• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3  * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
4  * Copyright (c) 2007-2008 Luis Rodriguez <mcgrof@winlab.rutgers.edu>
5  * Copyright (c) 2007-2008 Pavel Roskin <proski@gnu.org>
6  * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
7  *
8  * Lightly modified for gPXE, July 2009, by Joshua Oreman <oremanj@rwcr.net>.
9  *
10  * Permission to use, copy, modify, and distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  *
22  */
23 
24 FILE_LICENCE ( MIT );
25 
26 #define _ATH5K_RESET
27 
28 /*****************************\
29   Reset functions and helpers
30 \*****************************/
31 
32 #include <gpxe/pci.h> 		/* To determine if a card is pci-e */
33 #include <unistd.h>
34 
35 #include "ath5k.h"
36 #include "reg.h"
37 #include "base.h"
38 
39 /* Find last set bit; fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32 */
fls(int x)40 static int fls(int x)
41 {
42         int r = 32;
43 
44         if (!x)
45                 return 0;
46         if (!(x & 0xffff0000u)) {
47                 x <<= 16;
48                 r -= 16;
49         }
50         if (!(x & 0xff000000u)) {
51                 x <<= 8;
52                 r -= 8;
53         }
54         if (!(x & 0xf0000000u)) {
55                 x <<= 4;
56                 r -= 4;
57         }
58         if (!(x & 0xc0000000u)) {
59                 x <<= 2;
60                 r -= 2;
61         }
62         if (!(x & 0x80000000u)) {
63                 x <<= 1;
64                 r -= 1;
65         }
66         return r;
67 }
68 
69 
70 /**
71  * ath5k_hw_write_ofdm_timings - set OFDM timings on AR5212
72  *
73  * @ah: the &struct ath5k_hw
74  * @channel: the currently set channel upon reset
75  *
76  * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
77  * operation on the AR5212 upon reset. This is a helper for ath5k_hw_reset().
78  *
79  * Since delta slope is floating point we split it on its exponent and
80  * mantissa and provide these values on hw.
81  *
82  * For more infos i think this patent is related
83  * http://www.freepatentsonline.com/7184495.html
84  */
ath5k_hw_write_ofdm_timings(struct ath5k_hw * ah,struct net80211_channel * channel)85 static int ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
86 	struct net80211_channel *channel)
87 {
88 	/* Get exponent and mantissa and set it */
89 	u32 coef_scaled, coef_exp, coef_man,
90 		ds_coef_exp, ds_coef_man, clock;
91 
92 	if (!(ah->ah_version == AR5K_AR5212) ||
93 	    !(channel->hw_value & CHANNEL_OFDM)) {
94 		DBG("ath5k: attempt to set OFDM timings on non-OFDM channel\n");
95 		return -EFAULT;
96 	}
97 
98 	/* Get coefficient
99 	 * ALGO: coef = (5 * clock * carrier_freq) / 2)
100 	 * we scale coef by shifting clock value by 24 for
101 	 * better precision since we use integers */
102 	/* TODO: Half/quarter rate */
103 	clock =  ath5k_hw_htoclock(1, channel->hw_value & CHANNEL_TURBO);
104 
105 	coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
106 
107 	/* Get exponent
108 	 * ALGO: coef_exp = 14 - highest set bit position */
109 	coef_exp = fls(coef_scaled) - 1;
110 
111 	/* Doesn't make sense if it's zero*/
112 	if (!coef_scaled || !coef_exp)
113 		return -EINVAL;
114 
115 	/* Note: we've shifted coef_scaled by 24 */
116 	coef_exp = 14 - (coef_exp - 24);
117 
118 
119 	/* Get mantissa (significant digits)
120 	 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
121 	coef_man = coef_scaled +
122 		(1 << (24 - coef_exp - 1));
123 
124 	/* Calculate delta slope coefficient exponent
125 	 * and mantissa (remove scaling) and set them on hw */
126 	ds_coef_man = coef_man >> (24 - coef_exp);
127 	ds_coef_exp = coef_exp - 16;
128 
129 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
130 		AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
131 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
132 		AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
133 
134 	return 0;
135 }
136 
137 
138 /*
139  * index into rates for control rates, we can set it up like this because
140  * this is only used for AR5212 and we know it supports G mode
141  */
142 static const unsigned int control_rates[] =
143 	{ 0, 1, 1, 1, 4, 4, 6, 6, 8, 8, 8, 8 };
144 
145 /**
146  * ath5k_hw_write_rate_duration - fill rate code to duration table
147  *
148  * @ah: the &struct ath5k_hw
149  * @mode: one of enum ath5k_driver_mode
150  *
151  * Write the rate code to duration table upon hw reset. This is a helper for
152  * ath5k_hw_reset(). It seems all this is doing is setting an ACK timeout on
153  * the hardware, based on current mode, for each rate. The rates which are
154  * capable of short preamble (802.11b rates 2Mbps, 5.5Mbps, and 11Mbps) have
155  * different rate code so we write their value twice (one for long preample
156  * and one for short).
157  *
158  * Note: Band doesn't matter here, if we set the values for OFDM it works
159  * on both a and g modes. So all we have to do is set values for all g rates
160  * that include all OFDM and CCK rates. If we operate in turbo or xr/half/
161  * quarter rate mode, we need to use another set of bitrates (that's why we
162  * need the mode parameter) but we don't handle these proprietary modes yet.
