()676 bool MachineBasicBlock::canFallThrough() {
677 MachineFunction::iterator Fallthrough = getIterator();
678 ++Fallthrough;
679 // If FallthroughBlock is off the end of the function, it can't fall through.
680 if (Fallthrough == getParent()->end())
681 return false;
682
683 // If FallthroughBlock isn't a successor, no fallthrough is possible.
684 if (!isSuccessor(&*Fallthrough))
685 return false;
686
687 // Analyze the branches, if any, at the end of the block.
688 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
689 SmallVector<MachineOperand, 4> Cond;
690 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
691 if (TII->analyzeBranch(*this, TBB, FBB, Cond)) {
692 // If we couldn't analyze the branch, examine the last instruction.
693 // If the block doesn't end in a known control barrier, assume fallthrough
694 // is possible. The isPredicated check is needed because this code can be
695 // called during IfConversion, where an instruction which is normally a
696 // Barrier is predicated and thus no longer an actual control barrier.
697 return empty() || !back().isBarrier() || TII->isPredicated(back());
698 }
699
700 // If there is no branch, control always falls through.
701 if (!TBB) return true;
702
703 // If there is some explicit branch to the fallthrough block, it can obviously
704 // reach, even though the branch should get folded to fall through implicitly.
705 if (MachineFunction::iterator(TBB) == Fallthrough ||
706 MachineFunction::iterator(FBB) == Fallthrough)
707 return true;
708
709 // If it's an unconditional branch to some block not the fall through, it
710 // doesn't fall through.
711 if (Cond.empty()) return false;
712
713 // Otherwise, if it is conditional and has no explicit false block, it falls
714 // through.
715 return FBB == nullptr;
716 }
717
SplitCriticalEdge(MachineBasicBlock * Succ,Pass & P)718 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ,
719 Pass &P) {
720 if (!canSplitCriticalEdge(Succ))
721 return nullptr;
722
723 MachineFunction *MF = getParent();
724 DebugLoc DL; // FIXME: this is nowhere
725
726 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
727 MF->insert(std::next(MachineFunction::iterator(this)), NMBB);
728 DEBUG(dbgs() << "Splitting critical edge:"
729 " BB#" << getNumber()
730 << " -- BB#" << NMBB->getNumber()
731 << " -- BB#" << Succ->getNumber() << '\n');
732
733 LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>();
734 SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>();
735 if (LIS)
736 LIS->insertMBBInMaps(NMBB);
737 else if (Indexes)
738 Indexes->insertMBBInMaps(NMBB);
739
740 // On some targets like Mips, branches may kill virtual registers. Make sure
741 // that LiveVariables is properly updated after updateTerminator replaces the
742 // terminators.
743 LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>();
744
745 // Collect a list of virtual registers killed by the terminators.
746 SmallVector<unsigned, 4> KilledRegs;
747 if (LV)
748 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
749 I != E; ++I) {
750 MachineInstr *MI = &*I;
751 for (MachineInstr::mop_iterator OI = MI->operands_begin(),
752 OE = MI->operands_end(); OI != OE; ++OI) {
753 if (!OI->isReg() || OI->getReg() == 0 ||
754 !OI->isUse() || !OI->isKill() || OI->isUndef())
755 continue;
756 unsigned Reg = OI->getReg();
757 if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
758 LV->getVarInfo(Reg).removeKill(*MI)) {
759 KilledRegs.push_back(Reg);
760 DEBUG(dbgs() << "Removing terminator kill: " << *MI);
761 OI->setIsKill(false);
762 }
763 }
764 }
765
766 SmallVector<unsigned, 4> UsedRegs;
767 if (LIS) {
768 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
769 I != E; ++I) {
770 MachineInstr *MI = &*I;
771
772 for (MachineInstr::mop_iterator OI = MI->operands_begin(),
773 OE = MI->operands_end(); OI != OE; ++OI) {
774 if (!OI->isReg() || OI->getReg() == 0)
775 continue;
776
777 unsigned Reg = OI->getReg();
778 if (std::find(UsedRegs.begin(), UsedRegs.end(), Reg) == UsedRegs.end())
779 UsedRegs.push_back(Reg);
780 }
781 }
782 }
783
784 ReplaceUsesOfBlockWith(Succ, NMBB);
785
786 // If updateTerminator() removes instructions, we need to remove them from
787 // SlotIndexes.
