1 /*
2 * Copyright 2016 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "GrShape.h"
9
operator =(const GrShape & that)10 GrShape& GrShape::operator=(const GrShape& that) {
11 fStyle = that.fStyle;
12 this->changeType(that.fType, Type::kPath == that.fType ? &that.path() : nullptr);
13 switch (fType) {
14 case Type::kEmpty:
15 break;
16 case Type::kRRect:
17 fRRectData = that.fRRectData;
18 break;
19 case Type::kLine:
20 fLineData = that.fLineData;
21 break;
22 case Type::kPath:
23 fPathData.fGenID = that.fPathData.fGenID;
24 break;
25 }
26 fInheritedKey.reset(that.fInheritedKey.count());
27 sk_careful_memcpy(fInheritedKey.get(), that.fInheritedKey.get(),
28 sizeof(uint32_t) * fInheritedKey.count());
29 return *this;
30 }
31
bounds() const32 SkRect GrShape::bounds() const {
33 // Bounds where left == bottom or top == right can indicate a line or point shape. We return
34 // inverted bounds for a truly empty shape.
35 static constexpr SkRect kInverted = SkRect::MakeLTRB(1, 1, -1, -1);
36 switch (fType) {
37 case Type::kEmpty:
38 return kInverted;
39 case Type::kLine: {
40 SkRect bounds;
41 if (fLineData.fPts[0].fX < fLineData.fPts[1].fX) {
42 bounds.fLeft = fLineData.fPts[0].fX;
43 bounds.fRight = fLineData.fPts[1].fX;
44 } else {
45 bounds.fLeft = fLineData.fPts[1].fX;
46 bounds.fRight = fLineData.fPts[0].fX;
47 }
48 if (fLineData.fPts[0].fY < fLineData.fPts[1].fY) {
49 bounds.fTop = fLineData.fPts[0].fY;
50 bounds.fBottom = fLineData.fPts[1].fY;
51 } else {
52 bounds.fTop = fLineData.fPts[1].fY;
53 bounds.fBottom = fLineData.fPts[0].fY;
54 }
55 return bounds;
56 }
57 case Type::kRRect:
58 return fRRectData.fRRect.getBounds();
59 case Type::kPath:
60 return this->path().getBounds();
61 }
62 SkFAIL("Unknown shape type");
63 return kInverted;
64 }
65
styledBounds() const66 SkRect GrShape::styledBounds() const {
67 if (Type::kEmpty == fType && !fStyle.hasNonDashPathEffect()) {
68 return SkRect::MakeEmpty();
69 }
70 SkRect bounds;
71 fStyle.adjustBounds(&bounds, this->bounds());
72 return bounds;
73 }
74
75 // If the path is small enough to be keyed from its data this returns key length, otherwise -1.
path_key_from_data_size(const SkPath & path)76 static int path_key_from_data_size(const SkPath& path) {
77 const int verbCnt = path.countVerbs();
78 if (verbCnt > GrShape::kMaxKeyFromDataVerbCnt) {
79 return -1;
80 }
81 const int pointCnt = path.countPoints();
82 const int conicWeightCnt = SkPathPriv::ConicWeightCnt(path);
83
84 GR_STATIC_ASSERT(sizeof(SkPoint) == 2 * sizeof(uint32_t));
85 GR_STATIC_ASSERT(sizeof(SkScalar) == sizeof(uint32_t));
86 // 2 is for the verb cnt and a fill type. Each verb is a byte but we'll pad the verb data out to
87 // a uint32_t length.
88 return 2 + (SkAlign4(verbCnt) >> 2) + 2 * pointCnt + conicWeightCnt;
89 }
90
91 // Writes the path data key into the passed pointer.
write_path_key_from_data(const SkPath & path,uint32_t * origKey)92 static void write_path_key_from_data(const SkPath& path, uint32_t* origKey) {
93 uint32_t* key = origKey;
94 // The check below should take care of negative values casted positive.