163  */
ath5k_hw_write_rate_duration(struct ath5k_hw * ah,unsigned int mode __unused)164 static inline void ath5k_hw_write_rate_duration(struct ath5k_hw *ah,
165        unsigned int mode __unused)
166 {
167 	struct ath5k_softc *sc = ah->ah_sc;
168 	u16 rate;
169 	int i;
170 
171 	/* Write rate duration table */
172 	for (i = 0; i < sc->hwinfo->nr_rates[NET80211_BAND_2GHZ]; i++) {
173 		u32 reg;
174 		u16 tx_time;
175 
176 		rate = sc->hwinfo->rates[NET80211_BAND_2GHZ][i];
177 
178 		/* Set ACK timeout */
179 		reg = AR5K_RATE_DUR(ath5k_bitrate_to_hw_rix(rate));
180 
181 		/* An ACK frame consists of 10 bytes. If you add the FCS,
182 		 * it's 14 bytes. Note we use the control rate and not the
183 		 * actual rate for this rate. See mac80211 tx.c
184 		 * ieee80211_duration() for a brief description of
185 		 * what rate we should choose to TX ACKs. */
186 		tx_time = net80211_duration(sc->dev, 14, rate);
187 
188 		ath5k_hw_reg_write(ah, tx_time, reg);
189 
190 		if (rate != 20 && rate != 55 && rate != 110)
191 			continue;
192 
193 		/*
194 		 * We're not distinguishing short preamble here,
195 		 * This is true, all we'll get is a longer value here
196 		 * which is not necessarilly bad.
197 		 */
198 		ath5k_hw_reg_write(ah, tx_time,
199 			reg + (AR5K_SET_SHORT_PREAMBLE << 2));
200 	}
201 }
202 
203 /*
204  * Reset chipset
205  */
ath5k_hw_nic_reset(struct ath5k_hw * ah,u32 val)206 static int ath5k_hw_nic_reset(struct ath5k_hw *ah, u32 val)
207 {
208 	int ret;
209 	u32 mask = val ? val : ~0U;
210 
211 	/* Read-and-clear RX Descriptor Pointer*/
212 	ath5k_hw_reg_read(ah, AR5K_RXDP);
213 
214 	/*
215 	 * Reset the device and wait until success
216 	 */
217 	ath5k_hw_reg_write(ah, val, AR5K_RESET_CTL);
218 
219 	/* Wait at least 128 PCI clocks */
220 	udelay(15);
221 
222 	if (ah->ah_version == AR5K_AR5210) {
223 		val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_DMA
224 			| AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_PHY;
225 		mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_DMA
226 			| AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_PHY;
227 	} else {
228 		val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
229 		mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
230 	}
231 
232 	ret = ath5k_hw_register_timeout(ah, AR5K_RESET_CTL, mask, val, 0);
233 
234 	/*
235 	 * Reset configuration register (for hw byte-swap). Note that this
236 	 * is only set for big endian. We do the necessary magic in
237 	 * AR5K_INIT_CFG.
238 	 */
239 	if ((val & AR5K_RESET_CTL_PCU) == 0)
240 		ath5k_hw_reg_write(ah, AR5K_INIT_CFG, AR5K_CFG);
241 
242 	return ret;
243 }
244 
245 /*
246  * Sleep control
247  */
ath5k_hw_wake(struct ath5k_hw * ah)248 int ath5k_hw_wake(struct ath5k_hw *ah)
249 {
250 	unsigned int i;
251 	u32 staid, data;
252 
253 	staid = ath5k_hw_reg_read(ah, AR5K_STA_ID1);
254 	staid &= ~AR5K_STA_ID1_PWR_SV;
255 
256 	/* Preserve sleep duration */
257 	data = ath5k_hw_reg_read(ah, AR5K_SLEEP_CTL);
258 	if (data & 0xffc00000)
259 		data = 0;
260 	else
261 		data = data & 0xfffcffff;
262 
263 	ath5k_hw_reg_write(ah, data, AR5K_SLEEP_CTL);
264 	udelay(15);
265 
266 	for (i = 50; i > 0; i--) {
267 		/* Check if the chip did wake up */
268 		if ((ath5k_hw_reg_read(ah, AR5K_PCICFG) &
269 		     AR5K_PCICFG_SPWR_DN) == 0)
270 			break;
271 
272 		/* Wait a bit and retry */
273 		udelay(200);
274 		ath5k_hw_reg_write(ah, data, AR5K_SLEEP_CTL);
275 	}
276 
277 	/* Fail if the chip didn't wake up */
278 	if (i <= 0)
279 		return -EIO;
280 
281 	ath5k_hw_reg_write(ah, staid, AR5K_STA_ID1);
282 
283 	return 0;
284 }
285 
286 /*
287  * Bring up MAC + PHY Chips and program PLL
288  * TODO: Half/Quarter rate support
289  */
ath5k_hw_nic_wakeup(struct ath5k_hw * ah,int flags,int initial __unused)290 int ath5k_hw_nic_wakeup(struct ath5k_hw *ah, int flags, int initial __unused)
291 {
292 	struct pci_device *pdev = ah->ah_sc->pdev;
293 	u32 turbo, mode, clock, bus_flags;
294 	int ret;
295 
296 	turbo = 0;
297 	mode = 0;
298 	clock = 0;
299 
300 	/* Wakeup the device */
301 	ret = ath5k_hw_wake(ah);
302 	if (ret) {
303 		DBG("ath5k: failed to wake up the MAC chip\n");
304 		return ret;
305 	}
306 
307 	if (ah->ah_version != AR5K_AR5210) {
308 		/*
309 		 * Get channel mode flags
310 		 */
311 
312 		if (ah->ah_radio >= AR5K_RF5112) {
313 			mode = AR5K_PHY_MODE_RAD_RF5112;
314 			clock = AR5K_PHY_PLL_RF5112;
315 		} else {
316 			mode = AR5K_PHY_MODE_RAD_RF5111;	/*Zero*/
317 			clock = AR5K_PHY_PLL_RF5111;		/*Zero*/
318 		}
319 
320 		if (flags & CHANNEL_2GHZ) {
321 			mode |= AR5K_PHY_MODE_FREQ_2GHZ;