788 SmallVector<MachineInstr*, 4> Terminators;
789 if (Indexes) {
790 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
791 I != E; ++I)
792 Terminators.push_back(&*I);
793 }
794
795 updateTerminator();
796
797 if (Indexes) {
798 SmallVector<MachineInstr*, 4> NewTerminators;
799 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
800 I != E; ++I)
801 NewTerminators.push_back(&*I);
802
803 for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(),
804 E = Terminators.end(); I != E; ++I) {
805 if (std::find(NewTerminators.begin(), NewTerminators.end(), *I) ==
806 NewTerminators.end())
807 Indexes->removeMachineInstrFromMaps(**I);
808 }
809 }
810
811 // Insert unconditional "jump Succ" instruction in NMBB if necessary.
812 NMBB->addSuccessor(Succ);
813 if (!NMBB->isLayoutSuccessor(Succ)) {
814 SmallVector<MachineOperand, 4> Cond;
815 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
816 TII->InsertBranch(*NMBB, Succ, nullptr, Cond, DL);
817
818 if (Indexes) {
819 for (MachineInstr &MI : NMBB->instrs()) {
820 // Some instructions may have been moved to NMBB by updateTerminator(),
821 // so we first remove any instruction that already has an index.
822 if (Indexes->hasIndex(MI))
823 Indexes->removeMachineInstrFromMaps(MI);
824 Indexes->insertMachineInstrInMaps(MI);
825 }
826 }
827 }
828
829 // Fix PHI nodes in Succ so they refer to NMBB instead of this
830 for (MachineBasicBlock::instr_iterator
831 i = Succ->instr_begin(),e = Succ->instr_end();
832 i != e && i->isPHI(); ++i)
833 for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2)
834 if (i->getOperand(ni+1).getMBB() == this)
835 i->getOperand(ni+1).setMBB(NMBB);
836
837 // Inherit live-ins from the successor
838 for (const auto &LI : Succ->liveins())
839 NMBB->addLiveIn(LI);
840
841 // Update LiveVariables.
842 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
843 if (LV) {
844 // Restore kills of virtual registers that were killed by the terminators.
845 while (!KilledRegs.empty()) {
846 unsigned Reg = KilledRegs.pop_back_val();
847 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
848 if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false))
849 continue;
850 if (TargetRegisterInfo::isVirtualRegister(Reg))
851 LV->getVarInfo(Reg).Kills.push_back(&*I);
852 DEBUG(dbgs() << "Restored terminator kill: " << *I);
853 break;
854 }
855 }
856 // Update relevant live-through information.
857 LV->addNewBlock(NMBB, this, Succ);
858 }
859
860 if (LIS) {
861 // After splitting the edge and updating SlotIndexes, live intervals may be
862 // in one of two situations, depending on whether this block was the last in
863 // the function. If the original block was the last in the function, all
864 // live intervals will end prior to the beginning of the new split block. If
865 // the original block was not at the end of the function, all live intervals
866 // will extend to the end of the new split block.
867
868 bool isLastMBB =
869 std::next(MachineFunction::iterator(NMBB)) == getParent()->end();
870
871 SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
872 SlotIndex PrevIndex = StartIndex.getPrevSlot();
873 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);
874
875 // Find the registers used from NMBB in PHIs in Succ.
