• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2003 VMware, Inc.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sublicense, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the
14  * next paragraph) shall be included in all copies or substantial portions
15  * of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20  * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24  */
25 
26 #include "main/bufferobj.h"
27 #include "main/context.h"
28 #include "main/enums.h"
29 #include "main/macros.h"
30 #include "main/glformats.h"
31 
32 #include "brw_draw.h"
33 #include "brw_defines.h"
34 #include "brw_context.h"
35 #include "brw_state.h"
36 
37 #include "intel_batchbuffer.h"
38 #include "intel_buffer_objects.h"
39 
40 static const GLuint double_types_float[5] = {
41    0,
42    BRW_SURFACEFORMAT_R64_FLOAT,
43    BRW_SURFACEFORMAT_R64G64_FLOAT,
44    BRW_SURFACEFORMAT_R64G64B64_FLOAT,
45    BRW_SURFACEFORMAT_R64G64B64A64_FLOAT
46 };
47 
48 static const GLuint double_types_passthru[5] = {
49    0,
50    BRW_SURFACEFORMAT_R64_PASSTHRU,
51    BRW_SURFACEFORMAT_R64G64_PASSTHRU,
52    BRW_SURFACEFORMAT_R64G64B64_PASSTHRU,
53    BRW_SURFACEFORMAT_R64G64B64A64_PASSTHRU
54 };
55 
56 static const GLuint float_types[5] = {
57    0,
58    BRW_SURFACEFORMAT_R32_FLOAT,
59    BRW_SURFACEFORMAT_R32G32_FLOAT,
60    BRW_SURFACEFORMAT_R32G32B32_FLOAT,
61    BRW_SURFACEFORMAT_R32G32B32A32_FLOAT
62 };
63 
64 static const GLuint half_float_types[5] = {
65    0,
66    BRW_SURFACEFORMAT_R16_FLOAT,
67    BRW_SURFACEFORMAT_R16G16_FLOAT,
68    BRW_SURFACEFORMAT_R16G16B16_FLOAT,
69    BRW_SURFACEFORMAT_R16G16B16A16_FLOAT
70 };
71 
72 static const GLuint fixed_point_types[5] = {
73    0,
74    BRW_SURFACEFORMAT_R32_SFIXED,
75    BRW_SURFACEFORMAT_R32G32_SFIXED,
76    BRW_SURFACEFORMAT_R32G32B32_SFIXED,
77    BRW_SURFACEFORMAT_R32G32B32A32_SFIXED,
78 };
79 
80 static const GLuint uint_types_direct[5] = {
81    0,
82    BRW_SURFACEFORMAT_R32_UINT,
83    BRW_SURFACEFORMAT_R32G32_UINT,
84    BRW_SURFACEFORMAT_R32G32B32_UINT,
85    BRW_SURFACEFORMAT_R32G32B32A32_UINT
86 };
87 
88 static const GLuint uint_types_norm[5] = {
89    0,
90    BRW_SURFACEFORMAT_R32_UNORM,
91    BRW_SURFACEFORMAT_R32G32_UNORM,
92    BRW_SURFACEFORMAT_R32G32B32_UNORM,
93    BRW_SURFACEFORMAT_R32G32B32A32_UNORM
94 };
95 
96 static const GLuint uint_types_scale[5] = {
97    0,
98    BRW_SURFACEFORMAT_R32_USCALED,
99    BRW_SURFACEFORMAT_R32G32_USCALED,
100    BRW_SURFACEFORMAT_R32G32B32_USCALED,
101    BRW_SURFACEFORMAT_R32G32B32A32_USCALED
102 };
103 
104 static const GLuint int_types_direct[5] = {
105    0,
106    BRW_SURFACEFORMAT_R32_SINT,
107    BRW_SURFACEFORMAT_R32G32_SINT,
108    BRW_SURFACEFORMAT_R32G32B32_SINT,
109    BRW_SURFACEFORMAT_R32G32B32A32_SINT
110 };
111 
112 static const GLuint int_types_norm[5] = {
113    0,
114    BRW_SURFACEFORMAT_R32_SNORM,
115    BRW_SURFACEFORMAT_R32G32_SNORM,
116    BRW_SURFACEFORMAT_R32G32B32_SNORM,
117    BRW_SURFACEFORMAT_R32G32B32A32_SNORM
118 };
119 
120 static const GLuint int_types_scale[5] = {
121    0,
122    BRW_SURFACEFORMAT_R32_SSCALED,
123    BRW_SURFACEFORMAT_R32G32_SSCALED,
124    BRW_SURFACEFORMAT_R32G32B32_SSCALED,
125    BRW_SURFACEFORMAT_R32G32B32A32_SSCALED
126 };
127 
128 static const GLuint ushort_types_direct[5] = {
129    0,
130    BRW_SURFACEFORMAT_R16_UINT,
131    BRW_SURFACEFORMAT_R16G16_UINT,
132    BRW_SURFACEFORMAT_R16G16B16_UINT,
133    BRW_SURFACEFORMAT_R16G16B16A16_UINT
134 };
135 
136 static const GLuint ushort_types_norm[5] = {
137    0,
138    BRW_SURFACEFORMAT_R16_UNORM,
139    BRW_SURFACEFORMAT_R16G16_UNORM,
140    BRW_SURFACEFORMAT_R16G16B16_UNORM,
141    BRW_SURFACEFORMAT_R16G16B16A16_UNORM
142 };
143 
144 static const GLuint ushort_types_scale[5] = {
145    0,
146    BRW_SURFACEFORMAT_R16_USCALED,
147    BRW_SURFACEFORMAT_R16G16_USCALED,
148    BRW_SURFACEFORMAT_R16G16B16_USCALED,
149    BRW_SURFACEFORMAT_R16G16B16A16_USCALED
150 };
151 
152 static const GLuint short_types_direct[5] = {
153    0,
154    BRW_SURFACEFORMAT_R16_SINT,
155    BRW_SURFACEFORMAT_R16G16_SINT,
156    BRW_SURFACEFORMAT_R16G16B16_SINT,
157    BRW_SURFACEFORMAT_R16G16B16A16_SINT
158 };
159 
160 static const GLuint short_types_norm[5] = {
161    0,
162    BRW_SURFACEFORMAT_R16_SNORM,
163    BRW_SURFACEFORMAT_R16G16_SNORM,
164    BRW_SURFACEFORMAT_R16G16B16_SNORM,
165    BRW_SURFACEFORMAT_R16G16B16A16_SNORM
166 };
167 
168 static const GLuint short_types_scale[5] = {
169    0,
170    BRW_SURFACEFORMAT_R16_SSCALED,
171    BRW_SURFACEFORMAT_R16G16_SSCALED,
172    BRW_SURFACEFORMAT_R16G16B16_SSCALED,
173    BRW_SURFACEFORMAT_R16G16B16A16_SSCALED
174 };
175 
176 static const GLuint ubyte_types_direct[5] = {
177    0,
178    BRW_SURFACEFORMAT_R8_UINT,
179    BRW_SURFACEFORMAT_R8G8_UINT,
180    BRW_SURFACEFORMAT_R8G8B8_UINT,
181    BRW_SURFACEFORMAT_R8G8B8A8_UINT
182 };
183 