322 			clock |= AR5K_PHY_PLL_44MHZ;
323 
324 			if (flags & CHANNEL_CCK) {
325 				mode |= AR5K_PHY_MODE_MOD_CCK;
326 			} else if (flags & CHANNEL_OFDM) {
327 				/* XXX Dynamic OFDM/CCK is not supported by the
328 				 * AR5211 so we set MOD_OFDM for plain g (no
329 				 * CCK headers) operation. We need to test
330 				 * this, 5211 might support ofdm-only g after
331 				 * all, there are also initial register values
332 				 * in the code for g mode (see initvals.c). */
333 				if (ah->ah_version == AR5K_AR5211)
334 					mode |= AR5K_PHY_MODE_MOD_OFDM;
335 				else
336 					mode |= AR5K_PHY_MODE_MOD_DYN;
337 			} else {
338 				DBG("ath5k: invalid radio modulation mode\n");
339 				return -EINVAL;
340 			}
341 		} else if (flags & CHANNEL_5GHZ) {
342 			mode |= AR5K_PHY_MODE_FREQ_5GHZ;
343 
344 			if (ah->ah_radio == AR5K_RF5413)
345 				clock = AR5K_PHY_PLL_40MHZ_5413;
346 			else
347 				clock |= AR5K_PHY_PLL_40MHZ;
348 
349 			if (flags & CHANNEL_OFDM)
350 				mode |= AR5K_PHY_MODE_MOD_OFDM;
351 			else {
352 				DBG("ath5k: invalid radio modulation mode\n");
353 				return -EINVAL;
354 			}
355 		} else {
356 			DBG("ath5k: invalid radio frequency mode\n");
357 			return -EINVAL;
358 		}
359 
360 		if (flags & CHANNEL_TURBO)
361 			turbo = AR5K_PHY_TURBO_MODE | AR5K_PHY_TURBO_SHORT;
362 	} else { /* Reset the device */
363 
364 		/* ...enable Atheros turbo mode if requested */
365 		if (flags & CHANNEL_TURBO)
366 			ath5k_hw_reg_write(ah, AR5K_PHY_TURBO_MODE,
367 					AR5K_PHY_TURBO);
368 	}
369 
370 	/* reseting PCI on PCI-E cards results card to hang
371 	 * and always return 0xffff... so we ingore that flag
372 	 * for PCI-E cards */
373 	if (pci_find_capability(pdev, PCI_CAP_ID_EXP))
374 		bus_flags = 0;
375 	else
376 		bus_flags = AR5K_RESET_CTL_PCI;
377 
378 	/* Reset chipset */
379 	if (ah->ah_version == AR5K_AR5210) {
380 		ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
381 			AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_DMA |
382 			AR5K_RESET_CTL_PHY | AR5K_RESET_CTL_PCI);
383 		mdelay(2);
384 	} else {
385 		ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
386 			AR5K_RESET_CTL_BASEBAND | bus_flags);
387 	}
388 	if (ret) {
389 		DBG("ath5k: failed to reset the MAC chip\n");
390 		return -EIO;
391 	}
392 
393 	/* ...wakeup again!*/
394 	ret = ath5k_hw_wake(ah);
395 	if (ret) {
396 		DBG("ath5k: failed to resume the MAC chip\n");
397 		return ret;
398 	}
399 
400 	/* ...final warm reset */
401 	if (ath5k_hw_nic_reset(ah, 0)) {
402 		DBG("ath5k: failed to warm reset the MAC chip\n");
403 		return -EIO;
404 	}
405 
406 	if (ah->ah_version != AR5K_AR5210) {
407 
408 		/* ...update PLL if needed */
409 		if (ath5k_hw_reg_read(ah, AR5K_PHY_PLL) != clock) {
410 			ath5k_hw_reg_write(ah, clock, AR5K_PHY_PLL);
411 			udelay(300);
412 		}
413 
414 		/* ...set the PHY operating mode */
415 		ath5k_hw_reg_write(ah, mode, AR5K_PHY_MODE);
416 		ath5k_hw_reg_write(ah, turbo, AR5K_PHY_TURBO);
417 	}
418 
419 	return 0;
420 }
421 
ath5k_hw_chan_has_spur_noise(struct ath5k_hw * ah,struct net80211_channel * channel)422 static int ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
423 				struct net80211_channel *channel)
424 {
425 	u8 refclk_freq;
426 
427 	if ((ah->ah_radio == AR5K_RF5112) ||
428 	(ah->ah_radio == AR5K_RF5413) ||
429 	(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
430 		refclk_freq = 40;
431 	else
432 		refclk_freq = 32;
433 
434 	if ((channel->center_freq % refclk_freq != 0) &&
435 	((channel->center_freq % refclk_freq < 10) ||
436 	(channel->center_freq % refclk_freq > 22)))
437 		return 1;
438 	else
439 		return 0;
440 }
441 
442 /* TODO: Half/Quarter rate */
ath5k_hw_tweak_initval_settings(struct ath5k_hw * ah,struct net80211_channel * channel)443 static void ath5k_hw_tweak_initval_settings(struct ath5k_hw *ah,
444 				struct net80211_channel *channel)
445 {
446 	if (ah->ah_version == AR5K_AR5212 &&
447 	    ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
448 
449 		/* Setup ADC control */
450 		ath5k_hw_reg_write(ah,
451 				(AR5K_REG_SM(2,
452 				AR5K_PHY_ADC_CTL_INBUFGAIN_OFF) |
453 				AR5K_REG_SM(2,
454 				AR5K_PHY_ADC_CTL_INBUFGAIN_ON) |
455 				AR5K_PHY_ADC_CTL_PWD_DAC_OFF |
456 				AR5K_PHY_ADC_CTL_PWD_ADC_OFF),
457 				AR5K_PHY_ADC_CTL);
458 
459 
460 
461 		/* Disable barker RSSI threshold */
462 		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_DAG_CCK_CTL,
463 				AR5K_PHY_DAG_CCK_CTL_EN_RSSI_THR);
464 
465 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DAG_CCK_CTL,
466 			AR5K_PHY_DAG_CCK_CTL_RSSI_THR, 2);
467 