876 SmallSet<unsigned, 8> PHISrcRegs;
877 for (MachineBasicBlock::instr_iterator
878 I = Succ->instr_begin(), E = Succ->instr_end();
879 I != E && I->isPHI(); ++I) {
880 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
881 if (I->getOperand(ni+1).getMBB() == NMBB) {
882 MachineOperand &MO = I->getOperand(ni);
883 unsigned Reg = MO.getReg();
884 PHISrcRegs.insert(Reg);
885 if (MO.isUndef())
886 continue;
887
888 LiveInterval &LI = LIS->getInterval(Reg);
889 VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
890 assert(VNI &&
891 "PHI sources should be live out of their predecessors.");
892 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
893 }
894 }
895 }
896
897 MachineRegisterInfo *MRI = &getParent()->getRegInfo();
898 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
899 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
900 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
901 continue;
902
903 LiveInterval &LI = LIS->getInterval(Reg);
904 if (!LI.liveAt(PrevIndex))
905 continue;
906
907 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
908 if (isLiveOut && isLastMBB) {
909 VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
910 assert(VNI && "LiveInterval should have VNInfo where it is live.");
911 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
912 } else if (!isLiveOut && !isLastMBB) {
913 LI.removeSegment(StartIndex, EndIndex);
914 }
915 }
916
917 // Update all intervals for registers whose uses may have been modified by
918 // updateTerminator().
919 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
920 }
921
922 if (MachineDominatorTree *MDT =
923 P.getAnalysisIfAvailable<MachineDominatorTree>())
924 MDT->recordSplitCriticalEdge(this, Succ, NMBB);
925
926 if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>())
927 if (MachineLoop *TIL = MLI->getLoopFor(this)) {
928 // If one or the other blocks were not in a loop, the new block is not
929 // either, and thus LI doesn't need to be updated.
930 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
931 if (TIL == DestLoop) {
932 // Both in the same loop, the NMBB joins loop.
933 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
934 } else if (TIL->contains(DestLoop)) {
935 // Edge from an outer loop to an inner loop. Add to the outer loop.
936 TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
937 } else if (DestLoop->contains(TIL)) {
938 // Edge from an inner loop to an outer loop. Add to the outer loop.
939 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
940 } else {
941 // Edge from two loops with no containment relation. Because these
942 // are natural loops, we know that the destination block must be the
943 // header of its loop (adding a branch into a loop elsewhere would
944 // create an irreducible loop).
945 assert(DestLoop->getHeader() == Succ &&
946 "Should not create irreducible loops!");
947 if (MachineLoop *P = DestLoop->getParentLoop())
948 P->addBasicBlockToLoop(NMBB, MLI->getBase());
949 }
950 }
951 }
952
953 return NMBB;
954 }
955
canSplitCriticalEdge(const MachineBasicBlock * Succ) const956 bool MachineBasicBlock::canSplitCriticalEdge(
957 const MachineBasicBlock *Succ) const {
958 // Splitting the critical edge to a landing pad block is non-trivial. Don't do
959 // it in this generic function.
960 if (Succ->isEHPad())
961 return false;
962
963 const MachineFunction *MF = getParent();
964
965 // Performance might be harmed on HW that implements branching using exec mask
966 // where both sides of the branches are always executed.
967 if (MF->getTarget().requiresStructuredCFG())
968 return false;
969
970 // We may need to update this's terminator, but we can't do that if
971 // AnalyzeBranch fails. If this uses a jump table, we won't touch it.
972 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
973 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
974 SmallVector<MachineOperand, 4> Cond;
975 // AnalyzeBanch should modify this, since we did not allow modification.
976 if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond,
977 /*AllowModify*/ false))
978 return false;
979
980 // Avoid bugpoint weirdness: A block may end with a conditional branch but
981 // jumps to the same MBB is either case. We have duplicate CFG edges in that
982 // case that we can't handle. Since this never happens in properly optimized
983 // code, just skip those edges.
984 if (TBB && TBB == FBB) {
985 DEBUG(dbgs() << "Won't split critical edge after degenerate BB#"
986 << getNumber() << '\n');
987 return false;
988 }
989 return true;
990 }
991
992 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
993 /// neighboring instructions so the bundle won't be broken by removing MI.
unbundleSingleMI(MachineInstr * MI)994 static void unbundleSingleMI(MachineInstr *MI) {
995 // Removing the first instruction in a bundle.