184 static const GLuint ubyte_types_norm[5] = {
185    0,
186    BRW_SURFACEFORMAT_R8_UNORM,
187    BRW_SURFACEFORMAT_R8G8_UNORM,
188    BRW_SURFACEFORMAT_R8G8B8_UNORM,
189    BRW_SURFACEFORMAT_R8G8B8A8_UNORM
190 };
191 
192 static const GLuint ubyte_types_scale[5] = {
193    0,
194    BRW_SURFACEFORMAT_R8_USCALED,
195    BRW_SURFACEFORMAT_R8G8_USCALED,
196    BRW_SURFACEFORMAT_R8G8B8_USCALED,
197    BRW_SURFACEFORMAT_R8G8B8A8_USCALED
198 };
199 
200 static const GLuint byte_types_direct[5] = {
201    0,
202    BRW_SURFACEFORMAT_R8_SINT,
203    BRW_SURFACEFORMAT_R8G8_SINT,
204    BRW_SURFACEFORMAT_R8G8B8_SINT,
205    BRW_SURFACEFORMAT_R8G8B8A8_SINT
206 };
207 
208 static const GLuint byte_types_norm[5] = {
209    0,
210    BRW_SURFACEFORMAT_R8_SNORM,
211    BRW_SURFACEFORMAT_R8G8_SNORM,
212    BRW_SURFACEFORMAT_R8G8B8_SNORM,
213    BRW_SURFACEFORMAT_R8G8B8A8_SNORM
214 };
215 
216 static const GLuint byte_types_scale[5] = {
217    0,
218    BRW_SURFACEFORMAT_R8_SSCALED,
219    BRW_SURFACEFORMAT_R8G8_SSCALED,
220    BRW_SURFACEFORMAT_R8G8B8_SSCALED,
221    BRW_SURFACEFORMAT_R8G8B8A8_SSCALED
222 };
223 
224 static GLuint
double_types(struct brw_context * brw,int size,GLboolean doubles)225 double_types(struct brw_context *brw,
226              int size,
227              GLboolean doubles)
228 {
229    /* From the BDW PRM, Volume 2d, page 588 (VERTEX_ELEMENT_STATE):
230     * "When SourceElementFormat is set to one of the *64*_PASSTHRU formats,
231     * 64-bit components are stored in the URB without any conversion."
232     * Also included on BDW PRM, Volume 7, page 470, table "Source Element
233     * Formats Supported in VF Unit"
234     *
235     * Previous PRMs don't include those references, so for gen7 we can't use
236     * PASSTHRU formats directly. But in any case, we prefer to return passthru
237     * even in that case, because that reflects what we want to achieve, even
238     * if we would need to workaround on gen < 8.
239     */
240    return (doubles
241            ? double_types_passthru[size]
242            : double_types_float[size]);
243 }
244 
245 static bool
is_passthru_format(uint32_t format)246 is_passthru_format(uint32_t format)
247 {
248    switch (format) {
249    case BRW_SURFACEFORMAT_R64_PASSTHRU:
250    case BRW_SURFACEFORMAT_R64G64_PASSTHRU:
251    case BRW_SURFACEFORMAT_R64G64B64_PASSTHRU:
252    case BRW_SURFACEFORMAT_R64G64B64A64_PASSTHRU:
253       return true;
254    default:
255       return false;
256    }
257 }
258 
259 static int
uploads_needed(uint32_t format)260 uploads_needed(uint32_t format)
261 {
262    if (!is_passthru_format(format))
263       return 1;
264 
265    switch (format) {
266    case BRW_SURFACEFORMAT_R64_PASSTHRU:
267    case BRW_SURFACEFORMAT_R64G64_PASSTHRU:
268       return 1;
269    case BRW_SURFACEFORMAT_R64G64B64_PASSTHRU:
270    case BRW_SURFACEFORMAT_R64G64B64A64_PASSTHRU:
271       return 2;
272    default:
273       unreachable("not reached");
274    }
275 }
276 
277 /*
278  * Returns the number of componentes associated with a format that is used on
279  * a 64 to 32 format split. See downsize_format()
280  */
281 static int
upload_format_size(uint32_t upload_format)282 upload_format_size(uint32_t upload_format)
283 {
284    switch (upload_format) {
285    case BRW_SURFACEFORMAT_R32G32_FLOAT:
286       return 2;
287    case BRW_SURFACEFORMAT_R32G32B32A32_FLOAT:
288       return 4;
289    default:
290       unreachable("not reached");
291    }
292 }
293 
294 /*
295  * Returns the format that we are finally going to use when upload a vertex
296  * element. It will only change if we are using *64*PASSTHRU formats, as for
297  * gen < 8 they need to be splitted on two *32*FLOAT formats.
298  *
299  * @upload points in which upload we are. Valid values are [0,1]
300  */
301 static uint32_t
downsize_format_if_needed(uint32_t format,int upload)302 downsize_format_if_needed(uint32_t format,
303                           int upload)
304 {
305    assert(upload == 0 || upload == 1);
306 
307    if (!is_passthru_format(format))
308       return format;
309 
310    switch (format) {
311    case BRW_SURFACEFORMAT_R64_PASSTHRU:
312       return BRW_SURFACEFORMAT_R32G32_FLOAT;
313    case BRW_SURFACEFORMAT_R64G64_PASSTHRU:
314       return BRW_SURFACEFORMAT_R32G32B32A32_FLOAT;
315    case BRW_SURFACEFORMAT_R64G64B64_PASSTHRU:
316       return !upload ? BRW_SURFACEFORMAT_R32G32B32A32_FLOAT
317                      : BRW_SURFACEFORMAT_R32G32_FLOAT;
318    case BRW_SURFACEFORMAT_R64G64B64A64_PASSTHRU:
319       return BRW_SURFACEFORMAT_R32G32B32A32_FLOAT;
320    default:
321       unreachable("not reached");
322    }
323 }
324 
325 /**
326  * Given vertex array type/size/format/normalized info, return
327  * the appopriate hardware surface type.
328  * Format will be GL_RGBA or possibly GL_BGRA for GLubyte[4] color arrays.