468 		/* Set the mute mask */
469 		ath5k_hw_reg_write(ah, 0x0000000f, AR5K_SEQ_MASK);
470 	}
471 
472 	/* Clear PHY_BLUETOOTH to allow RX_CLEAR line debug */
473 	if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212B)
474 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BLUETOOTH);
475 
476 	/* Enable DCU double buffering */
477 	if (ah->ah_phy_revision > AR5K_SREV_PHY_5212B)
478 		AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
479 				AR5K_TXCFG_DCU_DBL_BUF_DIS);
480 
481 	/* Set DAC/ADC delays */
482 	if (ah->ah_version == AR5K_AR5212) {
483 		u32 scal;
484 		if (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))
485 			scal = AR5K_PHY_SCAL_32MHZ_2417;
486 		else if (ath5k_eeprom_is_hb63(ah))
487 			scal = AR5K_PHY_SCAL_32MHZ_HB63;
488 		else
489 			scal = AR5K_PHY_SCAL_32MHZ;
490 		ath5k_hw_reg_write(ah, scal, AR5K_PHY_SCAL);
491 	}
492 
493 	/* Set fast ADC */
494 	if ((ah->ah_radio == AR5K_RF5413) ||
495 	(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) {
496 		u32 fast_adc = 1;
497 
498 		if (channel->center_freq == 2462 ||
499 		channel->center_freq == 2467)
500 			fast_adc = 0;
501 
502 		/* Only update if needed */
503 		if (ath5k_hw_reg_read(ah, AR5K_PHY_FAST_ADC) != fast_adc)
504 				ath5k_hw_reg_write(ah, fast_adc,
505 						AR5K_PHY_FAST_ADC);
506 	}
507 
508 	/* Fix for first revision of the RF5112 RF chipset */
509 	if (ah->ah_radio == AR5K_RF5112 &&
510 			ah->ah_radio_5ghz_revision <
511 			AR5K_SREV_RAD_5112A) {
512 		u32 data;
513 		ath5k_hw_reg_write(ah, AR5K_PHY_CCKTXCTL_WORLD,
514 				AR5K_PHY_CCKTXCTL);
515 		if (channel->hw_value & CHANNEL_5GHZ)
516 			data = 0xffb81020;
517 		else
518 			data = 0xffb80d20;
519 		ath5k_hw_reg_write(ah, data, AR5K_PHY_FRAME_CTL);
520 	}
521 
522 	if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
523 		u32 usec_reg;
524 		/* 5311 has different tx/rx latency masks
525 		 * from 5211, since we deal 5311 the same
526 		 * as 5211 when setting initvals, shift
527 		 * values here to their proper locations */
528 		usec_reg = ath5k_hw_reg_read(ah, AR5K_USEC_5211);
529 		ath5k_hw_reg_write(ah, usec_reg & (AR5K_USEC_1 |
530 				AR5K_USEC_32 |
531 				AR5K_USEC_TX_LATENCY_5211 |
532 				AR5K_REG_SM(29,
533 				AR5K_USEC_RX_LATENCY_5210)),
534 				AR5K_USEC_5211);
535 		/* Clear QCU/DCU clock gating register */
536 		ath5k_hw_reg_write(ah, 0, AR5K_QCUDCU_CLKGT);
537 		/* Set DAC/ADC delays */
538 		ath5k_hw_reg_write(ah, 0x08, AR5K_PHY_SCAL);
539 		/* Enable PCU FIFO corruption ECO */
540 		AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5211,
541 					AR5K_DIAG_SW_ECO_ENABLE);
542 	}
543 }
544 
ath5k_hw_commit_eeprom_settings(struct ath5k_hw * ah,struct net80211_channel * channel,u8 * ant,u8 ee_mode)545 static void ath5k_hw_commit_eeprom_settings(struct ath5k_hw *ah,
546 		struct net80211_channel *channel, u8 *ant, u8 ee_mode)
547 {
548 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
549 	s16 cck_ofdm_pwr_delta;
550 
551 	/* Adjust power delta for channel 14 */
552 	if (channel->center_freq == 2484)
553 		cck_ofdm_pwr_delta =
554 			((ee->ee_cck_ofdm_power_delta -
555 			ee->ee_scaled_cck_delta) * 2) / 10;
556 	else
557 		cck_ofdm_pwr_delta =
558 			(ee->ee_cck_ofdm_power_delta * 2) / 10;
559 
560 	/* Set CCK to OFDM power delta on tx power
561 	 * adjustment register */
562 	if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
563 		if (channel->hw_value == CHANNEL_G)
564 			ath5k_hw_reg_write(ah,
565 			AR5K_REG_SM((ee->ee_cck_ofdm_gain_delta * -1),
566 				AR5K_PHY_TX_PWR_ADJ_CCK_GAIN_DELTA) |
567 			AR5K_REG_SM((cck_ofdm_pwr_delta * -1),
568 				AR5K_PHY_TX_PWR_ADJ_CCK_PCDAC_INDEX),
569 				AR5K_PHY_TX_PWR_ADJ);
570 		else
571 			ath5k_hw_reg_write(ah, 0, AR5K_PHY_TX_PWR_ADJ);
572 	} else {
573 		/* For older revs we scale power on sw during tx power
574 		 * setup */
575 		ah->ah_txpower.txp_cck_ofdm_pwr_delta = cck_ofdm_pwr_delta;
576 		ah->ah_txpower.txp_cck_ofdm_gainf_delta =
577 						ee->ee_cck_ofdm_gain_delta;
578 	}
579 
580 	/* Set antenna idle switch table */
581 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
582 			AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
583 			(ah->ah_antenna[ee_mode][0] |
584 			AR5K_PHY_ANT_CTL_TXRX_EN));
585 
586 	/* Set antenna switch table */
587 	ath5k_hw_reg_write(ah, ah->ah_antenna[ee_mode][ant[0]],
588 		AR5K_PHY_ANT_SWITCH_TABLE_0);
589 	ath5k_hw_reg_write(ah, ah->ah_antenna[ee_mode][ant[1]],
590 		AR5K_PHY_ANT_SWITCH_TABLE_1);
591 
592 	/* Noise floor threshold */
593 	ath5k_hw_reg_write(ah,
594 		AR5K_PHY_NF_SVAL(ee->ee_noise_floor_thr[ee_mode]),
595 		AR5K_PHY_NFTHRES);