996 if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
997 MI->unbundleFromSucc();
998 // Removing the last instruction in a bundle.
999 if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
1000 MI->unbundleFromPred();
1001 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags
1002 // are already fine.
1003 }
1004
1005 MachineBasicBlock::instr_iterator
erase(MachineBasicBlock::instr_iterator I)1006 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) {
1007 unbundleSingleMI(&*I);
1008 return Insts.erase(I);
1009 }
1010
remove_instr(MachineInstr * MI)1011 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) {
1012 unbundleSingleMI(MI);
1013 MI->clearFlag(MachineInstr::BundledPred);
1014 MI->clearFlag(MachineInstr::BundledSucc);
1015 return Insts.remove(MI);
1016 }
1017
1018 MachineBasicBlock::instr_iterator
insert(instr_iterator I,MachineInstr * MI)1019 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
1020 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
1021 "Cannot insert instruction with bundle flags");
1022 // Set the bundle flags when inserting inside a bundle.
1023 if (I != instr_end() && I->isBundledWithPred()) {
1024 MI->setFlag(MachineInstr::BundledPred);
1025 MI->setFlag(MachineInstr::BundledSucc);
1026 }
1027 return Insts.insert(I, MI);
1028 }
1029
1030 /// This method unlinks 'this' from the containing function, and returns it, but
1031 /// does not delete it.
removeFromParent()1032 MachineBasicBlock *MachineBasicBlock::removeFromParent() {
1033 assert(getParent() && "Not embedded in a function!");
1034 getParent()->remove(this);
1035 return this;
1036 }
1037
1038 /// This method unlinks 'this' from the containing function, and deletes it.
eraseFromParent()1039 void MachineBasicBlock::eraseFromParent() {
1040 assert(getParent() && "Not embedded in a function!");
1041 getParent()->erase(this);
1042 }
1043
1044 /// Given a machine basic block that branched to 'Old', change the code and CFG
1045 /// so that it branches to 'New' instead.
ReplaceUsesOfBlockWith(MachineBasicBlock * Old,MachineBasicBlock * New)1046 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
1047 MachineBasicBlock *New) {
1048 assert(Old != New && "Cannot replace self with self!");
1049
1050 MachineBasicBlock::instr_iterator I = instr_end();
1051 while (I != instr_begin()) {
1052 --I;
1053 if (!I->isTerminator()) break;
1054
1055 // Scan the operands of this machine instruction, replacing any uses of Old
1056 // with New.
1057 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1058 if (I->getOperand(i).isMBB() &&
1059 I->getOperand(i).getMBB() == Old)
1060 I->getOperand(i).setMBB(New);
1061 }
1062
1063 // Update the successor information.
1064 replaceSuccessor(Old, New);
1065 }
1066
1067 /// Various pieces of code can cause excess edges in the CFG to be inserted. If
1068 /// we have proven that MBB can only branch to DestA and DestB, remove any other
1069 /// MBB successors from the CFG. DestA and DestB can be null.
1070 ///
1071 /// Besides DestA and DestB, retain other edges leading to LandingPads
1072 /// (currently there can be only one; we don't check or require that here).
1073 /// Note it is possible that DestA and/or DestB are LandingPads.
CorrectExtraCFGEdges(MachineBasicBlock * DestA,MachineBasicBlock * DestB,bool IsCond)1074 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA,
1075 MachineBasicBlock *DestB,
1076 bool IsCond) {
1077 // The values of DestA and DestB frequently come from a call to the
1078 // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial
1079 // values from there.
1080 //
1081 // 1. If both DestA and DestB are null, then the block ends with no branches
1082 // (it falls through to its successor).
1083 // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends
1084 // with only an unconditional branch.
1085 // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends
1086 // with a conditional branch that falls through to a successor (DestB).
1087 // 4. If DestA and DestB is set and IsCond is true, then the block ends with a
1088 // conditional branch followed by an unconditional branch. DestA is the
1089 // 'true' destination and DestB is the 'false' destination.