329  */
330 unsigned
brw_get_vertex_surface_type(struct brw_context * brw,const struct gl_vertex_array * glarray)331 brw_get_vertex_surface_type(struct brw_context *brw,
332                             const struct gl_vertex_array *glarray)
333 {
334    int size = glarray->Size;
335    const bool is_ivybridge_or_older =
336       brw->gen <= 7 && !brw->is_baytrail && !brw->is_haswell;
337 
338    if (unlikely(INTEL_DEBUG & DEBUG_VERTS))
339       fprintf(stderr, "type %s size %d normalized %d\n",
340               _mesa_enum_to_string(glarray->Type),
341               glarray->Size, glarray->Normalized);
342 
343    if (glarray->Integer) {
344       assert(glarray->Format == GL_RGBA); /* sanity check */
345       switch (glarray->Type) {
346       case GL_INT: return int_types_direct[size];
347       case GL_SHORT:
348          if (is_ivybridge_or_older && size == 3)
349             return short_types_direct[4];
350          else
351             return short_types_direct[size];
352       case GL_BYTE:
353          if (is_ivybridge_or_older && size == 3)
354             return byte_types_direct[4];
355          else
356             return byte_types_direct[size];
357       case GL_UNSIGNED_INT: return uint_types_direct[size];
358       case GL_UNSIGNED_SHORT:
359          if (is_ivybridge_or_older && size == 3)
360             return ushort_types_direct[4];
361          else
362             return ushort_types_direct[size];
363       case GL_UNSIGNED_BYTE:
364          if (is_ivybridge_or_older && size == 3)
365             return ubyte_types_direct[4];
366          else
367             return ubyte_types_direct[size];
368       default: unreachable("not reached");
369       }
370    } else if (glarray->Type == GL_UNSIGNED_INT_10F_11F_11F_REV) {
371       return BRW_SURFACEFORMAT_R11G11B10_FLOAT;
372    } else if (glarray->Normalized) {
373       switch (glarray->Type) {
374       case GL_DOUBLE: return double_types(brw, size, glarray->Doubles);
375       case GL_FLOAT: return float_types[size];
376       case GL_HALF_FLOAT:
377       case GL_HALF_FLOAT_OES:
378          if (brw->gen < 6 && size == 3)
379             return half_float_types[4];
380          else
381             return half_float_types[size];
382       case GL_INT: return int_types_norm[size];
383       case GL_SHORT: return short_types_norm[size];
384       case GL_BYTE: return byte_types_norm[size];
385       case GL_UNSIGNED_INT: return uint_types_norm[size];
386       case GL_UNSIGNED_SHORT: return ushort_types_norm[size];
387       case GL_UNSIGNED_BYTE:
388          if (glarray->Format == GL_BGRA) {
389             /* See GL_EXT_vertex_array_bgra */
390             assert(size == 4);
391             return BRW_SURFACEFORMAT_B8G8R8A8_UNORM;
392          }
393          else {
394             return ubyte_types_norm[size];
395          }
396       case GL_FIXED:
397          if (brw->gen >= 8 || brw->is_haswell)
398             return fixed_point_types[size];
399 
400          /* This produces GL_FIXED inputs as values between INT32_MIN and
401           * INT32_MAX, which will be scaled down by 1/65536 by the VS.
402           */
403          return int_types_scale[size];
404       /* See GL_ARB_vertex_type_2_10_10_10_rev.
405        * W/A: Pre-Haswell, the hardware doesn't really support the formats we'd
406        * like to use here, so upload everything as UINT and fix
407        * it in the shader
408        */
409       case GL_INT_2_10_10_10_REV:
410          assert(size == 4);
411          if (brw->gen >= 8 || brw->is_haswell) {
412             return glarray->Format == GL_BGRA
413                ? BRW_SURFACEFORMAT_B10G10R10A2_SNORM
414                : BRW_SURFACEFORMAT_R10G10B10A2_SNORM;
415          }
416          return BRW_SURFACEFORMAT_R10G10B10A2_UINT;
417       case GL_UNSIGNED_INT_2_10_10_10_REV:
418          assert(size == 4);
419          if (brw->gen >= 8 || brw->is_haswell) {
420             return glarray->Format == GL_BGRA
421                ? BRW_SURFACEFORMAT_B10G10R10A2_UNORM
422                : BRW_SURFACEFORMAT_R10G10B10A2_UNORM;
423          }
424          return BRW_SURFACEFORMAT_R10G10B10A2_UINT;
425       default: unreachable("not reached");
426       }
427    }
428    else {
429       /* See GL_ARB_vertex_type_2_10_10_10_rev.
430        * W/A: the hardware doesn't really support the formats we'd
431        * like to use here, so upload everything as UINT and fix
432        * it in the shader
433        */
434       if (glarray->Type == GL_INT_2_10_10_10_REV) {
435          assert(size == 4);
436          if (brw->gen >= 8 || brw->is_haswell) {
437             return glarray->Format == GL_BGRA
438                ? BRW_SURFACEFORMAT_B10G10R10A2_SSCALED
439                : BRW_SURFACEFORMAT_R10G10B10A2_SSCALED;
440          }
441          return BRW_SURFACEFORMAT_R10G10B10A2_UINT;
442       } else if (glarray->Type == GL_UNSIGNED_INT_2_10_10_10_REV) {
443          assert(size == 4);
444          if (brw->gen >= 8 || brw->is_haswell) {
445             return glarray->Format == GL_BGRA
446                ? BRW_SURFACEFORMAT_B10G10R10A2_USCALED
447                : BRW_SURFACEFORMAT_R10G10B10A2_USCALED;
448          }
449          return BRW_SURFACEFORMAT_R10G10B10A2_UINT;
450       }
451       assert(glarray->Format == GL_RGBA); /* sanity check */
452       switch (glarray->Type) {
453       case GL_DOUBLE: return double_types(brw, size, glarray->Doubles);
454       case GL_FLOAT: return float_types[size];
455       case GL_HALF_FLOAT:
456       case GL_HALF_FLOAT_OES:
457          if (brw->gen < 6 && size == 3)
458             return half_float_types[4];
459          else
460             return half_float_types[size];
461       case GL_INT: return int_types_scale[size];
462       case GL_SHORT: return short_types_scale[size];
463       case GL_BYTE: return byte_types_scale[size];
464       case GL_UNSIGNED_INT: return uint_types_scale[size];
465       case GL_UNSIGNED_SHORT: return ushort_types_scale[size];
466       case GL_UNSIGNED_BYTE: return ubyte_types_scale[size];
467       case GL_FIXED:
468          if (brw->gen >= 8 || brw->is_haswell)
469             return fixed_point_types[size];
470 
471          /* This produces GL_FIXED inputs as values between INT32_MIN and
472           * INT32_MAX, which will be scaled down by 1/65536 by the VS.
473           */
474          return int_types_scale[size];
475       default: unreachable("not reached");
476       }
477    }
478 }
479 
480 static void
copy_array_to_vbo_array(struct brw_context * brw,struct brw_vertex_element * element,int min,int max,struct brw_vertex_buffer * buffer,GLuint dst_stride)481 copy_array_to_vbo_array(struct brw_context *brw,
482 			struct brw_vertex_element *element,
483 			int min, int max,
484 			struct brw_vertex_buffer *buffer,
485 			GLuint dst_stride)
486 {
487    const int src_stride = element->glarray->StrideB;
488 
489    /* If the source stride is zero, we just want to upload the current
490     * attribute once and set the buffer's stride to 0.  There's no need
491     * to replicate it out.
492     */
493    if (src_stride == 0) {
494       intel_upload_data(brw, element->glarray->Ptr,
495                         element->glarray->_ElementSize,
496                         element->glarray->_ElementSize,
497 			&buffer->bo, &buffer->offset);
498 
499       buffer->stride = 0;
500       buffer->size = element->glarray->_ElementSize;
501       return;
502    }
503 
504    const unsigned char *src = element->glarray->Ptr + min * src_stride;
505    int count = max - min + 1;
506    GLuint size = count * dst_stride;
507    uint8_t *dst = intel_upload_space(brw, size, dst_stride,
508                                      &buffer->bo, &buffer->offset);
509 
510    /* The GL 4.5 spec says:
511     *      "If any enabled array’s buffer binding is zero when DrawArrays or
512     *      one of the other drawing commands defined in section 10.4 is called,
513     *      the result is undefined."