596 
597 	if ((channel->hw_value & CHANNEL_TURBO) &&
598 	(ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0)) {
599 		/* Switch settling time (Turbo) */
600 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
601 				AR5K_PHY_SETTLING_SWITCH,
602 				ee->ee_switch_settling_turbo[ee_mode]);
603 
604 		/* Tx/Rx attenuation (Turbo) */
605 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN,
606 				AR5K_PHY_GAIN_TXRX_ATTEN,
607 				ee->ee_atn_tx_rx_turbo[ee_mode]);
608 
609 		/* ADC/PGA desired size (Turbo) */
610 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
611 				AR5K_PHY_DESIRED_SIZE_ADC,
612 				ee->ee_adc_desired_size_turbo[ee_mode]);
613 
614 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
615 				AR5K_PHY_DESIRED_SIZE_PGA,
616 				ee->ee_pga_desired_size_turbo[ee_mode]);
617 
618 		/* Tx/Rx margin (Turbo) */
619 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ,
620 				AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX,
621 				ee->ee_margin_tx_rx_turbo[ee_mode]);
622 
623 	} else {
624 		/* Switch settling time */
625 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
626 				AR5K_PHY_SETTLING_SWITCH,
627 				ee->ee_switch_settling[ee_mode]);
628 
629 		/* Tx/Rx attenuation */
630 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN,
631 				AR5K_PHY_GAIN_TXRX_ATTEN,
632 				ee->ee_atn_tx_rx[ee_mode]);
633 
634 		/* ADC/PGA desired size */
635 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
636 				AR5K_PHY_DESIRED_SIZE_ADC,
637 				ee->ee_adc_desired_size[ee_mode]);
638 
639 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
640 				AR5K_PHY_DESIRED_SIZE_PGA,
641 				ee->ee_pga_desired_size[ee_mode]);
642 
643 		/* Tx/Rx margin */
644 		if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
645 			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ,
646 				AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX,
647 				ee->ee_margin_tx_rx[ee_mode]);
648 	}
649 
650 	/* XPA delays */
651 	ath5k_hw_reg_write(ah,
652 		(ee->ee_tx_end2xpa_disable[ee_mode] << 24) |
653 		(ee->ee_tx_end2xpa_disable[ee_mode] << 16) |
654 		(ee->ee_tx_frm2xpa_enable[ee_mode] << 8) |
655 		(ee->ee_tx_frm2xpa_enable[ee_mode]), AR5K_PHY_RF_CTL4);
656 
657 	/* XLNA delay */
658 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RF_CTL3,
659 			AR5K_PHY_RF_CTL3_TXE2XLNA_ON,
660 			ee->ee_tx_end2xlna_enable[ee_mode]);
661 
662 	/* Thresh64 (ANI) */
663 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_NF,
664 			AR5K_PHY_NF_THRESH62,
665 			ee->ee_thr_62[ee_mode]);
666 
667 
668 	/* False detect backoff for channels
669 	 * that have spur noise. Write the new
670 	 * cyclic power RSSI threshold. */
671 	if (ath5k_hw_chan_has_spur_noise(ah, channel))
672 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_OFDM_SELFCORR,
673 				AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1,
674 				AR5K_INIT_CYCRSSI_THR1 +
675 				ee->ee_false_detect[ee_mode]);
676 	else
677 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_OFDM_SELFCORR,
678 				AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1,
679 				AR5K_INIT_CYCRSSI_THR1);
680 
681 	/* I/Q correction
682 	 * TODO: Per channel i/q infos ? */
683 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
684 		AR5K_PHY_IQ_CORR_ENABLE |
685 		(ee->ee_i_cal[ee_mode] << AR5K_PHY_IQ_CORR_Q_I_COFF_S) |
686 		ee->ee_q_cal[ee_mode]);
687 
688 	/* Heavy clipping -disable for now */
689 	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_1)
690 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_HEAVY_CLIP_ENABLE);
691 
692 	return;
693 }
694 
695 /*
696  * Main reset function
697  */
ath5k_hw_reset(struct ath5k_hw * ah,struct net80211_channel * channel,int change_channel)698 int ath5k_hw_reset(struct ath5k_hw *ah,
699 	struct net80211_channel *channel, int change_channel)
700 {
701 	u32 s_seq[10], s_ant, s_led[3], staid1_flags, tsf_up, tsf_lo;
702 	u32 phy_tst1;
703 	u8 mode, freq, ee_mode, ant[2];
704 	int i, ret;
705 
706 	s_ant = 0;
707 	ee_mode = 0;
708 	staid1_flags = 0;
709 	tsf_up = 0;
710 	tsf_lo = 0;
711 	freq = 0;
712 	mode = 0;
713 
714 	/*
715 	 * Save some registers before a reset
716 	 */
717 	/*DCU/Antenna selection not available on 5210*/
718 	if (ah->ah_version != AR5K_AR5210) {
719 
720 		switch (channel->hw_value & CHANNEL_MODES) {
721 		case CHANNEL_A:
722 			mode = AR5K_MODE_11A;
723 			freq = AR5K_INI_RFGAIN_5GHZ;
724 			ee_mode = AR5K_EEPROM_MODE_11A;
725 			break;
726 		case CHANNEL_G:
727 			mode = AR5K_MODE_11G;
728 			freq = AR5K_INI_RFGAIN_2GHZ;
729 			ee_mode = AR5K_EEPROM_MODE_11G;
730 			break;