1090
1091 bool Changed = false;
1092
1093 MachineFunction::iterator FallThru = std::next(getIterator());
1094
1095 if (!DestA && !DestB) {
1096 // Block falls through to successor.
1097 DestA = &*FallThru;
1098 DestB = &*FallThru;
1099 } else if (DestA && !DestB) {
1100 if (IsCond)
1101 // Block ends in conditional jump that falls through to successor.
1102 DestB = &*FallThru;
1103 } else {
1104 assert(DestA && DestB && IsCond &&
1105 "CFG in a bad state. Cannot correct CFG edges");
1106 }
1107
1108 // Remove superfluous edges. I.e., those which aren't destinations of this
1109 // basic block, duplicate edges, or landing pads.
1110 SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs;
1111 MachineBasicBlock::succ_iterator SI = succ_begin();
1112 while (SI != succ_end()) {
1113 const MachineBasicBlock *MBB = *SI;
1114 if (!SeenMBBs.insert(MBB).second ||
1115 (MBB != DestA && MBB != DestB && !MBB->isEHPad())) {
1116 // This is a superfluous edge, remove it.
1117 SI = removeSuccessor(SI);
1118 Changed = true;
1119 } else {
1120 ++SI;
1121 }
1122 }
1123
1124 if (Changed)
1125 normalizeSuccProbs();
1126 return Changed;
1127 }
1128
1129 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
1130 /// instructions. Return UnknownLoc if there is none.
1131 DebugLoc
findDebugLoc(instr_iterator MBBI)1132 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
1133 DebugLoc DL;
1134 instr_iterator E = instr_end();
1135 if (MBBI == E)
1136 return DL;
1137
1138 // Skip debug declarations, we don't want a DebugLoc from them.
1139 while (MBBI != E && MBBI->isDebugValue())
1140 MBBI++;
1141 if (MBBI != E)
1142 DL = MBBI->getDebugLoc();
1143 return DL;
1144 }
1145
1146 /// Return probability of the edge from this block to MBB.
1147 BranchProbability
getSuccProbability(const_succ_iterator Succ) const1148 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const {
1149 if (Probs.empty())
1150 return BranchProbability(1, succ_size());
1151
1152 const auto &Prob = *getProbabilityIterator(Succ);
1153 if (Prob.isUnknown()) {
1154 // For unknown probabilities, collect the sum of all known ones, and evenly
1155 // ditribute the complemental of the sum to each unknown probability.
1156 unsigned KnownProbNum = 0;
1157 auto Sum = BranchProbability::getZero();
1158 for (auto &P : Probs) {
1159 if (!P.isUnknown()) {
1160 Sum += P;
1161 KnownProbNum++;
1162 }
1163 }
1164 return Sum.getCompl() / (Probs.size() - KnownProbNum);
1165 } else
1166 return Prob;
1167 }
1168
1169 /// Set successor probability of a given iterator.
setSuccProbability(succ_iterator I,BranchProbability Prob)1170 void MachineBasicBlock::setSuccProbability(succ_iterator I,
1171 BranchProbability Prob) {
1172 assert(!Prob.isUnknown());
1173 if (Probs.empty())
1174 return;
1175 *getProbabilityIterator(I) = Prob;
1176 }
1177
1178 /// Return probability iterator corresonding to the I successor iterator
1179 MachineBasicBlock::const_probability_iterator
getProbabilityIterator(MachineBasicBlock::const_succ_iterator I) const1180 MachineBasicBlock::getProbabilityIterator(
1181 MachineBasicBlock::const_succ_iterator I) const {
1182 assert(Probs.size() == Successors.size() && "Async probability list!");
1183 const size_t index = std::distance(Successors.begin(), I);
1184 assert(index < Probs.size() && "Not a current successor!");
1185 return Probs.begin() + index;
1186 }
1187
1188 /// Return probability iterator corresonding to the I successor iterator.