95 const int verbCnt = path.countVerbs();
96 const int pointCnt = path.countPoints();
97 const int conicWeightCnt = SkPathPriv::ConicWeightCnt(path);
98 SkASSERT(verbCnt <= GrShape::kMaxKeyFromDataVerbCnt);
99 SkASSERT(pointCnt && verbCnt);
100 *key++ = path.getFillType();
101 *key++ = verbCnt;
102 memcpy(key, SkPathPriv::VerbData(path), verbCnt * sizeof(uint8_t));
103 int verbKeySize = SkAlign4(verbCnt);
104 // pad out to uint32_t alignment using value that will stand out when debugging.
105 uint8_t* pad = reinterpret_cast<uint8_t*>(key)+ verbCnt;
106 memset(pad, 0xDE, verbKeySize - verbCnt);
107 key += verbKeySize >> 2;
108
109 memcpy(key, SkPathPriv::PointData(path), sizeof(SkPoint) * pointCnt);
110 GR_STATIC_ASSERT(sizeof(SkPoint) == 2 * sizeof(uint32_t));
111 key += 2 * pointCnt;
112 sk_careful_memcpy(key, SkPathPriv::ConicWeightData(path), sizeof(SkScalar) * conicWeightCnt);
113 GR_STATIC_ASSERT(sizeof(SkScalar) == sizeof(uint32_t));
114 SkDEBUGCODE(key += conicWeightCnt);
115 SkASSERT(key - origKey == path_key_from_data_size(path));
116 }
117
unstyledKeySize() const118 int GrShape::unstyledKeySize() const {
119 if (fInheritedKey.count()) {
120 return fInheritedKey.count();
121 }
122 switch (fType) {
123 case Type::kEmpty:
124 return 1;
125 case Type::kRRect:
126 SkASSERT(!fInheritedKey.count());
127 SkASSERT(0 == SkRRect::kSizeInMemory % sizeof(uint32_t));
128 // + 1 for the direction, start index, and inverseness.
129 return SkRRect::kSizeInMemory / sizeof(uint32_t) + 1;
130 case Type::kLine:
131 GR_STATIC_ASSERT(2 * sizeof(uint32_t) == sizeof(SkPoint));
132 // 4 for the end points and 1 for the inverseness
133 return 5;
134 case Type::kPath: {
135 if (0 == fPathData.fGenID) {
136 return -1;
137 }
138 int dataKeySize = path_key_from_data_size(fPathData.fPath);
139 if (dataKeySize >= 0) {
140 return dataKeySize;
141 }
142 // The key is the path ID and fill type.
143 return 2;
144 }
145 }
146 SkFAIL("Should never get here.");
147 return 0;
148 }
149
writeUnstyledKey(uint32_t * key) const150 void GrShape::writeUnstyledKey(uint32_t* key) const {
151 SkASSERT(this->unstyledKeySize());
152 SkDEBUGCODE(uint32_t* origKey = key;)
153 if (fInheritedKey.count()) {
154 memcpy(key, fInheritedKey.get(), sizeof(uint32_t) * fInheritedKey.count());
155 SkDEBUGCODE(key += fInheritedKey.count();)
156 } else {
157 switch (fType) {
158 case Type::kEmpty:
159 *key++ = 1;
160 break;
161 case Type::kRRect:
162 fRRectData.fRRect.writeToMemory(key);
163 key += SkRRect::kSizeInMemory / sizeof(uint32_t);
164 *key = (fRRectData.fDir == SkPath::kCCW_Direction) ? (1 << 31) : 0;
165 *key |= fRRectData.fInverted ? (1 << 30) : 0;
166 *key++ |= fRRectData.fStart;
167 SkASSERT(fRRectData.fStart < 8);
168 break;
169 case Type::kLine:
170 memcpy(key, fLineData.fPts, 2 * sizeof(SkPoint));
171 key += 4;
172 *key++ = fLineData.fInverted ? 1 : 0;
173 break;
174 case Type::kPath: {
175 SkASSERT(fPathData.fGenID);
176 int dataKeySize = path_key_from_data_size(fPathData.fPath);
177 if (dataKeySize >= 0) {
178 write_path_key_from_data(fPathData.fPath, key);
179 return;
180 }
181 *key++ = fPathData.fGenID;
182 // We could canonicalize the fill rule for paths that don't differentiate between
183 // even/odd or winding fill (e.g. convex).