514     *
515     * In this case, let's the dst with undefined values
516     */
517    if (src != NULL) {
518       if (dst_stride == src_stride) {
519          memcpy(dst, src, size);
520       } else {
521          while (count--) {
522             memcpy(dst, src, dst_stride);
523             src += src_stride;
524             dst += dst_stride;
525          }
526       }
527    }
528    buffer->stride = dst_stride;
529    buffer->size = size;
530 }
531 
532 void
brw_prepare_vertices(struct brw_context * brw)533 brw_prepare_vertices(struct brw_context *brw)
534 {
535    struct gl_context *ctx = &brw->ctx;
536    /* BRW_NEW_VS_PROG_DATA */
537    const struct brw_vs_prog_data *vs_prog_data =
538       brw_vs_prog_data(brw->vs.base.prog_data);
539    GLbitfield64 vs_inputs = vs_prog_data->inputs_read;
540    const unsigned char *ptr = NULL;
541    GLuint interleaved = 0;
542    unsigned int min_index = brw->vb.min_index + brw->basevertex;
543    unsigned int max_index = brw->vb.max_index + brw->basevertex;
544    unsigned i;
545    int delta, j;
546 
547    struct brw_vertex_element *upload[VERT_ATTRIB_MAX];
548    GLuint nr_uploads = 0;
549 
550    /* _NEW_POLYGON
551     *
552     * On gen6+, edge flags don't end up in the VUE (either in or out of the
553     * VS).  Instead, they're uploaded as the last vertex element, and the data
554     * is passed sideband through the fixed function units.  So, we need to
555     * prepare the vertex buffer for it, but it's not present in inputs_read.
556     */
557    if (brw->gen >= 6 && (ctx->Polygon.FrontMode != GL_FILL ||
558                            ctx->Polygon.BackMode != GL_FILL)) {
559       vs_inputs |= VERT_BIT_EDGEFLAG;
560    }
561 
562    if (0)
563       fprintf(stderr, "%s %d..%d\n", __func__, min_index, max_index);
564 
565    /* Accumulate the list of enabled arrays. */
566    brw->vb.nr_enabled = 0;
567    while (vs_inputs) {
568       GLuint first = ffsll(vs_inputs) - 1;
569       assert (first < 64);
570       GLuint index =
571          first - DIV_ROUND_UP(_mesa_bitcount_64(vs_prog_data->double_inputs_read &
572                                                 BITFIELD64_MASK(first)), 2);
573       struct brw_vertex_element *input = &brw->vb.inputs[index];
574       input->is_dual_slot = (vs_prog_data->double_inputs_read & BITFIELD64_BIT(first)) != 0;
575       vs_inputs &= ~BITFIELD64_BIT(first);
576       if (input->is_dual_slot)
577          vs_inputs &= ~BITFIELD64_BIT(first + 1);
578       brw->vb.enabled[brw->vb.nr_enabled++] = input;
579    }
580 
581    if (brw->vb.nr_enabled == 0)
582       return;
583 
584    if (brw->vb.nr_buffers)
585       return;
586 
587    /* The range of data in a given buffer represented as [min, max) */
588    struct intel_buffer_object *enabled_buffer[VERT_ATTRIB_MAX];
589    uint32_t buffer_range_start[VERT_ATTRIB_MAX];
590    uint32_t buffer_range_end[VERT_ATTRIB_MAX];
591 
592    for (i = j = 0; i < brw->vb.nr_enabled; i++) {
593       struct brw_vertex_element *input = brw->vb.enabled[i];
594       const struct gl_vertex_array *glarray = input->glarray;
595 
596       if (_mesa_is_bufferobj(glarray->BufferObj)) {
597 	 struct intel_buffer_object *intel_buffer =
598 	    intel_buffer_object(glarray->BufferObj);
599 
600          const uint32_t offset = (uintptr_t)glarray->Ptr;
601 
602          /* Start with the worst case */
603          uint32_t start = 0;
604          uint32_t range = intel_buffer->Base.Size;
605          if (glarray->InstanceDivisor) {
606             if (brw->num_instances) {
607                start = offset + glarray->StrideB * brw->baseinstance;
608                range = (glarray->StrideB * ((brw->num_instances - 1) /
609                                             glarray->InstanceDivisor) +
610                         glarray->_ElementSize);
611             }
612          } else {
613             if (brw->vb.index_bounds_valid) {
614                start = offset + min_index * glarray->StrideB;
615                range = (glarray->StrideB * (max_index - min_index) +
616                         glarray->_ElementSize);
617             }
618          }
619 
620 	 /* If we have a VB set to be uploaded for this buffer object
621 	  * already, reuse that VB state so that we emit fewer
622 	  * relocations.
623 	  */
624 	 unsigned k;
625 	 for (k = 0; k < i; k++) {
626 	    const struct gl_vertex_array *other = brw->vb.enabled[k]->glarray;
627 	    if (glarray->BufferObj == other->BufferObj &&
628 		glarray->StrideB == other->StrideB &&
629 		glarray->InstanceDivisor == other->InstanceDivisor &&
630 		(uintptr_t)(glarray->Ptr - other->Ptr) < glarray->StrideB)
631 	    {
632 	       input->buffer = brw->vb.enabled[k]->buffer;
633 	       input->offset = glarray->Ptr - other->Ptr;
634 
635                buffer_range_start[input->buffer] =
636                   MIN2(buffer_range_start[input->buffer], start);
637                buffer_range_end[input->buffer] =
638                   MAX2(buffer_range_end[input->buffer], start + range);
639 	       break;
640 	    }
641 	 }
642 	 if (k == i) {
643 	    struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
644 
645 	    /* Named buffer object: Just reference its contents directly. */
646 	    buffer->offset = offset;
647 	    buffer->stride = glarray->StrideB;
648 	    buffer->step_rate = glarray->InstanceDivisor;
649             buffer->size = glarray->BufferObj->Size - offset;
650 
651             enabled_buffer[j] = intel_buffer;
652             buffer_range_start[j] = start;
653             buffer_range_end[j] = start + range;
654 
655 	    input->buffer = j++;
656 	    input->offset = 0;
657 	 }
658       } else {
659 	 /* Queue the buffer object up to be uploaded in the next pass,
660 	  * when we've decided if we're doing interleaved or not.
661 	  */
662 	 if (nr_uploads == 0) {
663 	    interleaved = glarray->StrideB;
664 	    ptr = glarray->Ptr;
665 	 }
666 	 else if (interleaved != glarray->StrideB ||
667                   glarray->Ptr < ptr ||
668                   (uintptr_t)(glarray->Ptr - ptr) + glarray->_ElementSize > interleaved)
669 	 {
670             /* If our stride is different from the first attribute's stride,
671              * or if the first attribute's stride didn't cover our element,
672              * disable the interleaved upload optimization.  The second case
673              * can most commonly occur in cases where there is a single vertex
674              * and, for example, the data is stored on the application's
675              * stack.