731 		case CHANNEL_B:
732 			mode = AR5K_MODE_11B;
733 			freq = AR5K_INI_RFGAIN_2GHZ;
734 			ee_mode = AR5K_EEPROM_MODE_11B;
735 			break;
736 		case CHANNEL_T:
737 			mode = AR5K_MODE_11A_TURBO;
738 			freq = AR5K_INI_RFGAIN_5GHZ;
739 			ee_mode = AR5K_EEPROM_MODE_11A;
740 			break;
741 		case CHANNEL_TG:
742 			if (ah->ah_version == AR5K_AR5211) {
743 				DBG("ath5k: TurboG not available on 5211\n");
744 				return -EINVAL;
745 			}
746 			mode = AR5K_MODE_11G_TURBO;
747 			freq = AR5K_INI_RFGAIN_2GHZ;
748 			ee_mode = AR5K_EEPROM_MODE_11G;
749 			break;
750 		case CHANNEL_XR:
751 			if (ah->ah_version == AR5K_AR5211) {
752 				DBG("ath5k: XR mode not available on 5211\n");
753 				return -EINVAL;
754 			}
755 			mode = AR5K_MODE_XR;
756 			freq = AR5K_INI_RFGAIN_5GHZ;
757 			ee_mode = AR5K_EEPROM_MODE_11A;
758 			break;
759 		default:
760 			DBG("ath5k: invalid channel (%d MHz)\n",
761 			    channel->center_freq);
762 			return -EINVAL;
763 		}
764 
765 		if (change_channel) {
766 			/*
767 			 * Save frame sequence count
768 			 * For revs. after Oahu, only save
769 			 * seq num for DCU 0 (Global seq num)
770 			 */
771 			if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
772 
773 				for (i = 0; i < 10; i++)
774 					s_seq[i] = ath5k_hw_reg_read(ah,
775 						AR5K_QUEUE_DCU_SEQNUM(i));
776 
777 			} else {
778 				s_seq[0] = ath5k_hw_reg_read(ah,
779 						AR5K_QUEUE_DCU_SEQNUM(0));
780 			}
781 		}
782 
783 		/* Save default antenna */
784 		s_ant = ath5k_hw_reg_read(ah, AR5K_DEFAULT_ANTENNA);
785 
786 		if (ah->ah_version == AR5K_AR5212) {
787 			/* Since we are going to write rf buffer
788 			 * check if we have any pending gain_F
789 			 * optimization settings */
790 			if (change_channel && ah->ah_rf_banks != NULL)
791 				ath5k_hw_gainf_calibrate(ah);
792 		}
793 	}
794 
795 	/*GPIOs*/
796 	s_led[0] = ath5k_hw_reg_read(ah, AR5K_PCICFG) &
797 					AR5K_PCICFG_LEDSTATE;
798 	s_led[1] = ath5k_hw_reg_read(ah, AR5K_GPIOCR);
799 	s_led[2] = ath5k_hw_reg_read(ah, AR5K_GPIODO);
800 
801 	/* AR5K_STA_ID1 flags, only preserve antenna
802 	 * settings and ack/cts rate mode */
803 	staid1_flags = ath5k_hw_reg_read(ah, AR5K_STA_ID1) &
804 			(AR5K_STA_ID1_DEFAULT_ANTENNA |
805 			AR5K_STA_ID1_DESC_ANTENNA |
806 			AR5K_STA_ID1_RTS_DEF_ANTENNA |
807 			AR5K_STA_ID1_ACKCTS_6MB |
808 			AR5K_STA_ID1_BASE_RATE_11B |
809 			AR5K_STA_ID1_SELFGEN_DEF_ANT);
810 
811 	/* Wakeup the device */
812 	ret = ath5k_hw_nic_wakeup(ah, channel->hw_value, 0);
813 	if (ret)
814 		return ret;
815 
816 	/* PHY access enable */
817 	if (ah->ah_mac_srev >= AR5K_SREV_AR5211)
818 		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
819 	else
820 		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ | 0x40,
821 							AR5K_PHY(0));
822 
823 	/* Write initial settings */
824 	ret = ath5k_hw_write_initvals(ah, mode, change_channel);
825 	if (ret)
826 		return ret;
827 
828 	/*
829 	 * 5211/5212 Specific
830 	 */
831 	if (ah->ah_version != AR5K_AR5210) {
832 
833 		/*
834 		 * Write initial RF gain settings
835 		 * This should work for both 5111/5112
836 		 */
837 		ret = ath5k_hw_rfgain_init(ah, freq);
838 		if (ret)
839 			return ret;
840 
841 		mdelay(1);
842 
843 		/*
844 		 * Tweak initval settings for revised
845 		 * chipsets and add some more config
846 		 * bits
847 		 */
848 		ath5k_hw_tweak_initval_settings(ah, channel);
849 
850 		/*
851 		 * Set TX power (FIXME)
852 		 */
853 		ret = ath5k_hw_txpower(ah, channel, ee_mode,
854 					AR5K_TUNE_DEFAULT_TXPOWER);
855 		if (ret)
856 			return ret;
857 
858 		/* Write rate duration table only on AR5212 */
859 		if (ah->ah_version == AR5K_AR5212)
860 			ath5k_hw_write_rate_duration(ah, mode);
861 
862 		/*
863 		 * Write RF buffer
864 		 */
865 		ret = ath5k_hw_rfregs_init(ah, channel, mode);
866 		if (ret)
867 			return ret;
868 
869 
870 		/* Write OFDM timings on 5212*/
871 		if (ah->ah_version == AR5K_AR5212 &&
872 			channel->hw_value & CHANNEL_OFDM) {
873 			ret = ath5k_hw_write_ofdm_timings(ah, channel);
874 			if (ret)
875 				return ret;
876 		}
877 
878 		/*Enable/disable 802.11b mode on 5111
879 		(enable 2111 frequency converter + CCK)*/
880 		if (ah->ah_radio == AR5K_RF5111) {
881 			if (mode == AR5K_MODE_11B)
882 				AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
883 				    AR5K_TXCFG_B_MODE);
884 			else
885 				AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
886 				    AR5K_TXCFG_B_MODE);
887 		}
888 
889 		/*
890 		 * In case a fixed antenna was set as default
891 		 * write the same settings on both AR5K_PHY_ANT_SWITCH_TABLE
892 		 * registers.