184 *key++ = this->path().getFillType();
185 break;
186 }
187 }
188 }
189 SkASSERT(key - origKey == this->unstyledKeySize());
190 }
191
setInheritedKey(const GrShape & parent,GrStyle::Apply apply,SkScalar scale)192 void GrShape::setInheritedKey(const GrShape &parent, GrStyle::Apply apply, SkScalar scale) {
193 SkASSERT(!fInheritedKey.count());
194 // If the output shape turns out to be simple, then we will just use its geometric key
195 if (Type::kPath == fType) {
196 // We want ApplyFullStyle(ApplyPathEffect(shape)) to have the same key as
197 // ApplyFullStyle(shape).
198 // The full key is structured as (geo,path_effect,stroke).
199 // If we do ApplyPathEffect we get get,path_effect as the inherited key. If we then
200 // do ApplyFullStyle we'll memcpy geo,path_effect into the new inherited key
201 // and then append the style key (which should now be stroke only) at the end.
202 int parentCnt = parent.fInheritedKey.count();
203 bool useParentGeoKey = !parentCnt;
204 if (useParentGeoKey) {
205 parentCnt = parent.unstyledKeySize();
206 if (parentCnt < 0) {
207 // The parent's geometry has no key so we will have no key.
208 fPathData.fGenID = 0;
209 return;
210 }
211 }
212 uint32_t styleKeyFlags = 0;
213 if (parent.knownToBeClosed()) {
214 styleKeyFlags |= GrStyle::kClosed_KeyFlag;
215 }
216 if (parent.asLine(nullptr, nullptr)) {
217 styleKeyFlags |= GrStyle::kNoJoins_KeyFlag;
218 }
219 int styleCnt = GrStyle::KeySize(parent.fStyle, apply, styleKeyFlags);
220 if (styleCnt < 0) {
221 // The style doesn't allow a key, set the path gen ID to 0 so that we fail when
222 // we try to get a key for the shape.
223 fPathData.fGenID = 0;
224 return;
225 }
226 fInheritedKey.reset(parentCnt + styleCnt);
227 if (useParentGeoKey) {
228 // This will be the geo key.
229 parent.writeUnstyledKey(fInheritedKey.get());
230 } else {
231 // This should be (geo,path_effect).
232 memcpy(fInheritedKey.get(), parent.fInheritedKey.get(),
233 parentCnt * sizeof(uint32_t));
234 }
235 // Now turn (geo,path_effect) or (geo) into (geo,path_effect,stroke)
236 GrStyle::WriteKey(fInheritedKey.get() + parentCnt, parent.fStyle, apply, scale,
237 styleKeyFlags);
238 }
239 }
240
GrShape(const GrShape & that)241 GrShape::GrShape(const GrShape& that) : fStyle(that.fStyle) {
242 const SkPath* thatPath = Type::kPath == that.fType ? &that.fPathData.fPath : nullptr;
243 this->initType(that.fType, thatPath);
244 switch (fType) {
245 case Type::kEmpty:
246 break;
247 case Type::kRRect:
248 fRRectData = that.fRRectData;
249 break;
250 case Type::kLine:
251 fLineData = that.fLineData;
252 break;
253 case Type::kPath:
254 fPathData.fGenID = that.fPathData.fGenID;
255 break;
256 }
257 fInheritedKey.reset(that.fInheritedKey.count());
258 sk_careful_memcpy(fInheritedKey.get(), that.fInheritedKey.get(),
259 sizeof(uint32_t) * fInheritedKey.count());
260 }
261
GrShape(const GrShape & parent,GrStyle::Apply apply,SkScalar scale)262 GrShape::GrShape(const GrShape& parent, GrStyle::Apply apply, SkScalar scale) {
263 // TODO: Add some quantization of scale for better cache performance here or leave that up
264 // to caller?
265 // TODO: For certain shapes and stroke params we could ignore the scale. (e.g. miter or bevel
266 // stroke of a rect).
267 if (!parent.style().applies() ||
268 (GrStyle::Apply::kPathEffectOnly == apply && !parent.style().pathEffect())) {
269 this->initType(Type::kEmpty);
270 *this = parent;
271 return;
272 }
273
274 SkPathEffect* pe = parent.fStyle.pathEffect();
275 SkTLazy<SkPath> tmpPath;
276 const GrShape* parentForKey = &parent;
277 SkTLazy<GrShape> tmpParent;
278 this->initType(Type::kPath);
279 fPathData.fGenID = 0;
280 if (pe) {
281 const SkPath* srcForPathEffect;
282 if (parent.fType == Type::kPath) {
283 srcForPathEffect = &parent.path();
284 } else {
285 srcForPathEffect = tmpPath.init();
286 parent.asPath(tmpPath.get());
287 }
288 // Should we consider bounds? Would have to include in key, but it'd be nice to know
289 // if the bounds actually modified anything before including in key.