676              *
677              * NOTE: This will also disable the optimization in cases where
678              * the data is in a different order than the array indices.
679              * Something like:
680              *
681              *     float data[...];
682              *     glVertexAttribPointer(0, 4, GL_FLOAT, 32, &data[4]);
683              *     glVertexAttribPointer(1, 4, GL_FLOAT, 32, &data[0]);
684              */
685 	    interleaved = 0;
686 	 }
687 
688 	 upload[nr_uploads++] = input;
689       }
690    }
691 
692    /* Now that we've set up all of the buffers, we walk through and reference
693     * each of them.  We do this late so that we get the right size in each
694     * buffer and don't reference too little data.
695     */
696    for (i = 0; i < j; i++) {
697       struct brw_vertex_buffer *buffer = &brw->vb.buffers[i];
698       if (buffer->bo)
699          continue;
700 
701       const uint32_t start = buffer_range_start[i];
702       const uint32_t range = buffer_range_end[i] - buffer_range_start[i];
703 
704       buffer->bo = intel_bufferobj_buffer(brw, enabled_buffer[i], start, range);
705       drm_intel_bo_reference(buffer->bo);
706    }
707 
708    /* If we need to upload all the arrays, then we can trim those arrays to
709     * only the used elements [min_index, max_index] so long as we adjust all
710     * the values used in the 3DPRIMITIVE i.e. by setting the vertex bias.
711     */
712    brw->vb.start_vertex_bias = 0;
713    delta = min_index;
714    if (nr_uploads == brw->vb.nr_enabled) {
715       brw->vb.start_vertex_bias = -delta;
716       delta = 0;
717    }
718 
719    /* Handle any arrays to be uploaded. */
720    if (nr_uploads > 1) {
721       if (interleaved) {
722 	 struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
723 	 /* All uploads are interleaved, so upload the arrays together as
724 	  * interleaved.  First, upload the contents and set up upload[0].
725 	  */
726 	 copy_array_to_vbo_array(brw, upload[0], min_index, max_index,
727 				 buffer, interleaved);
728 	 buffer->offset -= delta * interleaved;
729          buffer->size += delta * interleaved;
730 
731 	 for (i = 0; i < nr_uploads; i++) {
732 	    /* Then, just point upload[i] at upload[0]'s buffer. */
733 	    upload[i]->offset =
734 	       ((const unsigned char *)upload[i]->glarray->Ptr - ptr);
735 	    upload[i]->buffer = j;
736 	 }
737 	 j++;
738 
739 	 nr_uploads = 0;
740       }
741    }
742    /* Upload non-interleaved arrays */
743    for (i = 0; i < nr_uploads; i++) {
744       struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
745       if (upload[i]->glarray->InstanceDivisor == 0) {
746          copy_array_to_vbo_array(brw, upload[i], min_index, max_index,
747                                  buffer, upload[i]->glarray->_ElementSize);
748       } else {
749          /* This is an instanced attribute, since its InstanceDivisor
750           * is not zero. Therefore, its data will be stepped after the
751           * instanced draw has been run InstanceDivisor times.
752           */
753          uint32_t instanced_attr_max_index =
754             (brw->num_instances - 1) / upload[i]->glarray->InstanceDivisor;
755          copy_array_to_vbo_array(brw, upload[i], 0, instanced_attr_max_index,
756                                  buffer, upload[i]->glarray->_ElementSize);
757       }
758       buffer->offset -= delta * buffer->stride;
759       buffer->size += delta * buffer->stride;
760       buffer->step_rate = upload[i]->glarray->InstanceDivisor;
761       upload[i]->buffer = j++;
762       upload[i]->offset = 0;
763    }
764 
765    brw->vb.nr_buffers = j;
766 }
767 
768 void
brw_prepare_shader_draw_parameters(struct brw_context * brw)769 brw_prepare_shader_draw_parameters(struct brw_context *brw)
770 {
771    const struct brw_vs_prog_data *vs_prog_data =
772       brw_vs_prog_data(brw->vs.base.prog_data);
773 
774    /* For non-indirect draws, upload gl_BaseVertex. */
775    if ((vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance) &&
776        brw->draw.draw_params_bo == NULL) {
777       intel_upload_data(brw, &brw->draw.params, sizeof(brw->draw.params), 4,
778 			&brw->draw.draw_params_bo,
779                         &brw->draw.draw_params_offset);
780    }
781 
782    if (vs_prog_data->uses_drawid) {
783       intel_upload_data(brw, &brw->draw.gl_drawid, sizeof(brw->draw.gl_drawid), 4,
784                         &brw->draw.draw_id_bo,
785                         &brw->draw.draw_id_offset);
786    }
787 }
788 
789 /**
790  * Emit a VERTEX_BUFFER_STATE entry (part of 3DSTATE_VERTEX_BUFFERS).
791  */
792 uint32_t *
brw_emit_vertex_buffer_state(struct brw_context * brw,unsigned buffer_nr,drm_intel_bo * bo,unsigned start_offset,unsigned end_offset,unsigned stride,unsigned step_rate,uint32_t * __map)793 brw_emit_vertex_buffer_state(struct brw_context *brw,
794                              unsigned buffer_nr,
795                              drm_intel_bo *bo,
796                              unsigned start_offset,
797                              unsigned end_offset,
798                              unsigned stride,
799                              unsigned step_rate,
800                              uint32_t *__map)
801 {
802    struct gl_context *ctx = &brw->ctx;
803    uint32_t dw0;
804 
805    if (brw->gen >= 8) {
806       dw0 = buffer_nr << GEN6_VB0_INDEX_SHIFT;
807    } else if (brw->gen >= 6) {
808       dw0 = (buffer_nr << GEN6_VB0_INDEX_SHIFT) |
809             (step_rate ? GEN6_VB0_ACCESS_INSTANCEDATA
810                        : GEN6_VB0_ACCESS_VERTEXDATA);
811    } else {
812       dw0 = (buffer_nr << BRW_VB0_INDEX_SHIFT) |
813             (step_rate ? BRW_VB0_ACCESS_INSTANCEDATA
814                        : BRW_VB0_ACCESS_VERTEXDATA);
815    }
816 
817    if (brw->gen >= 7)
818       dw0 |= GEN7_VB0_ADDRESS_MODIFYENABLE;
819 
820    switch (brw->gen) {
821    case 7:
822       dw0 |= GEN7_MOCS_L3 << 16;
823       break;
824    case 8:
825       dw0 |= BDW_MOCS_WB << 16;
826       break;
827    case 9:
828       dw0 |= SKL_MOCS_WB << 16;
829       break;
830    }
831 
832    WARN_ONCE(stride >= (brw->gen >= 5 ? 2048 : 2047),
833              "VBO stride %d too large, bad rendering may occur\n",
834              stride);
835    OUT_BATCH(dw0 | (stride << BRW_VB0_PITCH_SHIFT));
836    if (brw->gen >= 8) {
837       OUT_RELOC64(bo, I915_GEM_DOMAIN_VERTEX, 0, start_offset);
838       /* From the BSpec: 3D Pipeline Stages - 3D Pipeline Geometry -
839        *                 Vertex Fetch (VF) Stage - State
840        *
841        * Instead of "VBState.StartingBufferAddress + VBState.MaxIndex x
842        * VBState.BufferPitch", the address of the byte immediately beyond the
843        * last valid byte of the buffer is determined by
844        * "VBState.StartingBufferAddress + VBState.BufferSize".