893 		 */
894 		if (s_ant != 0) {
895 			if (s_ant == AR5K_ANT_FIXED_A) /* 1 - Main */
896 				ant[0] = ant[1] = AR5K_ANT_FIXED_A;
897 			else	/* 2 - Aux */
898 				ant[0] = ant[1] = AR5K_ANT_FIXED_B;
899 		} else {
900 			ant[0] = AR5K_ANT_FIXED_A;
901 			ant[1] = AR5K_ANT_FIXED_B;
902 		}
903 
904 		/* Commit values from EEPROM */
905 		ath5k_hw_commit_eeprom_settings(ah, channel, ant, ee_mode);
906 
907 	} else {
908 		/*
909 		 * For 5210 we do all initialization using
910 		 * initvals, so we don't have to modify
911 		 * any settings (5210 also only supports
912 		 * a/aturbo modes)
913 		 */
914 		mdelay(1);
915 		/* Disable phy and wait */
916 		ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
917 		mdelay(1);
918 	}
919 
920 	/*
921 	 * Restore saved values
922 	 */
923 
924 	/*DCU/Antenna selection not available on 5210*/
925 	if (ah->ah_version != AR5K_AR5210) {
926 
927 		if (change_channel) {
928 			if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
929 				for (i = 0; i < 10; i++)
930 					ath5k_hw_reg_write(ah, s_seq[i],
931 						AR5K_QUEUE_DCU_SEQNUM(i));
932 			} else {
933 				ath5k_hw_reg_write(ah, s_seq[0],
934 					AR5K_QUEUE_DCU_SEQNUM(0));
935 			}
936 		}
937 
938 		ath5k_hw_reg_write(ah, s_ant, AR5K_DEFAULT_ANTENNA);
939 	}
940 
941 	/* Ledstate */
942 	AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, s_led[0]);
943 
944 	/* Gpio settings */
945 	ath5k_hw_reg_write(ah, s_led[1], AR5K_GPIOCR);
946 	ath5k_hw_reg_write(ah, s_led[2], AR5K_GPIODO);
947 
948 	/* Restore sta_id flags and preserve our mac address*/
949 	ath5k_hw_reg_write(ah, AR5K_LOW_ID(ah->ah_sta_id),
950 						AR5K_STA_ID0);
951 	ath5k_hw_reg_write(ah, staid1_flags | AR5K_HIGH_ID(ah->ah_sta_id),
952 						AR5K_STA_ID1);
953 
954 
955 	/*
956 	 * Configure PCU
957 	 */
958 
959 	/* Restore bssid and bssid mask */
960 	/* XXX: add ah->aid once mac80211 gives this to us */
961 	ath5k_hw_set_associd(ah, ah->ah_bssid, 0);
962 
963 	/* Set PCU config */
964 	ath5k_hw_set_opmode(ah);
965 
966 	/* Clear any pending interrupts
967 	 * PISR/SISR Not available on 5210 */
968 	if (ah->ah_version != AR5K_AR5210)
969 		ath5k_hw_reg_write(ah, 0xffffffff, AR5K_PISR);
970 
971 	/* Set RSSI/BRSSI thresholds
972 	 *
973 	 * Note: If we decide to set this value
974 	 * dynamicaly, have in mind that when AR5K_RSSI_THR
975 	 * register is read it might return 0x40 if we haven't
976 	 * wrote anything to it plus BMISS RSSI threshold is zeroed.
977 	 * So doing a save/restore procedure here isn't the right
978 	 * choice. Instead store it on ath5k_hw */
979 	ath5k_hw_reg_write(ah, (AR5K_TUNE_RSSI_THRES |
980 				AR5K_TUNE_BMISS_THRES <<
981 				AR5K_RSSI_THR_BMISS_S),
982 				AR5K_RSSI_THR);
983 
984 	/* MIC QoS support */
985 	if (ah->ah_mac_srev >= AR5K_SREV_AR2413) {
986 		ath5k_hw_reg_write(ah, 0x000100aa, AR5K_MIC_QOS_CTL);
987 		ath5k_hw_reg_write(ah, 0x00003210, AR5K_MIC_QOS_SEL);
988 	}
989 
990 	/* QoS NOACK Policy */
991 	if (ah->ah_version == AR5K_AR5212) {
992 		ath5k_hw_reg_write(ah,
993 			AR5K_REG_SM(2, AR5K_QOS_NOACK_2BIT_VALUES) |
994 			AR5K_REG_SM(5, AR5K_QOS_NOACK_BIT_OFFSET)  |
995 			AR5K_REG_SM(0, AR5K_QOS_NOACK_BYTE_OFFSET),
996 			AR5K_QOS_NOACK);
997 	}
998 
999 
1000 	/*
1001 	 * Configure PHY
1002 	 */
1003 
1004 	/* Set channel on PHY */
1005 	ret = ath5k_hw_channel(ah, channel);
1006 	if (ret)
1007 		return ret;
1008 
1009 	/*
1010 	 * Enable the PHY and wait until completion
1011 	 * This includes BaseBand and Synthesizer
1012 	 * activation.
1013 	 */
1014 	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1015 
1016 	/*
1017 	 * On 5211+ read activation -> rx delay
1018 	 * and use it.
1019 	 *
1020 	 * TODO: Half/quarter rate support
1021 	 */
1022 	if (ah->ah_version != AR5K_AR5210) {
1023 		u32 delay;
1024 		delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
1025 			AR5K_PHY_RX_DELAY_M;
1026 		delay = (channel->hw_value & CHANNEL_CCK) ?
1027 			((delay << 2) / 22) : (delay / 10);
1028 
1029 		udelay(100 + (2 * delay));
1030 	} else {
1031 		mdelay(1);
1032 	}
1033 
1034 	/*
1035 	 * Perform ADC test to see if baseband is ready
1036 	 * Set tx hold and check adc test register
1037 	 */
1038 	phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
1039 	ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
1040 	for (i = 0; i <= 20; i++) {
1041 		if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
1042 			break;
1043 		udelay(200);
1044 	}
1045 	ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
1046 
1047 	/*
1048 	 * Start automatic gain control calibration
1049 	 *
1050 	 * During AGC calibration RX path is re-routed to
1051 	 * a power detector so we don't receive anything.