290 SkStrokeRec strokeRec = parent.fStyle.strokeRec();
291 if (!parent.fStyle.applyPathEffectToPath(&this->path(), &strokeRec, *srcForPathEffect,
292 scale)) {
293 tmpParent.init(*srcForPathEffect, GrStyle(strokeRec, nullptr));
294 *this = tmpParent.get()->applyStyle(apply, scale);
295 return;
296 }
297 // A path effect has access to change the res scale but we aren't expecting it to and it
298 // would mess up our key computation.
299 SkASSERT(scale == strokeRec.getResScale());
300 if (GrStyle::Apply::kPathEffectAndStrokeRec == apply && strokeRec.needToApply()) {
301 // The intermediate shape may not be a general path. If we we're just applying
302 // the path effect then attemptToReduceFromPath would catch it. This means that
303 // when we subsequently applied the remaining strokeRec we would have a non-path
304 // parent shape that would be used to determine the the stroked path's key.
305 // We detect that case here and change parentForKey to a temporary that represents
306 // the simpler shape so that applying both path effect and the strokerec all at
307 // once produces the same key.
308 tmpParent.init(this->path(), GrStyle(strokeRec, nullptr));
309 tmpParent.get()->setInheritedKey(parent, GrStyle::Apply::kPathEffectOnly, scale);
310 if (!tmpPath.isValid()) {
311 tmpPath.init();
312 }
313 tmpParent.get()->asPath(tmpPath.get());
314 SkStrokeRec::InitStyle fillOrHairline;
315 // The parent shape may have simplified away the strokeRec, check for that here.
316 if (tmpParent.get()->style().applies()) {
317 SkAssertResult(tmpParent.get()->style().applyToPath(&this->path(), &fillOrHairline,
318 *tmpPath.get(), scale));
319 } else if (tmpParent.get()->style().isSimpleFill()) {
320 fillOrHairline = SkStrokeRec::kFill_InitStyle;
321 } else {
322 SkASSERT(tmpParent.get()->style().isSimpleHairline());
323 fillOrHairline = SkStrokeRec::kHairline_InitStyle;
324 }
325 fStyle.resetToInitStyle(fillOrHairline);
326 parentForKey = tmpParent.get();
327 } else {
328 fStyle = GrStyle(strokeRec, nullptr);
329 }
330 } else {
331 const SkPath* srcForParentStyle;
332 if (parent.fType == Type::kPath) {
333 srcForParentStyle = &parent.path();
334 } else {
335 srcForParentStyle = tmpPath.init();
336 parent.asPath(tmpPath.get());
337 }
338 SkStrokeRec::InitStyle fillOrHairline;
339 SkASSERT(parent.fStyle.applies());
340 SkASSERT(!parent.fStyle.pathEffect());
341 SkAssertResult(parent.fStyle.applyToPath(&this->path(), &fillOrHairline, *srcForParentStyle,
342 scale));
343 fStyle.resetToInitStyle(fillOrHairline);
344 }
345 this->attemptToSimplifyPath();
346 this->setInheritedKey(*parentForKey, apply, scale);
347 }
348
attemptToSimplifyPath()349 void GrShape::attemptToSimplifyPath() {
350 SkRect rect;
351 SkRRect rrect;
352 SkPath::Direction rrectDir;
353 unsigned rrectStart;
354 bool inverted = this->path().isInverseFillType();
355 SkPoint pts[2];
356 if (this->path().isEmpty()) {
357 this->changeType(Type::kEmpty);
358 } else if (this->path().isLine(pts)) {
359 this->changeType(Type::kLine);
360 fLineData.fPts[0] = pts[0];
361 fLineData.fPts[1] = pts[1];
362 fLineData.fInverted = inverted;
363 } else if (this->path().isRRect(&rrect, &rrectDir, &rrectStart)) {
364 this->changeType(Type::kRRect);
365 fRRectData.fRRect = rrect;
366 fRRectData.fDir = rrectDir;
367 fRRectData.fStart = rrectStart;
368 fRRectData.fInverted = inverted;
369 // Currently SkPath does not acknowledge that empty, rect, or oval subtypes as rrects.