845        */
846       OUT_BATCH(end_offset - start_offset);
847    } else if (brw->gen >= 5) {
848       OUT_RELOC(bo, I915_GEM_DOMAIN_VERTEX, 0, start_offset);
849       /* From the BSpec: 3D Pipeline Stages - 3D Pipeline Geometry -
850        *                 Vertex Fetch (VF) Stage - State
851        *
852        *  Instead of "VBState.StartingBufferAddress + VBState.MaxIndex x
853        *  VBState.BufferPitch", the address of the byte immediately beyond the
854        *  last valid byte of the buffer is determined by
855        *  "VBState.EndAddress + 1".
856        */
857       OUT_RELOC(bo, I915_GEM_DOMAIN_VERTEX, 0, end_offset - 1);
858       OUT_BATCH(step_rate);
859    } else {
860       OUT_RELOC(bo, I915_GEM_DOMAIN_VERTEX, 0, start_offset);
861       OUT_BATCH(0);
862       OUT_BATCH(step_rate);
863    }
864 
865    return __map;
866 }
867 
868 static void
brw_emit_vertices(struct brw_context * brw)869 brw_emit_vertices(struct brw_context *brw)
870 {
871    GLuint i;
872 
873    brw_prepare_vertices(brw);
874    brw_prepare_shader_draw_parameters(brw);
875 
876    brw_emit_query_begin(brw);
877 
878    const struct brw_vs_prog_data *vs_prog_data =
879       brw_vs_prog_data(brw->vs.base.prog_data);
880 
881    unsigned nr_elements = brw->vb.nr_enabled;
882    if (vs_prog_data->uses_vertexid || vs_prog_data->uses_instanceid ||
883        vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
884       ++nr_elements;
885    if (vs_prog_data->uses_drawid)
886       nr_elements++;
887 
888    /* If any of the formats of vb.enabled needs more that one upload, we need
889     * to add it to nr_elements */
890    unsigned extra_uploads = 0;
891    for (unsigned i = 0; i < brw->vb.nr_enabled; i++) {
892       struct brw_vertex_element *input = brw->vb.enabled[i];
893       uint32_t format = brw_get_vertex_surface_type(brw, input->glarray);
894 
895       if (uploads_needed(format) > 1)
896          extra_uploads++;
897    }
898    nr_elements += extra_uploads;
899 
900    /* If the VS doesn't read any inputs (calculating vertex position from
901     * a state variable for some reason, for example), emit a single pad
902     * VERTEX_ELEMENT struct and bail.
903     *
904     * The stale VB state stays in place, but they don't do anything unless
905     * a VE loads from them.
906     */
907    if (nr_elements == 0) {
908       BEGIN_BATCH(3);
909       OUT_BATCH((_3DSTATE_VERTEX_ELEMENTS << 16) | 1);
910       if (brw->gen >= 6) {
911 	 OUT_BATCH((0 << GEN6_VE0_INDEX_SHIFT) |
912 		   GEN6_VE0_VALID |
913 		   (BRW_SURFACEFORMAT_R32G32B32A32_FLOAT << BRW_VE0_FORMAT_SHIFT) |
914 		   (0 << BRW_VE0_SRC_OFFSET_SHIFT));
915       } else {
916 	 OUT_BATCH((0 << BRW_VE0_INDEX_SHIFT) |
917 		   BRW_VE0_VALID |
918 		   (BRW_SURFACEFORMAT_R32G32B32A32_FLOAT << BRW_VE0_FORMAT_SHIFT) |
919 		   (0 << BRW_VE0_SRC_OFFSET_SHIFT));
920       }
921       OUT_BATCH((BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_0_SHIFT) |
922 		(BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_1_SHIFT) |
923 		(BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_2_SHIFT) |
924 		(BRW_VE1_COMPONENT_STORE_1_FLT << BRW_VE1_COMPONENT_3_SHIFT));
925       ADVANCE_BATCH();
926       return;
927    }
928 
929    /* Now emit VB and VEP state packets.
930     */
931 
932    const bool uses_draw_params =
933       vs_prog_data->uses_basevertex ||
934       vs_prog_data->uses_baseinstance;
935    const unsigned nr_buffers = brw->vb.nr_buffers +
936       uses_draw_params + vs_prog_data->uses_drawid;
937 
938    if (nr_buffers) {
939       if (brw->gen >= 6) {
940 	 assert(nr_buffers <= 33);
941       } else {
942 	 assert(nr_buffers <= 17);
943       }
944 
945       BEGIN_BATCH(1 + 4 * nr_buffers);
946       OUT_BATCH((_3DSTATE_VERTEX_BUFFERS << 16) | (4 * nr_buffers - 1));
947       for (i = 0; i < brw->vb.nr_buffers; i++) {
948 	 struct brw_vertex_buffer *buffer = &brw->vb.buffers[i];
949          /* Prior to Haswell and Bay Trail we have to use 4-component formats
950           * to fake 3-component ones.  In particular, we do this for
951           * half-float and 8 and 16-bit integer formats.  This means that the
952           * vertex element may poke over the end of the buffer by 2 bytes.
953           */
954          unsigned padding =
955             (brw->gen <= 7 && !brw->is_baytrail && !brw->is_haswell) * 2;
956          EMIT_VERTEX_BUFFER_STATE(brw, i, buffer->bo, buffer->offset,
957                                   buffer->offset + buffer->size + padding,
958                                   buffer->stride, buffer->step_rate);
959 
960       }
961 
962       if (uses_draw_params) {
963          EMIT_VERTEX_BUFFER_STATE(brw, brw->vb.nr_buffers,
964                                   brw->draw.draw_params_bo,
965                                   brw->draw.draw_params_offset,
966                                   brw->draw.draw_params_bo->size,
967                                   0,  /* stride */
968                                   0); /* step rate */
969       }
970 
971       if (vs_prog_data->uses_drawid) {
972          EMIT_VERTEX_BUFFER_STATE(brw, brw->vb.nr_buffers + 1,
973                                   brw->draw.draw_id_bo,
974                                   brw->draw.draw_id_offset,
975                                   brw->draw.draw_id_bo->size,
976                                   0,  /* stride */
977                                   0); /* step rate */
978       }
979 
980       ADVANCE_BATCH();
981    }
982 
983    /* The hardware allows one more VERTEX_ELEMENTS than VERTEX_BUFFERS, presumably
984     * for VertexID/InstanceID.