1052 	 *
1053 	 * This method is used to calibrate some static offsets
1054 	 * used together with on-the fly I/Q calibration (the
1055 	 * one performed via ath5k_hw_phy_calibrate), that doesn't
1056 	 * interrupt rx path.
1057 	 *
1058 	 * While rx path is re-routed to the power detector we also
1059 	 * start a noise floor calibration, to measure the
1060 	 * card's noise floor (the noise we measure when we are not
1061 	 * transmiting or receiving anything).
1062 	 *
1063 	 * If we are in a noisy environment AGC calibration may time
1064 	 * out and/or noise floor calibration might timeout.
1065 	 */
1066 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1067 				AR5K_PHY_AGCCTL_CAL);
1068 
1069 	/* At the same time start I/Q calibration for QAM constellation
1070 	 * -no need for CCK- */
1071 	ah->ah_calibration = 0;
1072 	if (!(mode == AR5K_MODE_11B)) {
1073 		ah->ah_calibration = 1;
1074 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1075 				AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1076 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
1077 				AR5K_PHY_IQ_RUN);
1078 	}
1079 
1080 	/* Wait for gain calibration to finish (we check for I/Q calibration
1081 	 * during ath5k_phy_calibrate) */
1082 	if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1083 			AR5K_PHY_AGCCTL_CAL, 0, 0)) {
1084 		DBG("ath5k: gain calibration timeout (%d MHz)\n",
1085 		    channel->center_freq);
1086 	}
1087 
1088 	/*
1089 	 * If we run NF calibration before AGC, it always times out.
1090 	 * Binary HAL starts NF and AGC calibration at the same time
1091 	 * and only waits for AGC to finish. Also if AGC or NF cal.
1092 	 * times out, reset doesn't fail on binary HAL. I believe
1093 	 * that's wrong because since rx path is routed to a detector,
1094 	 * if cal. doesn't finish we won't have RX. Sam's HAL for AR5210/5211
1095 	 * enables noise floor calibration after offset calibration and if noise
1096 	 * floor calibration fails, reset fails. I believe that's
1097 	 * a better approach, we just need to find a polling interval
1098 	 * that suits best, even if reset continues we need to make
1099 	 * sure that rx path is ready.
1100 	 */
1101 	ath5k_hw_noise_floor_calibration(ah, channel->center_freq);
1102 
1103 
1104 	/*
1105 	 * Configure QCUs/DCUs
1106 	 */
1107 
1108 	/* TODO: HW Compression support for data queues */
1109 	/* TODO: Burst prefetch for data queues */
1110 
1111 	/*
1112 	 * Reset queues and start beacon timers at the end of the reset routine
1113 	 * This also sets QCU mask on each DCU for 1:1 qcu to dcu mapping
1114 	 * Note: If we want we can assign multiple qcus on one dcu.
1115 	 */
1116 	ret = ath5k_hw_reset_tx_queue(ah);
1117 	if (ret) {
1118 		DBG("ath5k: failed to reset TX queue\n");
1119 		return ret;
1120 	}
1121 
1122 	/*
1123 	 * Configure DMA/Interrupts
1124 	 */
1125 
1126 	/*
1127 	 * Set Rx/Tx DMA Configuration
1128 	 *
1129 	 * Set standard DMA size (128). Note that
1130 	 * a DMA size of 512 causes rx overruns and tx errors
1131 	 * on pci-e cards (tested on 5424 but since rx overruns
1132 	 * also occur on 5416/5418 with madwifi we set 128
1133 	 * for all PCI-E cards to be safe).
1134 	 *
1135 	 * XXX: need to check 5210 for this
1136 	 * TODO: Check out tx triger level, it's always 64 on dumps but I
1137 	 * guess we can tweak it and see how it goes ;-)
1138 	 */
1139 	if (ah->ah_version != AR5K_AR5210) {
1140 		AR5K_REG_WRITE_BITS(ah, AR5K_TXCFG,
1141 			AR5K_TXCFG_SDMAMR, AR5K_DMASIZE_128B);
1142 		AR5K_REG_WRITE_BITS(ah, AR5K_RXCFG,
1143 			AR5K_RXCFG_SDMAMW, AR5K_DMASIZE_128B);
1144 	}
1145 
1146 	/* Pre-enable interrupts on 5211/5212*/
1147 	if (ah->ah_version != AR5K_AR5210)
1148 		ath5k_hw_set_imr(ah, ah->ah_imr);
1149 
1150 	/*
1151 	 * Setup RFKill interrupt if rfkill flag is set on eeprom.
1152 	 * TODO: Use gpio pin and polarity infos from eeprom
1153 	 * TODO: Handle this in ath5k_intr because it'll result
1154 	 * 	 a nasty interrupt storm.
1155 	 */
1156 #if 0
1157 	if (AR5K_EEPROM_HDR_RFKILL(ah->ah_capabilities.cap_eeprom.ee_header)) {
1158 		ath5k_hw_set_gpio_input(ah, 0);
1159 		ah->ah_gpio[0] = ath5k_hw_get_gpio(ah, 0);
1160 		if (ah->ah_gpio[0] == 0)
1161 			ath5k_hw_set_gpio_intr(ah, 0, 1);
1162 		else
1163 			ath5k_hw_set_gpio_intr(ah, 0, 0);
1164 	}
1165 #endif
1166 
1167 	/*
1168 	 * Disable beacons and reset the register
1169 	 */
1170 	AR5K_REG_DISABLE_BITS(ah, AR5K_BEACON, AR5K_BEACON_ENABLE |
1171 			AR5K_BEACON_RESET_TSF);
1172 
1173 	return 0;
1174 }
1175 
1176 #undef _ATH5K_RESET
1177