1189 MachineBasicBlock::probability_iterator
getProbabilityIterator(MachineBasicBlock::succ_iterator I)1190 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) {
1191 assert(Probs.size() == Successors.size() && "Async probability list!");
1192 const size_t index = std::distance(Successors.begin(), I);
1193 assert(index < Probs.size() && "Not a current successor!");
1194 return Probs.begin() + index;
1195 }
1196
1197 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
1198 /// as of just before "MI".
1199 ///
1200 /// Search is localised to a neighborhood of
1201 /// Neighborhood instructions before (searching for defs or kills) and N
1202 /// instructions after (searching just for defs) MI.
1203 MachineBasicBlock::LivenessQueryResult
computeRegisterLiveness(const TargetRegisterInfo * TRI,unsigned Reg,const_iterator Before,unsigned Neighborhood) const1204 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
1205 unsigned Reg, const_iterator Before,
1206 unsigned Neighborhood) const {
1207 unsigned N = Neighborhood;
1208
1209 // Start by searching backwards from Before, looking for kills, reads or defs.
1210 const_iterator I(Before);
1211 // If this is the first insn in the block, don't search backwards.
1212 if (I != begin()) {
1213 do {
1214 --I;
1215
1216 MachineOperandIteratorBase::PhysRegInfo Info =
1217 ConstMIOperands(*I).analyzePhysReg(Reg, TRI);
1218
1219 // Defs happen after uses so they take precedence if both are present.
1220
1221 // Register is dead after a dead def of the full register.
1222 if (Info.DeadDef)
1223 return LQR_Dead;
1224 // Register is (at least partially) live after a def.
1225 if (Info.Defined) {
1226 if (!Info.PartialDeadDef)
1227 return LQR_Live;
1228 // As soon as we saw a partial definition (dead or not),
1229 // we cannot tell if the value is partial live without
1230 // tracking the lanemasks. We are not going to do this,
1231 // so fall back on the remaining of the analysis.
1232 break;
1233 }
1234 // Register is dead after a full kill or clobber and no def.
1235 if (Info.Killed || Info.Clobbered)
1236 return LQR_Dead;
1237 // Register must be live if we read it.
1238 if (Info.Read)
1239 return LQR_Live;
1240 } while (I != begin() && --N > 0);
1241 }
1242
1243 // Did we get to the start of the block?
1244 if (I == begin()) {
1245 // If so, the register's state is definitely defined by the live-in state.
1246 for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true); RAI.isValid();
1247 ++RAI)
1248 if (isLiveIn(*RAI))
1249 return LQR_Live;
1250
1251 return LQR_Dead;
1252 }
1253
1254 N = Neighborhood;
1255
1256 // Try searching forwards from Before, looking for reads or defs.
1257 I = const_iterator(Before);
1258 // If this is the last insn in the block, don't search forwards.
1259 if (I != end()) {
1260 for (++I; I != end() && N > 0; ++I, --N) {
1261 MachineOperandIteratorBase::PhysRegInfo Info =
1262 ConstMIOperands(*I).analyzePhysReg(Reg, TRI);
1263
1264 // Register is live when we read it here.
1265 if (Info.Read)
1266 return LQR_Live;
1267 // Register is dead if we can fully overwrite or clobber it here.
1268 if (Info.FullyDefined || Info.Clobbered)
1269 return LQR_Dead;
1270 }
1271 }
1272
1273 // At this point we have no idea of the liveness of the register.
1274 return LQR_Unknown;
1275 }
1276
1277 const uint32_t *
getBeginClobberMask(const TargetRegisterInfo * TRI) const1278 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const {
1279 // EH funclet entry does not preserve any registers.
1280 return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr;
1281 }
1282
1283 const uint32_t *
getEndClobberMask(const TargetRegisterInfo * TRI) const1284 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const {
1285 // If we see a return block with successors, this must be a funclet return,
1286 // which does not preserve any registers. If there are no successors, we don't
1287 // care what kind of return it is, putting a mask after it is a no-op.
1288 return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr;
1289 }
1290