370 SkASSERT(!fRRectData.fRRect.isEmpty());
371 SkASSERT(fRRectData.fRRect.getType() != SkRRect::kRect_Type);
372 SkASSERT(fRRectData.fRRect.getType() != SkRRect::kOval_Type);
373 } else if (this->path().isOval(&rect, &rrectDir, &rrectStart)) {
374 this->changeType(Type::kRRect);
375 fRRectData.fRRect.setOval(rect);
376 fRRectData.fDir = rrectDir;
377 fRRectData.fInverted = inverted;
378 // convert from oval indexing to rrect indexiing.
379 fRRectData.fStart = 2 * rrectStart;
380 } else if (SkPathPriv::IsSimpleClosedRect(this->path(), &rect, &rrectDir, &rrectStart)) {
381 this->changeType(Type::kRRect);
382 // When there is a path effect we restrict rect detection to the narrower API that
383 // gives us the starting position. Otherwise, we will retry with the more aggressive
384 // isRect().
385 fRRectData.fRRect.setRect(rect);
386 fRRectData.fInverted = inverted;
387 fRRectData.fDir = rrectDir;
388 // convert from rect indexing to rrect indexiing.
389 fRRectData.fStart = 2 * rrectStart;
390 } else if (!this->style().hasPathEffect()) {
391 bool closed;
392 if (this->path().isRect(&rect, &closed, nullptr)) {
393 if (closed || this->style().isSimpleFill()) {
394 this->changeType(Type::kRRect);
395 fRRectData.fRRect.setRect(rect);
396 // Since there is no path effect the dir and start index is immaterial.
397 fRRectData.fDir = kDefaultRRectDir;
398 fRRectData.fStart = kDefaultRRectStart;
399 // There isn't dashing so we will have to preserver inverseness.
400 fRRectData.fInverted = inverted;
401 }
402 }
403 }
404 if (Type::kPath != fType) {
405 fInheritedKey.reset(0);
406 if (Type::kRRect == fType) {
407 this->attemptToSimplifyRRect();
408 } else if (Type::kLine == fType) {
409 this->attemptToSimplifyLine();
410 }
411 } else {
412 if (fInheritedKey.count() || this->path().isVolatile()) {
413 fPathData.fGenID = 0;
414 } else {
415 fPathData.fGenID = this->path().getGenerationID();
416 }
417 if (!this->style().hasNonDashPathEffect()) {
418 if (this->style().strokeRec().getStyle() == SkStrokeRec::kStroke_Style ||
419 this->style().strokeRec().getStyle() == SkStrokeRec::kHairline_Style) {
420 // Stroke styles don't differentiate between winding and even/odd.
421 // Moreover, dashing ignores inverseness (skbug.com/5421)
422 bool inverse = !this->style().isDashed() && this->path().isInverseFillType();
423 if (inverse) {
424 this->path().setFillType(kDefaultPathInverseFillType);
425 } else {
426 this->path().setFillType(kDefaultPathFillType);
427 }
428 } else if (this->path().isConvex()) {
429 // There is no distinction between even/odd and non-zero winding count for convex
430 // paths.
431 if (this->path().isInverseFillType()) {
432 this->path().setFillType(kDefaultPathInverseFillType);
433 } else {
434 this->path().setFillType(kDefaultPathFillType);
435 }
436 }
437 }
438 }
439 }
440
attemptToSimplifyRRect()441 void GrShape::attemptToSimplifyRRect() {
442 SkASSERT(Type::kRRect == fType);
443 SkASSERT(!fInheritedKey.count());
444 if (fRRectData.fRRect.isEmpty()) {
445 fType = Type::kEmpty;
446 return;
447 }
448 if (!this->style().hasPathEffect()) {
449 fRRectData.fDir = kDefaultRRectDir;
450 fRRectData.fStart = kDefaultRRectStart;
451 } else if (fStyle.isDashed()) {
452 // Dashing ignores the inverseness (currently). skbug.com/5421
453 fRRectData.fInverted = false;
454 }
455 // Turn a stroke-and-filled miter rect into a filled rect. TODO: more rrect stroke shortcuts.