985     */
986    if (brw->gen >= 6) {
987       assert(nr_elements <= 34);
988    } else {
989       assert(nr_elements <= 18);
990    }
991 
992    struct brw_vertex_element *gen6_edgeflag_input = NULL;
993 
994    BEGIN_BATCH(1 + nr_elements * 2);
995    OUT_BATCH((_3DSTATE_VERTEX_ELEMENTS << 16) | (2 * nr_elements - 1));
996    for (i = 0; i < brw->vb.nr_enabled; i++) {
997       struct brw_vertex_element *input = brw->vb.enabled[i];
998       uint32_t format = brw_get_vertex_surface_type(brw, input->glarray);
999       uint32_t comp0 = BRW_VE1_COMPONENT_STORE_SRC;
1000       uint32_t comp1 = BRW_VE1_COMPONENT_STORE_SRC;
1001       uint32_t comp2 = BRW_VE1_COMPONENT_STORE_SRC;
1002       uint32_t comp3 = BRW_VE1_COMPONENT_STORE_SRC;
1003       unsigned num_uploads = 1;
1004       unsigned c;
1005 
1006       num_uploads = uploads_needed(format);
1007 
1008       if (input == &brw->vb.inputs[VERT_ATTRIB_EDGEFLAG]) {
1009          /* Gen6+ passes edgeflag as sideband along with the vertex, instead
1010           * of in the VUE.  We have to upload it sideband as the last vertex
1011           * element according to the B-Spec.
1012           */
1013          if (brw->gen >= 6) {
1014             gen6_edgeflag_input = input;
1015             continue;
1016          }
1017       }
1018 
1019       for (c = 0; c < num_uploads; c++) {
1020          uint32_t upload_format = downsize_format_if_needed(format, c);
1021          /* If we need more that one upload, the offset stride would be 128
1022           * bits (16 bytes), as for previous uploads we are using the full
1023           * entry. */
1024          unsigned int offset = input->offset + c * 16;
1025          int size = input->glarray->Size;
1026 
1027          if (is_passthru_format(format))
1028             size = upload_format_size(upload_format);
1029 
1030          switch (size) {
1031          case 0: comp0 = BRW_VE1_COMPONENT_STORE_0;
1032          case 1: comp1 = BRW_VE1_COMPONENT_STORE_0;
1033          case 2: comp2 = BRW_VE1_COMPONENT_STORE_0;
1034          case 3: comp3 = input->glarray->Integer
1035                          ? BRW_VE1_COMPONENT_STORE_1_INT
1036                          : BRW_VE1_COMPONENT_STORE_1_FLT;
1037             break;
1038          }
1039 
1040          if (brw->gen >= 6) {
1041             OUT_BATCH((input->buffer << GEN6_VE0_INDEX_SHIFT) |
1042                       GEN6_VE0_VALID |
1043                       (upload_format << BRW_VE0_FORMAT_SHIFT) |
1044                       (offset << BRW_VE0_SRC_OFFSET_SHIFT));
1045          } else {
1046             OUT_BATCH((input->buffer << BRW_VE0_INDEX_SHIFT) |
1047                       BRW_VE0_VALID |
1048                       (upload_format << BRW_VE0_FORMAT_SHIFT) |
1049                       (offset << BRW_VE0_SRC_OFFSET_SHIFT));
1050          }
1051 
1052          if (brw->gen >= 5)
1053             OUT_BATCH((comp0 << BRW_VE1_COMPONENT_0_SHIFT) |
1054                       (comp1 << BRW_VE1_COMPONENT_1_SHIFT) |
1055                       (comp2 << BRW_VE1_COMPONENT_2_SHIFT) |
1056                       (comp3 << BRW_VE1_COMPONENT_3_SHIFT));
1057          else
1058             OUT_BATCH((comp0 << BRW_VE1_COMPONENT_0_SHIFT) |
1059                       (comp1 << BRW_VE1_COMPONENT_1_SHIFT) |
1060                       (comp2 << BRW_VE1_COMPONENT_2_SHIFT) |
1061                       (comp3 << BRW_VE1_COMPONENT_3_SHIFT) |
1062                       ((i * 4) << BRW_VE1_DST_OFFSET_SHIFT));
1063       }
1064    }
1065 
1066    if (vs_prog_data->uses_vertexid || vs_prog_data->uses_instanceid ||
1067        vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance) {
1068       uint32_t dw0 = 0, dw1 = 0;
1069       uint32_t comp0 = BRW_VE1_COMPONENT_STORE_0;
1070       uint32_t comp1 = BRW_VE1_COMPONENT_STORE_0;
1071       uint32_t comp2 = BRW_VE1_COMPONENT_STORE_0;
1072       uint32_t comp3 = BRW_VE1_COMPONENT_STORE_0;
1073 
1074       if (vs_prog_data->uses_basevertex)
1075          comp0 = BRW_VE1_COMPONENT_STORE_SRC;
1076 
1077       if (vs_prog_data->uses_baseinstance)
1078          comp1 = BRW_VE1_COMPONENT_STORE_SRC;
1079 
1080       if (vs_prog_data->uses_vertexid)
1081          comp2 = BRW_VE1_COMPONENT_STORE_VID;
1082 
1083       if (vs_prog_data->uses_instanceid)
1084          comp3 = BRW_VE1_COMPONENT_STORE_IID;
1085 
1086       dw1 = (comp0 << BRW_VE1_COMPONENT_0_SHIFT) |
1087             (comp1 << BRW_VE1_COMPONENT_1_SHIFT) |
1088             (comp2 << BRW_VE1_COMPONENT_2_SHIFT) |
1089             (comp3 << BRW_VE1_COMPONENT_3_SHIFT);
1090 
1091       if (brw->gen >= 6) {
1092          dw0 |= GEN6_VE0_VALID |
1093                 brw->vb.nr_buffers << GEN6_VE0_INDEX_SHIFT |
1094                 BRW_SURFACEFORMAT_R32G32_UINT << BRW_VE0_FORMAT_SHIFT;
1095       } else {
1096          dw0 |= BRW_VE0_VALID |
1097                 brw->vb.nr_buffers << BRW_VE0_INDEX_SHIFT |
1098                 BRW_SURFACEFORMAT_R32G32_UINT << BRW_VE0_FORMAT_SHIFT;
1099 	 dw1 |= (i * 4) << BRW_VE1_DST_OFFSET_SHIFT;
1100       }
1101 
1102       /* Note that for gl_VertexID, gl_InstanceID, and gl_PrimitiveID values,
1103        * the format is ignored and the value is always int.