456 if (!fStyle.hasPathEffect() &&
457 fStyle.strokeRec().getStyle() == SkStrokeRec::kStrokeAndFill_Style &&
458 fStyle.strokeRec().getJoin() == SkPaint::kMiter_Join &&
459 fStyle.strokeRec().getMiter() >= SK_ScalarSqrt2 &&
460 fRRectData.fRRect.isRect()) {
461 SkScalar r = fStyle.strokeRec().getWidth() / 2;
462 fRRectData.fRRect = SkRRect::MakeRect(fRRectData.fRRect.rect().makeOutset(r, r));
463 fStyle = GrStyle::SimpleFill();
464 }
465 }
466
attemptToSimplifyLine()467 void GrShape::attemptToSimplifyLine() {
468 SkASSERT(Type::kLine == fType);
469 SkASSERT(!fInheritedKey.count());
470 if (fStyle.isDashed()) {
471 // Dashing ignores inverseness.
472 fLineData.fInverted = false;
473 return;
474 } else if (fStyle.hasPathEffect()) {
475 return;
476 }
477 if (fStyle.strokeRec().getStyle() == SkStrokeRec::kStrokeAndFill_Style) {
478 // Make stroke + fill be stroke since the fill is empty.
479 SkStrokeRec rec = fStyle.strokeRec();
480 rec.setStrokeStyle(fStyle.strokeRec().getWidth(), false);
481 fStyle = GrStyle(rec, nullptr);
482 }
483 if (fStyle.isSimpleFill() && !fLineData.fInverted) {
484 this->changeType(Type::kEmpty);
485 return;
486 }
487 SkPoint* pts = fLineData.fPts;
488 if (fStyle.strokeRec().getStyle() == SkStrokeRec::kStroke_Style) {
489 // If it is horizontal or vertical we will turn it into a filled rrect.
490 SkRect rect;
491 rect.fLeft = SkTMin(pts[0].fX, pts[1].fX);
492 rect.fRight = SkTMax(pts[0].fX, pts[1].fX);
493 rect.fTop = SkTMin(pts[0].fY, pts[1].fY);
494 rect.fBottom = SkTMax(pts[0].fY, pts[1].fY);
495 bool eqX = rect.fLeft == rect.fRight;
496 bool eqY = rect.fTop == rect.fBottom;
497 if (eqX || eqY) {
498 SkScalar r = fStyle.strokeRec().getWidth() / 2;
499 bool inverted = fLineData.fInverted;
500 this->changeType(Type::kRRect);
501 switch (fStyle.strokeRec().getCap()) {
502 case SkPaint::kButt_Cap:
503 if (eqX && eqY) {
504 this->changeType(Type::kEmpty);
505 return;
506 }
507 if (eqX) {
508 rect.outset(r, 0);
509 } else {
510 rect.outset(0, r);
511 }
512 fRRectData.fRRect = SkRRect::MakeRect(rect);
513 break;
514 case SkPaint::kSquare_Cap:
515 rect.outset(r, r);
516 fRRectData.fRRect = SkRRect::MakeRect(rect);
517 break;
518 case SkPaint::kRound_Cap:
519 rect.outset(r, r);
520 fRRectData.fRRect = SkRRect::MakeRectXY(rect, r, r);
521 break;
522 }
523 fRRectData.fInverted = inverted;
524 fRRectData.fDir = kDefaultRRectDir;
525 fRRectData.fStart = kDefaultRRectStart;
526 if (fRRectData.fRRect.isEmpty()) {
527 // This can happen when r is very small relative to the rect edges.
528 this->changeType(Type::kEmpty);
529 return;
530 }
531 fStyle = GrStyle::SimpleFill();
532 return;
533 }
534 }
535 // Only path effects could care about the order of the points. Otherwise canonicalize
536 // the point order.
537 if (pts[1].fY < pts[0].fY || (pts[1].fY == pts[0].fY && pts[1].fX < pts[0].fX)) {
538 SkTSwap(pts[0], pts[1]);
539 }
540 }
541