1104        */
1105 
1106       OUT_BATCH(dw0);
1107       OUT_BATCH(dw1);
1108    }
1109 
1110    if (vs_prog_data->uses_drawid) {
1111       uint32_t dw0 = 0, dw1 = 0;
1112 
1113       dw1 = (BRW_VE1_COMPONENT_STORE_SRC << BRW_VE1_COMPONENT_0_SHIFT) |
1114             (BRW_VE1_COMPONENT_STORE_0   << BRW_VE1_COMPONENT_1_SHIFT) |
1115             (BRW_VE1_COMPONENT_STORE_0   << BRW_VE1_COMPONENT_2_SHIFT) |
1116             (BRW_VE1_COMPONENT_STORE_0   << BRW_VE1_COMPONENT_3_SHIFT);
1117 
1118       if (brw->gen >= 6) {
1119          dw0 |= GEN6_VE0_VALID |
1120                 ((brw->vb.nr_buffers + 1) << GEN6_VE0_INDEX_SHIFT) |
1121                 (BRW_SURFACEFORMAT_R32_UINT << BRW_VE0_FORMAT_SHIFT);
1122       } else {
1123          dw0 |= BRW_VE0_VALID |
1124                 ((brw->vb.nr_buffers + 1) << BRW_VE0_INDEX_SHIFT) |
1125                 (BRW_SURFACEFORMAT_R32_UINT << BRW_VE0_FORMAT_SHIFT);
1126 
1127 	 dw1 |= (i * 4) << BRW_VE1_DST_OFFSET_SHIFT;
1128       }
1129 
1130       OUT_BATCH(dw0);
1131       OUT_BATCH(dw1);
1132    }
1133 
1134    if (brw->gen >= 6 && gen6_edgeflag_input) {
1135       uint32_t format =
1136          brw_get_vertex_surface_type(brw, gen6_edgeflag_input->glarray);
1137 
1138       OUT_BATCH((gen6_edgeflag_input->buffer << GEN6_VE0_INDEX_SHIFT) |
1139                 GEN6_VE0_VALID |
1140                 GEN6_VE0_EDGE_FLAG_ENABLE |
1141                 (format << BRW_VE0_FORMAT_SHIFT) |
1142                 (gen6_edgeflag_input->offset << BRW_VE0_SRC_OFFSET_SHIFT));
1143       OUT_BATCH((BRW_VE1_COMPONENT_STORE_SRC << BRW_VE1_COMPONENT_0_SHIFT) |
1144                 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_1_SHIFT) |
1145                 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_2_SHIFT) |
1146                 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_3_SHIFT));
1147    }
1148 
1149    ADVANCE_BATCH();
1150 }
1151 
1152 const struct brw_tracked_state brw_vertices = {
1153    .dirty = {
1154       .mesa = _NEW_POLYGON,
1155       .brw = BRW_NEW_BATCH |
1156              BRW_NEW_BLORP |
1157              BRW_NEW_VERTICES |
1158              BRW_NEW_VS_PROG_DATA,
1159    },
1160    .emit = brw_emit_vertices,
1161 };
1162 
1163 static void
brw_upload_indices(struct brw_context * brw)1164 brw_upload_indices(struct brw_context *brw)
1165 {
1166    struct gl_context *ctx = &brw->ctx;
1167    const struct _mesa_index_buffer *index_buffer = brw->ib.ib;
1168    GLuint ib_size;
1169    drm_intel_bo *old_bo = brw->ib.bo;
1170    struct gl_buffer_object *bufferobj;
1171    GLuint offset;
1172    GLuint ib_type_size;
1173 
1174    if (index_buffer == NULL)
1175       return;
1176 
1177    ib_type_size = _mesa_sizeof_type(index_buffer->type);
1178    ib_size = index_buffer->count ? ib_type_size * index_buffer->count :
1179                                    index_buffer->obj->Size;
1180    bufferobj = index_buffer->obj;
1181 
1182    /* Turn into a proper VBO:
1183     */
1184    if (!_mesa_is_bufferobj(bufferobj)) {
1185       /* Get new bufferobj, offset:
1186        */
1187       intel_upload_data(brw, index_buffer->ptr, ib_size, ib_type_size,
1188 			&brw->ib.bo, &offset);
1189       brw->ib.size = brw->ib.bo->size;
1190    } else {
1191       offset = (GLuint) (unsigned long) index_buffer->ptr;
1192 
1193       /* If the index buffer isn't aligned to its element size, we have to
1194        * rebase it into a temporary.
1195        */
1196       if ((ib_type_size - 1) & offset) {
1197          perf_debug("copying index buffer to a temporary to work around "
1198                     "misaligned offset %d\n", offset);
1199 
1200          GLubyte *map = ctx->Driver.MapBufferRange(ctx,
1201                                                    offset,
1202                                                    ib_size,
1203                                                    GL_MAP_READ_BIT,
1204                                                    bufferobj,
1205                                                    MAP_INTERNAL);
1206 
1207          intel_upload_data(brw, map, ib_size, ib_type_size,
1208                            &brw->ib.bo, &offset);
1209          brw->ib.size = brw->ib.bo->size;
1210 
1211          ctx->Driver.UnmapBuffer(ctx, bufferobj, MAP_INTERNAL);
1212       } else {
1213          drm_intel_bo *bo =
1214             intel_bufferobj_buffer(brw, intel_buffer_object(bufferobj),
1215                                    offset, ib_size);
1216          if (bo != brw->ib.bo) {
1217             drm_intel_bo_unreference(brw->ib.bo);
1218             brw->ib.bo = bo;
1219             brw->ib.size = bufferobj->Size;
1220             drm_intel_bo_reference(bo);
1221          }
1222       }
1223    }
1224 
1225    /* Use 3DPRIMITIVE's start_vertex_offset to avoid re-uploading
1226     * the index buffer state when we're just moving the start index
1227     * of our drawing.
1228     */
1229    brw->ib.start_vertex_offset = offset / ib_type_size;
1230 
1231    if (brw->ib.bo != old_bo)
1232       brw->ctx.NewDriverState |= BRW_NEW_INDEX_BUFFER;
1233 
1234    if (index_buffer->type != brw->ib.type) {
1235       brw->ib.type = index_buffer->type;
1236       brw->ctx.NewDriverState |= BRW_NEW_INDEX_BUFFER;
1237    }
1238 }
1239 
1240 const struct brw_tracked_state brw_indices = {
1241    .dirty = {
1242       .mesa = 0,
1243       .brw = BRW_NEW_BLORP |
1244              BRW_NEW_INDICES,
1245    },
1246    .emit = brw_upload_indices,
1247 };
1248 
1249 static void
brw_emit_index_buffer(struct brw_context * brw)1250 brw_emit_index_buffer(struct brw_context *brw)
1251 {
1252    const struct _mesa_index_buffer *index_buffer = brw->ib.ib;
1253    GLuint cut_index_setting;
1254 
1255    if (index_buffer == NULL)
1256       return;
1257 
1258    if (brw->prim_restart.enable_cut_index && !brw->is_haswell) {
1259       cut_index_setting = BRW_CUT_INDEX_ENABLE;
1260    } else {
1261       cut_index_setting = 0;
1262    }
1263 
1264    BEGIN_BATCH(3);
1265    OUT_BATCH(CMD_INDEX_BUFFER << 16 |
1266              cut_index_setting |
1267              brw_get_index_type(index_buffer->type) |
1268              1);
1269    OUT_RELOC(brw->ib.bo,
1270              I915_GEM_DOMAIN_VERTEX, 0,
1271              0);
1272    OUT_RELOC(brw->ib.bo,
1273              I915_GEM_DOMAIN_VERTEX, 0,
1274 	     brw->ib.size - 1);
1275    ADVANCE_BATCH();
1276 }
1277 
1278 const struct brw_tracked_state brw_index_buffer = {
1279    .dirty = {
1280       .mesa = 0,
1281       .brw = BRW_NEW_BATCH |
1282              BRW_NEW_BLORP |
1283              BRW_NEW_INDEX_BUFFER,
1284    },
1285    .emit = brw_emit_index_buffer,
1286 };
1287